LOG MESSAGE	DESCRIPTION
Under SYN flood attack, sent TCP RST	The router sent a TCP reset packet when a host was under a SYN flood attack (the TCP incomplete count is per destination host.)
Exceed TCP MAX incomplete, sent TCP RST	The router sent a TCP reset packet when the number of TCP incomplete connections exceeded the user configured threshold. (the TCP incomplete count is per destination host.) Note: Refer to TCP Maximum Incomplete in the Firewall Attack Alerts screen.
Peer TCP state out of order, sent TCP RST	The router sent a TCP reset packet when a TCP connection state was out of order.Note: The firewall refers to RFC793 Figure 6 to check the TCP state.
Firewall session time out, sent TCP RST	The router sent a TCP reset packet when a dynamic firewall session timed out.
	The default timeout values are as follows:
	ICMP idle timeout: 3 minutes
	UDP idle timeout: 3 minutes
	TCP connection (three way handshaking) timeout: 270 seconds
	TCP FIN-wait timeout: 2 MSL (Maximum Segment Lifetime set in the TCP header).
	TCP idle (established) timeout (s): 150 minutes
	TCP reset timeout: 10 seconds
Exceed MAX incomplete, sent TCP RST	The router sent a TCP reset packet when the number of incomplete connections (TCP and UDP) exceeded the user-configured threshold. (Incomplete count is for all TCP and UDP connections through the firewall.)Note: When the number of incomplete connections (TCP + UDP) > "Maximum Incomplete High", the router sends TCP RST packets for TCP connections and destroys TOS (firewall dynamic sessions) until incomplete connections < "Maximum Incomplete Low".
Access block, sent TCP RST	The router sends a TCP RST packet and generates this log if you turn on the firewall TCP reset mechanism (via CI command: "sys firewall tcprst").

Table 133TCP Reset Logs

Table 134 Packet Filter Logs

LOG MESSAGE	DESCRIPTION
[TCP UDP ICMP IGMP Generic] packet filter matched (set:%d, rule:%d)	Attempted access matched a configured filter rule (denoted by its set and rule number) and was blocked or forwarded according to the rule.

Table 135	ICMP	Logs
-----------	------	------

LOG MESSAGE	DESCRIPTION
<pre>Firewall default policy: ICMP <packet direction="">, <type:%d>, <code:%d></code:%d></type:%d></packet></pre>	ICMP access matched the default policy and was blocked or forwarded according to the user's setting. For type and code details, see Table 147 on page 324.
<pre>Firewall rule [NOT] match: ICMP <packet direction="">, <rule:%d>, <type:%d>, <code:%d></code:%d></type:%d></rule:%d></packet></pre>	ICMP access matched (or didn't match) a firewall rule (denoted by its number) and was blocked or forwarded according to the rule. For type and code details, see Table 147 on page 324.
Triangle route packet forwarded: ICMP	The firewall allowed a triangle route session to pass through.
Packet without a NAT table entry blocked: ICMP	The router blocked a packet that didn't have a corresponding NAT table entry.
Unsupported/out-of-order ICMP: ICMP	The firewall does not support this kind of ICMP packets or the ICMP packets are out of order.
Router reply ICMP packet: ICMP	The router sent an ICMP reply packet to the sender.

Table 136 CDR Logs

LOG MESSAGE	DESCRIPTION
board%d line%d channel%d, call%d,%s CO1 Outgoing Call dev=%x ch=%x%s	The router received the setup requirements for a call. "call" is the reference (count) number of the call. "dev" is the device type (3 is for dial-up, 6 is for PPPoE, 10 is for PPTP). "channel" or "ch" is the call channel ID.For example,"board 0 line 0 channel 0, call 3, C01 Outgoing Call dev=6 ch=0 "Means the router has dialed to the PPPoE server 3 times.
board%d line%d channel%d, call%d,%s CO2 OutCall Connected%d%s	The PPPoE, PPTP or dial-up call is connected.
board%d line%d channel%d, call%d,%s CO2 Call Terminated	The PPPoE, PPTP or dial-up call was disconnected.

Table 137 PPP Logs

LOG MESSAGE	DESCRIPTION
ppp:LCP Starting	The PPP connection's Link Control Protocol stage has started.
ppp:LCP Opening	The PPP connection's Link Control Protocol stage is opening.
ppp:CHAP Opening	The PPP connection's Challenge Handshake Authentication Protocol stage is opening.
ppp:IPCP Starting	The PPP connection's Internet Protocol Control Protocol stage is starting.
ppp:IPCP Opening	The PPP connection's Internet Protocol Control Protocol stage is opening.

Table 137PPP Logs (continued)

LOG MESSAGE	DESCRIPTION
ppp:LCP Closing	The PPP connection's Link Control Protocol stage is closing.
ppp:IPCP Closing	The PPP connection's Internet Protocol Control Protocol stage is closing.

Table 138 UPnP Logs

LOG MESSAGE	DESCRIPTION
UPnP pass through Firewall	UPnP packets can pass through the firewall.

Table 139 Content Filtering Logs

LOG MESSAGE	DESCRIPTION
%s: Keyword blocking	The content of a requested web page matched a user defined keyword.
%s: Not in trusted web list	The web site is not in a trusted domain, and the router blocks all traffic except trusted domain sites.
%s: Forbidden Web site	The web site is in the forbidden web site list.
%s: Contains ActiveX	The web site contains ActiveX.
%s: Contains Java applet	The web site contains a Java applet.
%s: Contains cookie	The web site contains a cookie.
%s: Proxy mode detected	The router detected proxy mode in the packet.
%s	The content filter server responded that the web site is in the blocked category list, but it did not return the category type.
%s:%s	The content filter server responded that the web site is in the blocked category list, and returned the category type.
%s(cache hit)	The system detected that the web site is in the blocked list from the local cache, but does not know the category type.
%s:%s(cache hit)	The system detected that the web site is in blocked list from the local cache, and knows the category type.
%s: Trusted Web site	The web site is in a trusted domain.
%s	When the content filter is not on according to the time schedule or you didn't select the "Block Matched Web Site" check box, the system forwards the web content.
Waiting content filter server timeout	The external content filtering server did not respond within the timeout period.
DNS resolving failed	The ZyXEL Device cannot get the IP address of the external content filtering via DNS query.
Creating socket failed	The ZyXEL Device cannot issue a query because TCP/IP socket creation failed, port:port number.

LOG MESSAGE	DESCRIPTION
Connecting to content filter server fail	The connection to the external content filtering server failed.
License key is invalid	The external content filtering license key is invalid.

Table 140 Attack Logs

LOG MESSAGE	DESCRIPTION
attack [TCP UDP IGMP ESP GRE OSPF]	The firewall detected a TCP/UDP/IGMP/ESP/GRE/OSPF attack.
attack ICMP (type:%d, code:%d)	The firewall detected an ICMP attack. For type and code details, see Table 147 on page 324.
land [TCP UDP IGMP ESP GRE OSPF]	The firewall detected a TCP/UDP/IGMP/ESP/GRE/OSPF land attack.
<pre>land ICMP (type:%d, code:%d)</pre>	The firewall detected an ICMP land attack. For type and code details, see Table 147 on page 324.
ip spoofing - WAN [TCP UDP IGMP ESP GRE OSPF]	The firewall detected an IP spoofing attack on the WAN port.
ip spoofing - WAN ICMP (type:%d, code:%d)	The firewall detected an ICMP IP spoofing attack on the WAN port. For type and code details, see Table 147 on page 324.
<pre>icmp echo: ICMP (type:%d, code:%d)</pre>	The firewall detected an ICMP echo attack. For type and code details, see Table 147 on page 324.
syn flood TCP	The firewall detected a TCP syn flood attack.
ports scan TCP	The firewall detected a TCP port scan attack.
teardrop TCP	The firewall detected a TCP teardrop attack.
teardrop UDP	The firewall detected an UDP teardrop attack.
<pre>teardrop ICMP (type:%d, code:%d)</pre>	The firewall detected an ICMP teardrop attack. For type and code details, see Table 147 on page 324.
illegal command TCP	The firewall detected a TCP illegal command attack.
NetBIOS TCP	The firewall detected a TCP NetBIOS attack.
ip spoofing - no routing entry [TCP UDP IGMP ESP GRE OSPF]	The firewall classified a packet with no source routing entry as an IP spoofing attack.
<pre>ip spoofing - no routing entry ICMP (type:%d, code:%d)</pre>	The firewall classified an ICMP packet with no source routing entry as an IP spoofing attack.
vulnerability ICMP (type:%d, code:%d)	The firewall detected an ICMP vulnerability attack. For type and code details, see Table 147 on page 324.
<pre>traceroute ICMP (type:%d, code:%d)</pre>	The firewall detected an ICMP traceroute attack. For type and code details, see Table 147 on page 324.

LOG MESSAGE	DESCRIPTION
Discard REPLAY packet	The router received and discarded a packet with an incorrect sequence number.
Inbound packet authentication failed	The router received a packet that has been altered. A third party may have altered or tampered with the packet.
Receive IPSec packet, but no corresponding tunnel exists	The router dropped an inbound packet for which SPI could not find a corresponding phase 2 SA.
Rule <%d> idle time out, disconnect	The router dropped a connection that had outbound traffic and no inbound traffic for a certain time period. You can use the "ipsec timer chk_conn" CI command to set the time period. The default value is 2 minutes.
WAN IP changed to <ip></ip>	The router dropped all connections with the "MyIP" configured as "0.0.0.0" when the WAN IP address changed.

Table 142 IKE Logs

LOG MESSAGE	DESCRIPTION
Active connection allowed exceeded	The IKE process for a new connection failed because the limit of simultaneous phase 2 SAs has been reached.
Start Phase 2: Quick Mode	Phase 2 Quick Mode has started.
Verifying Remote ID failed:	The connection failed during IKE phase 2 because the router and the peer's Local/Remote Addresses don't match.
Verifying Local ID failed:	The connection failed during IKE phase 2 because the router and the peer's Local/Remote Addresses don't match.
IKE Packet Retransmit	The router retransmitted the last packet sent because there was no response from the peer.
Failed to send IKE Packet	An Ethernet error stopped the router from sending IKE packets.
Too many errors! Deleting SA	An SA was deleted because there were too many errors.
Phase 1 IKE SA process done	The phase 1 IKE SA process has been completed.
Duplicate requests with the same cookie	The router received multiple requests from the same peer while still processing the first IKE packet from the peer.
IKE Negotiation is in process	The router has already started negotiating with the peer for the connection, but the IKE process has not finished yet.
No proposal chosen	Phase 1 or phase 2 parameters don't match. Please check all protocols / settings. Ex. One device being configured for 3DES and the other being configured for DES causes the connection to fail.
Local / remote IPs of incoming request conflict with rule <%d>	The security gateway is set to "0.0.0.0" and the router used the peer's "Local Address" as the router's "Remote Address". This information conflicted with static rule #d; thus the connection is not allowed.

Table 142	IKE Logs	(continued)
-----------	----------	-------------

LOG MESSAGE	DESCRIPTION
Cannot resolve Secure Gateway Addr for rule <%d>	The router couldn't resolve the IP address from the domain name that was used for the secure gateway address.
Peer ID: <peer id=""> <my remote<br="">type> -<my local="" type=""></my></my></peer>	The displayed ID information did not match between the two ends of the connection.
vs. My Remote <my remote=""> - <my remote=""></my></my>	The displayed ID information did not match between the two ends of the connection.
vs. My Local <my local="">-<my local></my </my>	The displayed ID information did not match between the two ends of the connection.
Send <packet></packet>	A packet was sent.
Recv <packet></packet>	IKE uses ISAKMP to transmit data. Each ISAKMP packet contains many different types of payloads. All of them show in the LOG. Refer to RFC2408 – ISAKMP for a list of all ISAKMP payload types.
Recv <main aggressive="" or=""> Mode request from <ip></ip></main>	The router received an IKE negotiation request from the peer address specified.
Send <main aggressive="" or=""> Mode request to <ip></ip></main>	The router started negotiation with the peer.
Invalid IP <peer local=""> / <peer local=""></peer></peer>	The peer's "Local IP Address" is invalid.
Remote IP <remote ip=""> / <remote ip=""> conflicts</remote></remote>	The security gateway is set to "0.0.0.0" and the router used the peer's "Local Address" as the router's "Remote Address". This information conflicted with static rule #d; thus the connection is not allowed.
Phase 1 ID type mismatch	This router's "Peer ID Type" is different from the peer IPSec router's "Local ID Type".
Phase 1 ID content mismatch	This router's "Peer ID Content" is different from the peer IPSec router's "Local ID Content".
No known phase 1 ID type found	The router could not find a known phase 1 ID in the connection attempt.
ID type mismatch. Local / Peer: <local id="" id<br="" peer="" type="">type></local>	The phase 1 ID types do not match.
ID content mismatch	The phase 1 ID contents do not match.
Configured Peer ID Content: <configured content="" id="" peer=""></configured>	The phase 1 ID contents do not match and the configured "Peer ID Content" is displayed.
Incoming ID Content: <incoming content="" id="" peer=""></incoming>	The phase 1 ID contents do not match and the incoming packet's ID content is displayed.
Unsupported local ID Type: <%d>	The phase 1 ID type is not supported by the router.
Build Phase 1 ID	The router has started to build the phase 1 ID.
Adjust TCP MSS to%d	The router automatically changed the TCP Maximum Segment Size value after establishing a tunnel.
Rule <%d> input idle time out, disconnect	The tunnel for the listed rule was dropped because there was no inbound traffic within the idle timeout period.
XAUTH succeed! Username: <username></username>	The router used extended authentication to authenticate the listed username.

Table 142 IKE Logs (continued)

LOG MESSAGE	DESCRIPTION
XAUTH fail! Username: <username></username>	The router was not able to use extended authentication to authenticate the listed username.
Rule[%d] Phase 1 negotiation mode mismatch	The listed rule's IKE phase 1 negotiation mode did not match between the router and the peer.
Rule [%d] Phase 1 encryption algorithm mismatch	The listed rule's IKE phase 1 encryption algorithm did not match between the router and the peer.
Rule [%d] Phase 1 authentication algorithm mismatch	The listed rule's IKE phase 1 authentication algorithm did not match between the router and the peer.
Rule [%d] Phase 1 authentication method mismatch	The listed rule's IKE phase 1 authentication method did not match between the router and the peer.
Rule [%d] Phase 1 key group mismatch	The listed rule's IKE phase 1 key group did not match between the router and the peer.
Rule [%d] Phase 2 protocol mismatch	The listed rule's IKE phase 2 protocol did not match between the router and the peer.
Rule [%d] Phase 2 encryption algorithm mismatch	The listed rule's IKE phase 2 encryption algorithm did not match between the router and the peer.
Rule [%d] Phase 2 authentication algorithm mismatch	The listed rule's IKE phase 2 authentication algorithm did not match between the router and the peer.
Rule [%d] Phase 2 encapsulation mismatch	The listed rule's IKE phase 2 encapsulation did not match between the router and the peer.
Rule [%d]> Phase 2 pfs mismatch	The listed rule's IKE phase 2 perfect forward secret (pfs) setting did not match between the router and the peer.
Rule [%d] Phase 1 ID mismatch	The listed rule's IKE phase 1 ID did not match between the router and the peer.
Rule [%d] Phase 1 hash mismatch	The listed rule's IKE phase 1 hash did not match between the router and the peer.
Rule [%d] Phase 1 preshared key mismatch	The listed rule's IKE phase 1 pre-shared key did not match between the router and the peer.
Rule [%d] Tunnel built successfully	The listed rule's IPSec tunnel has been built successfully.
Rule [%d] Peer's public key not found	The listed rule's IKE phase 1 peer's public key was not found.
Rule [%d] Verify peer's signature failed	The listed rule's IKE phase 1verification of the peer's signature failed.
Rule [%d] Sending IKE request	IKE sent an IKE request for the listed rule.
Rule [%d] Receiving IKE request	IKE received an IKE request for the listed rule.
Swap rule to rule [%d]	The router changed to using the listed rule.
Rule [%d] Phase 1 key length mismatch	The listed rule's IKE phase 1 key length (with the AES encryption algorithm) did not match between the router and the peer.
Rule [%d] phase 1 mismatch	The listed rule's IKE phase 1 did not match between the router and the peer.

Table 142	IKE Logs	(continued)
-----------	----------	-------------

LOG MESSAGE	DESCRIPTION
Rule [%d] phase 2 mismatch	The listed rule's IKE phase 2 did not match between the router and the peer.
Rule [%d] Phase 2 key length mismatch	The listed rule's IKE phase 2 key lengths (with the AES encryption algorithm) did not match between the router and the peer.

Table 143 PKI Logs

LOG MESSAGE	DESCRIPTION
Enrollment successful	The SCEP online certificate enrollment was successful. The Destination field records the certification authority server IP address and port.
Enrollment failed	The SCEP online certificate enrollment failed. The Destination field records the certification authority server's IP address and port.
Failed to resolve <scep ca="" server="" url=""></scep>	The SCEP online certificate enrollment failed because the certification authority server's address cannot be resolved.
Enrollment successful	The CMP online certificate enrollment was successful. The Destination field records the certification authority server's IP address and port.
Enrollment failed	The CMP online certificate enrollment failed. The Destination field records the certification authority server's IP address and port.
Failed to resolve <cmp CA server url></cmp 	The CMP online certificate enrollment failed because the certification authority server's IP address cannot be resolved.
Rcvd ca cert: <subject name></subject 	The router received a certification authority certificate, with subject name as recorded, from the LDAP server whose IP address and port are recorded in the Source field.
Rcvd user cert: <subject name=""></subject>	The router received a user certificate, with subject name as recorded, from the LDAP server whose IP address and port are recorded in the Source field.
Rcvd CRL <size>: <issuer name=""></issuer></size>	The router received a CRL (Certificate Revocation List), with size and issuer name as recorded, from the LDAP server whose IP address and port are recorded in the Source field.
Rcvd ARL <size>: <issuer name=""></issuer></size>	The router received an ARL (Authority Revocation List), with size and issuer name as recorded, from the LDAP server whose address and port are recorded in the Source field.
Failed to decode the received ca cert	The router received a corrupted certification authority certificate from the LDAP server whose address and port are recorded in the Source field.
Failed to decode the received user cert	The router received a corrupted user certificate from the LDAP server whose address and port are recorded in the Source field.
Failed to decode the received CRL	The router received a corrupted CRL (Certificate Revocation List) from the LDAP server whose address and port are recorded in the Source field.
Failed to decode the received ARL	The router received a corrupted ARL (Authority Revocation List) from the LDAP server whose address and port are recorded in the Source field.

Table 143 PKI Logs (continued)

LOG MESSAGE	DESCRIPTION
Rcvd data <size> too large! Max size allowed: <max size=""></max></size>	The router received directory data that was too large (the size is listed) from the LDAP server whose address and port are recorded in the Source field. The maximum size of directory data that the router allows is also recorded.
Cert trusted: <subject name></subject 	The router has verified the path of the certificate with the listed subject name.
Due to <reason codes="">, cert not trusted: <subject name=""></subject></reason>	Due to the reasons listed, the certificate with the listed subject name has not passed the path verification. The recorded reason codes are only approximate reasons for not trusting the certificate. Please see Table 144 on page 322 for the corresponding descriptions of the codes.

Table 144 Certificate Path Verification Failure Reason Codes

CODE	DESCRIPTION
1	Algorithm mismatch between the certificate and the search constraints.
2	Key usage mismatch between the certificate and the search constraints.
3	Certificate was not valid in the time interval.
4	(Not used)
5	Certificate is not valid.
6	Certificate signature was not verified correctly.
7	Certificate was revoked by a CRL.
8	Certificate was not added to the cache.
9	Certificate decoding failed.
10	Certificate was not found (anywhere).
11	Certificate chain looped (did not find trusted root).
12	Certificate contains critical extension that was not handled.
13	Certificate issuer was not valid (CA specific information missing).
14	(Not used)
15	CRL is too old.
16	CRL is not valid.
17	CRL signature was not verified correctly.
18	CRL was not found (anywhere).
19	CRL was not added to the cache.
20	CRL decoding failed.
21	CRL is not currently valid, but in the future.
22	CRL contains duplicate serial numbers.
23	Time interval is not continuous.
24	Time information not available.
25	Database method failed due to timeout.

CODE	DESCRIPTION
26	Database method failed.
27	Path was not verified.
28	Maximum path length reached.

Table 144 Certificate Path Verification Failure Reason Codes (continued)

Table 145 802.1X Logs

LOG MESSAGE	DESCRIPTION
Local User Database accepts user.	A user was authenticated by the local user database.
Local User Database reports user credential error.	A user was not authenticated by the local user database because of an incorrect user password.
Local User Database does not find user`s credential.	A user was not authenticated by the local user database because the user is not listed in the local user database.
RADIUS accepts user.	A user was authenticated by the RADIUS Server.
RADIUS rejects user. Pls check RADIUS Server.	A user was not authenticated by the RADIUS Server. Please check the RADIUS Server.
Local User Database does not support authentication method.	The local user database only supports the EAP-MD5 method. A user tried to use another authentication method and was not authenticated.
User logout because of session timeout expired.	The router logged out a user whose session expired.
User logout because of user deassociation.	The router logged out a user who ended the session.
User logout because of no authentication response from user.	The router logged out a user from which there was no authentication response.
User logout because of idle timeout expired.	The router logged out a user whose idle timeout period expired.
User logout because of user request.	A user logged out.
Local User Database does not support authentication mothed.	A user tried to use an authentication method that the local user database does not support (it only supports EAP- MD5).
No response from RADIUS. Pls check RADIUS Server.	There is no response message from the RADIUS server, please check the RADIUS server.
Use Local User Database to authenticate user.	The local user database is operating as the authentication server.
Use RADIUS to authenticate user.	The RADIUS server is operating as the authentication server.
No Server to authenticate user.	There is no authentication server to authenticate a user.
Local User Database does not find user`s credential.	A user was not authenticated by the local user database because the user is not listed in the local user database.

PACKET DIRECTION	DIRECTION	DESCRIPTION
(L to W)	LAN to WAN	ACL set for packets traveling from the LAN to the WAN.
(W to L)	WAN to LAN	ACL set for packets traveling from the WAN to the LAN.
(L to L)	LAN to LAN/ ZyXEL Device	ACL set for packets traveling from the LAN to the LAN or the ZyXEL Device.
(W to W)	WAN to WAN/ ZyXEL Device	ACL set for packets traveling from the WAN to the WAN or the ZyXEL Device.

Table 146 ACL Setting Notes

Table 147 ICMP Notes

TYPE	CODE	DESCRIPTION
0		Echo Reply
	0	Echo reply message
3		Destination Unreachable
	0	Net unreachable
	1	Host unreachable
	2	Protocol unreachable
	3	Port unreachable
	4	A packet that needed fragmentation was dropped because it was set to Don't Fragment (DF)
	5	Source route failed
4		Source Quench
	0	A gateway may discard internet datagrams if it does not have the buffer space needed to queue the datagrams for output to the next network on the route to the destination network.
5		Redirect
	0	Redirect datagrams for the Network
	1	Redirect datagrams for the Host
	2	Redirect datagrams for the Type of Service and Network
	3	Redirect datagrams for the Type of Service and Host
8		Echo
	0	Echo message
11		Time Exceeded
	0	Time to live exceeded in transit
	1	Fragment reassembly time exceeded
12		Parameter Problem
	0	Pointer indicates the error
13		Timestamp

TYPE	CODE	DESCRIPTION
	0	Timestamp request message
14		Timestamp Reply
	0	Timestamp reply message
15		Information Request
	0	Information request message
16		Information Reply
	0	Information reply message

Table 147	ICMP N	lotes	(continued)
-----------	--------	-------	-------------

Table 148 Syslog Logs

LOG MESSAGE	DESCRIPTION
<facility*8 +="" severity="">Mon dd hr:mm:ss hostname src="<srcip:srcport>" dst="<dstip:dstport>" msg="<msg>" note="<note>" devID="<mac address="" last="" three<br="">numbers>" cat="<category></category></mac></note></msg></dstip:dstport></srcip:srcport></facility*8>	"This message is sent by the system ("RAS" displays as the system name if you haven't configured one) when the router generates a syslog. The facility is defined in the web MAIN MENU->LOGS->Log Settings page. The severity is the log's syslog class. The definition of messages and notes are defined in the various log charts throughout this appendix. The "devID" is the last three characters of the MAC address of the router's LAN port. The "cat" is the same as the category in the router's logs.

The following table shows RFC-2408 ISAKMP payload types that the log displays. Please refer to the RFC for detailed information on each type.

LOG DISPLAY	PAYLOAD TYPE
SA	Security Association
PROP	Proposal
TRANS	Transform
KE	Key Exchange
ID	Identification
CER	Certificate
CER_REQ	Certificate Request
HASH	Hash
SIG	Signature
NONCE	Nonce
NOTFY	Notification
DEL	Delete
VID	Vendor ID

Table 149 RFC-2408 ISAKMP Payload Types

Log Commands

Go to the command interpreter interface.

Configuring What You Want the ZyXEL Device to Log

- **1** Use the sys logs load command to load the log setting buffer that allows you to configure which logs the ZyXEL Device is to record.
- **2** Use sys logs category to view a list of the log categories.

Figure 183 Displaying Log Categories Example

```
Copyright (c) 1994 - 2004 ZyXEL Communications Corp.
ras>?
Valid commands are:
sys exit ether aux
ip ipsec bridge bm
certificates cnm 8021x radius
ras>
```

3 Use sys logs category followed by a log category to display the parameters that are available for the category.

Figure 184 Displaying Log Parameters Example

```
ras> sys logs category access
Usage: [0:none/1:log/2:alert/3:both] [0:don't show debug type/
1:show debug type]
```

4 Use sys logs category followed by a log category and a parameter to decide what to record.

Use 0 to not record logs for that category, 1 to record only logs for that category, 2 to record only alerts for that category, and 3 to record both logs and alerts for that category. Not every parameter is available with every category.

5 Use the sys logs save command to store the settings in the ZyXEL Device (you must do this in order to record logs).

Displaying Logs

- Use the sys logs display command to show all of the logs in the ZyXEL Device's log.
- Use the sys logs category display command to show the log settings for all of the log categories.

- Use the sys logs display [log category] command to show the logs in an individual ZyXEL Device log category.
- Use the sys logs clear command to erase all of the ZyXEL Device's logs.

Log Command Example

This example shows how to set the ZyXEL Device to record the access logs and alerts and then view the results.

```
ras> sys logs load
ras> sys logs category access 3
ras> sys logs save
ras> sys logs display access
#.time
                     source
                                            destination
                                                                  notes
   message
0|06/08/2004 05:58:21 |172.21.4.154
                                           224.0.1.24
                                                                  ACCESS
BLOCK
   Firewall default policy: IGMP (W to W)
1|06/08/2004 05:58:20 |172.21.3.56
                                            |239.255.255.250
                                                                  ACCESS
BLOCK
   Firewall default policy: IGMP (W to W)
2|06/08/2004 05:58:20 |172.21.0.2
                                                                  ACCESS
                                           239.255.255.254
BLOCK
   Firewall default policy: IGMP (W to W)
3|06/08/2004 05:58:20 |172.21.3.191
                                           |224.0.1.22
                                                                  ACCESS
BLOCK
   Firewall default policy: IGMP (W to W)
4|06/08/2004 05:58:20 |172.21.0.254
                                           |224.0.0.1
                                                                  ACCESS
BLOCK
   Firewall default policy: IGMP (W to W)
5|06/08/2004 05:58:20 |172.21.4.187:137
                                            172.21.255.255:137
                                                                  ACCESS
BLOCK
   Firewall default policy: UDP (W to W)
```

APPENDIX L Wireless LANs

Wireless LAN Topologies

This section discusses ad-hoc and infrastructure wireless LAN topologies.

Ad-hoc Wireless LAN Configuration

The simplest WLAN configuration is an independent (Ad-hoc) WLAN that connects a set of computers with wireless adapters (A, B, C). Any time two or more wireless adapters are within range of each other, they can set up an independent network, which is commonly referred to as an Ad-hoc network or Independent Basic Service Set (IBSS). The following diagram shows an example of notebook computers using wireless adapters to form an Ad-hoc wireless LAN.

BSS

A Basic Service Set (BSS) exists when all communications between wireless clients or between a wireless client and a wired network client go through one access point (AP).

Intra-BSS traffic is traffic between wireless clients in the BSS. When Intra-BSS is enabled, wireless client **A** and **B** can access the wired network and communicate with each other. When Intra-BSS is disabled, wireless client **A** and **B** can still access the wired network but cannot communicate with each other.

ESS

An Extended Service Set (ESS) consists of a series of overlapping BSSs, each containing an access point, with each access point connected together by a wired network. This wired connection between APs is called a Distribution System (DS).

This type of wireless LAN topology is called an Infrastructure WLAN. The Access Points not only provide communication with the wired network but also mediate wireless network traffic in the immediate neighborhood.

An ESSID (ESS IDentification) uniquely identifies each ESS. All access points and their associated wireless clients within the same ESS must have the same ESSID in order to communicate.

Figure 187 Infrastructure WLAN

Channel

A channel is the radio frequency(ies) used by IEEE 802.11a/b/g wireless devices. Channels available depend on your geographical area. You may have a choice of channels (for your region) so you should use a different channel than an adjacent AP (access point) to reduce interference. Interference occurs when radio signals from different access points overlap causing interference and degrading performance.

Adjacent channels partially overlap however. To avoid interference due to overlap, your AP should be on a channel at least five channels away from a channel that an adjacent AP is using. For example, if your region has 11 channels and an adjacent AP is using channel 1, then you need to select a channel between 6 or 11.

RTS/CTS

A hidden node occurs when two stations are within range of the same access point, but are not within range of each other. The following figure illustrates a hidden node. Both stations (STA) are within range of the access point (AP) or wireless gateway, but out-of-range of each other, so they cannot "hear" each other, that is they do not know if the channel is currently being used. Therefore, they are considered hidden from each other.

When station A sends data to the AP, it might not know that the station B is already using the channel. If these two stations send data at the same time, collisions may occur when both sets of data arrive at the AP at the same time, resulting in a loss of messages for both stations.

RTS/CTS is designed to prevent collisions due to hidden nodes. An **RTS/CTS** defines the biggest size data frame you can send before an RTS (Request To Send)/CTS (Clear to Send) handshake is invoked.

When a data frame exceeds the **RTS/CTS** value you set (between 0 to 2432 bytes), the station that wants to transmit this frame must first send an RTS (Request To Send) message to the AP for permission to send it. The AP then responds with a CTS (Clear to Send) message to all other stations within its range to notify them to defer their transmission. It also reserves and confirms with the requesting station the time frame for the requested transmission.

Stations can send frames smaller than the specified **RTS/CTS** directly to the AP without the RTS (Request To Send)/CTS (Clear to Send) handshake.

You should only configure **RTS/CTS** if the possibility of hidden nodes exists on your network and the "cost" of resending large frames is more than the extra network overhead involved in the RTS (Request To Send)/CTS (Clear to Send) handshake.

If the **RTS/CTS** value is greater than the **Fragmentation Threshold** value (see next), then the RTS (Request To Send)/CTS (Clear to Send) handshake will never occur as data frames will be fragmented before they reach **RTS/CTS** size.

Note: Enabling the RTS Threshold causes redundant network overhead that could negatively affect the throughput performance instead of providing a remedy.

Fragmentation Threshold

A **Fragmentation Threshold** is the maximum data fragment size (between 256 and 2432 bytes) that can be sent in the wireless network before the AP will fragment the packet into smaller data frames.

A large **Fragmentation Threshold** is recommended for networks not prone to interference while you should set a smaller threshold for busy networks or networks that are prone to interference.

If the **Fragmentation Threshold** value is smaller than the **RTS/CTS** value (see previously) you set then the RTS (Request To Send)/CTS (Clear to Send) handshake will never occur as data frames will be fragmented before they reach **RTS/CTS** size.

Preamble Type

Preamble is used to signal that data is coming to the receiver. **Short** and **Long** refer to the length of the syncronization field in a packet.

Short preamble increases performance as less time sending preamble means more time for sending data. All IEEE 802.11b/g compliant wireless adapters support long preamble, but not all support short preamble.

Select **Long** preamble if you are unsure what preamble mode the wireless adapters support, and to provide more reliable communications in busy wireless networks.

Select **Short** preamble if you are sure the wireless adapters support it, and to provide more efficient communications.

Select **Dynamic** to have the AP automatically use short preamble when wireless adapters support it, otherwise the AP uses long preamble.

Note: The AP and the wireless adapters MUST use the same preamble mode in order to communicate.

IEEE 802.11g Wireless LAN

IEEE 802.11g is fully compatible with the IEEE 802.11b standard. This means an IEEE 802.11b adapter can interface directly with an IEEE 802.11g access point (and vice versa) at 11 Mbps or lower depending on range. IEEE 802.11g has several intermediate rate steps between the maximum and minimum data rates. The IEEE 802.11g data rate and modulation are as follows:

DATA RATE (MBPS)	MODULATION
1	DBPSK (Differential Binary Phase Shift Keyed)
2	DQPSK (Differential Quadrature Phase Shift Keying)
5.5 / 11	CCK (Complementary Code Keying)
6/9/12/18/24/36/48/54	OFDM (Orthogonal Frequency Division Multiplexing)

Table 150	IEEE 802.11g
-----------	--------------

Wireless Security Overview

Wireless security is vital to your network to protect wireless communication between wireless clients, access points and the wired network.

Wireless security methods available on the ZyXEL Device are data encryption, wireless client authentication, restricting access by device MAC address and hiding the ZyXEL Device identity.

The following figure shows the relative effectiveness of these wireless security methods available on your ZyXEL Device.

Security Level	Security Type				
Least Secure	Unique SSID (Default)				
	Unique SSID with Hide SSID Enabled				
	MAC Address Filtering				
	WEP Encryption				
	IEEE802.1x EAP with RADIUS Server Authentication				
	Wi-Fi Protected Access (WPA)				
Most Secure	WPA2				

Table 151 Wireless Security Levels

Note: You must enable the same wireless security settings on the ZyXEL Device and on all wireless clients that you want to associate with it.

IEEE 802.1x

In June 2001, the IEEE 802.1x standard was designed to extend the features of IEEE 802.11 to support extended authentication as well as providing additional accounting and control features. It is supported by Windows XP and a number of network devices. Some advantages of IEEE 802.1x are:

- User based identification that allows for roaming.
- Support for RADIUS (Remote Authentication Dial In User Service, RFC 2138, 2139) for centralized user profile and accounting management on a network RADIUS server.
- Support for EAP (Extensible Authentication Protocol, RFC 2486) that allows additional authentication methods to be deployed with no changes to the access point or the wireless clients.

RADIUS

RADIUS is based on a client-server model that supports authentication, authorization and accounting. The access point is the client and the server is the RADIUS server. The RADIUS server handles the following tasks:

• Authentication

Determines the identity of the users.

• Authorization

Determines the network services available to authenticated users once they are connected to the network.

• Accounting

Keeps track of the client's network activity.

RADIUS is a simple package exchange in which your AP acts as a message relay between the wireless client and the network RADIUS server.

Types of RADIUS Messages

The following types of RADIUS messages are exchanged between the access point and the RADIUS server for user authentication:

Access-Request

Sent by an access point requesting authentication.

• Access-Reject

Sent by a RADIUS server rejecting access.

Access-Accept

Sent by a RADIUS server allowing access.

• Access-Challenge

Sent by a RADIUS server requesting more information in order to allow access. The access point sends a proper response from the user and then sends another Access-Request message.

The following types of RADIUS messages are exchanged between the access point and the RADIUS server for user accounting:

· Accounting-Request

Sent by the access point requesting accounting.

• Accounting-Response

Sent by the RADIUS server to indicate that it has started or stopped accounting.

In order to ensure network security, the access point and the RADIUS server use a shared secret key, which is a password, they both know. The key is not sent over the network. In addition to the shared key, password information exchanged is also encrypted to protect the network from unauthorized access.

Types of Authentication

This section discusses some popular authentication types: EAP-MD5, EAP-TLS, EAP-TLS, PEAP and LEAP.

The type of authentication you use depends on the RADIUS server or the AP. Consult your network administrator for more information.

EAP-MD5 (Message-Digest Algorithm 5)

MD5 authentication is the simplest one-way authentication method. The authentication server sends a challenge to the wireless client. The wireless client 'proves' that it knows the password by encrypting the password with the challenge and sends back the information. Password is not sent in plain text.

However, MD5 authentication has some weaknesses. Since the authentication server needs to get the plaintext passwords, the passwords must be stored. Thus someone other than the authentication server may access the password file. In addition, it is possible to impersonate an authentication server as MD5 authentication method does not perform mutual authentication. Finally, MD5 authentication method does not support data encryption with dynamic session key. You must configure WEP encryption keys for data encryption.

EAP-TLS (Transport Layer Security)

With EAP-TLS, digital certifications are needed by both the server and the wireless clients for mutual authentication. The server presents a certificate to the client. After validating the identity of the server, the client sends a different certificate to the server. The exchange of certificates is done in the open before a secured tunnel is created. This makes user identity vulnerable to passive attacks. A digital certificate is an electronic ID card that authenticates the sender's identity. However, to implement EAP-TLS, you need a Certificate Authority (CA) to handle certificates, which imposes a management overhead.

EAP-TTLS (Tunneled Transport Layer Service)

EAP-TTLS is an extension of the EAP-TLS authentication that uses certificates for only the server-side authentications to establish a secure connection. Client authentication is then done by sending username and password through the secure connection, thus client identity is protected. For client authentication, EAP-TTLS supports EAP methods and legacy authentication methods such as PAP, CHAP, MS-CHAP and MS-CHAP v2.

PEAP (Protected EAP)

Like EAP-TTLS, server-side certificate authentication is used to establish a secure connection, then use simple username and password methods through the secured connection to authenticate the clients, thus hiding client identity. However, PEAP only supports EAP methods, such as EAP-MD5, EAP-MSCHAPv2 and EAP-GTC (EAP-Generic Token Card), for client authentication. EAP-GTC is implemented only by Cisco.

LEAP

LEAP (Lightweight Extensible Authentication Protocol) is a Cisco implementation of IEEE 802.1x.

Dynamic WEP Key Exchange

The AP maps a unique key that is generated with the RADIUS server. This key expires when the wireless connection times out, disconnects or reauthentication times out. A new WEP key is generated each time reauthentication is performed.

If this feature is enabled, it is not necessary to configure a default encryption key in the Wireless screen. You may still configure and store keys here, but they will not be used while Dynamic WEP is enabled.

Note: EAP-MD5 cannot be used with Dynamic WEP Key Exchange

For added security, certificate-based authentications (EAP-TLS, EAP-TTLS and PEAP) use dynamic keys for data encryption. They are often deployed in corporate environments, but for public deployment, a simple user name and password pair is more practical. The following table is a comparison of the features of authentication types.

	EAP-MD5	EAP-TLS	EAP-TTLS	PEAP	LEAP
Mutual Authentication	No	Yes	Yes	Yes	Yes
Certificate – Client	No	Yes	Optional	Optional	No
Certificate – Server	No	Yes	Yes	Yes	No
Dynamic Key Exchange	No	Yes	Yes	Yes	Yes
Credential Integrity	None	Strong	Strong	Strong	Moderate
Deployment Difficulty	Easy	Hard	Moderate	Moderate	Moderate
Client Identity Protection	No	No	Yes	Yes	No

Table 152	Comparison	of EAP	Authentication	Types
	oompanoon	0, 5, 6	/ 10/11/10/11/10/11	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

WPA and WPA2

Wi-Fi Protected Access (WPA) is a subset of the IEEE 802.11i standard. WPA2 (IEEE 802.11i) is a wireless security standard that defines stronger encryption, authentication and key management than WPA.

Key differences between WPA or WPA2 and WEP are improved data encryption and user authentication.

If both an AP and the wireless clients support WPA2 and you have an external RADIUS server, use WPA2 for stronger data encryption. If you don't have an external RADIUS server, you should use WPA2-PSK (WPA2-Pre-Shared Key) that only requires a single (identical) password entered into each access point, wireless gateway and wireless client. As long as the passwords match, a wireless client will be granted access to a WLAN.

If the AP or the wireless clients do not support WPA2, just use WPA or WPA-PSK depending on whether you have an external RADIUS server or not.

Select WEP only when the AP and/or wireless clients do not support WPA or WPA2. WEP is less secure than WPA or WPA2.

Encryption

Both WPA and WPA2 improve data encryption by using Temporal Key Integrity Protocol (TKIP), Message Integrity Check (MIC) and IEEE 802.1x. WPA and WPA2 use Advanced Encryption Standard (AES) in the Counter mode with Cipher block chaining Message authentication code Protocol (CCMP) to offer stronger encryption than TKIP.

TKIP uses 128-bit keys that are dynamically generated and distributed by the authentication server. AES (Advanced Encryption Standard) is a block cipher that uses a 256-bit mathematical algorithm called Rijndael. They both include a per-packet key mixing function, a Message Integrity Check (MIC) named Michael, an extended initialization vector (IV) with sequencing rules, and a re-keying mechanism.

WPA and WPA2 regularly change and rotate the encryption keys so that the same encryption key is never used twice.

The RADIUS server distributes a Pairwise Master Key (PMK) key to the AP that then sets up a key hierarchy and management system, using the PMK to dynamically generate unique data encryption keys to encrypt every data packet that is wirelessly communicated between the AP and the wireless clients. This all happens in the background automatically.

The Message Integrity Check (MIC) is designed to prevent an attacker from capturing data packets, altering them and resending them. The MIC provides a strong mathematical function in which the receiver and the transmitter each compute and then compare the MIC. If they do not match, it is assumed that the data has been tampered with and the packet is dropped.

By generating unique data encryption keys for every data packet and by creating an integrity checking mechanism (MIC), with TKIP and AES it is more difficult to decrypt data on a Wi-Fi network than WEP and difficult for an intruder to break into the network.

The encryption mechanisms used for WPA(2) and WPA(2)-PSK are the same. The only difference between the two is that WPA(2)-PSK uses a simple common password, instead of user-specific credentials. The common-password approach makes WPA(2)-PSK susceptible to brute-force password-guessing attacks but it's still an improvement over WEP as it employs a consistent, single, alphanumeric password to derive a PMK which is used to generate unique temporal encryption keys. This prevent all wireless devices sharing the same encryption keys. (a weakness of WEP)

User Authentication

WPA and WPA2 apply IEEE 802.1x and Extensible Authentication Protocol (EAP) to authenticate wireless clients using an external RADIUS database. WPA2 reduces the number of key exchange messages from six to four (CCMP 4-way handshake) and shortens the time required to connect to a network. Other WPA2 authentication features that are different from WPA include key caching and pre-authentication. These two features are optional and may not be supported in all wireless devices.

Key caching allows a wireless client to store the PMK it derived through a successful authentication with an AP. The wireless client uses the PMK when it tries to connect to the same AP and does not need to go with the authentication process again.

Pre-authentication enables fast roaming by allowing the wireless client (already connecting to an AP) to perform IEEE 802.1x authentication with another AP before connecting to it.

Wireless Client WPA Supplicants

A wireless client supplicant is the software that runs on an operating system instructing the wireless client how to use WPA. At the time of writing, the most widely available supplicant is the WPA patch for Windows XP, Funk Software's Odyssey client.

The Windows XP patch is a free download that adds WPA capability to Windows XP's builtin "Zero Configuration" wireless client. However, you must run Windows XP to use it.

WPA(2) with RADIUS Application Example

You need the IP address of the RADIUS server, its port number (default is 1812), and the RADIUS shared secret. A WPA(2) application example with an external RADIUS server looks as follows. "A" is the RADIUS server. "DS" is the distribution system.

- 1 The AP passes the wireless client's authentication request to the RADIUS server.
- **2** The RADIUS server then checks the user's identification against its database and grants or denies network access accordingly.

3 The RADIUS server distributes a Pairwise Master Key (PMK) key to the AP that then sets up a key hierarchy and management system, using the pair-wise key to dynamically generate unique data encryption keys to encrypt every data packet that is wirelessly communicated between the AP and the wireless clients.

Figure 189 WPA(2) with RADIUS Application Example

21.4.2 WPA(2)-PSK Application Example

A WPA(2)-PSK application looks as follows.

- **1** First enter identical passwords into the AP and all wireless clients. The Pre-Shared Key (PSK) must consist of between 8 and 63 ASCII characters or 64 hexadecimal characters (including spaces and symbols).
- **2** The AP checks each wireless client's password and (only) allows it to join the network if the password matches.
- **3** The AP and wireless clients use the pre-shared key to generate a common PMK (Pairwise Master Key).
- **4** The AP and wireless clients use the TKIP or AES encryption process to encrypt data exchanged between them.

Figure 190 WPA(2)-PSK Authentication

Security Parameters Summary

Refer to this table to see what other security parameters you should configure for each Authentication Method/ key management protocol type. MAC address filters are not dependent on how you configure these security features.

AUTHENTICATION METHOD/ KEY MANAGEMENT PROTOCOL	ENCRYPTION METHOD	ENTER MANUAL KEY	IEEE 802.1X
Open	None	No	Disable
			Enable without Dynamic WEP Key
Open	WEP	No	Enable with Dynamic WEP Key
		Yes	Enable without Dynamic WEP Key
		Yes	Disable
Shared	WEP	No	Enable with Dynamic WEP Key
		Yes	Enable without Dynamic WEP Key
		Yes	Disable
WPA	TKIP/AES	No	Enable
WPA-PSK	TKIP/AES	Yes	Disable
WPA2	TKIP/AES	No	Enable
WPA2-PSK	TKIP/AES	Yes	Disable

APPENDIX M

Pop-up Windows, JavaScripts and Java Permissions

In order to use the web configurator you need to allow:

- Web browser pop-up windows from your device.
- JavaScripts (enabled by default).
- Java permissions (enabled by default).

Note: Internet Explorer 6 screens are used here. Screens for other Internet Explorer versions may vary.

Internet Explorer Pop-up Blockers

You may have to disable pop-up blocking to log into your device.

Either disable pop-up blocking (enabled by default in Windows XP SP (Service Pack) 2) or allow pop-up blocking and create an exception for your device's IP address.

Disable pop-up Blockers

1 In Internet Explorer, select **Tools**, **Pop-up Blocker** and then select **Turn Off Pop-up Blocker**.

Figure 191 Pop-up Blocker

Tools			
Mail	and News	•	
Pop-up Blocker		Þ	Turn Off Pop-up Blocker
Man Syna Wina	age Add-ons thronize dows Update	1	Pop-up blocker Sectings
Wine	dows Messenger		
Inte	rnet Options		

You can also check if pop-up blocking is disabled in the **Pop-up Blocker** section in the **Privacy** tab.

- 1 In Internet Explorer, select Tools, Internet Options, Privacy.
- 2 Clear the **Block pop-ups** check box in the **Pop-up Blocker** section of the screen. This disables any web pop-up blockers you may have enabled.

General	Security	Privacy	Content	Connections	Programs	Advanced
Settin	ngs Move t D zone.	he slider ti	o select a p	privacy setting I	or the Interr	net
-	- Bla - Priv - Bla - Info - Re info	dium ocks third- acy policy ocks third- rmation wi estricts first rmation wi	party cook party cook thout your -party cool thout implic	ies that do not l ies that use per implicit consent kies that use pe cit consent	have a com sonally iden ersonally ide	pact tifiable ntifiable
			mport	Advanced.	. Def	ault

Figure 192 Internet Options

3 Click **Apply** to save this setting.

Enable pop-up Blockers with Exceptions

Alternatively, if you only want to allow pop-up windows from your device, see the following steps.

- 1 In Internet Explorer, select Tools, Internet Options and then the Privacy tab.
- 2 Select Settings...to open the Pop-up Blocker Settings screen.

Figure 193 Internet Options

- **3** Type the IP address of your device (the web page that you do not want to have blocked) with the prefix "http://". For example, http://192.168.1.1.
- 4 Click Add to move the IP address to the list of Allowed sites.

Pop-ups are currently blocked. You ca Web sites by adding the site to the list I	in allow pop-ups from specific below.
Address of Web site to allow:	
http://192.168.1.1	Add
Allowed sites:	
	Remove
	Remove All
otifications and Filter Level	
Play a sound when a pop-up is blocked.	
	ked.
Show Information Bar when a pop-up is bloc	
Show Information Bar when a pop-up is bloc Filter Level:	

Figure 194 Pop-up Blocker Settings

- **5** Click Close to return to the **Privacy** screen.
- 6 Click Apply to save this setting.

JavaScripts

If pages of the web configurator do not display properly in Internet Explorer, check that JavaScripts are allowed.

1 In Internet Explorer, click Tools, Internet Options and then the Security tab.

Figure 195 Internet Options

Internet Options
General Security Privacy Content Connections Programs Advanced
Select a Web content zone to specify its security settings.
Internet Local intranet Trusted sites Restricted sites
Internet This zone contains all Web sites you Sites
Security level for this zone
- 1 - Medium
 Safe browsing and still functional Prompts before downloading potentially unsafe content Unsigned ActiveX controls will not be downloaded Appropriate for most Internet sites
- J - Custom Level Default Level
OK Cancel Apply

- 2 Click the Custom Level... button.
- **3** Scroll down to **Scripting**.
- 4 Under Active scripting make sure that Enable is selected (the default).
- 5 Under Scripting of Java applets make sure that Enable is selected (the default).
- 6 Click **OK** to close the window.

🔊 Scriptin	q			
🖉 Act	ive scripting			
0	Disable			
\bigcirc	Enable			
0	Prompt			
📓 Allo	w paste operat	ions via scrip)t	
o o	Disable			
\odot	Enable			
	Prompt			
	Dicable	ppiecs		
0	Enable			
ő	Prompt			
B Hear A	thostication			
•				
-Reset cus	om settings —			
				1
Reset to:	Medium		-	R <u>e</u> set

Figure 196 Security Settings - Java Scripting

Java Permissions

- **1** From Internet Explorer, click **Tools**, **Internet Options** and then the **Security** tab.
- **2** Click the **Custom Level...** button.
- **3** Scroll down to **Microsoft VM**.
- 4 Under Java permissions make sure that a safety level is selected.
- **5** Click **OK** to close the window.

Security Settings		<u>? ×</u>
Settings:		
 Disable Enable Font download Disable Enable Enable Prompt Microsoft VM Java permissions 		
Custom Diable Java High safety Low safety Medium safety		×
Reset custom settings		Reset
	ОК	Cancel

Figure 197 Security Settings - Java

JAVA (Sun)

- **1** From Internet Explorer, click **Tools**, **Internet Options** and then the **Advanced** tab.
- 2 make sure that Use Java 2 for <applet> under Java (Sun) is selected.
- **3** Click **OK** to close the window.

Figure 198 Java (Sun)

Internet Options
General Security Privacy Content Connections Programs Advanced
<u>S</u> ettings:
Use inline AutoComplete Use Passive FTP (for firewall and DSL modem compatibility) Use smooth scrolling HTTP 1.1 settings Use HTTP 1.1 settings Use HTTP 1.1 through proxy connections Use HTTP 1.1 through proxy connections Lore (Sun) Use Java 2 v1.4.1_07 for <applet> (requires restart) Use Java 2 v1.4.1_07 for <applet> (requires restart) Java console enabled (requires restart) Java logging enabled JIT compiler for virtual machine enabled (requires restart) Multimedia Always show Internet Explorer (5.0 or later) Radio toolbar Don't display online media content in the media bar Z Enable Automatic Image Besizing</applet></applet>
<u>B</u> estore Defaults
OK Cancel Apply

APPENDIX N Triangle Route

The Ideal Setup

When the firewall is on, your ZyXEL Device acts as a secure gateway between your LAN and the Internet. In an ideal network topology, all incoming and outgoing network traffic passes through the ZyXEL Device to protect your LAN against attacks.

The "Triangle Route" Problem

A traffic route is a path for sending or receiving data packets between two Ethernet devices. Some companies have more than one route to one or more ISPs. If the alternate gateway is on the LAN (and it's IP address is in the same subnet), the "triangle route" problem may occur. The steps below describe the "triangle route" problem.

- **1** A computer on the LAN initiates a connection by sending out a SYN packet to a receiving server on the WAN.
- **2** The ZyXEL Device reroutes the SYN packet through Gateway **A** on the LAN to the WAN.
- **3** The reply from the WAN goes directly to the computer on the LAN without going through the ZyXEL Device.

As a result, the ZyXEL Device resets the connection, as the connection has not been acknowledged.

The "Triangle Route" Solutions

This section presents you two solutions to the "triangle route" problem.

IP Aliasing

IP alias allows you to partition your network into logical sections over the same Ethernet interface. Your ZyXEL Device supports up to three logical LAN interfaces with the ZyXEL Device being the gateway for each logical network. By putting your LAN and Gateway **B** in different subnets, all returning network traffic must pass through the ZyXEL Device to your LAN. The following steps describe such a scenario.

- **1** A computer on the LAN initiates a connection by sending a SYN packet to a receiving server on the WAN.
- **2** The ZyXEL Device reroutes the packet to Gateway **A**, which is in **Subnet 2**.
- **3** The reply from WAN goes through the ZyXEL Device to the computer on the LAN in **Subnet 1**.

Figure 201 IP Alias

Index

A

access point 108 access point. See also AP. Address Assignment 96 Address Resolution Protocol (ARP) 99 ADSL standards 35 Advanced Encryption Standard 337 alternative subnet mask notation 292 Antenna gain 119 Any IP 35, 98 How it works 99 note 99 Any IP Setup 101 AP 108 AP (access point) 330 AP. See also access point. Application-level Firewalls 145 applications Internet access 39 ATM Adaptation Layer 5 (AAL5) 77 Attack Alert 175 Attack Types 149

В

Backup 240 Backup Type 92 Bandwidth Management 186 Bandwidth Manager Class Configuration 192 Bandwidth Manager Monitor 196 Bandwidth Manager Summary 191 Basic wireless security 67 Blocking Time 174 Brute-force Attack, 148 BSS 328 BW Budget 193

С

CA 335

Index

CBR (Continuous Bit Rate) 85, 89 Certificate Authority 335 certifications Notices 4 viewing 4 change password at login 43 Channel 330 Interference 330 channel 108 Channel ID 112 compact 37 compact guide 42 Configuration 95 Content Filtering 178 Categories 178 Schedule 179 Trusted computers 180 URL keyword blocking 178 Content filtering 178 content filtering 36 Copyright 2 CTS (Clear to Send) 331 **Custom Ports** Creating/Editing 166 Customer Support 8 Customized Services 165 Customized services 165

D

Default 242 default LAN IP address 42 Denial of Service 145, 146, 174 Destination Address 158 device model number 238 DHCP 37, 95, 96, 198, 226 DHCP client 37 DHCP relay 37 DHCP relay 37 DHCP server 37 diagnostic 244 disclaimer 2 DNS 209 Domain Name 96, 137, 226 Domain Name System 95 DoS 146 Basics 146 Types 147 DoS (Denial of Service) 35 DoS attacks, types of 147 DSL (Digital Subscriber Line) 254 DSL line, reinitialize 245 DSLAM (Digital Subscriber Line Access Multiplexer) 39 Dynamic DNS 36, 198 dynamic DNS 36 Dynamic Host Configuration Protocol 37 Dynamic WEP Key Exchange 336 DYNDNS Wildcard 198

Ε

EAP Authentication 335 ECHO 137 E-Mail 131 E-mail Log Example 236 embedded help 45 Encapsulated Routing Link Protocol (ENET ENCAP) 76 Encapsulation 76, 77 ENET ENCAP 76 PPP over Ethernet 76 PPPoA 77 RFC 1483 77 Encryption 337 encryption 110 and local (user) database 111 key 111 WPA compatible 111 ESS 329 Ethernet 251 Extended Service Set 329 Extended Service Set IDentification 112 Extended wireless security 66

F

Fairness-based Scheduler 188 FCC interference statement 3 Federal Communications Commission 3 Finger 137 Firewall Access Methods 156 Address Type 164

Alerts 159 Anti-Probing 172 Creating/Editing Rules 162 Custom Ports 165 Enabling 159 Firewall Vs Filters 154 Guidelines For Enhancing Security 153 Introduction 145 LAN to WAN Rules 159 Policies 156 Rule Checklist 157 Rule Logic 157 Rule Security Ramifications 157 Services 170 Types 144 When To Use 155 firmware 238 upgrade 238 upload 238 upload error 239 Fragmentation Threshold 331 Fragmentation threshold 331 FTP 136, 137, 202, 205 FTP Restrictions 202 Full Rate 308

G

General Setup 226 General wireless LAN screen 112

Η

Half-Open Sessions 174 Hidden node 330 hide SSID 109 Host 227, 228 HTTP 137, 145, 146, 147 HTTP (Hypertext Transfer Protocol) 238

I

IANA 97 IANA (Internet Assigned Number Authority) 165 IBSS 328 ICMP echo 148 IEEE 802.11g 37, 332 IEEE 802.11i 38 IGMP 98 Independent Basic Service Set 328 initialization vector (IV) 337 Install UPnP 216 Windows Me 216 Windows XP 218 Integrated Services Digital Network 34 Internal SPTGEN 256 FTP Upload Example 258 Points to Remember 257 Text File 256 Internet Access 35, 39 Internet access 56 Internet Access Setup 247 Internet access wizard setup 56 Internet Assigned Numbers AuthoritySee IANA 97 Internet Control Message Protocol (ICMP) 148, 172 IP Address 96, 137, 138, 139 IP Address Assignment 78 ENET ENCAP 79 PPPoA or PPPoE 78 RFC 1483 78 IP alias 37 IP Pool 102 IP Pool Setup 95 IP protocol type 170 IP Spoofing 147, 150 ISDN (Integrated Services Digital Network) 34

Κ

Key Fields For Configuring Rules 158

L

LAN Setup 76, 94 LAN TCP/IP 96 LAN to WAN Rules 159 LAND 147, 148 local (user) database 110 and encryption 111 Logs 232

Μ

MAC address 109 MAC address filter 109 MAC Address Filter Action 125 MAC Address Filtering 124 MAC Filter 124 Management Information Base (MIB) 207 Maximize Bandwidth Usage 188 Maximum Burst Size (MBS) 80, 85, 90 Max-incomplete High 174 Max-incomplete Low 174 Media Bandwidth Management 36 Message Integrity Check (MIC) 337 Metric 79 Multicast 98 Multiplexing 77 multiplexing 77 LLC-based 77 VC-based 77 Multiprotocol Encapsulation 77

Ν

Nailed-Up Connection 79 NAT 96, 137, 138 Address mapping rule 142 Application 134 Definitions 132 How it works 133 Mapping Types 134 What it does 133 What NAT does 133 NAT (Network Address Translation) 132 NAT mode 136 NAT Traversal 214 navigating the web configurator 44 NetBIOS commands 149 Network Address Translation (NAT) 36 Network Management 137 **NNTP 137**

0

One-Minute High 174

Ρ

Packet Filtering 154 Packet filtering When to use 155 Packet Filtering Firewalls 144 Pairwise Master Key (PMK) 337, 339 Peak Cell Rate (PCR) 80, 85, 90 Ping of Death 147 Point to Point Protocol over ATM Adaptation Layer 5 (AAL5) 77 Point-to-Point 254 Point-to-Point Tunneling Protocol 137 POP3 137, 146, 147 PPPoA 78 PPPoE 76 Benefits 76 PPPoE (Point-to-Point Protocol over Ethernet) 36 PPTP 137 Preamble Mode 332 Priorities 126, 190 Priority 193 Priority-based Scheduler 187 product registration 7

Q

QoS 111 benefits 111 Quick Start Guide 32

R

RADIUS 334 Shared Secret Key 335 RADIUS Message Types 334 RADIUS Messages 334 RADIUS server 110 registration product 7 reinitialize the ADSL line 245 Related Documentation 32 Remote Management and NAT 203 Remote Management Limitations 202 Reset button, the 44 Resetting the ZyXEL device 44 Restore 241 RF (Radio Frequency) 37 RFC 1483 77 RFC 1631 132 RFC-1483 78 RFC-2364 78 RFC2516 36 RIPSee Routing Information Protocol 97 Routing Information Protocol 97 Direction 97 Version 97 RTS (Request To Send) 331 RTS Threshold 330, 331 Rules 159 Checklist 157 Key Fields 158 LAN to WAN 159 Logic 157 Predefined Services 170

S

Safety Warnings 5 Saving the State 150 Scheduler 187 Security In General 153 Security Parameters 340 Security Ramifications 157 Server 134, 135, 229 Service 158 Service Set 112 Service Set IDentity. See SSID. Service Type 166, 247 Services 137 **SMTP 137** Smurf 148, 149 SNMP 137, 206 Manager 207 MIBs 207 Source Address 158 Splitters 308 SSID 108 hide 109 Stateful Inspection 35, 144, 145, 150 Process 151 ZyXEL device 151 Static Route 182 SUA 135 SUA (Single User Account) 135 SUA vs NAT 135 subnet 290

Subnet Mask 96, 164 subnet mask 292 subnetting 292 Supporting Disk 32 Sustain Cell Rate (SCR) 85, 90 Sustained Cell Rate (SCR) 80 SYN Flood 147, 148 SYN-ACK 148 SYN-ACK 148 Syntax Conventions 32 Syslog 169 System Name 227 System Parameter Table Generator 256 System Timeout 203

Т

TCP Maximum Incomplete 174, 175 TCP Security 152 TCP/IP 146, 147 Teardrop 147 Telnet 204 Temporal Key Integrity Protocol (TKIP) 337 Text File Format 256 TFTP Restrictions 202 Three-Way Handshake 147 Threshold Values 173 TMM QoS. See also QoS. Traceroute 150 trademarks 2 Traffic Redirect 90, 91 Traffic redirect 90, 92 traffic redirect 36 Traffic shaping 80 Triangle 350 Triangle Route Solutions 351

U

UBR (Unspecified Bit Rate) **85**, UDP/ICMP Security Universal Plug and Play Application Security issues Universal Plug and Play (UPnP) UPnP **214** Forum **215** Upper Layer Protocols 152, 153 User Authentication 338 user authentication 110 local (user) database 110 RADIUS server 110 weaknesses 110 User Name 199

V

VBR (Variable Bit Rate) **85**, VC-based Multiplexing Virtual Channel Identifier (VCI) virtual circuit (VC) Virtual Path Identifier (VPI) VPI & VCI

W

WAN (Wide Area Network) 76 WAN backup 91 WAN to LAN Rules 159 warranty note 7 Web 203 Web Configurator 42, 44, 45, 153, 158 web configurator screen summary 45 WEP (Wired Equivalent Privacy) 38 WEP Encryption 116 WEP encryption 114 Wi-Fi Multimedia QoS 126 Wi-Fi Protected Access 337 Wi-Fi Protected Access (WPA) 38 wireless client 108 Wireless Client WPA Supplicants 338 Wireless LAN MAC Address Filtering 38 wireless network 108 basic guidelines 108 wireless networks channel 108 encryption 110 MAC address filter 109 security 109 SSID 108 Wireless security 333 wireless security 109 WLAN Interference 330

Security parameters 340 WPA 337 WPA compatible 111 WPA2 337 WPA2-Pre-Shared Key 337 WPA2-PSK 337 WPA-PSK 337 WWW 131

Ζ

Zero Configuration Internet Access Zero configuration Internet access ZyXEL_s Firewall Introduction