

Report No.: EME-060130 Page 1 of 46

EMC TEST REPORT

Report No.	: EME-060130
Model No.	: G-220 v2
Issued Date	: Feb. 24, 2006

- Applicant : ZyXEL Communications Corporation No. 6, Innovation Rd II, Science-Based Industrial Park, Hsin-Chu, Taiwan
- Test By : Intertek Testing Services Taiwan Ltd. No. 11, Lane 275, Ko-Nan 1 Street, Chia-Tung Li, Shiang-Shan District, Hsinchu City, Taiwan

This test report consists of 46 pages in total. It may be duplicated completely for legal use with the allowance of the applicant. It shall not be reproduced except in full, without the written approval of Intertek Laboratory. The test result(s) in this report only applies to the tested sample(s).

Project Engineer

Jerry Liu

Reviewed By

Kevin Chen

Report No.: EME-060130 Page 2 of 46

Table of Contents

Summary of Tests	4
 General information 1.1 Identification of the EUT 	
1.2 Additional information about the EUT	5
1.3 Antenna description	6
1.4 Peripherals equipment	6
2. Test specifications	7
2.1 Test standard	
2.2 Operation mode	
2.3 Test equipment	
3. Minimum 6dB Bandwidth test	9
3.1 Operating environment.	
3.2 Test setup & procedure	
3.3 Measured data of Minimum 6dB Bandwidth test results	
4. Maximum Output Power test	16
4.1 Operating environment	16
4.2 Test setup & procedure	16
4.3 Measured data of Maximum Output Power test results	16
5. Radiated Emission test	17
5.1 Operating environment	17
5.2 Test setup & procedure	17
5.3 Emission limits	
5.4 Radiated spurious emission test data	19
5.4.1 Measurement results: frequencies equal to or less than 1 GHz	19
5.4.2 Measurement results: frequency above 1GHz	
6. Power Spectrum Density test	
6.1 Operating environment	
6.2 Test setup & procedure	
6.3 Measured data of Power Spectrum Density test results	
7. Emission on the band edge	
7.1 Operating environment	
7.2 Test setup & procedure	

Intertek ETL SEMKO

	7.3 Test Result	34
	7.3.1 Conducted Method	34
	7.3.2 Radiated Method	42
8.	Power Line Conducted Emission test §FCC 15.207	43
	8.1 Operating environment	43
	8.2 Test setup & procedure	43
	8.3 Emission limit	44
	8.4 Uncertainty of Conducted Emission	44
	8.5 Power Line Conducted Emission test data	45

Summary of Tests

802.11g WLAN USB Adapter -Model: G-220 v2 FCC ID: I88G220V2

Test	Reference	Results
Minimum 6dB Bandwidth test	15.247(a)(2)	Complies
Maximum Output Power test	15.247(b)	Complies
Radiated Spurious Emission test	15.205, 15.209	Complies
Power Spectrum Density test	15.247(e)	Complies
Emission on the Band Edge test	15.247(d)	Complies
AC Power Line Conducted Emission test	15.207	Complies

Report No.: EME-060130 Page 5 of 46

1. General information

1.1 Identification of the EUT

Applicant	: ZyXEL Communications Corporation
Product	: 802.11g WLAN USB Adapter
Model No.	: G-220 v2
FCC ID.	: I88G220V2
Frequency Range	: $2412MHz \sim 2462MHz$
Channel Number	: 11 channels
Frequency of Each Channel	: 2412MHz, 2417MHz, 2422MHz, 2427MHz, 2432MHz, 2437MHz, 2442MHz, 2447MHz, 2452MHz, 2457MHz, 2462MHz
Type of Modulation	: DSSS, OFDM
Rated Power	: DC 5V
Power Cord	: N/A
Sample Received	: Feb. 6, 2006
Test Date(s)	: Feb. 6, 2006 ~ Feb. 23, 2006

A FCC DoC report has been generated for the client.

1.2 Additional information about the EUT

The EUT is an 802.11g WLAN USB Adapter, and was defined as information technology equipment.

For more detail features, please refer to User's manual as file name "Installation guide.pdf"

Report No.: EME-060130 Page 6 of 46

1.3 Antenna description

The EUT uses a permanently connected antenna.

Antenna Gain:-0.27dBi maxAntenna Type:PCB antennaConnector Type:N/A

1.4 Peripherals equipment

Peripherals	Manufacturer	Product No.	Serial No.
Notebook PC	HP	HSTNN-I04C	CNU5240W9N
PRINTER	HP	DeskJet 850	SG5CQ170C0

2. Test specifications

2.1 Test standard

The EUT was performed according to the procedures in FCC Part 15 Subpart C Section § $15.205 \times \$15.207 \times \$15.209 \times \$15.247$ and ANSI C63.4/2003.

The test of radiated measurements according to FCC Part15 Section 15.33(a) had been conducted and the field strength of this frequency band were all meet limit requirement, thus we evaluate the EUT pass the specified test.

2.2 Operation mode

The EUT was supplied with 5Vdc from Notebook PC and it was running in operating mode.

Plug the EUT into Notebook PC via USB interface, then turn on the Notebook PC power and run the test program "ZD121xDual Band Evaluation Tool" under windows OS, which provide by manufacturer.

The EUT was transmitted continuously during the test.

With individual verifying, the maximum output power was found at 1Mbps data rate for 802.11b mode and 6Mbps data rate for 802.11g mode. The final tests were executed under these conditions and recorded in this report individually.

Report No.: EME-060130 Page 8 of 46

2.3 Test equipment

Equipment	Brand	Frequency range	Model No.	Intertek ID No.	Next Cal. Date
EMI Test Receiver	Rohde & Schwarz	9kHz~2.75GHz	ESCS 30	EC303	04/17/2006
EMI Test Receiver	Rohde & Schwarz	20Hz~26.5GHz	ESMI	EC317	08/07/2006
Spectrum Analyzer	Rohde & Schwarz	9kHz~30GHz	FSP 30	EC353	07/24/2006
Spectrum Analyzer	Rohde & Schwarz	20Hz~40GHz	FSEK 30	EC365	11/01/2006
Horn Antenna	SCHWARZBECK	1GHz~18GHz	BBHA 9120 D	EC371	12/22/2007
Bilog Antenna	SCHWARZBECK	25MHz~2GHz	VULB 9168	EC347	12/23/2007
Pre-Amplifier	MITEQ	100MHz~26.5GHz	919981	EC373	12/29/2006
Pre-Amplifier	MITEQ	26GHz~40GHz	828825	EC374	01/15/2008
Wideband Peak Power Meter/ Sensor	Anritsu	100MHz~18GHz	ML2497A/ MA2491A	EC396	11/10/2006
Controller	HDGmbH	N/A	CM 100	EP346	N/A
Antenna Tower	HDGmbH	N/A	MA 240	EP347	N/A
LISN	Rohde & Schwarz	9KHz~30MHz	ESH3-Z5	EC344	01/15/2007

Note: 1. The above equipments are within the valid calibration period.

2. The test antennas (receiving antenna) are calibration per 3 years.

Intertek ETL SEMKO

FCC ID. : I88G220V2

Report No.: EME-060130 Page 9 of 46

3. Minimum 6dB Bandwidth test

3.1 Operating environment

Temperature:	25	°C
Relative Humidity:	56	%
Atmospheric Pressure:	1023	hPa

3.2 Test setup & procedure

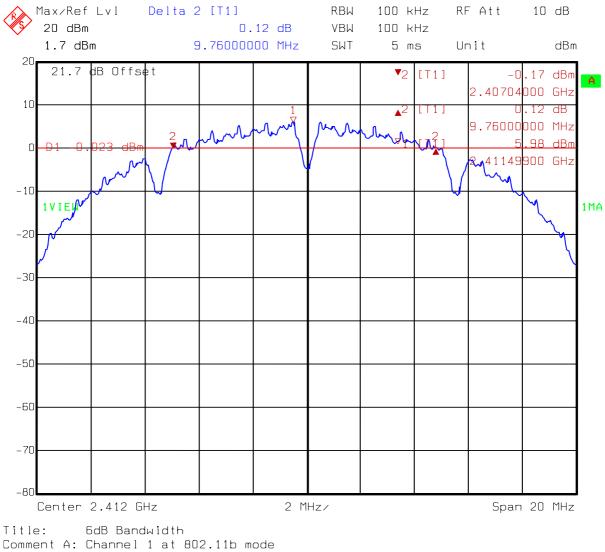
The minimum 6dB bandwidth per FCC \$15.247(a)(2) was measured using a 50 ohm spectrum analyzer with the resolutions bandwidth set at 100kHz, the video bandwidth set at 100kHz, and the SPAN>>RBW. The test was performed at 3 channels (lowest, middle and highest channel). The minimum 6-dB modulation bandwidth is in the following Table.

3.3 Measured data of Minimum 6dB Bandwidth test results

Test Mode: 802.11b(DSSS Modulation) operating mode

Channel	Frequency (MHz)	Bandwidth (MHz)	Limit
1 (lowest)	2412	9.76	>500kHz
6 (middle)	2437	9.72	>500kHz
11 (highest)	2462	10.12	> 500 kHz

Test Mode: 802.11g(OFDM Modulation) operating mode


Channel	Frequency (MHz)	Bandwidth (MHz)	Limit
1 (lowest)	2412	16.64	>500kHz
6 (middle)	2437	16.56	>500kHz
11 (highest)	2462	16.56	>500kHz

Please see the plot below.

Report No.: EME-060130 Page 10 of 46

Test Mode: 802.11b(DSSS Modulation) operating mode

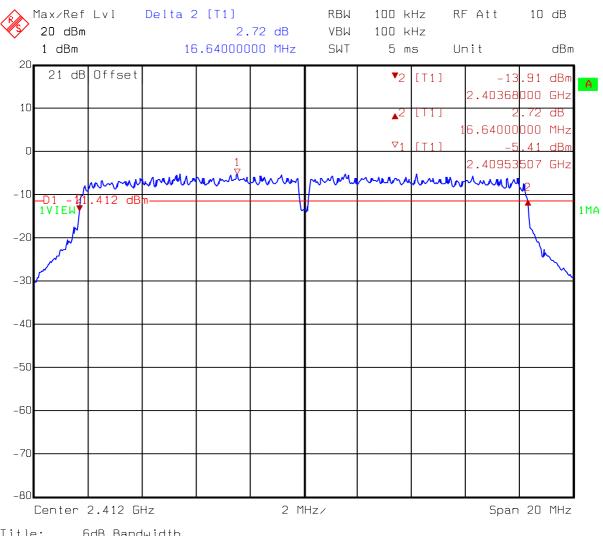
Date: 15.FEB.2006 09:05:26

Report No.: EME-060130 Page 11 of 46

Max/Ref Lvl Delta 2 [T1] RBW 100 kHz RF Att 10 dB 20 dBm 0.32 dB VBW 100 kHz 1.7 dBm 9.72000000 MHz SWT 5 ms Unit dBm 20 21.7 dB Offset ▼2 [T1] -0.44 dBm Α 2.43204<mark>000 GHz</mark> 10 0.32 dB [T1] ▲2 9.72000<mark>000 M</mark>Hz ma 2 A .78 dBm 0 43649900 GHz Λ. ~ -10 1VIE ~^ 1MA -20 -30 -40 -50 -60 -70 -80 Center 2.437 GHz 2 MHz/ Span 20 MHz ⊺itle: 6dB Bandwidth

Comment A: Channel 6 at 802.11b mode Date: 15.FEB.2006 09:08:56

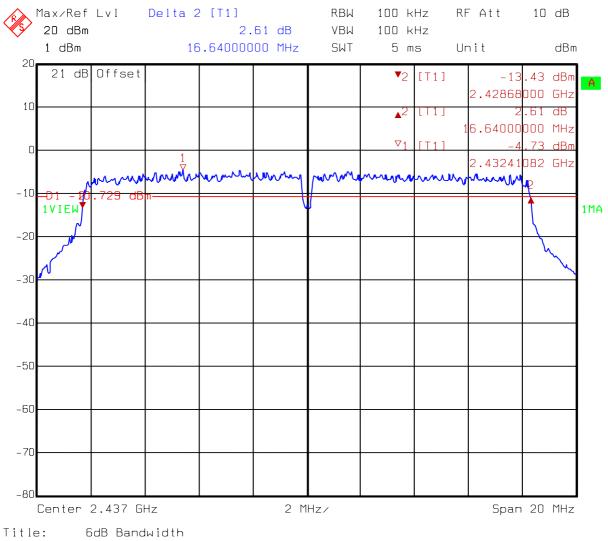
Report No.: EME-060130 Page 12 of 46



Comment A: Channel 11 at 802.11b mode

Date: 15.FEB.2006 09:13:10

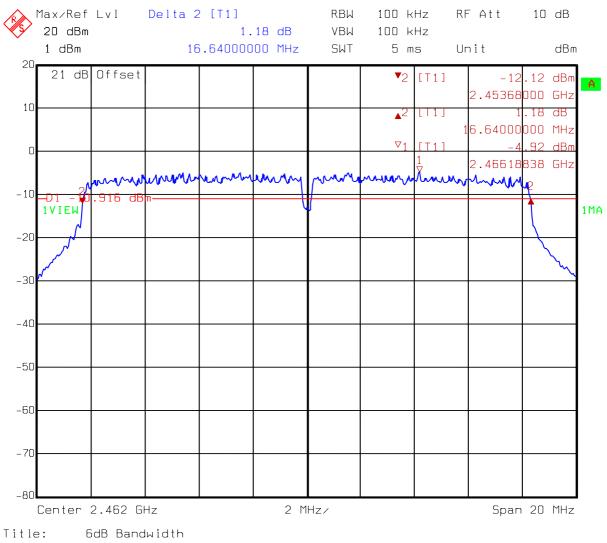
Test Mode: 802.11g(OFDM Modulation) operating mode



Title: 6dB Bandwidth

Comment A: Channel 1 at 802.11g mode Date: 21.FEB.2006 10:38:02

Report No.: EME-060130 Page 14 of 46



Comment A: Channel 6 at 802.11g mode

Date: 21.FEB.2006 10:43:08

Report No.: EME-060130 Page 15 of 46

Comment A: Channel 11 at 802.11g mode

Date: 21.FEB.2006 10:45:05

Intertek ETL SEMKO

FCC ID. : I88G220V2

Report No.: EME-060130 Page 16 of 46

4. Maximum Output Power test

4.1 Operating environment

Temperature:	23	°C
Relative Humidity:	52	%
Atmospheric Pressure:	1023	hPa

4.2 Test setup & procedure

The power output per FCC §15.247(b) was measured on the EUT using a 50 ohm SMA cable connected to peak power meter via power sensor. Power was read directly and cable loss correction (1.7 dB) was added to the reading to obtain power at the EUT antenna terminals. The test was performed at 3 channels (lowest, middle and highest channel).

4.3 Measured data of Maximum Output Power test results

Channel	Freq.	C.L.	ReadingConducted Peak Output Power		Limit	
	(MHz)	(dB)	(dBm)	(dBm)	(mW)	(W)
1 (lowest)	2412	1.7	17.97	19.67	92.68	1
6 (middle)	2437	1.7	17.75	19.45	88.10	1
11 (highest)	2462	1.7	17.49	19.19	82.99	1

Test Mode: 802.11b(DSSS Modulation) operating mode

Remark:

Conducted Peak Output Power = Reading + C.L.

Test Mode: 802.11g(OFDM Modulation) operating mode

Channel Freq.		C.L.	Reading	Conducted Por	Limit	
	(MHz)	(dB)	(dBm)	(dBm)	(mW)	(W)
1 (lowest)	2412	1.7	22.94	22.94	196.79	1
6 (middle)	2437	1.7	22.68	22.68	185.35	1
11 (highest)	2462	1.7	22.32	22.32	170.61	1

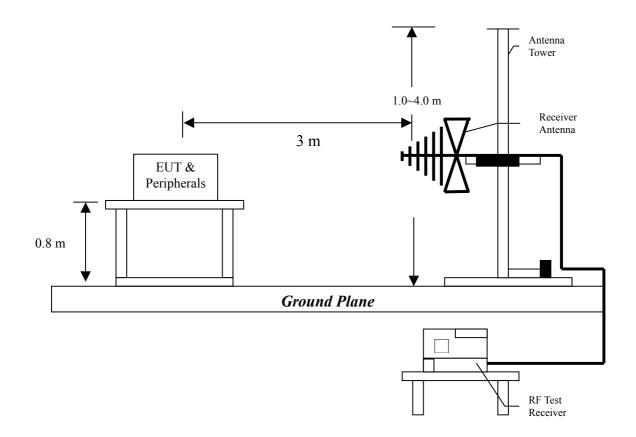
Remark:

Conducted Peak Output Power = Reading + C.L.

Intertek ETL SEMKO

FCC ID. : I88G220V2

Report No.: EME-060130 Page 17 of 46


5. Radiated Emission test

5.1 Operating environment

Temperature:	23	°C
Relative Humidity:	60	%
Atmospheric Pressure:	1010	hPa

5.2 Test setup & procedure

The Diagram below shows the test setup, which is utilized to make these measurements.

Radiated emissions were invested cover the frequency range from 30MHz to 1000MHz using a receiver RBW of 120kHz record QP reading, and the frequency over 1GHz using a spectrum analyzer RBW of 1MHz and 10Hz VBW record Average reading. (15.209 paragraph), the Peak reading (1MHz RBW/VBW) recorded also on the report.

The EUT for testing is arranged on a wooden turntable. If some peripherals apply to the EUT, the peripherals will be connected to EUT and the whole system. During the test, all cables were arranged to produce worst-case emissions. The signal is maximized through rotation. The height of antenna and polarization is changing constantly for exploring for maximum signal level. The height of antenna can be up to 4 meters and down to 1 meter.

The measurement for radiated emission will be done at the distance of three meters unless the signal level is too low to measure at that distance. In the case of the reading under noise floor, a pre-amplifier is used and/or the test is conducted at a closer distance. And then all readings are extrapolated back to the equivalent 3 meter reading using inverse scaling with distance.

The EUT configuration please refer to the "Spurious set-up photo.pdf".

5.3 Emission limits

The spurious Emission shall test through the 10th harmonic. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Frequency (MHz)	Limits (dB µ V/m@3m)
30-88	40
88-216	43.5
216-960	46
Above 960	54

Remark:

- 1. In the above table, the tighter limit applies at the band edges.
- 2. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system

Uncertainty was calculated in accordance with NAMAS NIS 81. Expanded uncertainty (k=2) of radiated emission measurement is 4.98 dB.

5.4 Radiated spurious emission test data

Frequency(MHz)	Margin	Frequency(MHz)	Margin
4824.00	-0.98	4824.00	-4.98
4824.00	-0.3	4824.00	-0.92
4874.00	-1.05	4874.00	-2.58
4874.00	-1.92	4874.00	-2.34
4924.00	-1.1	4924.00	-2.56
4924.00	-19.71	4924.00	-2.59
4924.00	-1.96	-	-

The radiated spurious emissions at

are less than uncertainty. This is within the stated measurement uncertainty, this may affect compliance determined in other test arrangements.

5.4.1 Measurement results: frequencies equal to or less than 1 GHz

The test was performed on EUT under 802.11b and 802.11g continuously transmitting mode. Channel 1, 6, 11 were verified. The worst case occurred at 802.11b Tx channel 1.

EUT	: G-220 v2
Worst Case	: 802.11b Tx at channel 1

Antenna	Freq.	Receiver	Corr.	Reading	Corrected	Limit	Margin	Antenna	Turn Table
Polariz.			Factor		Level	@ 3 m		high	angle
(V/H)	(MHz)	Detector	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(degree)
V	171.62	QP	14.96	14.69	29.64	43.50	-13.86	100	310
V	297.72	QP	13.95	13.73	27.68	46.00	-18.32	102	301
V	365.62	QP	15.06	12.38	27.44	46.00	-18.56	138	344
V	429.64	QP	17.64	11.46	29.10	46.00	-16.90	186	135
V	499.48	QP	18.43	17.62	36.04	46.00	-9.96	186	273
V	998.06	QP	25.49	17.31	42.80	54.00	-11.20	169	321
Н	198.78	QP	11.27	14.96	26.22	43.50	-17.28	400	186
Н	398.60	QP	16.74	13.15	29.89	46.00	-16.11	232	56
Н	499.48	QP	18.64	18.13	36.77	46.00	-9.23	181	335
Н	749.74	QP	22.95	11.84	34.79	46.00	-11.21	129	162
Н	798.24	QP	23.52	10.42	33.94	46.00	-12.06	125	139
Н	998.06	QP	25.83	14.03	39.85	54.00	-14.15	100	230

Remark:

- 1. Corr. Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Corr. Factor

5.4.2 Measurement results: frequency above 1GHz

EUT: G-220 v2Test Condition: 802.11b Tx at channel 1

Frequency	Spectrum	Antenna	Preamp.	Correction	Reading	Corrected	Limit	Margin	Ant.	Turn Table
	Analyzer	Polariz.	Gain	Factor		Level	@ 3 m		high	angle
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(degree)
4824.00	РК	V	36.07	37.77	51.32	53.02	54	-0.98	101	279
4824.00	РК	Н	36.07	37.77	52	53.7	54	-0.3	102	126

Remark:

- 1. Correction Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Correction Factor Preamp. Gain
- 3. The frequency measured ranges from 1GHz to 25GHz. The data value listed above which is higher than the noise floor, the others please refer to noise floor level.

Noise floor level is :

For PK: 1GHz-3GHz: 20dBuV 3GHz-14GHz: 27dBuV 14GHz-26.5GHz: 39dBuV

Report No.: EME-060130 Page 21 of 46

EUT	: G-220 v2
Test Condition	: 802.11b Tx at channel 6

Frequency	Spectrum	Antenna	Preamp.	Correction	Reading	Corrected	Limit	Margin	Ant.	Turn Table
	Analyzer	Polariz.	Gain	Factor		Level	@ 3 m		high	angle
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(degree)
4874.00	РК	V	36.07	37.77	53.57	55.27	74	-18.73	102	277
4874.00	AV	V	36.07	37.77	51.25	52.95	54	-1.05	102	277
4874.00	РК	Н	36.07	37.77	52.54	54.24	74	-19.76	101	135
4874.00	AV	Н	36.07	37.77	50.38	52.08	54	-1.92	101	135

Remark:

- 1. Correction Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Correction Factor Preamp. Gain
- 3. The frequency measured ranges from 1GHz to 25GHz. The data value listed above which is higher than the noise floor, the others please refer to noise floor level.

Noise floor level is:

For PK: 1GHz-3GHz: 20dBuV 3GHz-14GHz: 27dBuV 14GHz-26.5GHz: 39dBuV

Report No.: EME-060130 Page 22 of 46

EUT: G-220 v2Test Condition: 802.11b Tx at channel 11

Frequency	Spectrum	Antenna	Preamp.	Correction	Reading	Corrected	Limit	Margin	Ant.	Turn Table
	Analyzer	Polariz.	Gain	Factor		Level	@ 3 m		high	angle
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(degree)
4924.00	РК	V	36.07	37.77	51.2	52.9	54	-1.1	102	253
4924.00	РК	Н	36.07	37.77	52.59	54.29	74	-19.71	100	128
4924.00	AV	Н	36.07	37.77	50.34	52.04	54	-1.96	100	128

Remark:

- 1. Correction Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Correction Factor Preamp. Gain
- 3. The frequency measured ranges from 1GHz to 25GHz. The data value listed above which is higher than the noise floor, the others please refer to noise floor level.

Noise floor level is:

For PK: 1GHz-3GHz: 20dBuV 3GHz-14GHz: 27dBuV 14GHz-26.5GHz: 39dBuV

Report No.: EME-060130 Page 23 of 46

EUT: G-220 v2Test Condition: 802.11g Tx at channel 1

Frequency	Spectrum	Antenna	Preamp.	Correction	Reading	Corrected	Limit	Margin	Ant.	Turn Table
	Analyzer	Polariz.	Gain	Factor		Level	@ 3 m		high	angle
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(degree)
4824.00	PK	V	36.07	37.77	47.32	49.02	54	-4.98	101	277
4824.00	РК	Н	36.07	37.77	51.38	53.08	54	-0.92	101	126

Remark:

- 1. Correction Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Correction Factor Preamp. Gain
- 3. The frequency measured ranges from 1GHz to 25GHz. The data value listed above which is higher than the noise floor, the others please refer to noise floor level.

Noise floor level is :

For PK: 1GHz-3GHz: 20dBuV 3GHz-14GHz: 27dBuV 14GHz-26.5GHz: 39dBuV

Report No.: EME-060130 Page 24 of 46

EUT	: G-220 v2
Test Condition	: 802.11g Tx at channel 6

Frequency	Spectrum	Antenna	Preamp.	Correction	Reading	Corrected	Limit	Margin	Ant.	Turn Table
	Analyzer	Polariz.	Gain	Factor		Level	@ 3 m		high	angle
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(degree)
4874.00	PK	V	36.07	37.77	49.72	51.42	54	-2.58	103	277
4874.00	РК	Н	36.07	37.77	49.96	51.66	54	-2.34	102	137

Remark:

- 1. Correction Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Correction Factor Preamp. Gain
- 3. The frequency measured ranges from 1GHz to 25GHz. The data value listed above which is higher than the noise floor, the others please refer to noise floor level.

Noise floor level is:

For PK: 1GHz-3GHz: 20dBuV 3GHz-14GHz: 27dBuV 14GHz-26.5GHz: 39dBuV

Report No.: EME-060130 Page 25 of 46

EUT: G-220 v2Test Condition: 802.11g Tx at channel 11

Frequency	Spectrum	Antenna	Preamp.	Correction	Reading	Corrected	Limit	Margin	Ant.	Turn Table
	Analyzer	Polariz.	Gain	Factor		Level	@ 3 m		high	angle
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(degree)
4924.00	РК	V	36.07	37.77	49.74	51.44	54	-2.56	104	253
4924.00	РК	Н	36.07	37.77	49.71	51.41	54	-2.59	100	128

Remark:

- 1. Correction Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Correction Factor Preamp. Gain
- 3. The frequency measured ranges from 1GHz to 25GHz. The data value listed above which is higher than the noise floor, the others please refer to noise floor level.

Noise floor level is:

For PK: 1GHz-3GHz: 20dBuV 3GHz-14GHz: 27dBuV 14GHz-26.5GHz: 39dBuV

Intertek ETL SEMKO

FCC ID. : I88G220V2

Report No.: EME-060130 Page 26 of 46

6. Power Spectrum Density test

6.1 Operating environment

Temperature:	23	°C
Relative Humidity:	53	%
Atmospheric Pressure	1023	hPa

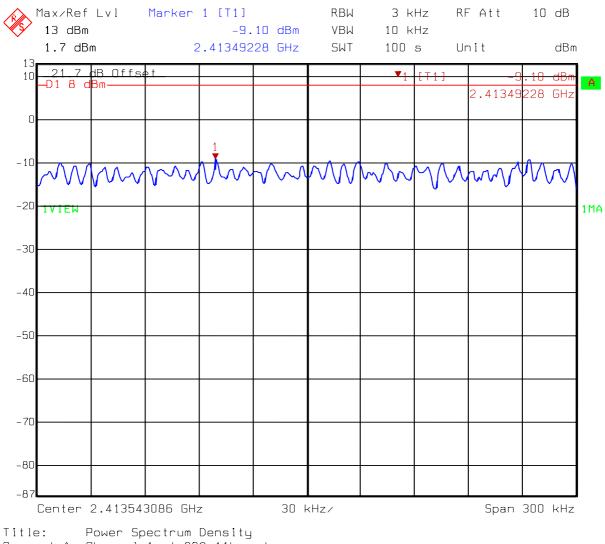
6.2 Test setup & procedure

The power spectrum density per FCC §15.247(e) was measured from the antenna port of the EUT using a 50ohm spectrum analyzer with the resolution bandwidth set at 3kHz, the video bandwidth set at 10kHz, a span of 300kHz, and the sweep time set at 100 seconds. Power Density was read directly correction was added to the reading to obtain power at the EUT antenna terminals. The test was performed at 3 channels (lowest, middle and highest channel). The Power Spectral Density measured result is in the following table.

6.3 Measured data of Power Spectrum Density test results

Test Mode: 802.11b(DSSS Modulation) operating mode

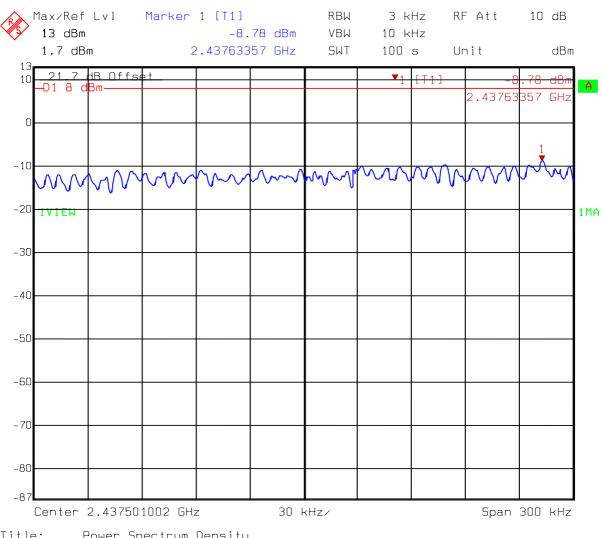
Channel	Frequency (MHz)	Power spectrum density (dBm)	Limit (dBm)
1 (lowest)	2412	-9.10	8
6 (middle)	2437	-8.78	8
11 (highest)	2462	-10.13	8


Test Mode: 802.11g(OFDM Modulation) operating mode

Channel	Frequency (MHz)	Power spectrum density (dBm)	Limit (dBm)
1 (lowest)	2412	-19.89	8
6 (middle)	2437	-19.65	8
11 (highest)	2462	-19.87	8

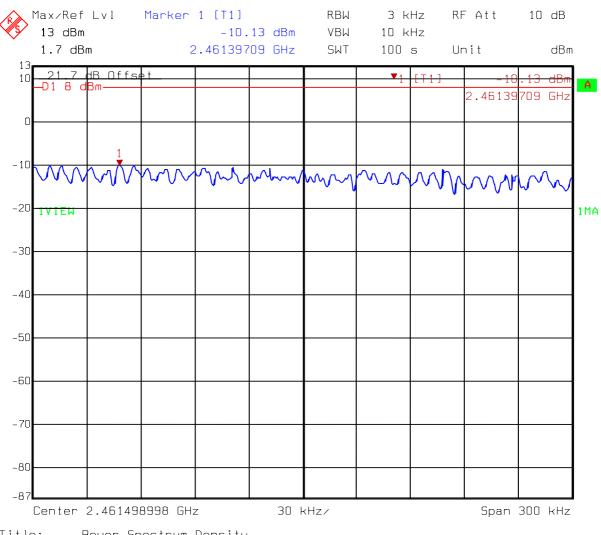
Please see the plot below.

Test Mode: 802.11b(DSSS Modulation) operating mode



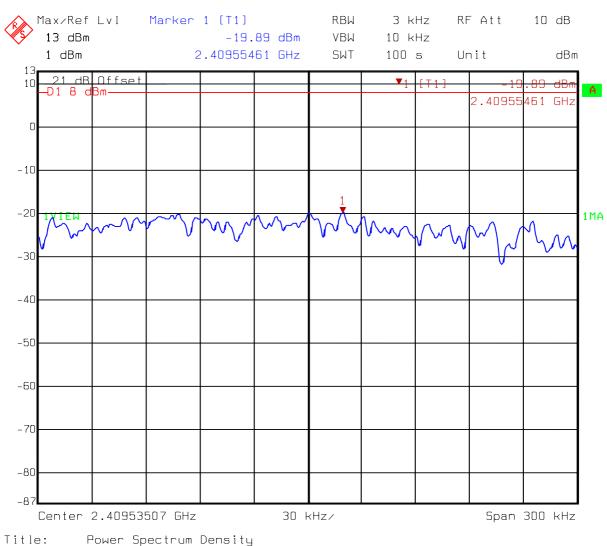
Comment A: Channel 1 at 802.11b mode

Date: 15.FEB.2006 09:39:36


Report No.: EME-060130 Page 28 of 46

Title: Power Spectrum Density Comment A: Channel 6 at 802.11b mode Date: 15.FEB.2006 09:36:49

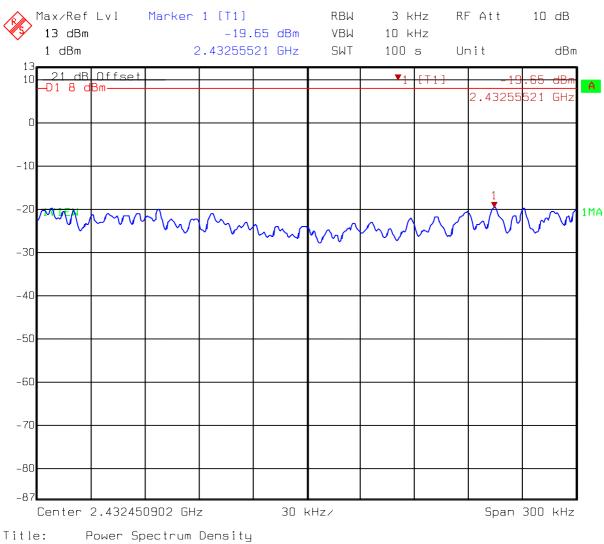
Report No.: EME-060130 Page 29 of 46



Title: Power Spectrum Density

Comment A: Channel 11 at 802.11b mode

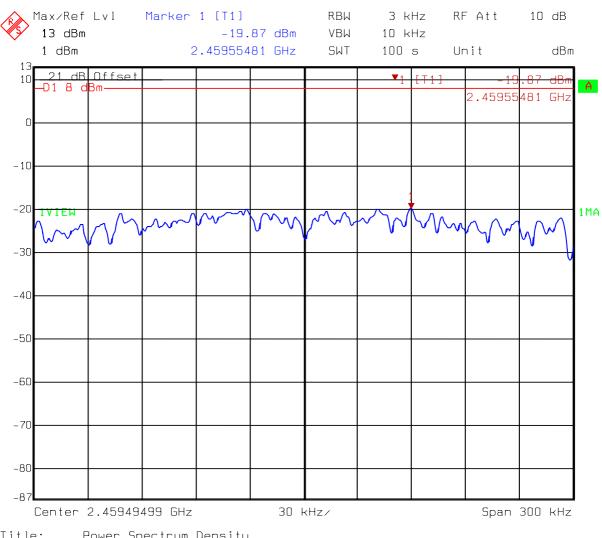
Date: 15.FEB.2006 09:36:15



Test Mode: 802.11g(OFDM Modulation) operating mode

Comment A: Channel 1 at 802.11g mode Date: 21.FEB.2006 10:41:13

Report No.: EME-060130 Page 31 of 46



Comment A: Channel 6 at 802.11g mode

Date: 21.FEB.2006 10:43:26

Report No.: EME-060130 Page 32 of 46

Title: Power Spectrum Density Comment A: Channel 11 at 802.11g mode

Date: 21.FEB.2006 10:45:23

7. Emission on the band edge

In any 100kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 KHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

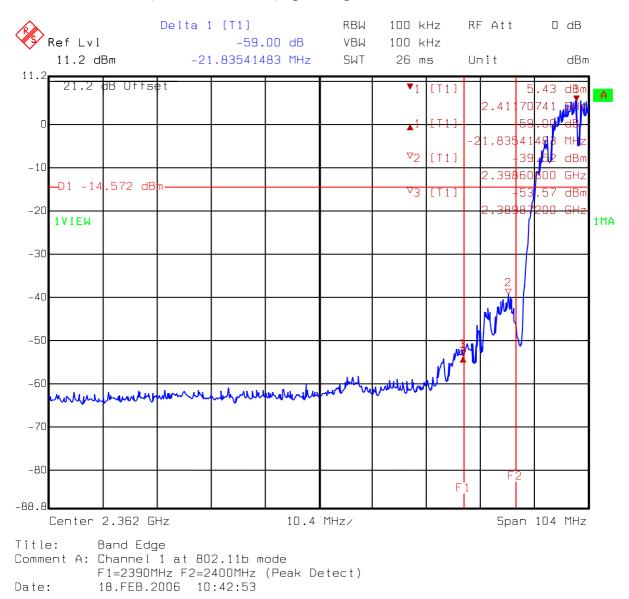
7.1 Operating environment

Temperature:	23	°C
Relative Humidity:	56	%
Atmospheric Pressure	1023	hPa

7.2 Test setup & procedure

The output of EUT was connected to spectrum analyzer via a 50ohm cable.

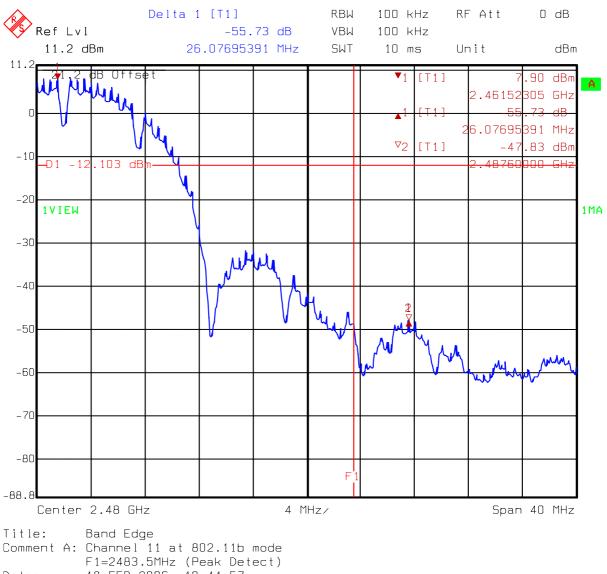
The setting of spectrum analyzer is:


Peak:	RBW = 100 kHz;	VBW = 100kHz
Average:	RBW = 1MHz;	VBW = 10Hz

7.3 Test Result

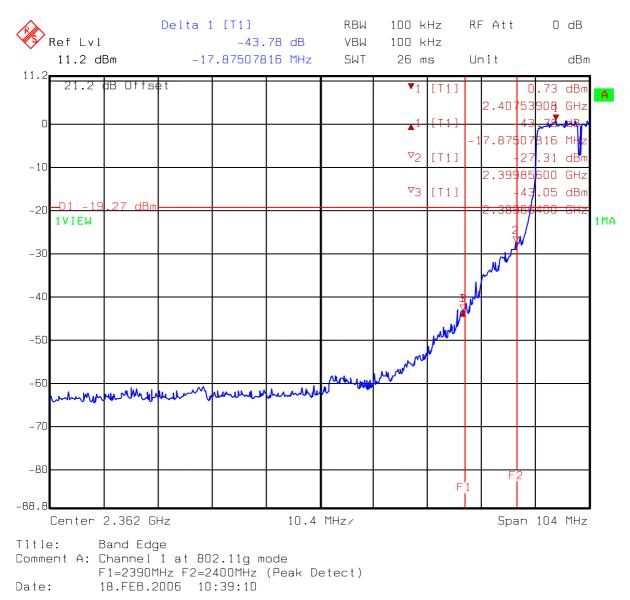
7.3.1 Conducted Method

Test Mode: 802.11b(DSSS Modulation) operating mode

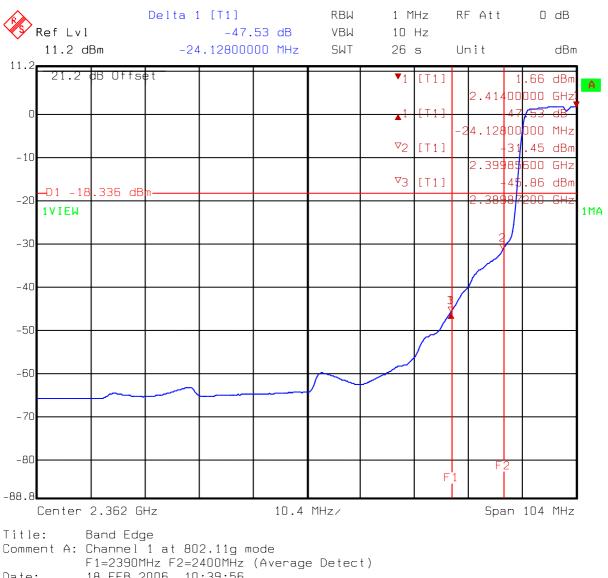


Report No.: EME-060130 Page 35 of 46

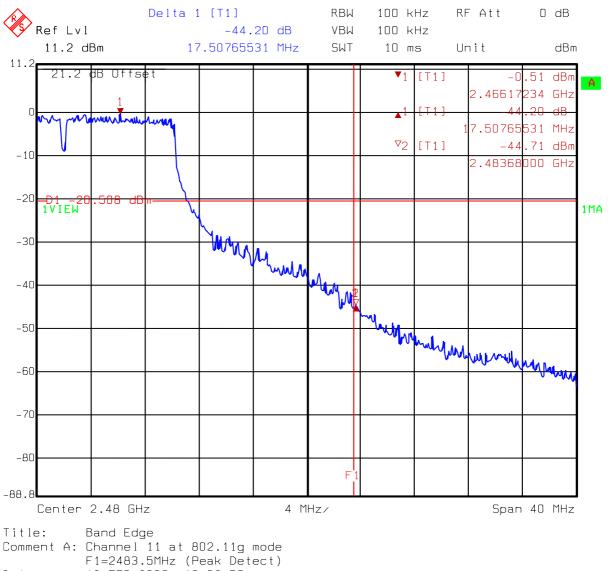
Report No.: EME-060130 Page 36 of 46


Date: 18.FEB.2006 10:44:57

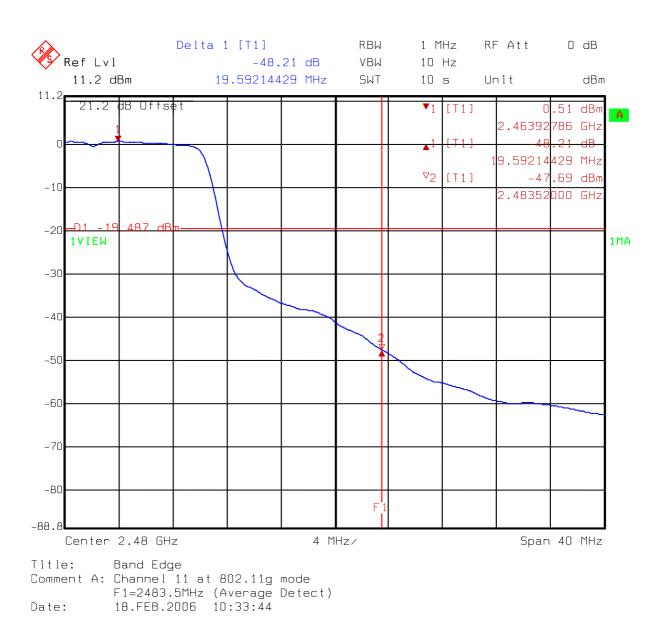
Report No.: EME-060130 Page 37 of 46



Test Mode: 802.11g(OFDM Modulation) operating mode


Report No.: EME-060130 Page 39 of 46

Date: 18.FEB.2006 10:39:56


Report No.: EME-060130 Page 40 of 46

Date: 18.FEB.2006 10:32:59

Report No.: EME-060130 Page 41 of 46

7.3.2 Radiated Method

Test Mode: 802.11b(DSSS Modulation) operating mode

Channel	Detector	Radiated Method Max. Field Strength of Fundamental @3m (dBuV/m)	Conducted Method Between Carrier Max. Power and Local Max. Emission in Restrict Band (dBc)	The Max. Field Strength in Restrict Band (dBuV/m)	Limit @ 3 m (dBuV/m)	Margin (dB)
		А	В	С	D	Е
1 (lowest)	РК	111.52	59	52.52	74	-21.48
1 (lowest)	AV	107.58	57.41	50.17	54	-3.83
11 (highest)	РК	110.75	55.73	55.02	74	-18.98
	AV	107.05	56.06	50.99	54	-3.01

Remark: 1. C = A - B

2. E = C - D

Test Mode: 802.11g(OFDM Modulation) operating mode

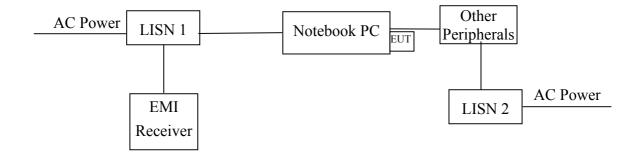
		Radiated Method	Conducted Method	The Max.			
Channel	Max. Field Strength of		Between Carrier Max. Power and Local Max. Emission in Restrict Band (dBc)	Field Strength in Restrict Band (dBuV/m)	Limit @ 3 m (dBuV/m)	Margin (dB)	
			В	С	D	Е	
1 (lowest)	РК	110.72	43.78	66.94	74	-7.06	
I (IOWESI)	AV	101.44	47.53	53.91	54	-0.09	
11 (highest)	РК	110.09	44.2	65.89	74	-8.11	
11 (highest)	AV	101.4	48.21	53.19	54	-0.81	

Remark: 1. C = A - B

2. E = C - D

Intertek ETL SEMKO

FCC ID. : I88G220V2


Report No.: EME-060130 Page 43 of 46

8. Power Line Conducted Emission test §FCC 15.207

8.1 Operating environment

Temperature:	23	°C
Relative Humidity:	52	%
Atmospheric Pressure	1023	hPa

8.2 Test setup & procedure

The EUT are connected to the main power through a line impedance stabilization network (LISN). This provides a 50 ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination.

Both sides (Line and Neutral) of AC line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4/2003 on conducted measurement. The bandwidth of the field strength meter (R & S Test Receiver ESCS 30) is set at 9kHz.

The EUT configuration please refer to the "Conducted set-up photo.pdf".

Report No.: EME-060130 Page 44 of 46

8.3 Emission limit

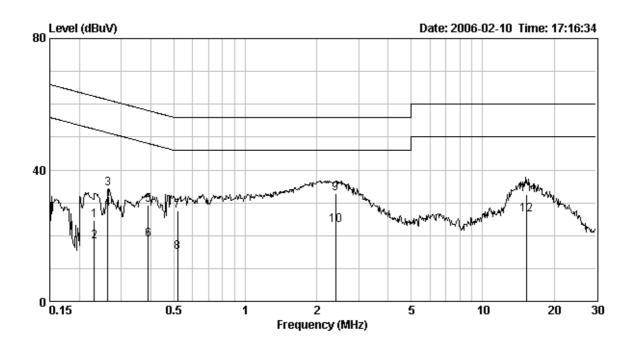
Freq.	Conducted Limit (dBuV)				
(MHz)	Q.P.	Ave.			
0.15~0.50	66 – 56*	56 - 46*			
0.50~5.00	56	46			
5.00~30.0	60	50			

*Decreases with the logarithm of the frequency.

8.4 Uncertainty of Conducted Emission

Expanded uncertainty (k=2) of conducted emission measurement is ± 2.6 dB.

8.5 Power Line Conducted Emission test data


Phase	: Line
EUT	: G-220 v2
Test Condition	: Normal operating mode

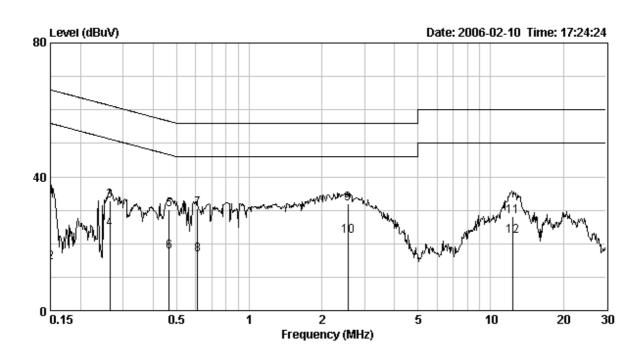
Corr. Factor	Level Qp	Limit Qp	Level AV	Limit Av	Margin (dB)	
(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	Qp	Av
0.10	24.66	62.42	18.29	52.42	-37.76	-34.13
0.10	34.30	61.33	28.04	51.33	-27.03	-23.29
0.10	29.44	58.06	18.90	48.06	-28.62	-29.16
0.10	27.59	56.00	14.91	46.00	-28.41	-31.09
0.12	32.92	56.00	23.06	46.00	-23.08	-22.94
0.70	32.52	60.00	26.33	50.00	-27.48	-23.67
	Factor (dB) 0.10 0.10 0.10 0.10 0.10 0.12	Factor Qp (dB) (dBuV) 0.10 24.66 0.10 34.30 0.10 29.44 0.10 27.59 0.12 32.92	Factor Qp Qp (dB) (dBuV) (dBuV) 0.10 24.66 62.42 0.10 34.30 61.33 0.10 29.44 58.06 0.10 27.59 56.00 0.12 32.92 56.00	Factor Qp Qp AV (dB) (dBuV) (dBuV) (dBuV) (dBuV) 0.10 24.66 62.42 18.29 0.10 34.30 61.33 28.04 0.10 29.44 58.06 18.90 0.10 27.59 56.00 14.91 0.12 32.92 56.00 23.06	Factor Qp Qp AV Av (dB) (dBuV) (dBuV) (dBuV) (dBuV) (dBuV) 0.10 24.66 62.42 18.29 52.42 0.10 34.30 61.33 28.04 51.33 0.10 29.44 58.06 18.90 48.06 0.10 27.59 56.00 14.91 46.00 0.12 32.92 56.00 23.06 46.00	Factor Qp Qp AV Av ((dB) (dBuV) (dBuV) (dBuV) (dBuV) Qp 0.10 24.66 62.42 18.29 52.42 -37.76 0.10 34.30 61.33 28.04 51.33 -27.03 0.10 29.44 58.06 18.90 48.06 -28.62 0.10 27.59 56.00 14.91 46.00 -28.41 0.12 32.92 56.00 23.06 46.00 -23.08

Remark:

1. Correction Factor (dB)= LISN Factor (dB) + Cable Loss (dB)

2. Margin (dB) = Level (dBuV) – Limit (dBuV)

Intertek ETL SEMKO


FCC ID. : I88G220V2

Phase	: Neutral
EUT	: G-220 v2
Test Condition	: Normal operating mode

Frequency	Corr. Factor	Level Qp	Limit Qp	Level AV	Limit Av	Margin (dB)	
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	Qp	Av
0.150	0.10	33.37	65.98	14.42	55.98	-32.61	-41.56
0.265	0.10	32.77	61.29	24.35	51.29	-28.52	-26.94
0.466	0.10	30.10	56.59	17.55	46.59	-26.49	-29.04
0.610	0.10	30.62	56.00	16.62	46.00	-25.38	-29.38
2.559	0.13	32.03	56.00	22.33	46.00	-23.97	-23.67
12.296	0.29	28.04	60.00	22.17	50.00	-31.96	-27.83

Remark:

- 1. Correction Factor (dB)= LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) = Level (dBuV) Limit (dBuV)

