RF Exposure Evaluation Declaration

Product: 802.11n Wireless ADSL2+ 4-port Gateway

Test Item: RF Exposure Evaluation Declaration

1. RF Exposure Evaluation

1.1. Limits

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)

LIMITS FOR	MAXIMUM	PERMISSIBLE	EXPOSURE (MPF)

		```	,		
Frequency	Electric Field	Magnetic Field	Power Density	Average Time (Minutes)	
Range (MHz)	Strength	Strength	(mW/cm2)		
	(V/m)	(A/m)	(		
(A) Limits for C	(A) Limits for Occupational/ Control Exposures				
300-1500			F/300	6	
1500-100,000			5	6	
(B) Limits for General Population/ Uncontrolled Exposures					
300-1500			F/1500	6	
1500-100,000			1	30	

F= Frequency in MHz

Friis Formula

Friis transmission formula:  $Pd = (Pout^{*}G)/(4^{*}pi^{*}r^{2})$ 

Where

Pd = power density in mW/cm2

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

Pd id the limit of MPE, 1 mW/cm2. If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

#### 1.2. Test Procedure

Software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel individually.

The temperature and related humidity:  $18^\circ\!{\rm C}\,and\,78\%\,$  RH.

### 1.3. EUT Operation condition

Software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel individually.

#### 1.4. Test Result of RF Exposure Evaluation

#### Antenna Gain:

antenna type: Dipole antenna antenna antenna gain: 6.0dBi

#### Output Power Into Antenna & RF Exposure Evaluation Distance:

1) 802.11b

Test date:

Channel	Channel Frequency (MHz)	Output Power to Antenna (mW)	Power Density at R = 20 cm (mW/cm2)
01	2412.00	31.0456	0.0245883
06	2437.00	30.8319	0.0244191
11	2462.00	31.6228	0.0250455

#### 2) 802.11g

Test date:

Channel	Channel Frequency (MHz)	Output Power to Antenna (mW)	Power Density at R = 20 cm (mW/cm2)
01	2412.00	55.2077	0.0437249
06	2437.00	58.7489	0.0465296
11	2462.00	58.7489	0.0465296

# 3) 802.11n(20MHz)

# Test date:

Channel	Channel Frequency (MHz)	Output Power to Antenna (mW)	Power Density at R = 20 cm (mW/cm2)
01	2412.00	48.5289	0.0384352
06	2437.00	38.4592	0.0304600
11	2462.00	40.3645	0.0319690

# 5) 802.11n(40MHz)

Test date:

Channel	Channel Frequency (MHz)	Output Power to Antenna (mW)	Power Density at R = 20 cm (mW/cm2)
03	2422.00	40.0867	0.0317490
06	2437.00	35.6451	0.0282312
09	2452.00	36.8978	0.0292233