Radio Frequency Exposure

<u>LIMIT</u>

For 2.4G Band: According to §15.247(i), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See § 1.1307(b)(1) of this chapter.

For 5.0G Band: According to FCC §1.1310, The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in § 1.1307(b).

EUT	Dual-Band Wireless AC/N VDSL2 Combo WAN Gigabit Gateway with USB					
Frequency band (Operating)	 WLAN: 2.412GHz ~ 2.462GHz WLAN: 5.150GHz ~ 5.250GHz WLAN: 5.745GHz ~ 5.825GHz Bluetooth: 2.402GHz ~ 2.480 GHz 					
Device category	 Portable (<20cm separation) Mobile (>20cm separation) 					
Exposure classification	 Occupational/Controlled exposure (S = 5mW/cm²) General Population/Uncontrolled exposure (S=1mW/cm²) 					
Antenna diversity	 Single antenna Multiple antennas Tx diversity Rx diversity X Tx/Rx diversity 					
Max. output power for 2.4G Band	IEEE802.11b: 24.47 dBm (0.2799W) IEEE802.11g: 23.40 dBm (0.2188W) IEEE802.11n HT20: 25.30 dBm (0.3388W) IEEE802.11n HT40: 25.89 dBm (0.3882W)					
Max. output power for 5.150-5.250GHz	IEEE802.11a: 25.37 dBm (0.3443W) IEEE802.11ac(20MHz): 26.07 dBm (0.4046W) IEEE802.11ac(40MHz): 25.48 dBm (0.3532W) IEEE802.11ac(80MHz): 19.45 dBm (0.0881W)					
Max. output power for 5.745-5.850GHz	IEEE802.11a: 26.24 dBm (0.4207W) IEEE802.11ac(20MHz): 25.88 dBm (0.3873W) IEEE802.11ac(40MHz): 25.14 dBm (0.3266W) IEEE802.11ac(80MHz): 25.49 dBm (0.3540W)					
Antenna gain (Max)	3.4dBi for 2.4G Band 5.45dBi for 5.150-5.250GHz 6.63dBi for 5.745-5.850GHz					
Evaluation applied	 MPE Evaluation* SAR Evaluation N/A 					

EUT Specification

CERPASS TECHNOLOGY(SUZHOU)CO., LTD

Remark:

 The maximum output power is <u>25.89dBm (0.3882W)</u> at <u>2437MHz</u> (with <u>numeric 2.188antenna gain.</u>) for2.4G band

The maximum output power is <u>26.07dBm (0.4046W)</u> at <u>5240MHz</u> (with <u>numeric 3.508antenna gain</u>.) The maximum output power is <u>26.24dBm (0.4207W)</u> at <u>5785MHz</u> (with <u>numeric 4.603antenna gain</u>.)

- 2. DTS device is not subject to routine RF evaluation; MPE estimate is used to justify the compliance.
- For mobile or fixed location transmitters, no SAR consideration applied. The maximum power density is 1.0 mW/cm² even if the calculation indicates that the power density would be larger.

*Note: Simultaneous transmission is not applicable for this EUT.

TEST RESULTS FOR 2.4G BAND

No non-compliance noted.

Calculation

Given
$$E = \frac{\sqrt{30 \times P \times G}}{d}$$
 & $S = \frac{E^2}{3770}$

Where E = Field strength in Volts / meter P = Power in Watts G = Numeric antenna gain d = Distance in meters S = Power density in milliwatts / square centimeter

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{3770d^2}$$

Changing to units of mW and cm, using:

$$P(mW) = P(W) / 1000$$
 and $d(cm) = d(m) / 100$

Yields

$$S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$
 Equation 1

Where d = Distance in cm P = Power in mW G = Numeric antenna gain S = Power density in mW / cm²

Maximum Permissible Exposure

Modulation Mode	Frequency band (MHz)	Max. Conducted output power(dBm)	Antenna gain (dBi)	Distance (cm)	Power density (mW/cm2)	Limit (mW/cm2)
IEEE802.11b	2412-2462	24.47	3.4	20	0.1219	1
IEEE802.11g	2412-2462	23.40	3.4	20	0.0953	1
IEEE802.11n HT20	2412-2462	25.30	3.4	20	0.1475	1
IEEE802.11n HT40	2422-2452	25.89	3.4	20	0.1690	1

Cerpass Technology (Suzhou) Co., Ltd	Issued date	: Oct, 16, 2015
TEL: +86-512-6917-5888 FAX: +86-512-6917-5666	Page No. FCC ID	: 3 of 5 : I88VMG3925-B10A

TEST RESULTS FOR 5150-5250MHZ

No non-compliance noted.

Calculation

Given

$$E = \frac{\sqrt{30 \times P \times G}}{d} \quad \& \quad S = \frac{E^2}{3770}$$

Where E = Field strength in Volts / meter P = Power in Watts G = Numeric antenna gain*d* = *Distance in meters* S = Power density in milliwatts / square centimeter

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{3770d^2}$$

Changing to units of mW and cm, using:

Yields

$$S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$
 Equation 1

Where d = Distance in cm P = Power in mWG = Numeric antenna gain $S = Power density in mW / cm^2$

Maximum Permissible Exposure

Modulation Mode	Frequency band (MHz)	Max. Conducted output power(dBm)	Antenna gain (dBi)	Distance (cm)	Power density (mW/cm2)	Limit (mW/cm2)
IEEE802.11a	5180-5240	25.37	5.45	20	0.2403	1
IEEE802.11ac(20MHz)	5180-5240	26.07	5.45	20	0.2823	1
IEEE802.11ac(40MHz)	5190-5230	25.48	5.45	20	0.2465	1
IEEE802.11ac(80MHz)	5210	19.45	5.45	20	0.0615	1

Cerpass Technology (Suzhou) Co., Ltd	Issued date	: Oct, 16, 2015
TEL: +86-512-6917-5888 FAX: +86-512-6917-5666	Page No.	: 4 of 5
	FCC ID	: I88VMG3925-B10A

TEST RESULTS FOR 5745-5825MHZ

No non-compliance noted.

Calculation

Given

$$E = \frac{\sqrt{30 \times P \times G}}{d} \quad \& \quad S = \frac{E^2}{3770}$$

Where E = Field strength in Volts / meter P = Power in Watts G = Numeric antenna gain d = Distance in meters S = Power density in milliwatts / square centimeter

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{3770d^2}$$

Changing to units of mW and cm, using:

Yields

$$S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$
 Equation 1

Where d = Distance in cm P = Power in mW G = Numeric antenna gain S = Power density in mW / cm²

Maximum Permissible Exposure

Modulation Mode	Frequency band (MHz)	Max. Conducted output power(dBm)	Antenna gain (dBi)	Distance (cm)	Power density (mW/cm2)	Limit (mW/cm2)
IEEE802.11a	5745-5825	26.24	6.63	20	0.3854	1
IEEE802.11ac(20MHz)	5745-5825	25.88	6.63	20	0.3546	1
IEEE802.11ac(40MHz)	5755-5795	25.14	6.63	20	0.2990	1
IEEE802.11ac(80MHz)	5775	25.49	6.63	20	0.3241	1

NOTE:

Total (Chain0+Chain1), the formula of calculated the MPE is:

CPD1 / LPD1 + CPD2 / LPD2 +etc. < 1

CPD = Calculation power density

LPD = Limit of power density