

FCC ID. :I88NBG334W Report No.: EME-070474 Page 1 of 68

EMC TEST REPORT

Report No. : EME-070474

Model No. : NBG334W

Issued Date: Jul. 23, 2007

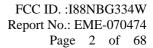
Applicant: ZyXEL Communications Corporation

6, Innovation Rd II, Science-Based Industrial Park,

Hsin-Chu, Taiwan

Test By: Intertek Testing Services Taiwan Ltd.

No. 11, Lane 275, Ko-Nan 1 Street, Chia-Tung Li, Shiang-Shan District, Hsinchu City, Taiwan


This test report consists of 68 pages in total. It may be duplicated completely for legal use with the allowance of the applicant. It shall not be reproduced except in full, without the written approval of Intertek Laboratory. The test result(s) in this report only applies to the tested sample(s).

Project Engineer

Rico Deng

Reviewed By

Jerry Liu

Table of Contents

Summary of Tests	4
1. General information	5
1.2 Additional information about the EUT	6
1.4 Peripherals equipment	
2. Test specifications	
2.1 Test standard	
2.2 Operation mode	
3. Minimum 6dB Bandwidth test	
3.1 Operating environment	
3.2 Test setup & procedure	
3.3 Measured data of Minimum 6dB Bandwidth test results	
4. Maximum Output Power test	16
4.1 Operating environment	
4.2 Test setup & procedure	
4.3 Measured data of Maximum Output Power test results	
5. RF Antenna Conducted Spurious test	17
5.1 Operating environment	
5.2 Test setup & procedure	
5.3 Measured data of the highest RF Antenna Conducted Spurious test result .	
6. Radiated Emission test	36
6.1 Operating environment	36
6.2 Test setup & procedure	36
6.3 Emission limits	
6.4 Radiated spurious emission test data	38
7. Power Spectrum Density test	46
7.1 Operating environment	46
7.2 Test setup & procedure	
7.3 Measured data of Power Spectrum Density test results	46
8. Emission on the band edge	53
8.1 Operating environment	
8.2 Test setup & procedure	
8.3 Test Result	54 55
A 3 L CONGUCIEG IMENDO	77

Page 3 of 68

9. Power Line Conducted Emission test §FCC 15.207	63
9.1 Operating environment	63
9.2 Test setup & procedure	
9.3 Emission limit	
9.4 Uncertainty of Conducted Emission	64
9.5 Power Line Conducted Emission test data	65

Page 4 of 68

Summary of Tests

802.11g Wireless Firewall Router -Model: NBG334W FCC ID: I88NBG334W

Test	Reference	Results
Minimum 6dB Bandwidth test	15.247(a)(2)	Pass
Maximum Output Power test	15.247(b)	Pass
RF Antenna Conducted Spurious test	15.247(d)	Pass
Radiated Spurious Emission test	15.205, 15.209	Pass
Power Spectrum Density test	15.247(e)	Pass
Emission on the Band Edge test	15.247(d)	Pass
AC Power Line Conducted Emission test	15.207	Pass

Page 5 of 68

1. General information

1.1 Identification of the EUT

Applicant: ZyXEL Communications Corporation

Product: 802.11g Wireless Firewall Router

Model No.: NBG334W

FCC ID.: I88NBG334W

Frequency Range: 2412MHz to 2462MHz

Channel Number: 11 channels

Frequency of Each Channel: 2412MHz, 2417MHz, 2422MHz, 2427MHz, 2432MHz,

2437MHz, 2442MHz, 2447MHz, 2452MHz, 2457MHz,

2462MHz

Type of Modulation: DSSS, OFDM

Rated Power: 1. 120Vac, 60Hz with adapter

(Model No.: AA-121A)

2. 100-240Vac, 50/60Hz with adapter (Model No.: MU12-2120100-A1)

Power Cord: N/A

Data Cable: 1. RJ-45 UTP Cat.5 10meter x 2

2. RJ-45 UTP Cat.5 3meter × 3

Sample Received: May 22, 2007

Test Date(s): May 24, 2007 ~ Jun. 04, 2007

A FCC DoC report has been generated for the client.

1.2 Additional information about the EUT

The EUT is an 802.11g Wireless Firewall Router, and was defined as radio and telecommunications terminal equipment.

There are two types of version used at EUT, AC version and DC version.

For more detail features, please refer to User's manual as file name "Installation guide.pdf"

Page 6 of 68

1.3 Antenna description

The antenna is affixed to the EUT using a unique connector, which allows for replacement of a broken antenna, but DOES NOT use a standard antenna jack or electrical connector.

Antenna Gain 2dBi max

Antenna Type Dipole antenna Connector Type SMA reversed

1.4 Peripherals equipment

Peripherals	Manufacturer	Product No.	Serial No.	FCC ID
Notebook PC	IBM	1860	L3WM776	FCC DoC Approved
Notebook PC	HP	HSTNN-I04C	CNU5240X14	FCC DoC Approved
Notebook PC	IBM	1860	L3WM796	FCC DoC Approved
Ethernet Hub	ZyXEL	ES-2108LC	N/A	FCC DoC Approved

Page 7 of 68

2. Test specifications

2.1 Test standard

The EUT was performed according to the procedures in FCC Part 15 Subpart C Section § 15.205、§15.207、§15.209、§15.247 and ANSI C63.4/2003.

The test of radiated measurements according to FCC Part15 Section 15.33(a) had been conducted and the field strength of this frequency band were all meet limit requirement, thus we evaluate the EUT pass the specified test.

2.2 Operation mode

The EUT was transmitted continuously during the test.

With individual verifying, the maximum output power was found out 1Mbps data rate for 802.11b mode and 6Mbps data rate for 802.11g mode. The final tests were executed under these conditions recorded in this report individually.

Page 8 of 68

2.3 Test equipment

Equipment	Brand	Frequency range	Model No.	Intertek ID No.	Next Cal. Date
EMI Test Receiver	Rohde & Schwarz	9kHz~2.75GHz	ESCS 30	EC303	04/17/2008
Spectrum Analyzer	Rohde & Schwarz	9kHz~30GHz	FSP 30	EC353	07/24/2008
Spectrum Analyzer	Rohde & Schwarz	20Hz~40GHz	FSEK 30	EC365	11/01/2007
Horn Antenna	SCHWARZBECK	1GHz~18GHz	BBHA 9120 D	EC371	12/22/2007
Horn Antenna	SCHWARZBECK	14GHz~40GHz	BBHA 9170	EC351	07/08/2007
Bilog Antenna	SCHWARZBECK	25MHz~2GHz	VULB 9168	EC347	12/23/2007
Pre-Amplifier	MITEQ	100MHz~26.5GHz	919981	EC373	02/11/2008
Wideband Peak Power Meter/ Sensor	Anritsu	100MHz~18GHz	ML2497A/ MA2491A	EC396	11/10/2007
Controller	HDGmbH	N/A	CM 100	EP346	N/A
Antenna Tower	HDGmbH	N/A	MA 240	EP347	N/A
LISN	Rohde & Schwarz	9KHz~30MHz	ESH3-Z5	EC344	01/13/2008

Note: The above equipments are within the valid calibration period.

Page 9 of 68

3. Minimum 6dB Bandwidth test

3.1 Operating environment

Temperature: 23

Relative Humidity: 55 % Atmospheric Pressure: 1023 hPa

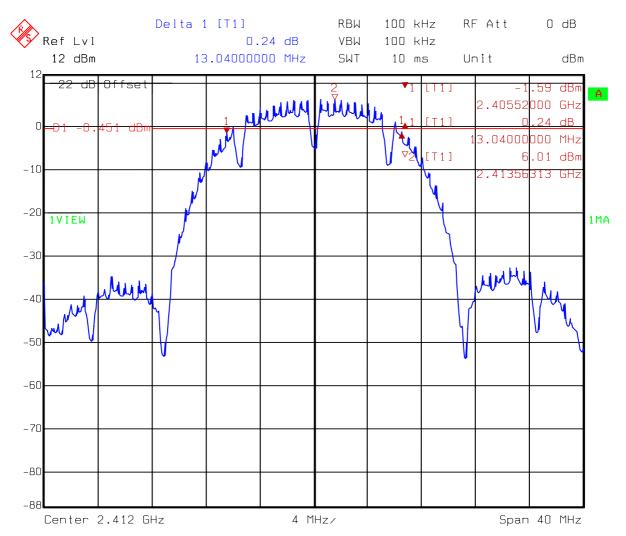
3.2 Test setup & procedure

The minimum 6dB bandwidth per FCC §15.247(a)(2) was measured using a 50 ohm spectrum analyzer with the resolutions bandwidth set at 100kHz, the video bandwidth set at 100kHz, and the SPAN>>RBW. The test was performed at 3 channels (lowest, middle and highest channel). The minimum 6-dB modulation bandwidth is in the following Table.

3.3 Measured data of Minimum 6dB Bandwidth test results

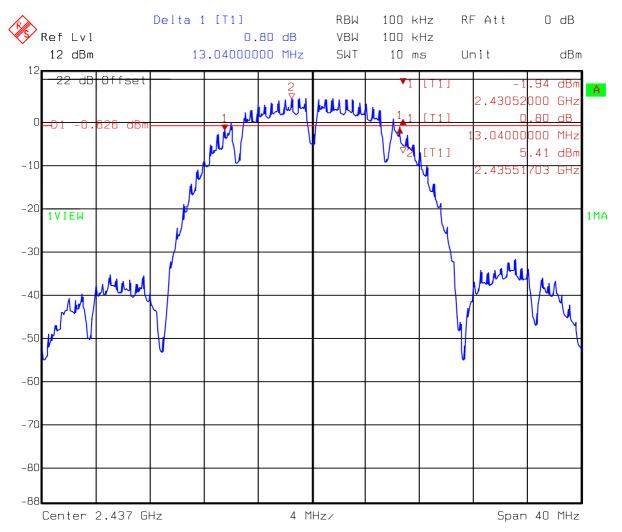
Test Mode: 802.11b mode

Channel	Frequency (MHz)	Bandwidth (MHz)	Limit
1 (lowest)	2412	13.04	> 500kHz
6 (middle)	2437	13.04	> 500kHz
11 (highest)	2462	12.64	> 500kHz

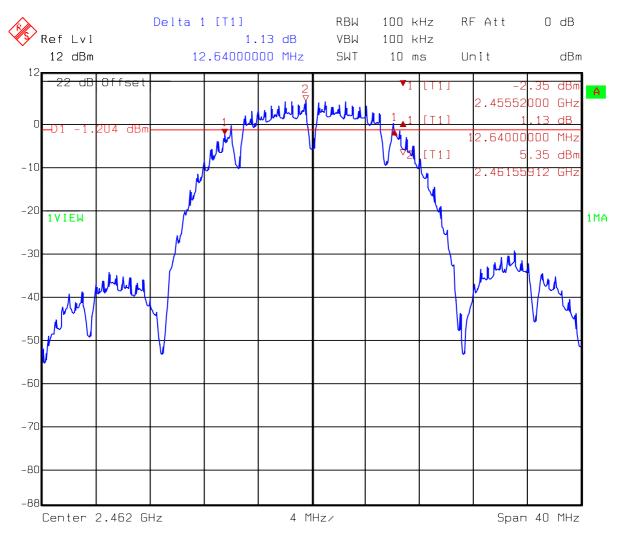

Test Mode: 802.11g mode

Channel	Frequency (MHz)	Bandwidth (MHz)	Limit
1 (lowest)	2412	16.56	> 500kHz
6 (middle)	2437	16.56	> 500kHz
11 (highest)	2462	16.72	> 500kHz

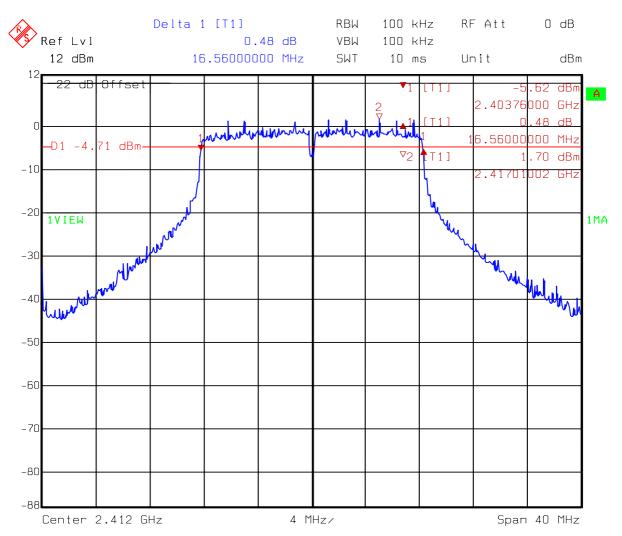
Please see the plot below.


Test Mode: 802.11b mode (ch1)

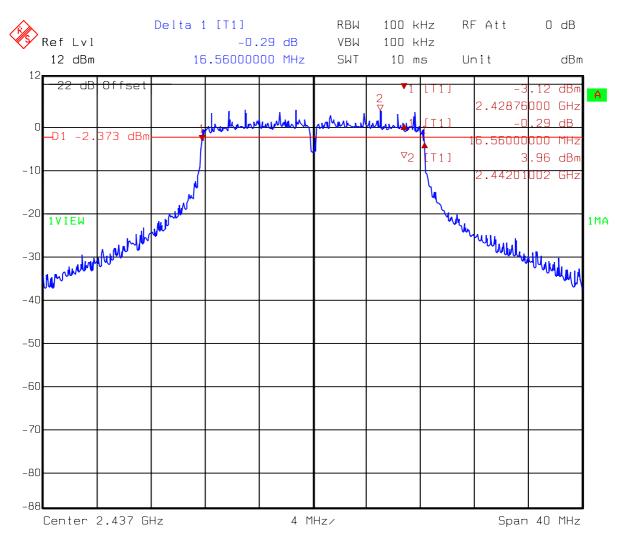
Title: 6dB Band-Width
Comment A: CH 1 at 802.11b mode
Date: 04.JUN.2007 10:27:28


Test Mode: 802.11b mode (ch6)

Title: 6dB Band-Width
Comment A: CH 6 at 802.11b mode
Date: 04.JUN.2007 10:30:12

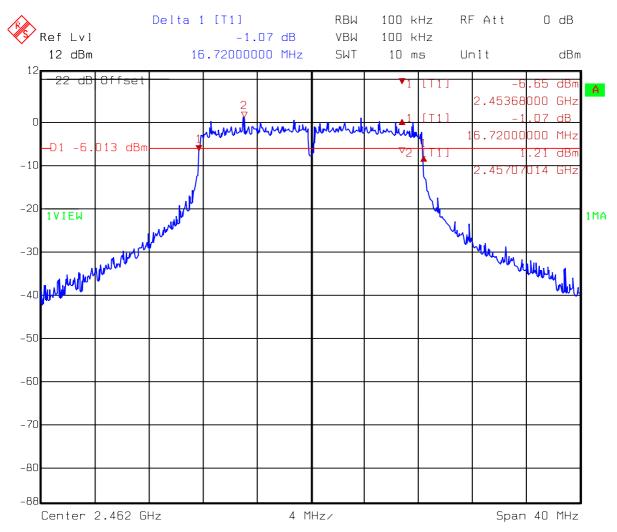

Test Mode: 802.11b mode (ch11)

Title: 6dB Band-Width
Comment A: CH 11 at 802.11b mode
Date: 04.JUN.2007 10:33:00


Test Mode: 802.11g mode (ch1)

Title: 6dB Band-Width
Comment A: CH 1 at 802.11g mode
Date: 04.JUN.2007 10:36:06

Test Mode: 802.11g mode (ch6)



Title: 6dB Band-Width
Comment A: CH 6 at 802.11g mode
Date: 04.JUN.2007 10:39:18

Page 15 of 68

Test Mode: 802.11g mode (ch11)

Title: 6dB Band-Width

Comment A: CH 11 at 802.11g mode Date: 04.JUN.2007 10:42:28

Page 16 of 68

4. Maximum Output Power test

4.1 Operating environment

Temperature: 23

Relative Humidity: 55 % Atmospheric Pressure: 1023 hPa

4.2 Test setup & procedure

The power output per FCC §15.247(b) was measured on the EUT using a 50 ohm SMA cable connected to peak power meter via power sensor. Power was read directly and cable loss correction (2dB) was added to the reading to obtain power at the EUT antenna terminals. The test was performed at 3 channels (lowest, middle and highest channel).

4.3 Measured data of Maximum Output Power test results

Test Mode: 802.11b mode

Channel	Freq.	C.L.	Reading		Peak Output wer	Limit
	(MHz)	(dB)	(dBm)	(dBm)	(mW)	(W)
1 (lowest)	2412	2	17.25	19.25	84.14	1
6 (middle)	2437	2	17.95	19.95	98.86	1
11 (highest)	2462	2	17.87	19.87	97.05	1

Test Mode: 802.11g mode

Channel	Freq.	C.L.	Reading		Peak Output wer	Limit
	(MHz)	(dB)	(dBm)	(dBm)	(mW)	(W)
1 (lowest)	2412	2	20.68	22.68	185.35	1
6 (middle)	2437	2	22.65	24.65	291.74	1
11 (highest)	2462	2	20.86	22.86	193.20	1

FCC ID. :I88NBG334W Report No.: EME-070474 Page 17 of 68

5. RF Antenna Conducted Spurious test

5.1 Operating environment

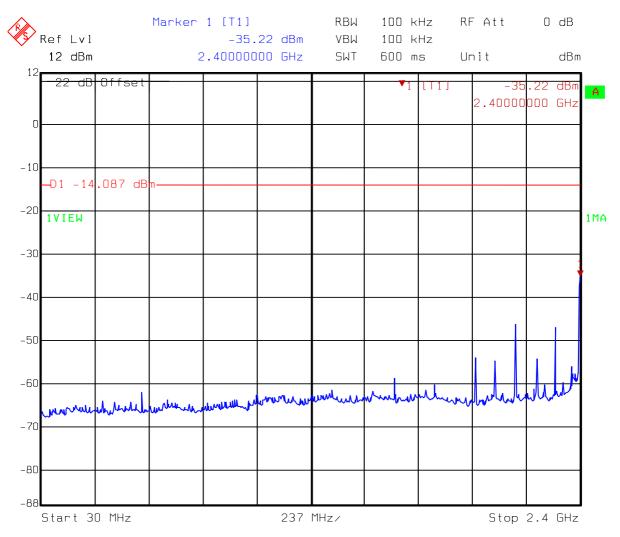
Temperature: 23

Relative Humidity: 55 %

5.2 Test setup & procedure

The measurements were performed from 30MHz to 25GHz RF antenna conducted per FCC 15.247 (d) was measured from the EUT antenna port using a 50ohm spectrum analyzer with the resolution bandwidth set at 100 kHz, and the video bandwidth set at 100 kHz.

Harmonics and spurious noise must be at least 20dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. The table below is the results from the highest emission for each channel within the authorized band. This table was used to determine the spurious limits for each channel.

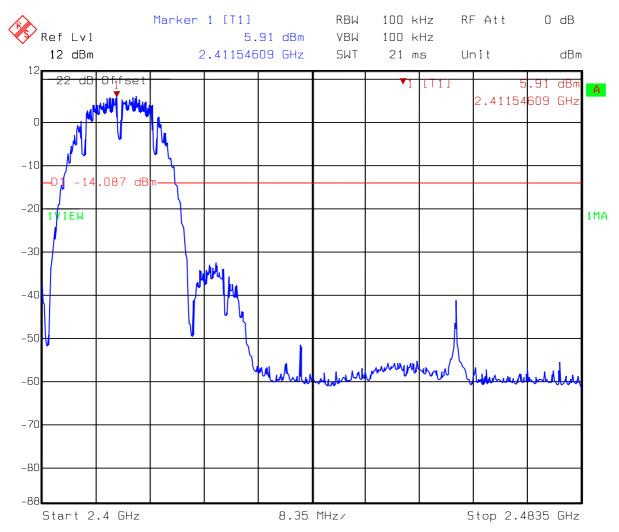

5.3 Measured data of the highest RF Antenna Conducted Spurious test result

The test results please see the plot below.

Page 18 of 68

Test Mode: 802.11b mode (ch1)

Title: Conductive-Spurious

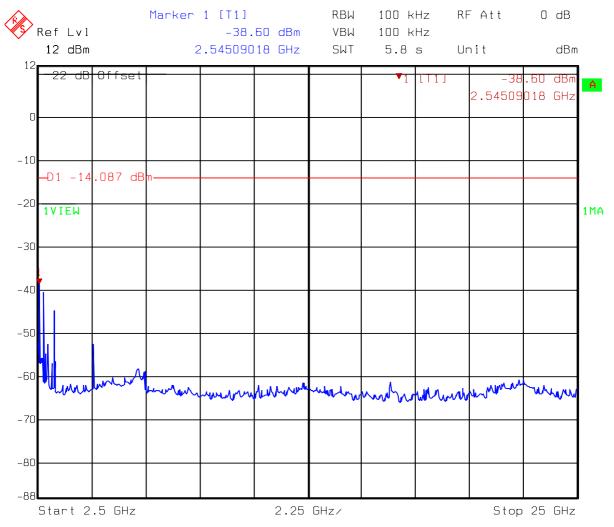

Comment A: CH 1 at 802.11b mode 30MHz~2400MHz

Date: 04.JUN.2007 10:28:28

Page 19 of 68

Test Mode: 802.11b mode (ch1)

Title: Conductive-Spurious

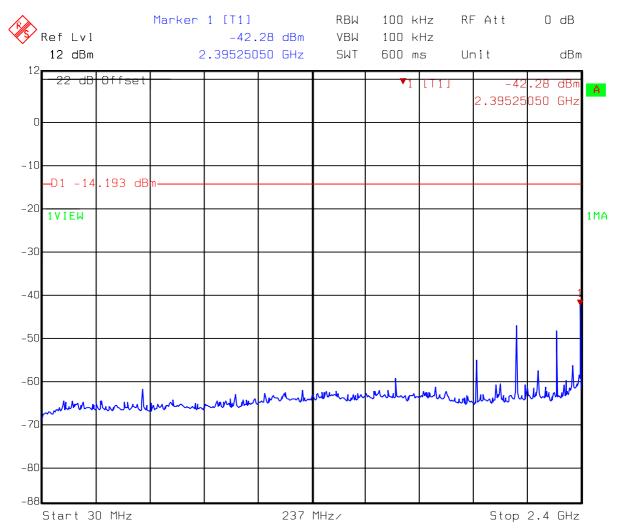

Comment A: CH 1 at 802.11b mode 2400MHz~2483.5MHz

Date: 04.JUN.2007 10:28:06

Page 20 of 68

Test Mode: 802.11b mode (ch1)

Title: Conductive-Spurious

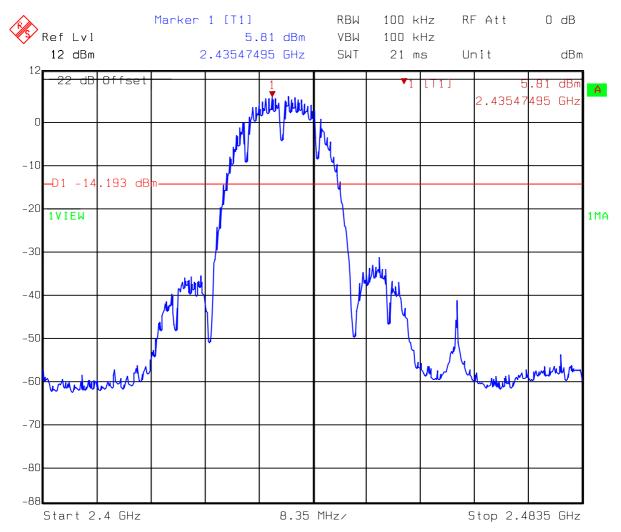

Comment A: CH 1 at $802.11b \mod 2483.5 MHz^25 GHz$

Date: 04.JUN.2007 10:28:56

Page 21 of 68

Test Mode: 802.11b mode (ch6)

Title: Conductive-Spurious

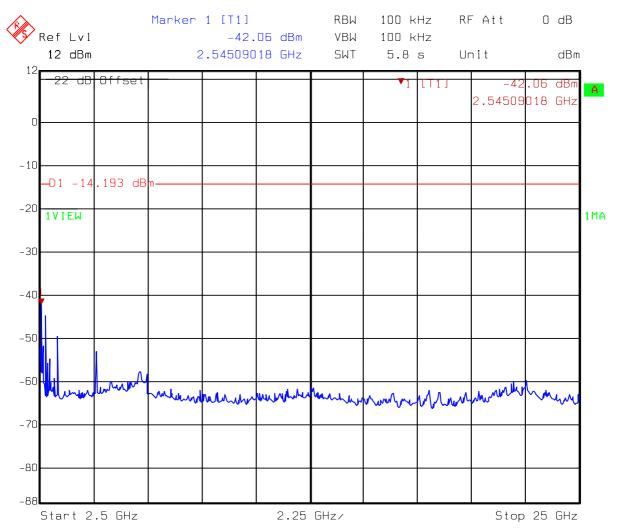

Comment A: CH 6 at 802.11b mode 30MHz~2400MHz

Date: 04.JUN.2007 10:31:12

Page 22 of 68

Test Mode: 802.11b mode (ch6)

Title: Conductive-Spurious

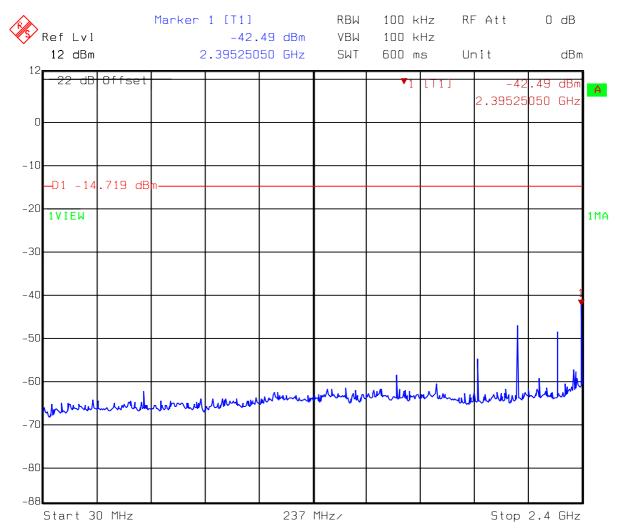

Comment A: CH 6 at 802.11b mode 2400MHz~2483.5MHz

Date: 04.JUN.2007 10:30:50

Page 23 of 68

Test Mode: 802.11b mode (ch6)

Title: Conductive-Spurious

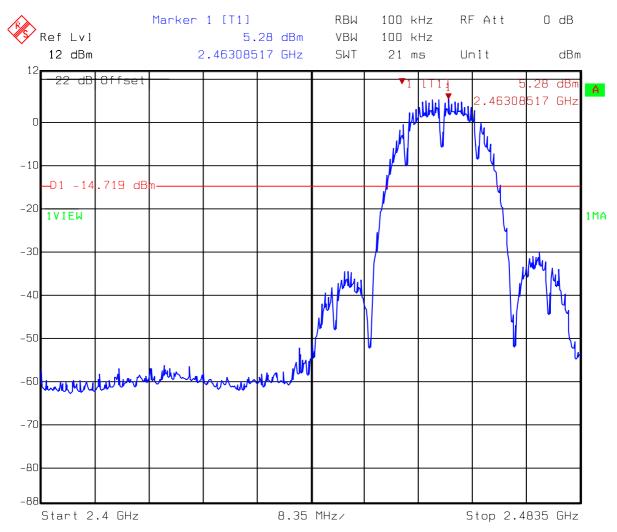

Comment A: CH 6 at 802.11b mode 2483.5MHz~25GHz

Date: 04.JUN.2007 10:31:40

Page 24 of 68

Test Mode: 802.11b mode (ch11)

Title: Conductive-Spurious

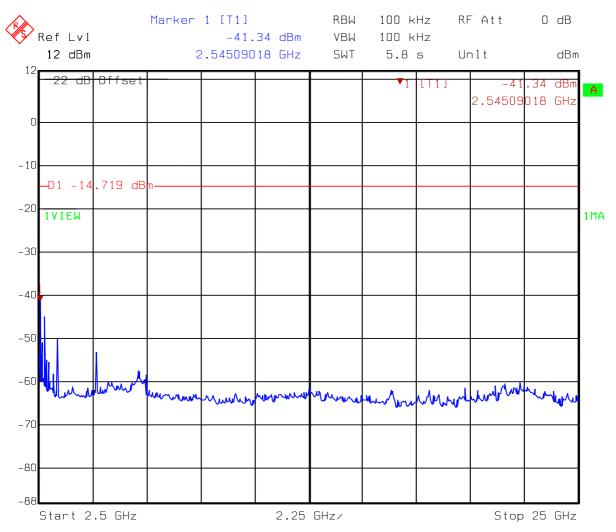

Comment A: CH 11 at 802.11b mode 30MHz~2400MHz

Date: 04.JUN.2007 10:33:59

Page 25 of 68

Test Mode: 802.11b mode (ch11)

Title: Conductive-Spurious

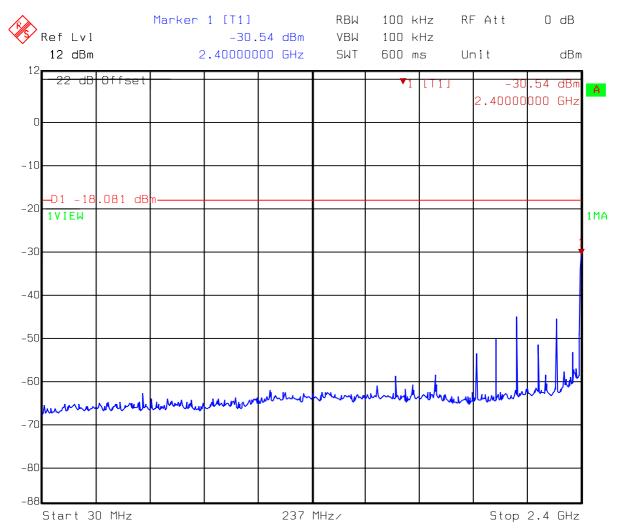

Comment A: CH 11 at 802.11b mode 2400MHz~2483.5MHz

Date: 04.JUN.2007 10:33:37

Page 26 of 68

Test Mode: 802.11b mode (ch11)

Title: Conductive-Spurious

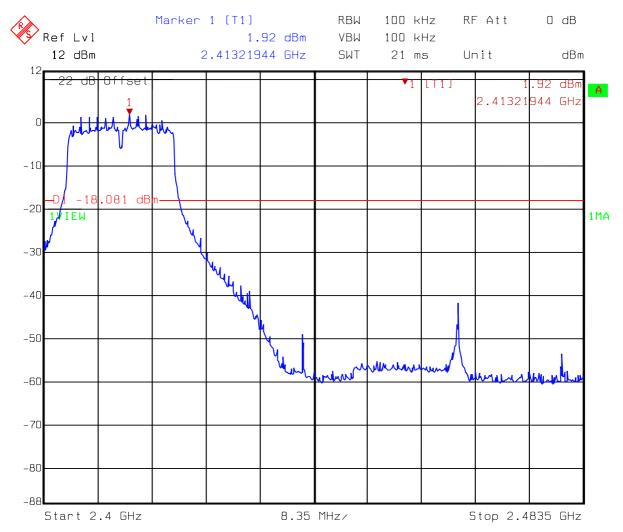

Comment A: CH 11 at $802.11b \mod 2483.5 MHz^25 GHz$

Date: 04.JUN.2007 10:34:27

Page 27 of 68

Test Mode: 802.11g mode (ch1)

Title: Conductive-Spurious

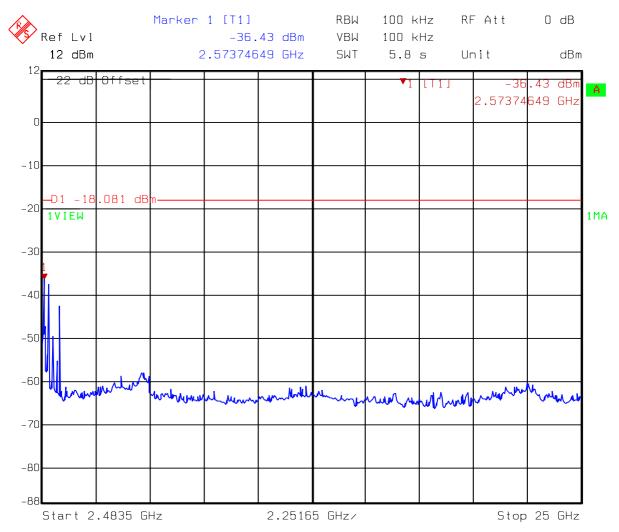

Comment A: CH 1 at 802.11g mode $30MHz^2400MHz$

Date: 04.JUN.2007 10:37:06

Page 28 of 68

Test Mode: 802.11g mode (ch1)

Title: Conductive-Spurious

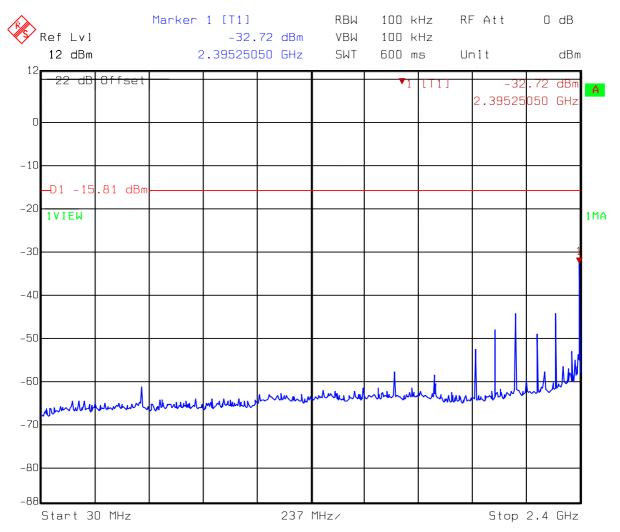

Comment A: CH 1 at 802.11g mode 2400MHz~2483.5MHz

Date: 04.JUN.2007 10:36:44

Page 29 of 68

Test Mode: 802.11g mode (ch1)

Title: Conductive-Spurious

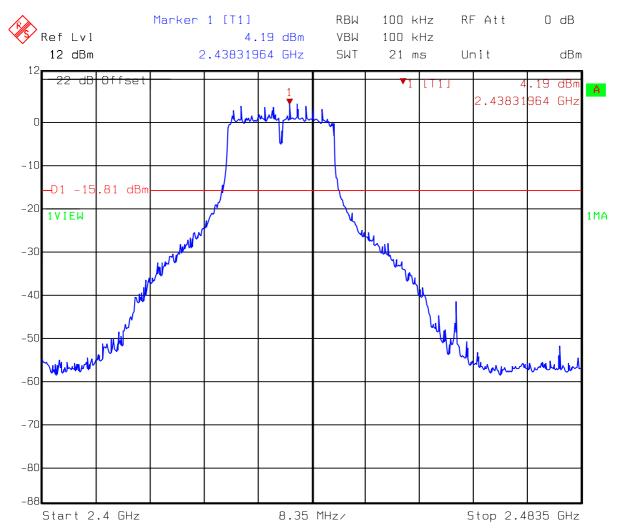

Comment A: CH 1 at 802.11g mode 2483.5MHz~25000MHz

Date: 04.JUN.2007 10:37:34

Page 30 of 68

Test Mode: 802.11g mode (ch6)

Title: Conductive-Spurious

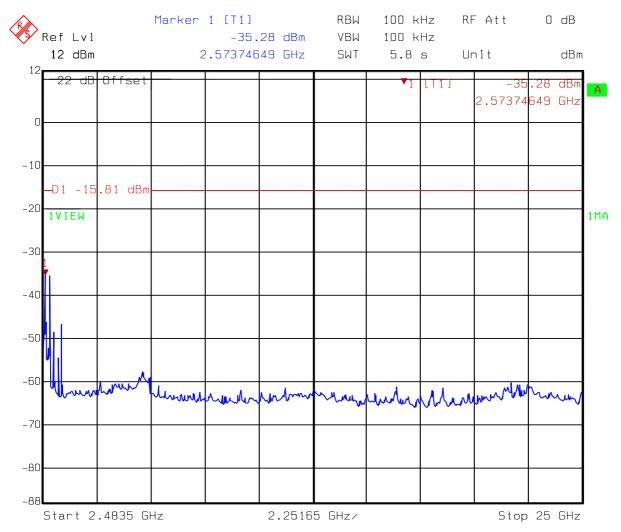

Comment A: CH 6 at 802.11g mode 30MHz~2400MHz

Date: 04.JUN.2007 10:40:17

Page 31 of 68

Test Mode: 802.11g mode (ch6)

Title: Conductive-Spurious

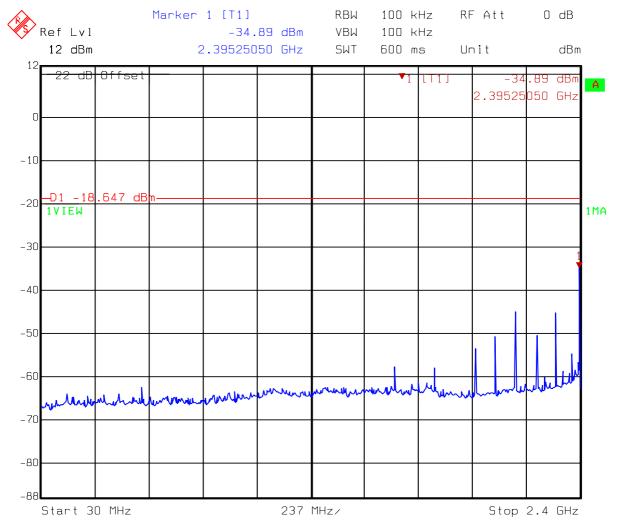

Comment A: CH 6 at 802.11g mode 2400MHz~2483.5MHz

Date: 04.JUN.2007 10:39:55

Page 32 of 68

Test Mode: 802.11g mode (ch6)

Title: Conductive-Spurious

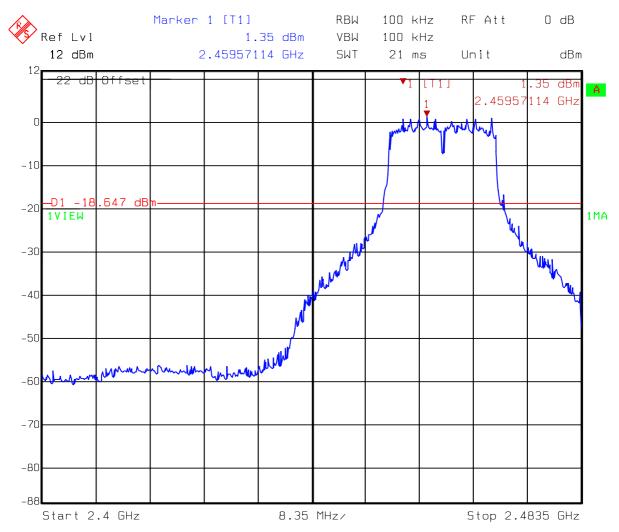

Comment A: CH 6 at 802.11g mode 2483.5MHz~25000MHz

Date: 04.JUN.2007 10:40:45

Page 33 of 68

Test Mode: 802.11g mode (ch11)

Title: Conductive-Spurious

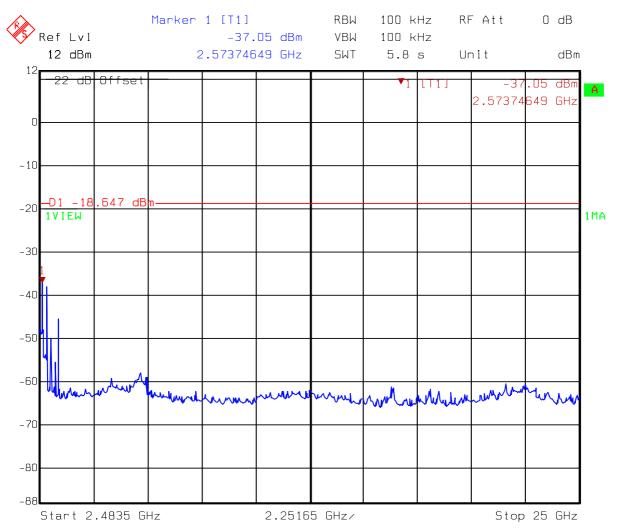

Comment A: CH 11 at 802.11g mode 30MHz~2400MHz

Date: 04.JUN.2007 10:43:28

Page 34 of 68

Test Mode: 802.11g mode (ch11)

Title: Conductive-Spurious


Comment A: CH 11 at $802.11g \mod 2400 \mathrm{MHz}^2 2483.5 \mathrm{MHz}$

Date: 04.JUN.2007 10:43:06

Page 35 of 68

Test Mode: 802.11g mode (ch11)

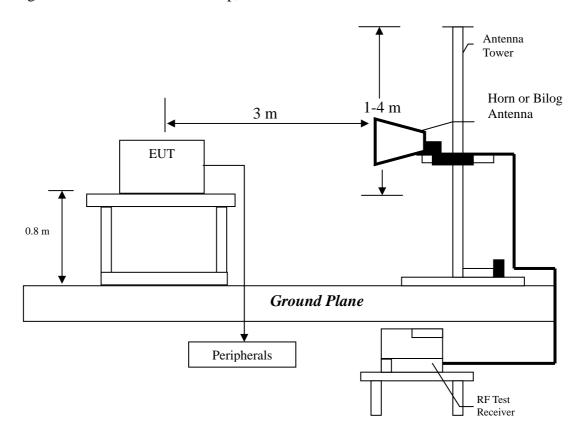
Title: Conductive-Spurious

Comment A: CH 11 at 802.11g mode 2483.5MHz~25000MHz

Date: 04.JUN.2007 10:43:56

Page 36 of 68

6. Radiated Emission test


6.1 Operating environment

Temperature: 25

Relative Humidity: 52 % Atmospheric Pressure: 1023 hPa

6.2 Test setup & procedure

The Diagram below shows the test setup, which is utilized to make these measurements.

The frequency range from 30MHz to 1000MHz using Bilog Antenna. The frequency range over 1GHz using Horn Antenna.

Radiated emissions were invested cover the frequency range from 30MHz to 1000MHz using a receiver RBW of 120kHz record QP reading, and the frequency over 1GHz using a spectrum analyzer RBW of 1MHz and 10Hz VBW record Average reading. (15.209 paragraph), the Peak reading (1MHz RBW/VBW) recorded also on the report.

The EUT for testing is arranged on a wooden turntable. If some peripherals apply to the EUT, the peripherals will be connected to EUT and the whole system. During the test, all cables were arranged to produce worst-case emissions. The signal is maximized through rotation. The height of antenna and polarization is changing constantly for exploring for maximum signal level. The height of antenna can be up to 4 meters and down to 1 meter.

FCC ID. :I88NBG334W Report No.: EME-070474 Page 37 of 68

The measurement for radiated emission will be done at the distance of three meters unless the signal level is too low to measure at that distance. In the case of the reading under noise floor, a pre-amplifier is used and/or the test is conducted at a closer distance. And then all readings are extrapolated back to the equivalent 3 meter reading using inverse scaling with distance.

The EUT configuration please refer to the "Spurious set-up photo.pdf".

6.3 Emission limits

The spurious Emission shall test through the 10th harmonic. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Frequency	Limits
(MHz)	(dB \(\mu \) V/m@3m)
30-88	40
88-216	43.5
216-960	46
Above 960	54

Remark:

- 1. In the above table, the tighter limit applies at the band edges.
- 2. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system

Uncertainty was calculated in accordance with NAMAS NIS 81. Expanded uncertainty (k=2) of radiated emission measurement is ± 4.98 dB.

Page 38 of 68

6.4 Radiated spurious emission test data

The radiated spurious emissions at

Frequency(MHz)	Margin
38.73	-3.85
374.35	-4.94
3210.00	-1.53
3240.00	-4.91
3240.00	-1.32
3270.00	-4.15

are less than uncertainty. This is within the stated measurement uncertainty, this may affect compliance determined in other test arrangements.

6.4.1 Measurement results: frequencies equal to or less than 1 GHz

The test was performed on EUT under 802.11b and 802.11g continuously transmitting mode. Channel 1, 6, 11 were verified. The worst case occurred at 802.11b Tx channel 1.

EUT : NBG334W

Worst Case : 802.11b Tx at channel 1

Remark : AC version

Antenna	Freq.	Receiver	Corr.	Reading	Corrected	Limit	Margin
Polariz.			Factor		Level	@ 3 m	
(V/H)	(MHz)	Detector	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
V	38.730	QP	12.62	23.53	36.15	40.00	-3.85
V	81.410	QP	8.50	20.28	28.78	40.00	-11.23
V	249.220	QP	12.22	19.00	31.22	46.00	-14.79
V	374.350	QP	15.06	22.30	37.36	46.00	-8.64
V	499.480	QP	18.43	13.62	32.05	46.00	-13.96
V	624.610	QP	20.75	14.15	34.90	46.00	-11.10
Н	142.520	QP	13.24	17.70	30.94	43.50	-12.57
Н	249.220	QP	12.36	27.07	39.43	46.00	-6.57
Н	374.350	QP	15.48	25.59	41.07	46.00	-4.94
Н	499.480	QP	18.64	12.93	31.57	46.00	-14.43
Н	624.610	QP	20.88	13.03	33.91	46.00	-12.10
Н	675.050	QP	22.48	11.25	33.73	46.00	-12.27

- 1. Corr. Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Corr. Factor

FCC ID.: I88NBG334W Report No.: EME-070474 Page 39 of 68

The test was performed on EUT under 802.11b and 802.11g continuously transmitting mode. Channel 1, 6, 11 were verified. The worst case occurred at 802.11b Tx channel 1.

EUT : NBG334W

Worst Case : 802.11b Tx at channel 1

: DC version Remark

Antenna	Freq.	Receiver	Corr.	Reading	Corrected	Limit	Margin
Polariz.	•		Factor		Level	@ 3 m	Č
(V/H)	(MHz)	Detector	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
V	51.340	QP	12.90	19.39	32.29	40.00	-7.72
V	129.910	QP	9.47	17.00	26.47	43.50	-17.04
V	188.110	QP	13.10	23.06	36.16	43.50	-7.35
V	299.660	QP	13.95	11.87	25.82	46.00	-20.18
V	399.570	QP	16.40	13.51	29.91	46.00	-16.09
V	624.610	QP	20.75	9.35	30.10	46.00	-15.90
Н	117.300	QP	10.54	17.83	28.37	43.50	-15.14
Н	129.910	QP	11.62	18.11	29.73	43.50	-13.78
Н	192.960	QP	11.27	24.42	35.69	43.50	-7.82
Н	299.660	QP	14.17	16.40	30.57	46.00	-15.44
Н	424.790	QP	16.81	10.97	27.78	46.00	-18.22
Н	799.210	QP	23.52	9.60	33.12	46.00	-12.88

- 1. Corr. Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Corr. Factor

Page 40 of 68

6.4.2 Measurement results: frequency above 1GHz

EUT : NBG334W

Test Condition : 802.11b Tx at channel 1

Frequency	Spectrum	Antenna	Preamp.	Correction	Reading	Corrected	Limit	Margin
	Analyzer	Polariz.	Gain	Factor		Level	@ 3 m	
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
3210.00	PK	V	35.54	34.62	53.39	52.47	54	-1.53
4824.00	PK	V	36.07	37.77	42.82	44.52	54	-9.48
3210.00	PK	Н	35.54	34.62	43.72	42.80	54	-11.20

Remark:

1. Correction Factor = Antenna Factor + Cable Loss

- 2. Corrected Level = Reading + Correction Factor Preamp. Gain
- 3. The frequency measured ranges from 1GHz to 25GHz. The data value listed above which is higher than the noise floor, the others please refer to noise floor level.

Noise floor level is:

For PK:

1GHz-3GHz: 20dBuV 3GHz-14GHz: 27dBuV 14GHz-26.5GHz: 39dBuV

For AV:

FCC ID. :I88NBG334W Report No.: EME-070474 Page 41 of 68

EUT : NBG334W

Test Condition : 802.11b Tx at channel 6

Frequency	Spectrum	Antenna	Preamp.	Correction	Reading	Corrected	Limit	Margin
	Analyzer	Polariz.	Gain	Factor		Level	@ 3 m	
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
3240.00	PK	V	35.54	34.62	50.01	49.09	54	-4.91
4874.00	PK	V	36.07	37.77	44.97	46.67	54	-7.33
3240.00	PK	Н	35.54	34.62	44.21	43.29	54	-10.71
4874.00	PK	Н	36.07	37.77	42.53	44.23	54	-9.77

Remark:

- 1. Correction Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Correction Factor Preamp. Gain
- 3. The frequency measured ranges from 1GHz to 25GHz. The data value listed above which is higher than the noise floor, the others please refer to noise floor level.

Noise floor level is:

For PK:

1GHz-3GHz: 20dBuV 3GHz-14GHz: 27dBuV 14GHz-26.5GHz: 39dBuV

For AV:

FCC ID. :I88NBG334W Report No.: EME-070474 Page 42 of 68

EUT : NBG334W

Test Condition : 802.11b Tx at channel 11

Frequency	Spectrum	Antenna	Preamp.	Correction	Reading	Corrected	Limit	Margin
	Analyzer	Polariz.	Gain	Factor		Level	@ 3 m	
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
3270.00	PK	V	35.54	34.62	48.54	47.62	54	-6.38
4924.00	PK	V	36.07	37.77	46.17	47.87	54	-6.13
4924.00	PK	Н	36.07	37.77	42.63	44.33	54	-9.67

Remark:

- 1. Correction Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Correction Factor Preamp. Gain
- 3. The frequency measured ranges from 1GHz to 25GHz. The data value listed above which is higher than the noise floor, the others please refer to noise floor level.

Noise floor level is:

For PK:

1GHz-3GHz: 20dBuV 3GHz-14GHz: 27dBuV 14GHz-26.5GHz: 39dBuV

For AV:

FCC ID. :I88NBG334W Report No.: EME-070474 Page 43 of 68

EUT : NBG334W

Test Condition : 802.11g Tx at channel 1

Frequency	Spectrum	Antenna	Preamp.	Correction	Reading	Corrected	Limit	Margin
	Analyzer	Polariz.	Gain	Factor		Level	@ 3 m	
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
2412.00	PK	V	0	30.31	-	113.62	-	-
2412.00	AV	V	0	30.31	-	103.82	-	-
3210.00	PK	V	35.54	34.62	57.92	57.00	103.82	-46.82
3210.00	AV	V	35.54	34.62	56.79	55.87	83.82	-27.95
3210.00	PK	Н	35.54	34.62	46.94	46.02	54.00	-7.98

Remark:

- 1. Correction Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Correction Factor Preamp. Gain
- 3. The frequency measured ranges from 1GHz to 25GHz. The data value listed above which is higher than the noise floor, the others please refer to noise floor level.

Noise floor level is:

For PK:

1GHz-3GHz: 20dBuV 3GHz-14GHz: 27dBuV 14GHz-26.5GHz: 39dBuV

For AV:

FCC ID. :I88NBG334W Report No.: EME-070474 Page 44 of 68

EUT : NBG334W

Test Condition : 802.11g Tx at channel 6

Frequency	Spectrum	Antenna	Preamp.	Correction	Reading	Corrected	Limit	Margin
	Analyzer	Polariz.	Gain	Factor		Level	@ 3 m	
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
3120.00	PK	V	35.54	34.62	48.47	47.55	54	-6.45
3240.00	PK	V	35.54	34.62	57.05	56.13	74	-17.87
3240.00	AV	V	35.54	34.62	53.6	52.68	54	-1.32
4874.00	PK	V	36.07	37.77	44.01	45.71	54	-8.29
7290.00	PK	V	36.18	43.97	49.57	57.36	74	-16.64
7290.00	AV	V	36.18	43.97	34.47	42.26	54	-11.74
3240.00	PK	Н	35.54	34.62	48.02	47.10	54	-6.90

Remark:

- 1. Correction Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Correction Factor Preamp. Gain
- 3. The frequency measured ranges from 1GHz to 25GHz. The data value listed above which is higher than the noise floor, the others please refer to noise floor level.

Noise floor level is:

For PK:

1GHz-3GHz: 20dBuV 3GHz-14GHz: 27dBuV 14GHz-26.5GHz: 39dBuV

For AV:

FCC ID. :I88NBG334W Report No.: EME-070474 Page 45 of 68

EUT : NBG334W

Test Condition : 802.11g Tx at channel 11

Frequency	Spectrum	Antenna	Preamp.	Correction	Reading	Corrected	Limit	Margin
	Analyzer	Polariz.	Gain	Factor		Level	@ 3 m	
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
3120.00	PK	V	35.54	34.62	45.55	44.63	54	-9.37
3270.00	PK	V	35.54	34.62	50.77	49.85	54	-4.15
3270.00	PK	Н	35.54	34.62	43.50	42.58	54	-11.42

Remark:

- 1. Correction Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Correction Factor Preamp. Gain
- 3. The frequency measured ranges from 1GHz to 25GHz. The data value listed above which is higher than the noise floor, the others please refer to noise floor level.

Noise floor level is:

For PK:

1GHz-3GHz: 20dBuV 3GHz-14GHz: 27dBuV 14GHz-26.5GHz: 39dBuV

For AV:

Page 46 of 68

7. Power Spectrum Density test

7.1 Operating environment

Temperature: 23

Relative Humidity: 55 % Atmospheric Pressure 1023 hPa

7.2 Test setup & procedure

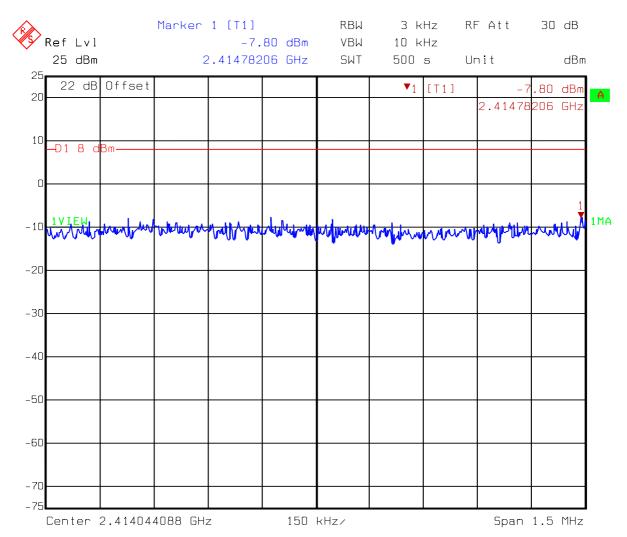
The power spectrum density per FCC §15.247(e) was measured from the antenna port of the EUT using a 50ohm spectrum analyzer with the resolution bandwidth set at 3kHz, the video bandwidth set at 10kHz, a span of 1.5MHz, and the sweep time set at 500 seconds. Power Density was read directly correction was added to the reading to obtain power at the EUT antenna terminals. The test was performed at 3 channels (lowest, middle and highest channel). The Power Spectral Density measured result is in the following table.

7.3 Measured data of Power Spectrum Density test results

Test Mode: 802.11b mode

Channel	Frequency	Cable loss	Power spectrum density	Limit
Chamiei	(MHz)	(dB)	(dBm)	(dBm)
1 (lowest)	2412	2	-7.80	8
6 (middle)	2437	2	-8.24	8
11 (highest)	2462	2	-8.33	8

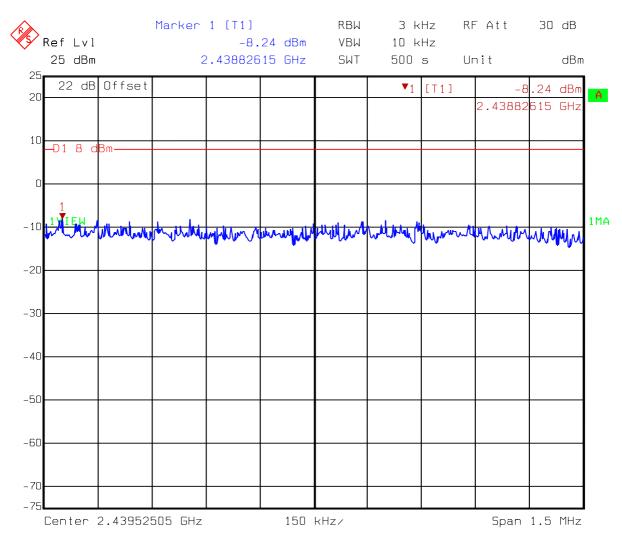
Test Mode: 802.11g mode


Channel	Frequency	Cable loss	Power spectrum density	Limit
Chamiei	(MHz)	(dB)	(dBm)	(dBm)
1 (lowest)	2412	2	-10.78	8
6 (middle)	2437	2	-9.74	8
11 (highest)	2462	2	-11.66	8

Please see the plot below.

Page 47 of 68

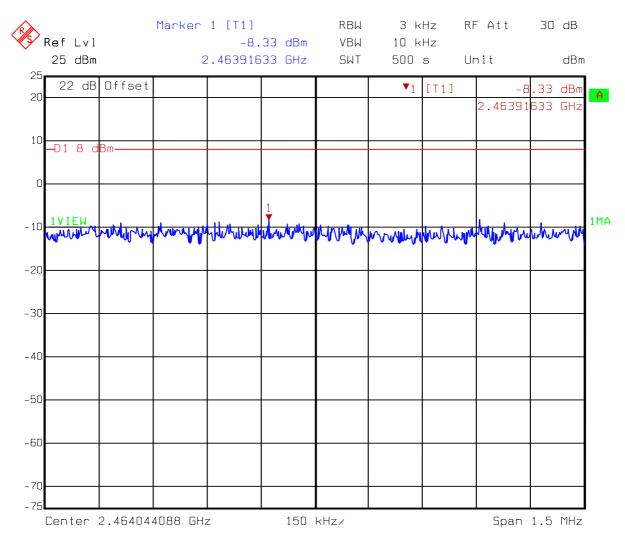
Test Mode: 802.11b mode (ch1)


Title: Power density

Comment A: CH 1 at 802.11b mode Date: 04.JUN.2007 10:27:45

Page 48 of 68

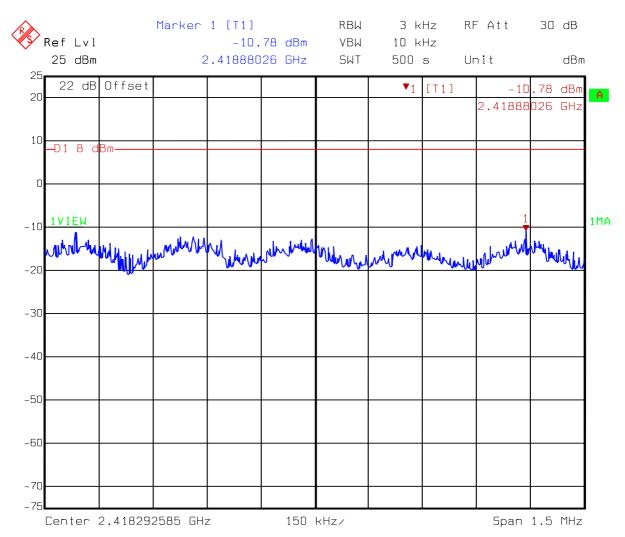
Test Mode: 802.11b mode (ch6)


Title: Power density

Comment A: CH 6 at 802.11b mode Date: 04.JUN.2007 10:30:29

Page 49 of 68

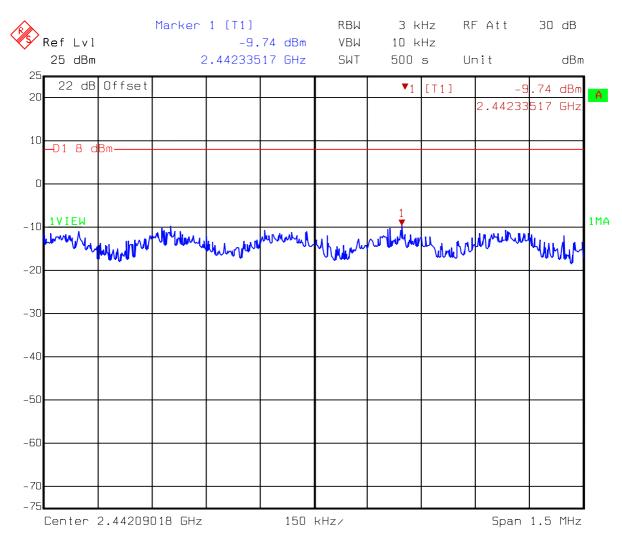
Test Mode: 802.11b mode (ch11)


Title: Power density

Comment A: CH 11 at 802.11b mode Date: 04.JUN.2007 10:33:16

Page 50 of 68

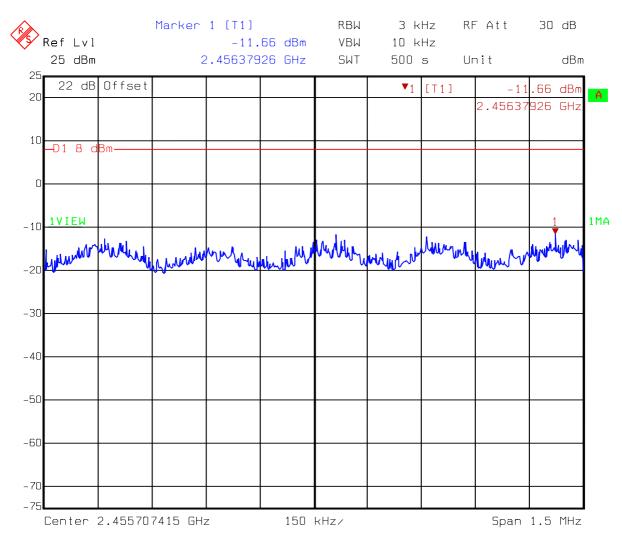
Test Mode: 802.11g mode (ch1)


Title: Power density

Comment A: CH 1 at 802.11g mode Date: 04.JUN.2007 10:36:23

Page 51 of 68

Test Mode: 802.11b mode (ch6)


Title: Power density

Comment A: CH 6 at 802.11g mode Date: 04.JUN.2007 10:39:34

Page 52 of 68

Test Mode: 802.11b mode (ch11)

Title: Power density

Comment A: CH 11 at 802.11g mode Date: 04.JUN.2007 10:42:44

FCC ID. :I88NBG334W Report No.: EME-070474 Page 53 of 68

8. Emission on the band edge

In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 KHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Radiated emissions, which fall in the restricted band, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

8.1 Operating environment

Temperature: 23

Relative Humidity: 55 % Atmospheric Pressure 1023 hPa

8.2 Test setup & procedure

Please refer to the clause 6.2 of this report.

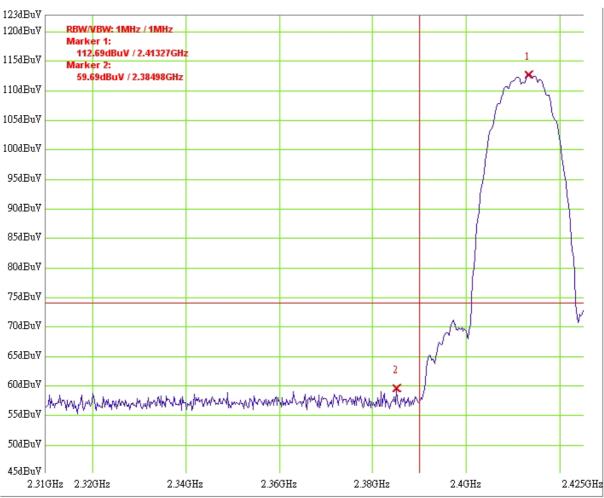
Page 54 of 68

8.3 Test Result

Test Mode: 802.11b mode

Channel	Measurement Freq.Band (MHz)	Detector	The Max. Field Strength in Restrict Band (dBuV/m)	Limit @ 3 m (dBuV/m)	Margin (dB)
1 (lowest)	2310-2390	PK	59.69	74	-14.31
1 (lowest)		AV	48.12	54	-5.88
11 (bighagt)	2483.5-2500	PK	59.66	74	-14.34
11 (highest)		AV	48.92	54	-5.08

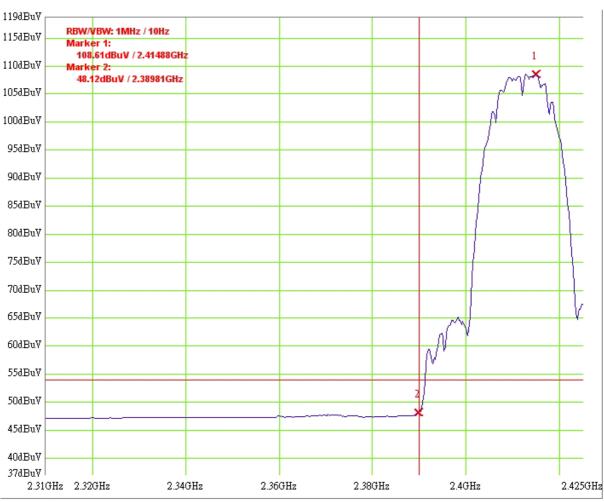
Test Mode: 802.11g mode


Channel	Measurement Freq.Band (MHz)	Detector	The Max. Field Strength in Restrict Band (dBuV/m)	Limit @ 3 m (dBuV/m)	Margin (dB)
1 (lawast)	2310-2390	PK	67.08	74	-6.92
1 (lowest)	2310-2390	AV	52.14	54	-1.86
11 (highest)	2483.5-2500	PK	71.50	74	-2.50
11 (mgnest)		AV	53.38	54	-0.62

FCC ID. :I88NBG334W Report No.: EME-070474 Page 55 of 68

8.3.1 Conducted Method

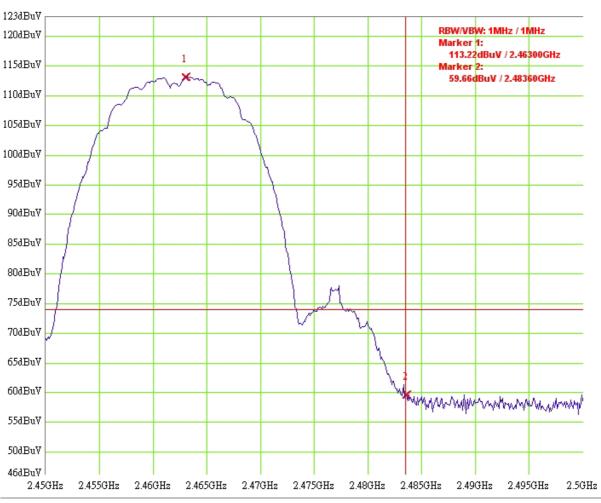
Test Mode: 802.11b ch 1 PK



11b ch1 PK

FCC ID. :I88NBG334W Report No.: EME-070474 Page 56 of 68

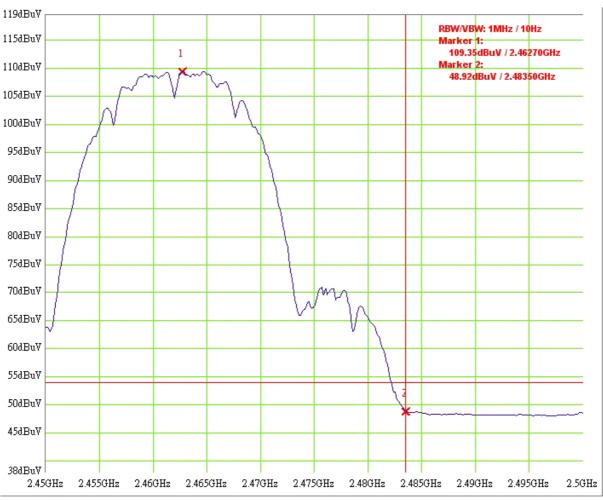
Test Mode: 802.11b ch 1 AV



11b ch1 AV

FCC ID. :I88NBG334W Report No.: EME-070474 Page 57 of 68

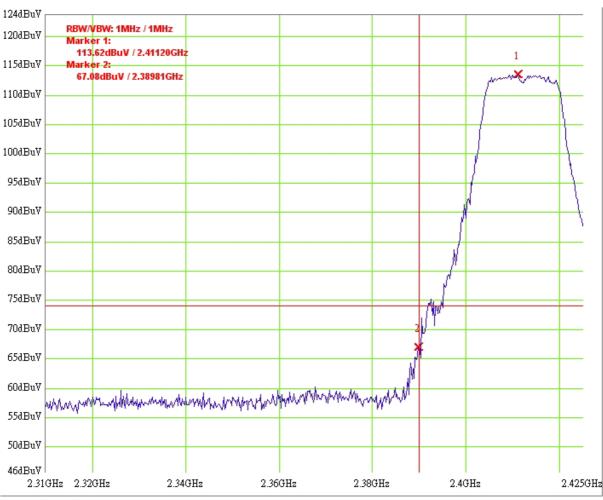
Test Mode: 802.11b ch11 PK



11b ch11 PK

Page 58 of 68

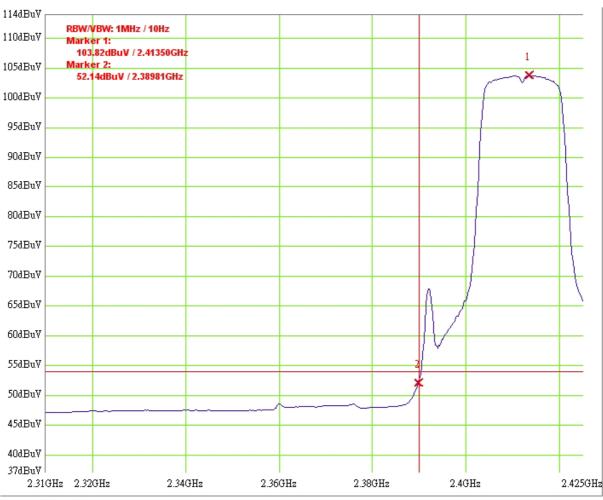
Test Mode: 802.11b ch11 AV



11b ch11 AV

Page 59 of 68

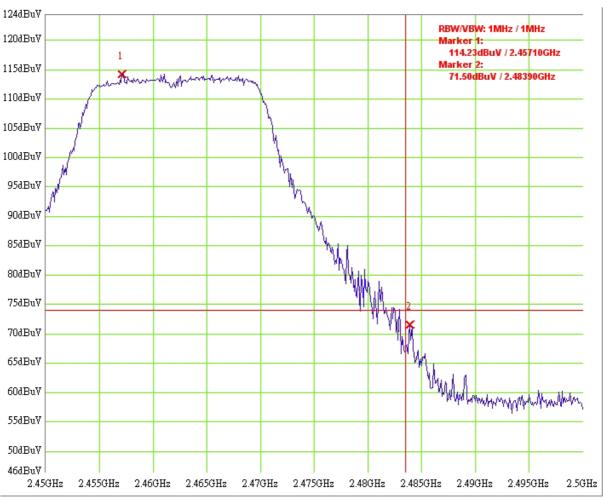
Test Mode: 802.11g ch1 PK



11g ch1 PK Art:12.0

Page 60 of 68

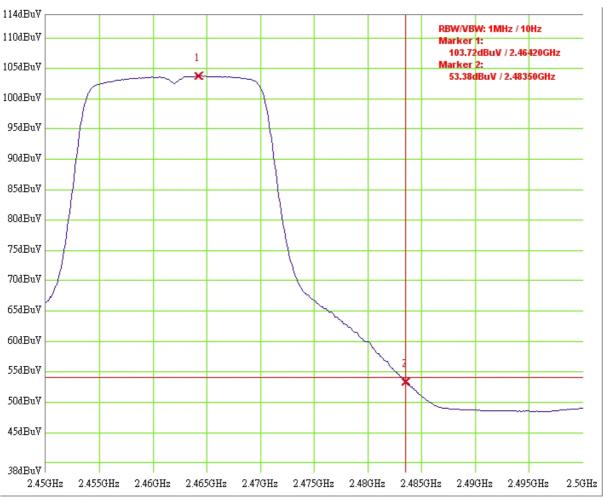
Test Mode: 802.11g ch1 AV



11g ch1 AV Art:12.0

FCC ID. :I88NBG334W Report No.: EME-070474 Page 61 of 68

Test Mode: 802.11g ch 11 PK

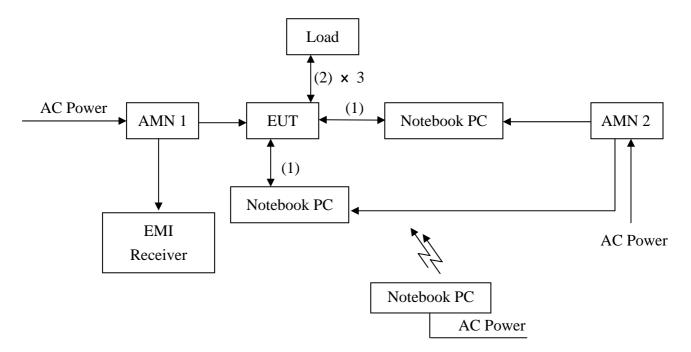


11g ch11 PK Art:9.0

Page 62 of 68

Test Mode: 802.11g ch 11 AV

11g ch11 AV Art:9.0


Page 63 of 68

9. Power Line Conducted Emission test §FCC 15.207

9.1 Operating environment

Temperature: 23
Relative Humidity: 55 %
Atmospheric Pressure 1023 hPa

9.2 Test setup & procedure

- (1) RJ-45 UTP Cat.5 10meter
- (2) RJ-45 UTP Cat.5 3 meter

The EUT are connected to the main power through a line impedance stabilization network (LISN). This provides a 50 ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination.

Both sides (Line and Neutral) of AC line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4/2003 on conducted measurement. The bandwidth of the field strength meter (R & S Test Receiver ESCS 30) is set at 9kHz.

The EUT configuration please refer to the "Conducted set-up photo.pdf".

Page 64 of 68

9.3 Emission limit

Freq.	Conducted Limit (dBuV)				
(MHz)	Q.P.	Ave.			
0.15~0.50	66 – 56*	56 – 46*			
0.50~5.00	56	46			
5.00~30.0	60	50			

^{*}Decreases with the logarithm of the frequency.

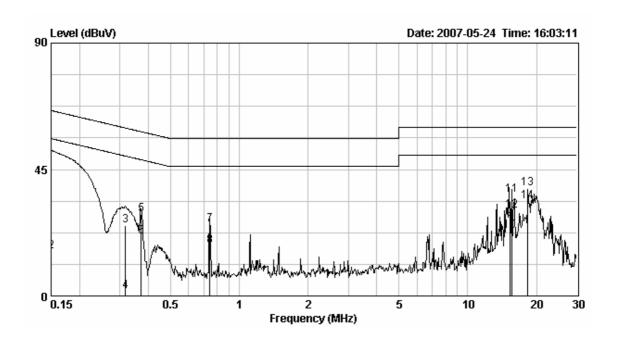
9.4 Uncertainty of Conducted Emission

Expanded uncertainty (k=2) of conducted emission measurement is ± 2.26 dB.

Page 65 of 68

9.5 Power Line Conducted Emission test data

Phase: Line


Model No.: NBG334W

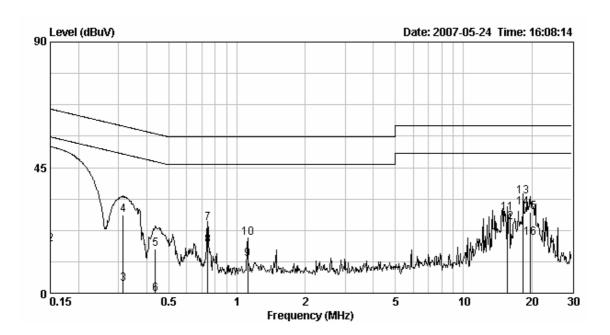
Test Condition: Normal operating mode

Remark: AC version With Adapter: AA-121A

Frequency	Corr. Factor	Level Qp	Limit Qp	Level AV	Limit Av		rgin dB)
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	Qp	Av
0.150	0.10	45.42	66.00	15.77	56.00	-20.58	-40.23
0.317	0.10	25.19	59.78	1.61	49.78	-34.59	-48.17
0.373	0.10	28.95	58.44	20.99	48.44	-29.49	-27.45
0.744	0.10	25.34	56.00	17.74	46.00	-30.66	-28.26
15.248	0.70	27.48	60.00	23.10	50.00	-32.52	-26.90
15.623	0.71	36.02	60.00	30.21	50.00	-23.98	-19.79
18.314	0.77	38.18	60.00	33.55	50.00	-21.82	-16.45

- 1. Corr. Factor (dB)= LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) = Level (dBuV) Limit (dBuV)

FCC ID. :I88NBG334W Report No.: EME-070474 Page 66 of 68


Phase: Neutral Model No.: NBG334W

Test Condition: Normal operating mode

Remark: AC version With Adapte: AA-121A

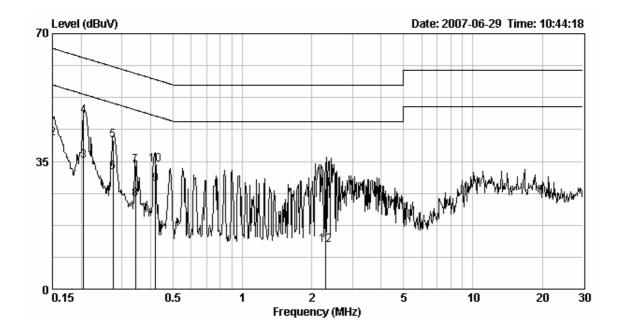
Frequency	Corr. Factor	Level Qp	Limit Qp	Level AV	Limit Av		rgin dB)
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	Qp	Av
0.150	0.10	46.11	66.00	17.51	56.00	-19.89	-38.49
0.315	0.10	28.17	59.85	3.30	49.85	-31.68	-46.55
0.436	0.10	15.97	57.13	-0.39	47.13	-41.16	-47.52
0.743	0.10	25.21	56.00	17.09	46.00	-30.79	-28.91
1.115	0.10	19.81	56.00	12.20	46.00	-36.19	-33.80
15.616	0.42	28.63	60.00	25.24	50.00	-31.37	-24.76
18.314	0.53	34.59	60.00	30.63	50.00	-25.41	-19.37
19.676	0.59	29.08	60.00	19.85	50.00	-30.92	-30.15

- 1. Corr. Factor (dB)= LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) = Level (dBuV) Limit (dBuV)

FCC ID. :I88NBG334W Report No.: EME-070474 Page 67 of 68

Phase: Line

Model No.: NBG334W


Test Condition: Normal operating mode

Remark: DC version

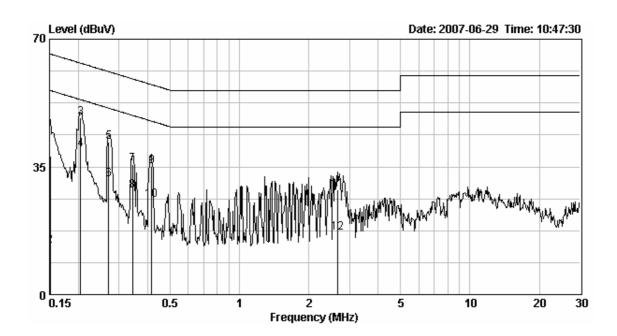
With Adapte: MU12-2120100-A1

Frequency	Corr. Factor	Level Qp	Limit Qp	Level AV	Limit Av	Margin (dB)	
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	Qр	Av
0.150	0.10	41 00	66.00	15.65	56.00	04.00	40.05
0.150	0.10	41.20	66.00	15.65	56.00	-24.80	-40.35
0.205	0.10	47.39	63.42	35.18	53.42	-16.03	-18.24
0.275	0.10	40.85	60.97	32.16	50.97	-20.12	-18.81
0.344	0.10	33.76	59.12	24.58	49.12	-25.36	-24.54
0.419	0.10	34.08	57.46	28.64	47.46	-23.38	-18.82
2.307	0.13	27.37	56.00	11.98	46.00	-28.63	-34.02

- 1. Corr. Factor (dB)= LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) = Level (dBuV) Limit (dBuV)

FCC ID. :I88NBG334W Report No.: EME-070474 Page 68 of 68

Phase: Neutral Model No.: NBG334W


Test Condition: Normal operating mode

Remark: DC version

With Adapte: MU12-2120100-A1

Frequency	Corr. Factor	Level Qp	Limit Qp	Level AV	Limit Av		rgin dB)
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	Qp	Av
0.151	0.10	38.06	65.93	13.45	55.93	-27.87	-42.48
0.205	0.10	48.52	63.42	39.84	53.42	-14.90	-13.58
0.271	0.10	41.81	61.10	31.45	51.10	-19.29	-19.65
0.344	0.10	35.67	59.12	28.36	49.12	-23.45	-20.76
0.416	0.10	35.16	57.53	26.01	47.53	-22.37	-21.52
2.663	0.15	28.59	56.00	16.88	46.00	-27.41	-29.12

- 1. Corr. Factor (dB)= LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) = Level (dBuV) Limit (dBuV)

