

FCC ID. :I88G210H Report No.: EME-070049
Page 1 of 43

EMC TEST REPORT

Report No. : EME-070049

Model No. : G-210H

Issued Date : Jan. 29, 2007

Applicant : **ZyXEL** Communications Corporation

6, Innovation Rd II, Science-Based Industrial Park,

Hsin-Chu, Taiwan

Test By : Intertek Testing Services Taiwan Ltd.

No. 11, Lane 275, Ko-Nan 1 Street, Chia-Tung Li, Shiang-Shan District, Hsinchu City, Taiwan

This test report consists of 43 pages in total. It may be duplicated completely for legal use with the allowance of the applicant. It shall not be reproduced except in full, without the written approval of Intertek Laboratory. The test result(s) in this report only applies to the tested sample(s).

Project Engineer

Reviewed By

Marx Yan Kevin Chen

FCC ID. :I88G210H Report No.: EME-070049
Page 2 of 43

Table of Contents

Summary of Tests	3
1. General information	4 4
2. Test specifications	6
3. Minimum 6dB Bandwidth test	8 8
4. Maximum Output Power test	15
5. Radiated Emission test	16 18 19
6. Power Spectrum Density test	27 27
7. Emission on the band edge 7.1 Operating environment 7.2 Test setup & procedure 7.3 Test Result	34 34
8. Power Line Conducted Emission test §FCC 15.207 8.1 Operating environment 8.2 Test setup & procedure 8.3 Emission limit 8.4 Uncertainty of Conducted Emission 8.5 Power Line Conducted Emission test data	40 40 41

Page 3 of 43

Summary of Tests

802.11b/g Wireless USB Adapter-Model: G-210H FCC ID: I88G210H

Test	Reference	Results
Minimum 6dB Bandwidth test	15.247(a)(2)	Pass
Maximum Output Power test	15.247(b)	Pass
Radiated Spurious Emission test	15.205, 15.209	Pass
Power Spectrum Density test	15.247(e)	Pass
Emission on the Band Edge test	15.247(d)	Pass
AC Power Line Conducted Emission test	15.207	Pass

Page 4 of 43

1. General information

1.1 Identification of the EUT

Applicant : ZyXEL Communications Corporation

Product : 802.11b/g Wireless USB Adapter

Model No. : G-210H

FCC ID. : I88G210H

Frequency Range : 2412MHz to 2462MHz

Channel Number : 11 channels

Frequency of Each Channel: 2412MHz, 2417MHz, 2422MHz, 2427MHz, 2432MHz,

2437MHz, 2442MHz, 2447MHz, 2452MHz, 2457MHz,

2462MHz

Type of Modulation : DSSS, OFDM

Rated Power : 5Vdc from PC

Power Cord

Sample Received : Oct. 11, 2005

Test Date(s) : Oct. 11. 2005 ~ Oct. 26, 2005

: N/A

A FCC DoC report has been generated for the client.

1.2 Additional information about the EUT

The EUT is a 802.11b/g Wireless USB Adapter, and was defined as information technology equipment.

For more detail features, please refer to User's manual as file name "Installation guide.pdf"

1.3 Antenna description

The EUT uses a permanently connected antenna.

Antenna Gain : 5dBi max

Antenna Type : Patch antenna

Connector Type: Integral

Page 5 of 43

1.4 Peripherals equipment

Peripherals	Manufacturer	Product No.	Serial No.
Note PC	IBM	2887	99XML12
Printer	НР	DeskJet 400	TH86K1N2ZB

FCC ID. :I88G210H Report No.: EME-070049
Page 6 of 43

2. Test specifications

2.1 Test standard

The EUT was performed according to the procedures in FCC Part 15 Subpart C Section § 15.205, §15.207, §15.209, §15.247 and ANSI C63.4/2003.

The test of radiated measurements according to FCC Part15 Section 15.33(a) had been conducted and the field strength of this frequency band were all meet limit requirement, thus we evaluate the EUT pass the specified test.

2.2 Operation mode

The EUT was run the test program "QAU2751W.exe" under windows OS, which provide by manufacturer.

The EUT was operating in continuously transmitting status during all the tests except conducted emission during which the EUT was tested in normal operating mode with AP.

With individual verifying, the maximum output power were found at 1Mbps data rate for 802.11b mode and 6Mbps data rate for 802.11g mode. The final tests were executed under these conditions recorded in this report individually.

Page 7 of 43

2.3 Test equipment

Equipment	Brand	Frequency range	Model No.	Intertek ID No.	Next Cal. Date
EMI Test Receiver	Rohde & Schwarz	9kHz~2.75GHz	ESCS 30	EC303	04/17/2006
EMI Test Receiver	Rohde & Schwarz	20Hz~26.5GHz	ESMI	EC317	07/14/2006
Spectrum Analyzer	Rohde & Schwarz	9kHz~30GHz	FSP 30	EC353	07/13/2006
Spectrum Analyzer	Rohde & Schwarz	20Hz~40GHz	FSEK 30	EC365	10/18/2006
Horn Antenna	SCHWARZBECK	1GHz~18GHz	BBHA 9120 D	EC371	12/22/2007
Horn Antenna	SCHWARZBECK	14GHz~40GHz	BBHA 9170	EC351	07/08/2007
Bilog Antenna	SCHWARZBECK	25MHz~2GHz	VULB 9168	EC347	12/23/2007
Pre-Amplifier	MITEQ	100MHz~26.5GHz	919981	EC373	12/30/2005
Pre-Amplifier	MITEQ	26GHz~40GHz	828825	EC374	01/28/2006
Wideband Peak Power Meter/ Sensor	Anritsu	100MHz~18GHz	ML2497A/ MA2491A	EC396	10/18/2006
Controller	HDGmbH	N/A	CM 100	EP346	N/A
Antenna Tower	HDGmbH	N/A	MA 240	EP347	N/A
LISN	Rohde & Schwarz	9KHz~30MHz	ESH3-Z5	EC344	01/13/2006

Note: 1. The above equipments are within the valid calibration period.

2. The test antennas (receiving antenna) are calibration per 3 years.

Page 8 of 43

3. Minimum 6dB Bandwidth test

3.1 Operating environment

Temperature: 23

Relative Humidity: 53 % Atmospheric Pressure: 1023 hPa

3.2 Test setup & procedure

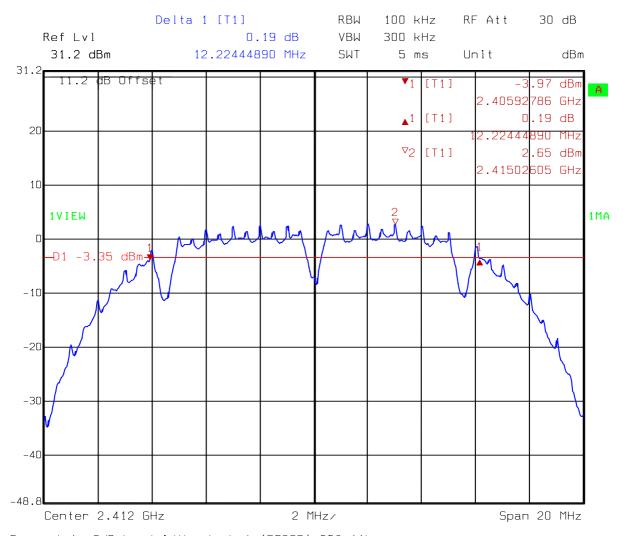
The minimum 6dB bandwidth per FCC §15.247(a)(2) was measured using a 50 ohm spectrum analyzer with the resolutions bandwidth set at 100kHz, the video bandwidth set at 300kHz, and the SPAN>>RBW. The test was performed at 3 channels (lowest, middle and highest channel). The minimum 6-dB modulation bandwidth is in the following Table.

3.3 Measured data of Minimum 6dB Bandwidth test results

Test Mode: 802.11b (DSSS Modulation) operating mode

Channel	Frequency (MHz)	Frequency (MHz) Bandwidth (MHz)	
1 (lowest)	2412	12.22	> 500kHz
6 (middle)	2437	12.30	> 500kHz
11 (highest)	2462	12.30	> 500kHz

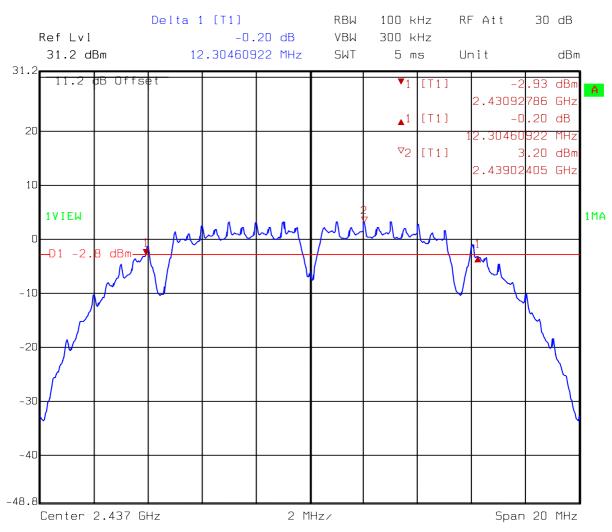
Test Mode: 802.11g (OFDM Modulation) operating mode


Channel	Frequency (MHz)	Frequency (MHz) Bandwidth (MHz)	
1 (lowest)	2412	16.55	> 500kHz
6 (middle)	2437	16.59	> 500kHz
11 (highest)	2462	16.59	> 500kHz

Please see the plot below.

Page 9 of 43

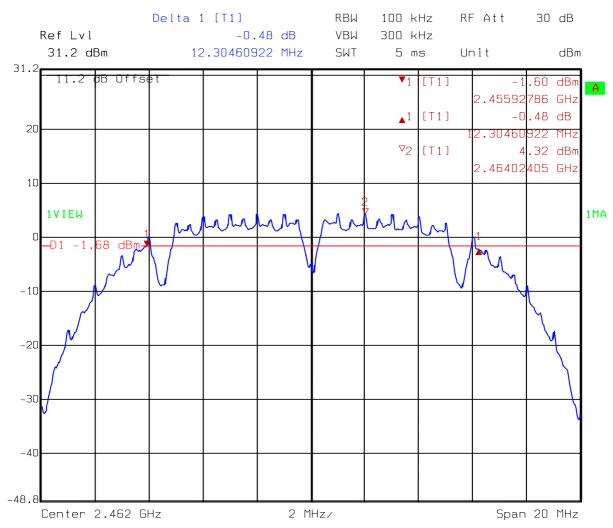
Test Mode: 802.11b(DSSS Modulation) operating mode



Comment A: 6dB bandwidth at ch 1 (EC365) 802.11b

Date: 19.0CT.2005 16:16:43

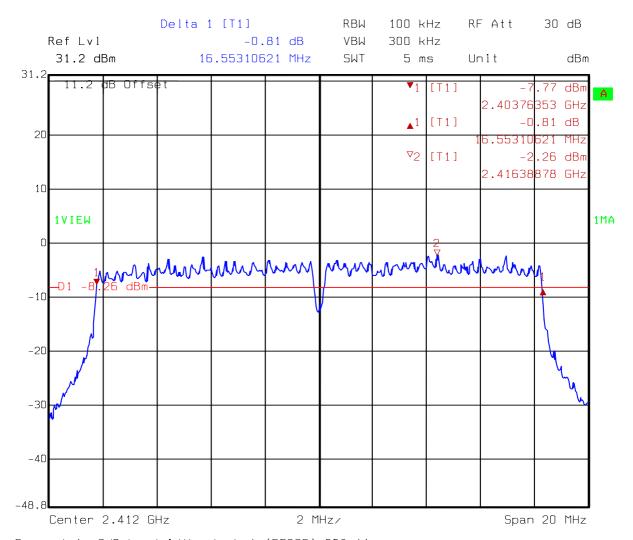
Page 10 of 43



Comment A: 6dB bandwidth at ch 6 (EC365) 802.11b

Date: 19.0CT.2005 16:19:43

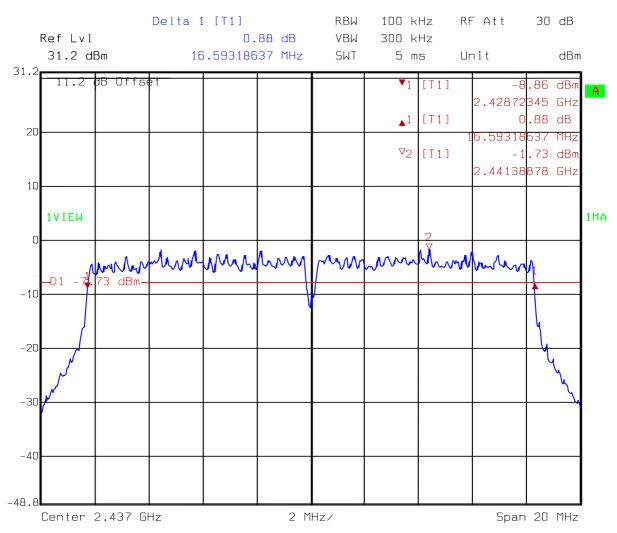
Page 11 of 43



Comment A: 6dB bandwidth at ch 11 (EC365) 802.11b Date: 19.0CT.2005 16:21:31

Page 12 of 43

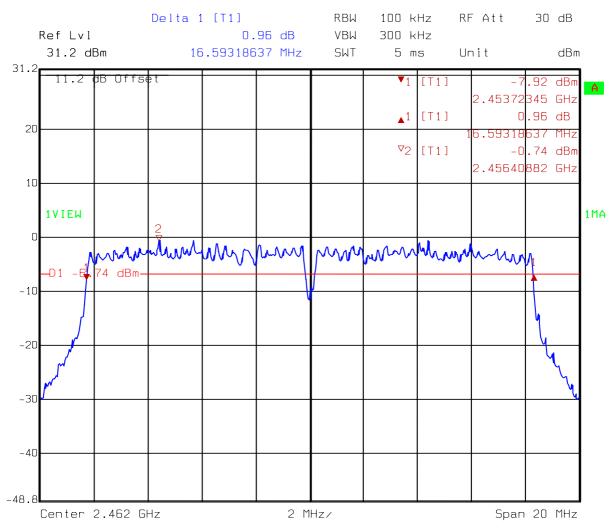
Test Mode: 802.11g(OFDM Modulation) operating mode



Comment A: 6dB bandwidth at ch 1 (EC365) 802.11g

Date: 19.0CT.2005 16:30:10

Page 13 of 43



Comment A: 6dB bandwidth at ch 6 (EC365) 802.11g

Date: 19.0CT.2005 16:28:37

Page 14 of 43

Comment A: 6dB bandwidth at ch 11 (EC365) 802.11g

Date: 19.0CT.2005 16:26:57

Page 15 of 43

4. Maximum Output Power test

4.1 Operating environment

Temperature: 23

Relative Humidity: 53 % Atmospheric Pressure: 1023 hPa

4.2 Test setup & procedure

The power output per FCC §15.247(b) was measured on the EUT using a 50 ohm SMA cable connected to peak power meter via power sensor. Power was read directly and cable loss correction (1.2 dB) was added to the reading to obtain power at the EUT antenna terminals. The test was performed at 3 channels (lowest, middle and highest channel).

4.3 Measured data of Maximum Output Power test results

Test Mode: 802.11b (DSSS Modulation) operating mode

Channel	Freq.	C.L.	Reading	Conducted Pov	Limit	
	(MHz)	MHz (dB) (dBm)		(dBm)	(mW)	(dBm)
1 (lowest)	2412	1.2	10.16	11.36	10.38	30
6 (middle)	2437	1.2	9.83	11.03	9.62	30
11 (highest)	2462	1.2	10.08	11.28	10.19	30

Remark:

Conducted Peak Output Power = Reading + C.L.

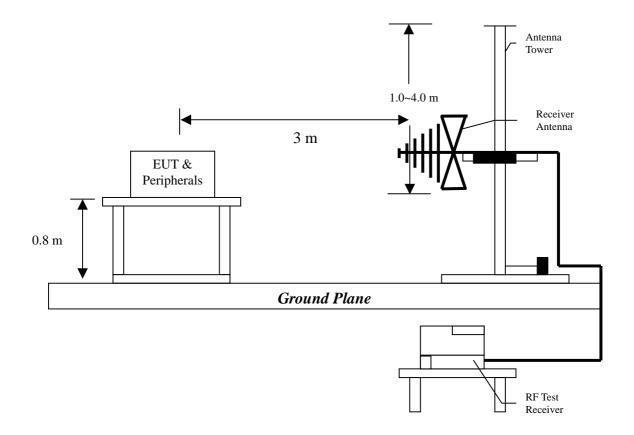
Test Mode: 802.11g (DSSS Modulation) operating mode

Channel	Freq.	C.L.	Reading	10		Limit
	(MHz) (dB) (dBm)		(dBm)	(mW)	(dBm)	
1 (lowest)	2412	1.2	13.75	14.95	23.71	30
6 (middle)	2437	1.2	13.28	14.48	21.28	30
11 (highest)	2462	1.2	13.59	14.79	22.86	30

Remark:

Conducted Peak Output Power = Reading + C.L.

Page 16 of 43


5. Radiated Emission test

5.1 Operating environment

Temperature: 23
Relative Humidity: 53 %
Atmospheric Pressure: 1023 hPa

5.2 Test setup & procedure

The Diagram below shows the test setup, which is utilized to make these measurements.

Radiated emissions were invested cover the frequency range from 30MHz to 1000MHz using a receiver RBW of 120kHz record QP reading, and the frequency over 1GHz using a spectrum analyzer RBW of 1MHz and 10Hz VBW record Average reading. (15.209 paragraph), the Peak reading (1MHz RBW/VBW) recorded also on the report.

The EUT for testing is arranged on a wooden turntable. If some peripherals apply to the EUT, the peripherals will be connected to EUT and the whole system. During the test, all cables were arranged to produce worst-case emissions. The signal is maximized through rotation. The height of antenna and polarization is changing constantly for exploring for maximum signal level. The height of antenna can be up to 4 meters and down to 1 meter.

FCC ID. :I88G210H Report No.: EME-070049
Page 17 of 43

The measurement for radiated emission will be done at the distance of three meters unless the signal level is too low to measure at that distance. In the case of the reading under noise floor, a pre-amplifier is used and/or the test is conducted at a closer distance. And then all readings are extrapolated back to the equivalent 3meter reading using inverse scaling with distance.

The signal is maximized through rotation and placement in the three orthogonal axes.

Setup 1 Setup 2 Setup 3

After verifying three setup configurations, the maximum electromagnetic field was found at setup 1 configuration. The final test data was executed under this configuration.

The EUT configuration please refer to the "Spurious set-up photo.pdf".

Page 18 of 43

5.3 Emission limits

The spurious Emission shall test through the 10th harmonic. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Frequency	Limits
(MHz)	$(dB \mu V/m@3m)$
30-88	40
88-216	43.5
216-960	46
Above 960	54

Remark:

- 1. In the above table, the tighter limit applies at the band edges.
- 2. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system

Uncertainty was calculated in accordance with NAMAS NIS 81. Expanded uncertainty (k=2) of radiated emission measurement is 4.98 dB.

Page 19 of 43

5.4 Radiated spurious emission test data

The radiated spurious emissions at

Frequency(MHz)	Margin
598.420	-3.42

are less than uncertainty. This is within the stated measurement uncertainty, this may affect compliance determined in other test arrangements.

5.4.1 Measurement results: frequencies equal to or less than 1 GHz

The test was performed on EUT under 802.11b continuously transmitting mode. Channel 1, 6, 11 were verified. The worst case occurred at 802.11b Tx channel 1.

EUT : G-210H

Worst Case : 802.11b Tx at channel 1

Antenna	Freq.	Receiver	Corr.	Reading	Corrected	Limit	Margin
Polariz.			Factor		Level	@ 3 m	
(V/H)	(MHz)	Detector	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
V	480.080	QP	18.21	10.73	28.94	46.00	-17.06
V	518.880	QP	18.92	15.62	34.54	46.00	-11.46
V	575.140	QP	20.14	16.34	36.48	46.00	-9.52
V	598.420	QP	20.71	14.95	35.66	46.00	-10.34
V	664.380	QP	21.73	18.45	40.18	46.00	-5.82
V	838.980	QP	23.61	14.20	37.81	46.00	-8.19
Н	70.740	QP	11.20	21.29	32.49	40.00	-7.51
Н	134.760	QP	12.76	21.53	34.29	43.50	-9.21
Н	289.960	QP	14.16	22.49	36.65	46.00	-9.35
Н	359.800	QP	15.74	20.12	35.86	46.00	-10.14
Н	480.080	QP	18.53	13.57	32.10	46.00	-13.90
Н	598.420	QP	20.84	13.21	34.05	46.00	-11.95

Remark:

- 1. Corr. Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Corr. Factor

Page 20 of 43

The test was performed on EUT under 802.11g continuously transmitting mode. Channel 1, 6, 11 were verified. The worst case occurred at 802.11g Tx channel 1.

EUT : G-210H

Worst Case : 802.11g Tx at channel 1

Antenna	Freq.	Receiver	Corr.	Reading	Corrected	Limit	Margin
Polariz.			Factor		Level	@ 3 m	
(V/H)	(MHz)	Detector	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
V	235.640	QP	12.20	15.84	28.04	46.00	-17.96
V	359.800	QP	15.34	14.90	30.24	46.00	-15.76
V	518.880	QP	18.92	17.74	36.66	46.00	-9.34
V	575.140	QP	20.14	18.04	38.18	46.00	-7.82
V	598.420	QP	20.71	15.31	36.02	46.00	-9.98
V	666.320	QP	21.76	12.50	34.26	46.00	-11.74
Н	70.740	QP	11.20	21.66	32.86	40.00	-7.14
Н	119.240	QP	11.53	20.18	31.71	43.50	-11.79
Н	134.760	QP	12.76	22.23	34.99	43.50	-8.51
Н	289.960	QP	14.16	20.83	34.99	46.00	-11.01
Н	575.140	QP	20.30	17.36	37.66	46.00	-8.34
Н	598.420	QP	20.84	21.74	42.58	46.00	-3.42

Remark:

- 1. Corr. Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Corr. Factor

FCC ID. :I88G210H Report No.: EME-070049
Page 21 of 43

5.4.2 Measurement results: frequency above 1GHz

EUT : G-210H

Test Condition : 802.11b Tx at channel 1

Frequency	Spectrum	Antenna	Preamp.	Correction	Reading	Corrected	Limit	Margin
	Analyzer	Polariz.	Gain	Factor		Level	@ 3 m	
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
4824	PK	V	36.07	37.77	55.34	57.04	74	-16.96
4824	AV	V	36.07	37.77	40.83	42.53	54	-11.47
7236	PK	V	-	-	-	-	54	-
9648	PK	V	-	-	-	-	54	-
4824	PK	Н	36.07	37.77	61.88	63.58	74	-10.42
4824	AV	Н	36.07	37.77	47.37	49.07	54	-4.93
7236	PK	Н	1	-	-	-	54	-
9648	PK	Н	-	-	-	-	54	-

Remark:

- 1. Correction Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Correction Factor Preamp. Gain
- 3. The frequency measured ranges from 1GHz to 25GHz. The data value listed above which is higher than the noise floor, the others please refer to noise floor level.

Noise floor level is:

For PK:

1GHz-3GHz: 20dBuV 3GHz-14GHz: 27dBuV 14GHz-26.5GHz: 39dBuV

For AV:

Page 22 of 43

EUT : G-210H

Test Condition : 802.11b Tx at channel 6

Frequency	Spectrum	Antenna	Preamp.	Correction	Reading	Corrected	Limit	Margin
	Analyzer	Polariz.	Gain	Factor		Level	@ 3 m	
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
4874	PK	V	36.07	37.77	54.57	56.27	74	-17.73
4874	AV	V	36.07	37.77	40.06	41.76	54	-12.24
7311	PK	V	1	-	1	-	54	-
9748	PK	V	1	-	1	-	54	-
4874	PK	Н	36.07	37.77	60.85	62.55	74	-11.45
4874	AV	Н	36.07	37.77	46.34	48.04	54	-5.96
7311	PK	Н	ı	-	-	-	54	-
9748	PK	Н	-	-	-	-	54	-

Remark:

- 1. Correction Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Correction Factor Preamp. Gain
- 3. The frequency measured ranges from 1GHz to 25GHz. The data value listed above which is higher than the noise floor, the others please refer to noise floor level.

Noise floor level is:

For PK:

1GHz-3GHz: 20dBuV 3GHz-14GHz: 27dBuV 14GHz-26.5GHz: 39dBuV

For AV:

Page 23 of 43

EUT : G-210H

Test Condition : 802.11b Tx at channel 11

Frequency	Spectrum	Antenna	Preamp.	Correction	Reading	Corrected	Limit	Margin
	Analyzer	Polariz.	Gain	Factor		Level	@ 3 m	
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
4924	PK	V	36.07	37.77	56.61	58.31	74	-15.69
4924	AV	V	36.07	37.77	42.10	43.80	54	-10.20
7386	PK	V	-	-	-	-	54	-
9848	PK	V	-	-	-	-	54	-
4924	PK	Н	36.07	37.77	64.95	66.65	74	-7.35
4924	AV	Н	36.07	37.77	50.44	52.14	54	-1.86
7386	PK	Н	-	-	-	-	54	-
9848	PK	Н	1	-	1	-	54	-

Remark:

- 1. Correction Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Correction Factor Preamp. Gain
- 3. The frequency measured ranges from 1GHz to 25GHz. The data value listed above which is higher than the noise floor, the others please refer to noise floor level.

Noise floor level is:

For PK:

1GHz-3GHz: 20dBuV 3GHz-14GHz: 27dBuV 14GHz-26.5GHz: 39dBuV

For AV:

Page 24 of 43

EUT : G-210H

Test Condition : 802.11g Tx at channel 1

Frequency	Spectrum	Antenna	Preamp.	Correction	Reading	Corrected	Limit	Margin
	Analyzer	Polariz.	Gain	Factor		Level	@ 3 m	
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
4824	PK	V	1	-	ı	-	54	-
6420	PK	V	36.65	40.87	48	52.22	74	-21.78
6420	AV	V	36.65	40.87	35.36	39.58	54	-14.42
7236	PK	V	1	-	1	-	54	-
4824	PK	Н	36.07	37.77	51.8	53.5	74	-20.5
4824	AV	Н	36.07	37.77	32.56	34.26	54	-19.74
7236	PK	Н	-	-	-	-	54	-
9648	PK	Н	-	-	-	-	54	-

Remark:

- 1. Correction Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Correction Factor Preamp. Gain
- 3. The frequency measured ranges from 1GHz to 25GHz. The data value listed above which is higher than the noise floor, the others please refer to noise floor level.

Noise floor level is:

For PK:

1GHz-3GHz: 20dBuV 3GHz-14GHz: 27dBuV 14GHz-26.5GHz: 39dBuV

For AV:

Page 25 of 43

EUT : G-210H

Test Condition : 802.11g Tx at channel 6

Frequency	Spectrum	Antenna	Preamp.	Correction	Reading	Corrected	Limit	Margin
	Analyzer	Polariz.	Gain	Factor		Level	@ 3 m	
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
4874	PK	V	1	-	1	-	54	-
6480	PK	V	36.65	40.87	52.87	57.09	74	-16.91
6480	AV	V	36.65	40.87	40.23	44.45	54	-9.55
7311	PK	V	1	-	1	-	54	1
4874	PK	Н	36.07	37.77	59.88	61.58	74	-12.42
4874	AV	Н	36.07	37.77	40.64	42.34	54	-11.66
7311	PK	Н	-	-	-	-	54	-
9748	PK	Н	-	-	-	-	54	-

Remark:

- 1. Correction Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Correction Factor Preamp. Gain
- 3. The frequency measured ranges from 1GHz to 25GHz. The data value listed above which is higher than the noise floor, the others please refer to noise floor level.

Noise floor level is:

For PK:

1GHz-3GHz: 20dBuV 3GHz-14GHz: 27dBuV 14GHz-26.5GHz: 39dBuV

For AV:

Page 26 of 43

EUT : G-210H

Test Condition : 802.11b Tx at channel 11

Frequency	Spectrum	Antenna	Preamp.	Correction	Reading	Corrected	Limit	Margin
	Analyzer	Polariz.	Gain	Factor		Level	@ 3 m	
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
4924	PK	V	ı	-	1	-	54	-
6570	PK	V	36.58	42.96	46.7	53.08	74	-20.92
6570	AV	V	36.58	42.96	34.06	40.44	54	-13.56
7386	PK	V	1	-	1	-	54	1
4924	PK	Н	36.07	37.77	56.42	58.12	74	-15.88
4924	AV	Н	36.07	37.77	37.18	38.88	54	-15.12
7386	PK	Н	1	-	-	_	54	-
9848	PK	Н	1	-	-	-	54	-

Remark:

- 1. Correction Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Correction Factor Preamp. Gain
- 3. The frequency measured ranges from 1GHz to 25GHz. The data value listed above which is higher than the noise floor, the others please refer to noise floor level.

Noise floor level is:

For PK:

1GHz-3GHz: 20dBuV 3GHz-14GHz: 27dBuV 14GHz-26.5GHz: 39dBuV

For AV:

Page 27 of 43

6. Power Spectrum Density test

6.1 Operating environment

Temperature: 23

Relative Humidity: 53 % Atmospheric Pressure 1023 hPa

6.2 Test setup & procedure

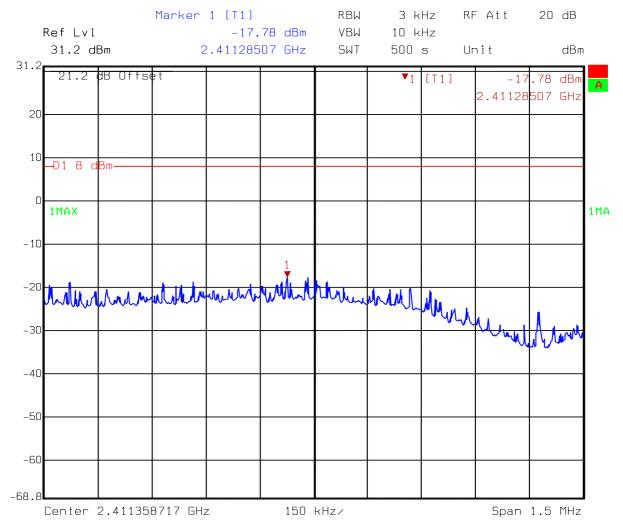
The power spectrum density per FCC §15.247(e) was measured from the antenna port of the EUT using a 50ohm spectrum analyzer with the resolution bandwidth set at 3kHz, the video bandwidth set at 10kHz, a span of 1.5 MHz, and the sweep time set at 500 seconds. Power Density was read directly was added to the reading to obtain power at the EUT antenna terminals. The test was performed at 3 channels (lowest, middle and highest channel). The Power Spectral Density measured result is in the following table.

6.3 Measured data of Power Spectrum Density test results

Test Mode: 802.11b (DSSS Modulation) operating mode

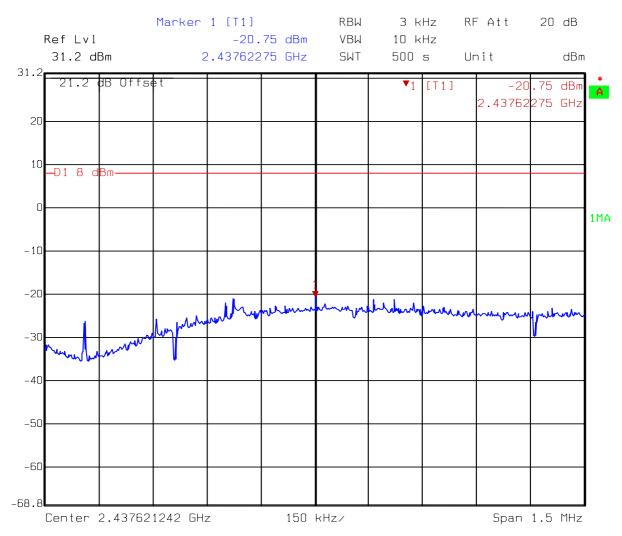
Channel	Frequency (MHz)	Power spectrum density (dBm)	Limit (dBm)
1 (lowest)	2412	-17.78	8
6 (middle)	2437	-20.75	8
11 (highest)	2462	-18.26	8

Test Mode: 802.11g (OFDM Modulation) operating mode

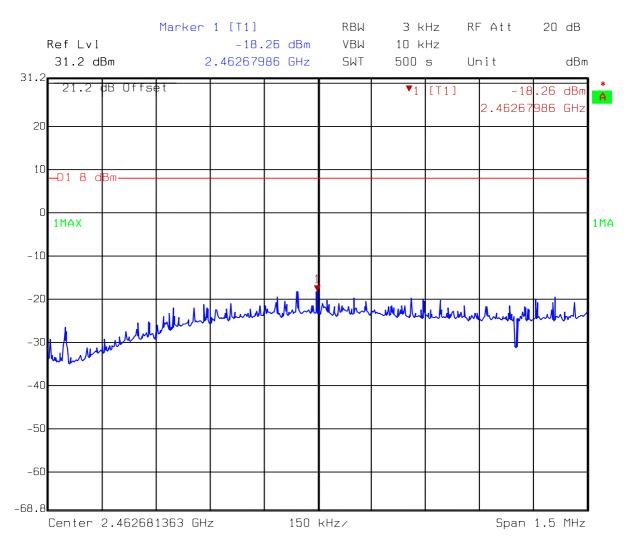

Channel	Frequency (MHz)	Power spectrum density (dBm)	Limit (dBm)
1 (lowest)	2412	-23.09	8
6 (middle)	2437	-24.31	8
11 (highest)	2462	-23.92	8

Please see the plot below.

Page 28 of 43

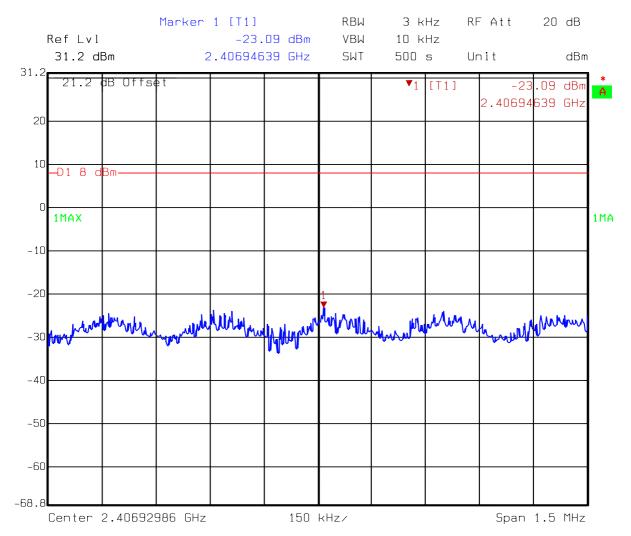

Test Mode: 802.11b (DSSS Modulation) operating mode

Comment A: Power spectral density at low channel Date: 27.0CT.2005 10:06:33


Page 29 of 43

Comment A: Power spectral density at middle channel Date: 27.0CT.2005 10:08:22

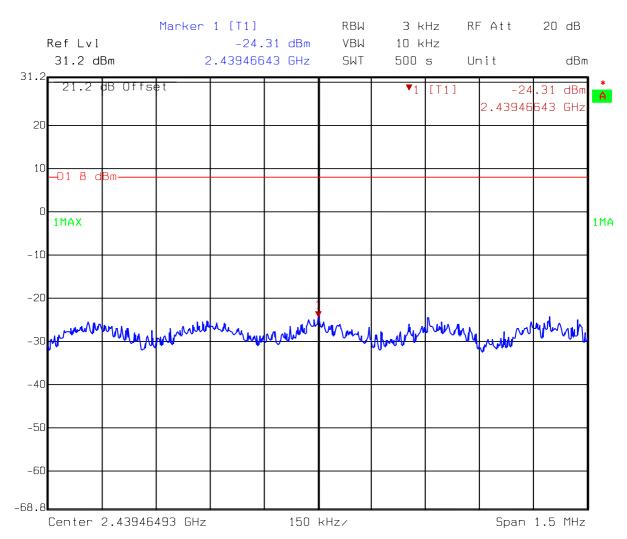
Page 30 of 43



Comment A: Power spectral density at high channel Date: 27.0CT.2005 10:09:30

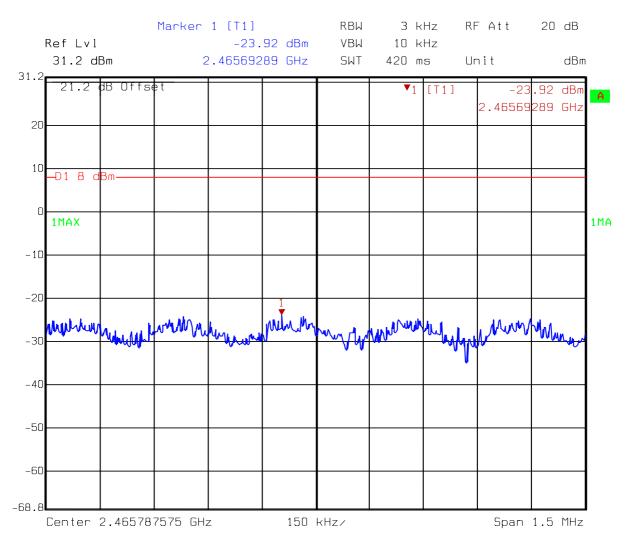
Page 31 of 43

Test Mode: 802.11g (OFDM Modulation) operating mode



Comment A: Power spectral density at low channel

Date: 27.0CT.2005 10:10:38


Page 32 of 43

Comment A: Power spectral density at middle channel Date: 27.0CT.2005 10:11:37

Page 33 of 43

Comment A: Power spectral density at high channel Date: 27.0CT.2005 10:12:53

Page 34 of 43

7. Emission on the band edge

In any 100kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

7.1 Operating environment

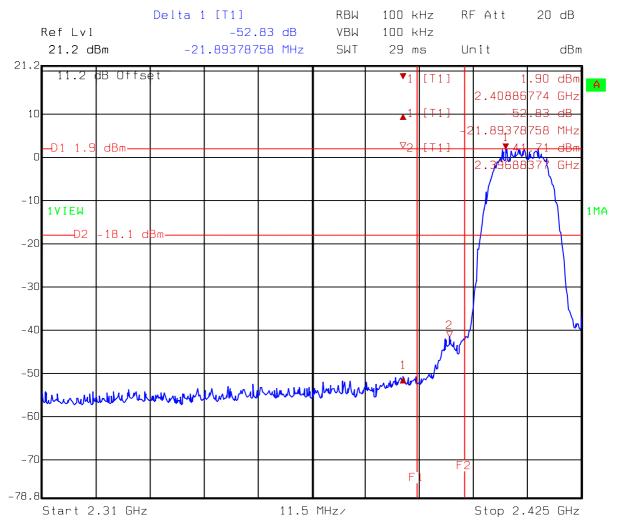
Temperature: 23

Relative Humidity: 53 % Atmospheric Pressure 1023 hPa

7.2 Test setup & procedure

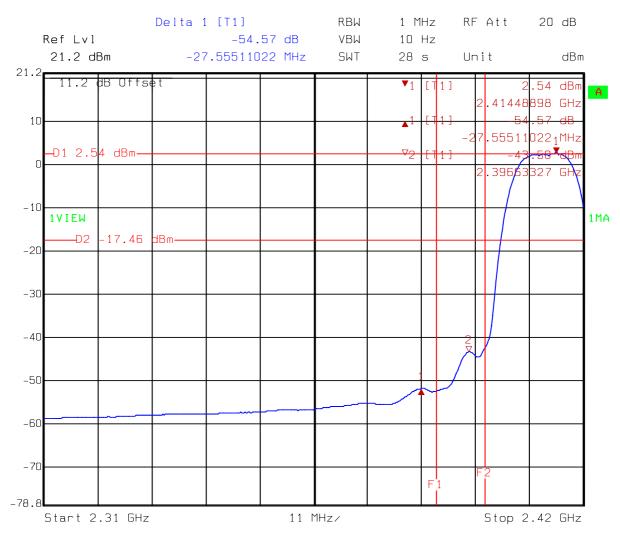
The output of EUT was connected to spectrum analyzer via a 50ohm cable.

The setting of spectrum analyzer is:


Peak: RBW = 100kHz; VBW = 100kHz Average: RBW = 1MHz; VBW = 10Hz

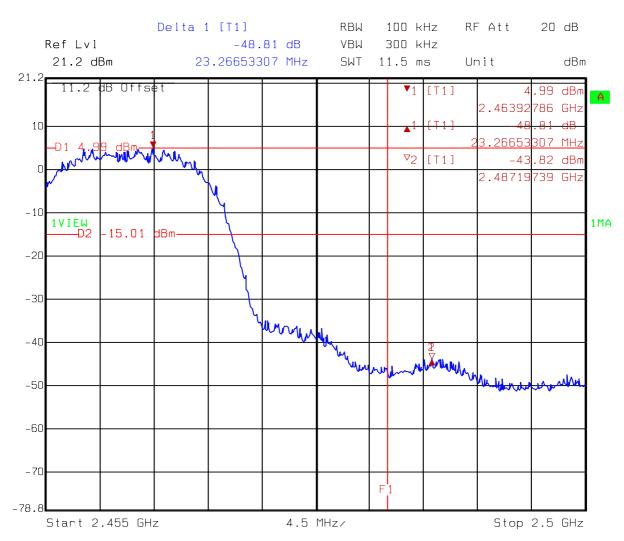
Please see the test plot below.

Page 35 of 43


Test Mode: 802.11b (DSSS Modulation) operating mode

Comment A: Band-edge at 802.11b CH1 F1=2390MHz, F2=2400MHz Date: 19.0CT.2005 17:20:36

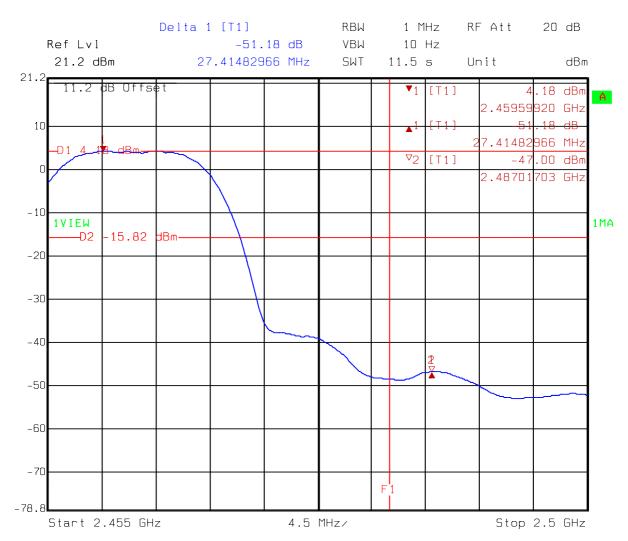
Page 36 of 43



Comment A: Band-edge at 802.11b CH1 F1=2390MHz, F2=2400MHz

Date: 19.0CT.2005 17:24:21

Page 37 of 43


Comment A: Band-edge at 802.11b CH11

F1=2483.5MHz

Date: 19.0CT.2005 17:18:01

Page 38 of 43

Comment A: Band-edge at 802.11b CH11

F1=2483.5MHz

Date: 19.0CT.2005 17:15:15

FCC ID. :I88G210H Report No.: EME-070049
Page 39 of 43

7.3 Test Result

Test Mode: 802.11b (DSSS Modulation) operating mode

		Radiated Method	Conducted Method	The Max.			
Channel	Channel Detector		Between Carrier Max. Power and Local Max. Emission in Restrict Band (dBc)	Field Strength in Restrict Band (dBuV/m)	Limit @ 3 m (dBuV/m)	Margin (dB)	
		A	В	С	D	E	
1 (lowest)	PK	106.34	52.83	53.51	74	-20.49	
1 (lowest)	AV	96.54	54.57	41.97	54	-12.03	
11 (highest)	PK	108.22	48.81	59.41	74	-14.59	
	AV	98.10	51.18	46.92	54	-7.08	

Remark: 1. C = A - B

2. E = C - D

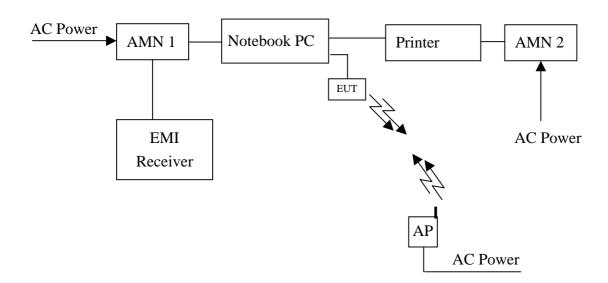
Test Mode: 802.11g (OFDM Modulation) operating mode

Channel	Detector	Radiated Method Max. Field Strength of Fundamental @3m (dBuV/m)	Conducted Method Between Carrier Max. Power and Local Max. Emission in Restrict Band (dBc)	The Max. Field Strength in Restrict Band (dBuV/m)	Limit @ 3 m (dBuV/m)	Margin (dB)
		A	В	С	D	Е
1 (lowest)	PK	104.16	46.73	57.43	74	-16.57
1 (lowest)	AV	78.71	50.37	28.34	54	-25.66
11 (highest)	PK	104.95	44.83	60.12	74	-13.88
11 (highest)	AV	79.40	47.37	32.03	54	-21.97

Remark: 1. C = A - B

2. E = C - D

Page 40 of 43


8. Power Line Conducted Emission test §FCC 15.207

8.1 Operating environment

Temperature: 26

Relative Humidity: 53 % Atmospheric Pressure 1023 hPa

8.2 Test setup & procedure

The EUT are connected to the main power through a line impedance stabilization network (LISN). This provides a 50 ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination.

Both sides (Line and Neutral) of AC line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4/2003 on conducted measurement. The bandwidth of the field strength meter (R & S Test Receiver ESCS 30) is set at 9kHz.

The EUT configuration please refer to the "Conducted set-up photo.pdf".

Page 41 of 43

8.3 Emission limit

Freq.	Conducted Limit (dBuV)				
(MHz)	Q.P.	Ave.			
0.15~0.50	66 – 56*	56 – 46*			
0.50~5.00	56	46			
5.00~30.0	60	50			

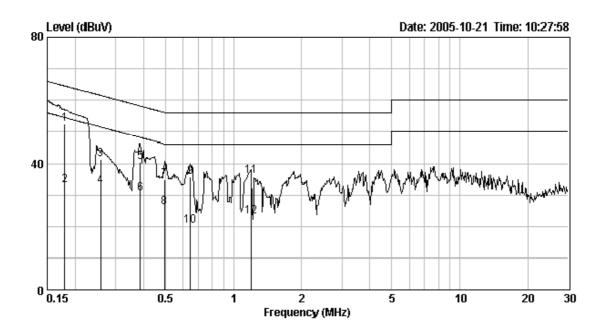
^{*}Decreases with the logarithm of the frequency.

8.4 Uncertainty of Conducted Emission

Expanded uncertainty (k=2) of conducted emission measurement is 2.6 dB.

Page 42 of 43

8.5 Power Line Conducted Emission test data


Phase: Line Model No.: G-210H

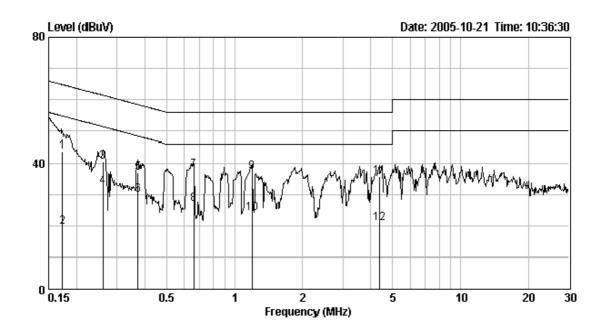
Test Condition: Normal operating mode

Frequency	Corr. Factor	Level Qp	Limit Qp	Level AV	Limit Av		rgin dB)
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	Qp	Av
0.179	0.10	52.54	64.51	33.16	54.51	-11.97	-21.35
0.258	0.10	41.28	61.50	32.76	51.50	-20.22	-18.74
0.387	0.10	40.46	58.12	30.47	48.12	-17.66	-17.65
0.496	0.10	34.80	56.07	25.95	46.07	-21.27	-20.12
0.645	0.10	35.80	56.00	20.33	46.00	-20.20	-25.67
1.191	0.10	35.93	56.00	23.06	46.00	-20.07	-22.94

Remark:

- 1. Corr. Factor (dB)= LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) = Level (dBuV) Limit (dBuV)

Page 43 of 43


Phase: Neutral Model No.: G-210H

Test Condition: Normal operating mode

Frequency	Corr. Factor	Level Qp	Limit Qp	Level AV	Limit Av	Margin (dB)	
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	Qp	Av
0.173	0.10	43.65	64.81	19.53	54.81	-21.16	-35.28
0.260	0.10	40.42	61.43	32.49	51.43	-21.01	-18.94
0.372	0.10	37.04	58.46	29.79	48.46	-21.42	-18.67
0.660	0.10	37.72	56.00	27.03	46.00	-18.28	-18.97
1.191	0.10	37.26	56.00	24.01	46.00	-18.74	-21.99
4.364	0.20	35.83	56.00	20.67	46.00	-20.17	-25.33

Remark:

- 1. Corr. Factor (dB)= LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) = Level (dBuV) Limit (dBuV)

