

Suppleme	ental "Transmit Simultaneously" Test Report
Report No.:	RFBFBE-WTW-P22090890-3
FCC ID:	I88EX7710-B0
Test Model:	EX7710-B0
Received Date:	2022/12/1
Test Date:	2022/12/30 ~ 2023/2/1
Issued Date:	2023/2/17
Applicant:	Zyxel Communications Corporation
Address:	No.2 Industry East RD. IX, Hsinchu Science Park, Hsinchu 30075, Taiwan, R.O.C
Issued By:	Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory
Lab Address:	E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwa.
Test Location:	E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan
FCC Registration / Designation Number:	723255 / TW2022

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/ and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

Table of Contents

R	elease	e Control Record	3
1	c	Certificate of Conformity	4
2	S	Summary of Test Results	5
	2.1 2.2	Measurement Uncertainty Modification Record	
3	G	General Information	6
	3.1 3.1.1 3.2 3.2.1	General Description of EUT Test Mode Applicability and Tested Channel Detail Description of Support Units Configuration of System under Test	10 12
4	Т	est Types and Results	14
	4.1.2	Radiated Emission and Bandedge Measurement Limits of Radiated Emission and Bandedge Measurement Test Instruments Test Procedures	14 15
	4.1.4 4.1.5	Deviation from Test Standard Test Setup EUT Operating Conditions	17 18
	4.1.7 4.2 4.2.1	Test Results Conducted Emission Measurement Limits of Conducted Emission Measurement	20 23 23
	4.2.3 4.2.4	Test Instruments Test Procedures Deviation from Test Standard	24 24
	4.2.6	Test Setup EUT Operating Conditions Test Results Conducted Out of Band Emission Measurement	24 25
	4.3.1 4.3.2	Limits of Conducted Out of Band Emission Measurement	27 27
	4.3.4 4.3.5	Test Procedures Deviation from Test Standard EUT Operating Conditions	27 27
		Test Results	
5		ictures of Test Arrangements	
Α	ppend	lix – Information of the Testing Laboratories	30

Release Control Record									
Issue No.	Description		Date Issued						
RFBFBE-WTW-P22090890-3	Original release.		2023/2/17						

1 Certificate of Conformity

Product:	AX11000 WiFi 6E 10G Ethernet Gateway				
Brand:	ZYXEL				
Test Model:	EX7710-B0				
Sample Status:	Engineering sample				
Applicant:	Zyxel Communications Corporation				
Test Date:	2022/12/30 ~ 2023/2/1				
Standards:	47 CFR FCC Part 15, Subpart C (Section 15.247)				
	47 CFR FCC Part 15, Subpart E (Section 15.407)				
	ANSI C63.10: 2013				

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by :	Vivian Huang	, Date:	2023/2/17	
	Vivian Huang / Specialist 🌙			
Approved by :	May Chen / Manager	_, Date:	2023/2/17	

2 Summary of Test Results

FCC Part 15, Subpart C, E (SECTION 15.247, 15.407)							
FCC Clause	Test Item	Result	Remarks				
15.207 15.407(b)(6)	AC Power Conducted Emission	PASS	Meet the requirement of limit. Minimum passing margin is -16.00dB at 23.58797MHz.				
15.205 / 15.209 / 15.247(d) 15.407(b) (1/2/3/4(i/ii)/6)	Radiated Emissions and Band Edge Measurement	PASS	Meet the requirement of limit. Minimum passing margin is -3.1dB at 499.99MHz.				

Note:

Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

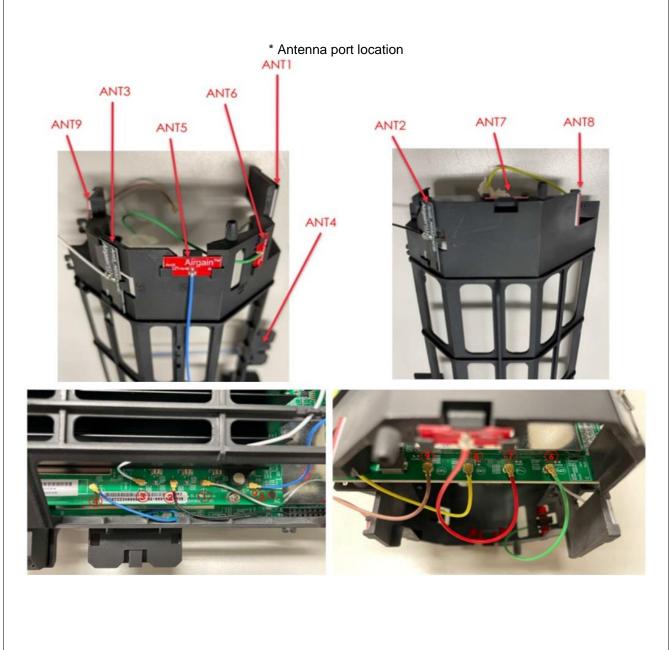
Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	1.9 dB
Radiated Emissions up to 1 GHz	9kHz ~ 30MHz	3.1 dB
Radiated Emissions up to 1 GHz	30MHz ~ 1GHz	5.1 dB
Radiated Emissions above 1 GHz	1GHz ~ 18GHz	5.0 dB
	18GHz ~ 40GHz	5.3 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information


3.1 General Description of EUT

BrandZYXELTest ModelEX7710-B0CPU Model No.BCM4912RF Chip Model No.5G Chip Model No.6G Chip Model No.6G Chip Model No.	Fi 6E 10G Ethernet Gateway
Test ModelEX7710-B0CPU Model No.BCM49122.4G Chip Model No.2.4G Chip Model No.FW Version5G Chip Model No.FW VersionV5.18(ACAK	del: BCM6715 del: BCM6715 0)b5_20221215
CPU Model No.BCM49122.4G Chip MRF Chip Model No.5G Chip Model No.6G Chip Model No.FW VersionV5.18(ACAK	del: BCM6715 del: BCM6715 (.0)b5_20221215
RF Chip Model No.2.4G Chip ModelSG Chip Model No.5G Chip ModelFW VersionV5.18(ACAK	del: BCM6715 del: BCM6715 0)b5_20221215
RF Chip Model No. 5G Chip Model No. 6G Chip Model No. 6G Chip Model No. FW Version V5.18(ACAK)	del: BCM6715 del: BCM6715 0)b5_20221215
6G Chip Mod FW Version V5.18(ACAK	del: BCM6715 (.0)b5_20221215
FW Version V5.18(ACAK	.0)b5_20221215
Status of EUT Engineering	sample
	power adapter
Modulation Type 64QAM, 160 256QAM for	K, DBPSK for DSSS QAM, QPSK, BPSK for OFDM OFDM in 11ac mode and VHT in 2.4GHz r OFDMA in 11ax mode
Modulation Technology DSSS, OFD	M, OFDMA
802.11b: up	
	p to 54 Mbps
Transfer Rate	
VHT: up to 8	00 Mbps o to 1733.3 Mbps
	to 4803.9 Mbps
2.4GHz:	
2.412 GHz ~	2.462 GHz
5GHz:	
5.18 GHz ~ 5	5.24 GHz
5.25 GHz ~ 5	5.32 GHz
Operating Frequency 5.5 GHz ~ 5.	
5.745 GHz ~	5.825 GHz
6GHz:	
6.115 GHz ~	
6.435 GHz ~ 6.535 GHz ~	
6.875 GHz ~	
2.4GHz:	1.000 0112
802.11b, 802	2.11g, 802.11n (HT20), VHT20, 802.11ax (HE20): 11 40), VHT40, 802.11ax (HE40): 7
5GHz:	
	2.11n (HT20), 802.11ac (VHT20), 802.11ax (HE20): 25
	40), 802.11ac (VHT40), 802.11ax (HE40): 12
	HT80), 802.11ax (HE80): 6 HT160), 802.11ax (HE160): 2
6GHz:	11100, 002. Hax (HE 100). 2
	2.11ax (HE20): 50
802.11ax (H	E40): 25
802.11ax (H 802.11ax (H	
Antenna Type Refer to Note	9
Antenna Connector Refer to Note	e
Accessory Device - AC Adapter	r x1, Brand: APD, Model: WA-42F12FU

		- Eth	ernet Cable x	1 (1m, Un:	shielded)				
Note:				-	-				
1 The FUT	power need	s to be su	oplied from a i	ower ada	pter, the inform	ation is as bel	ow table.		
AC Adapter									
	Nodel			Specificat	ion		The housi	na color	
		C Input: 10	0-240Vac, 50					<u></u>	
			12Vdc, 3.5A						
APD WA-				ded. 1.5m	. without core b	onded	Black / White		
DC Output Cable: Unshielded, 1.5m, without core bonded Manufacturer: ASIAN POWER DEVICES INC.									
2 The FUT	has three ra	dios as fo	llowing table:						
	Radio 1			Radio 2		R	adio 3		
14/1					_				
VVL	AN 2.4GHz		VV	LAN 5GHz		VVL/	AN 6GHz		
	eously transr	mission co	ndition.						
Condition				Tec	hnology				
1	WLAI	N 2.4GHz		WLA	N 5GHz	,	WLAN 6GH	z	
Note: The er	nission of the	e simultan	eous operatio	n has bee	n evaluated and	no non-com	oliance was	found.	
1. The anter	nnas provide	ed to the F	UT. please ref	er to the f	ollowing table:				
Antenna	RF Chain			Antenna			Connector	Cable	
NO.	NO.	Brand	Part Number	Net	Frequency range	Antenna Type	Туре	Length	
				Gain(dBi)					
				3.8	2.4~2.4835GHz			-	
Ant1 Dual-ban	2.4G Chain 2 5G Chain 2	Δικαριο	N03ZYAHA-	3.6	5.15~5.25GHz			110mm	
d			PK1-G110U	4.1	5.25~5.35GHz	Dipole	ipex(MHF)		
				3.7 4.2	5.47~5.725GHz 5.725~5.85GHz				
				4.2	2.4~2.4835GHz				
	0.40.01.1.4	Δικαριο		5.3	5.15~5.25GHz	Dipole		135mm	
Ant2_Dual-ban d	5G Chain 1		N03ZYAHB- PK1-B135U	5.0	5.25~5.35GHz		ipex(MHF)		
ŭ			11(1-11000	4.9	5.47~5.725GHz				
				5.2	5.725~5.85GHz 2.4~2.4835GHz				
				3.4 5.2	5.15~5.25GHz	-			
Ant3_Dual-ban		Airgain	N03ZYAHC-	5.3	5.25~5.35GHz	Dipole	ipex(MHF)	195mm	
d	5G Chain 0	0	PK1-W195U	4.8	5.47~5.725GHz		• • •		
				4.2	5.725~5.85GHz				
Ant4	2.4G Chain 3	Airgain	N03ZYAHD-	5.0	2.4~2.4835GHz	Dipole	ipex(MHF)	90mm	
		-	PK1-A90U	4.5	5.15~5.25GHz				
A	50.01	<u>.</u>	N02ZYAHE-	4.1	5.25~5.35GHz		·····	405	
Ant5_5GHz	5G Chain 3	Airgain	PK1-A105U	4.3	5.47~5.725GHz	Dipole	ipex(MHF)	105mm	
				4.6	5.725~5.85GHz				
			NOCTION	5.9	5.925~6.425GHz	-			
Ant6_6GHz	6G Chain 3	Airgain	N06ZYAHF- PK1-E100U	5.9 5.9	6.425~6.525GHz 6.525~6.875GHz	Dipole	ipex(MHF)	100m	
				4.8	6.875~7.125GHz	1			
				5.6	5.925~6.425GHz]			
Ant7_6GHz	6G Chain 2	2 Airgain	N06ZYAHG-	5.5	6.425~6.525GHz	Dipole	ipex(MHF)	95mm	
			PK1-R95U	5.4	6.525~6.875GHz			John	
				5.7 5.7	6.875~7.125GHz 5.925~6.425GHz	+			
			N06ZYAHH-	5.9	6.425~6.525GHz	1			
Ant8_6GHz	6G Chain 1	Airgain	PK1-Y75U	6.0	6.525~6.875GHz	Dipole	ipex(MHF)	75mm	
				5.9	6.875~7.125GHz]			
				4.7	5.925~6.425GHz	4			
	6G Chain 0	Airgoin	N06ZYAHJ-	3.7	6.425~6.525GHz	Dipole	ipex(MHF)	75mm	
Ant9_6GHz	6G Chain 0	Airgain	PK1-P75U	4.0	6.525~6.875GHz	2.00.0			

	2.4 GHz Band							
Modulation Mode TX & RX Configuration								
802.11b	4TX	4RX						
802.11g	4TX	4RX						
802.11n (HT20)	4TX	4RX						
802.11n (HT40)	4TX	4RX						
VHT20	4TX	4RX						
VHT40	4TX	4RX						
802.11ax (HE20)	4TX	4RX						
802.11ax (HE40)	4TX	4RX						
	5 GHz Band							
Modulation Mode		onfiguration						
802.11a	4TX	4RX						
802.11n (HT20)	4TX	4RX						
802.11n (HT40)	4TX	4RX						
802.11ac (VHT20)	4TX	4RX						
802.11ac (VHT40)	4TX	4RX						
802.11ac (VHT80)	4TX	4RX						
802.11ax (HE20)	4TX	4RX						
802.11ax (HE40)	4TX	4RX						
802.11ax (HE80)	4TX	4RX						
	6GHz Band							
MODULATION MODE	TX & RX CON	NFIGURATION						
802.11a	4TX	4RX						
802.11ax (HE20)	4TX	4RX						
802.11ax (HE40)	4TX	4RX						
802.11ax (HE80)	4TX	4RX						
802.11ax (HE160)	4TX	4RX						

The ELIT incorporates a MIMO function:

1. All of modulation mode support beamforming function except 802.11a/b/g modulation mode.

6. The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

7. Detail antenna specification please refer to antenna datasheet and/or antenna measurement report.

3.1.1 Test Mode Applicability and Tested Channel Detail

EUT Configure		Applic	able To			- n	
Mode	RE≥1G	RE<1G	PLC	OB		Description	
-		\checkmark		√		-	
Vhere RE≥1G: Radiated Emission above 1GHz RE<1G: Radiated Emission below 1GHz							
PLC: Power Line Conducted Emission OB: Conducted Out-Band Emission Measurement							
lote: Partial Rl							
Radiated Emission Test (Above 1GHz):							
Radiated El	mission le	<u>st (Above 1</u>	<u>GHz):</u>				
					(
The tested				rst-case mode	from all	possible combination	ons by the maximu
The tested power.	d configurat	ions represe	ent the wo				ons by the maximu
The tested power.	d configurat channel(s) v	ions represe	ent the wo selected fo	rst-case mode or the final test TESTED CHAM	as listed		ons by the maximu
☐ The tested power. ☐ Following of MODE	d configurat channel(s) v E	ions represe was (were) s AVAILA	ent the wo selected fo BLE NEL	or the final test	as listed	below. MODULATION	-
☐ The tested power. ☐ Following d	d configurat channel(s) v E	ions represe was (were) s AVAILA CHANI	ent the wo selected fc BLE NEL 11	TESTED CHAN	as listed	MODULATION TECHNOLOGY	MODULATION TYPE
 The tested power. Following of Model 2.4GH 	d configurat channel(s) v E	ions represe was (were) s AVAILA CHANI 1 to 36 to 52 to	ent the wo selected fo BLE NEL 11 48 64	or the final test TESTED CHAN	as listed	I below. MODULATION TECHNOLOGY OFDMA	MODULATION TYP BPSK
☐ The tested power. ☐ Following of MoDE 2.4GH 802.11ax (I 5GHz	d configurat channel(s) v E Iz: HE20)	ions represe was (were) s AVAILA CHANI 1 to 36 to 52 to 100 to	ent the work selected for BLE NEL 11 48 64 144	TESTED CHAN	as listed	MODULATION TECHNOLOGY	MODULATION TYPE
☐ The tested power. ☐ Following of the followi	d configurat channel(s) v E Iz: HE20)	ions represe was (were) s AVAILA CHANI 1 to 7 36 to 52 to 100 to 149 to	ent the work selected for BLE NEL 11 48 64 144 165	or the final test TESTED CHAN	as listed	I below. MODULATION TECHNOLOGY OFDMA	MODULATION TYP BPSK
☐ The tested power. ☐ Following of the followi	d configurat channel(s) v E Iz: HE20) :: Ia	ions represe was (were) s AVAILA CHANI 1 to 7 36 to 52 to 100 to 149 to 47 to	ent the work selected for NBLE NEL 11 48 64 144 165 79,	or the final test TESTED CHAN	as listed	I below. MODULATION TECHNOLOGY OFDMA	MODULATION TYP BPSK
✓ The tested power. ✓ Following of MoDi 2.4GH 802.11ax (I + 5GHz 802.11	d configurat channel(s) v E Iz: HE20) Ia Ia	ions represe was (were) s AVAILA CHANI 1 to 7 36 to 52 to 100 to 149 to	ent the workselected for BLE NEL 11 48 64 144 165 79,	or the final test TESTED CHAN	as listed	I below. MODULATION TECHNOLOGY OFDMA	MODULATION TYP BPSK

Radiated Emission Test (Below 1GHz):

The tested configurations represent the worst-case mode from all possible combinations by the maximum power.

Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE
2.4GHz:	1 to 11	6	OFDMA	BPSK
802.11ax (HE20) + 5GHz: 802.11a	36 to 48 52 to 64 100 to 144 149 to 165	40	OFDM	BPSK
+ 6GHz: 802.11ax (HE160)	47 to 79, 111, 143 to 175, 207	207	OFDMA	BPSK

Power Line Conducted Emission Test:

The tested configurations represent the worst-case mode from all possible combinations by the maximum power.

Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE
2.4GHz:	1 to 11	6	OFDMA	BPSK
802.11ax (HE20) + 5GHz: 802.11a	36 to 48 52 to 64 100 to 144 149 to 165	40	OFDM	BPSK
+ 6GHz: 802.11ax (HE160)	47 to 79, 111, 143 to 175, 207	207	OFDMA	BPSK

Conducted Out-Band Emission Measurement:

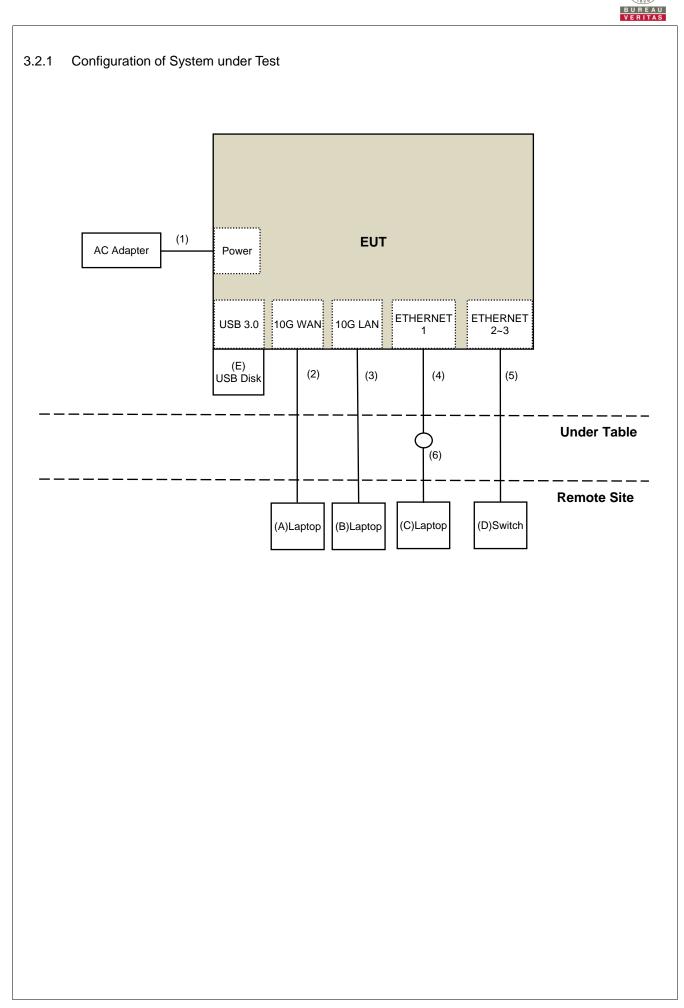
In the tested configurations represent the worst-case mode from all possible combinations by the maximum power.

			\ /			final task	t as listed below	
x	Following	channells	1 Was (We	rei seleci	iea ior ine	tinal tesi	עמופג וופגפת הפוחע	^/
/ \						minul too		/w.

Sellowing channel(s) was (were) selected for the final test as listed below.							
MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE			
2.4GHz:	1 to 11	6	OFDMA	BPSK			
802.11ax (HE20) + 5GHz: 802.11a	36 to 48 52 to 64 100 to 144 149 to 165	40	OFDM	BPSK			

Test Condition:

Applicable To	Environmental Conditions	Input Power	Tested By
RE≥1G	25deg. C, 68%RH	120Vac, 60Hz	Sampso Chen
RE<1G	24deg. C, 68%RH	120Vac, 60Hz	Sampso Chen
PLC	24deg. C, 68%RH	120Vac, 60Hz	Sampso Chen
OB	25deg. C, 60%RH	120Vac, 60Hz	Katina Lu



3.2 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
А	Laptop	Lenovo	20U5S01X00 L14	PF-28LKK7	N/A	Provided by Lab
В	Laptop	Lenovo	20U5S01X00 L14	PF-1ANPYA	N/A	Provided by Lab
С	Laptop	HP	TPN-Q186	5CD8212YYK	DoC	Provided by Lab
D	Switch	D-Link	DGS-1005D	DR8WC92000523	N/A	Provided by Lab
Е	USB Disk	SanDink	BM181225896Z	N/A	N/A	Provided by Lab

ID	Cable Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1	DC Cable	1	1.5	No	0	Supplied by applicant
2	RJ-45 Cable	1	10	No	0	Provided by Lab
3	RJ-45 Cable	1	10	No	0	Provided by Lab
4	Ethernet Cable	1	1	No	0	Supplied by applicant
5	RJ-45 Cable	3	10	No	0	Provided by Lab
6	RJ-45 Cable	1	10	No	0	Provided by Lab

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Note:

1. The lower limit shall apply at the transition frequencies.

- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

Limits of unwanted emission out of the restricted bands

Applicable To		Limit		
789033 D02 General UNII Test Procedure		Field Strength at 3m		
New Rul	es v02r01	ΡΚ:74 (dBμV/m)	AV:54 (dBµV/m)	
Frequency Band	Applicable To	EIRP Limit	Equivalent Field Strength at 3m	
5150~5250 MHz	15.407(b)(1)			
5250~5350 MHz	15.407(b)(2)	PK:-27 (dBm/MHz)	PK:68.2(dBµV/m)	
5470~5725 MHz	15.407(b)(3)			
5725~5850 MHz	15.407(b)(4)(i)	PK:-27 (dBm/MHz) ^{*1} PK:10 (dBm/MHz) ^{*2} PK:15.6 (dBm/MHz) ^{*3} PK:27 (dBm/MHz) ^{*4}	PK: 68.2(dBµV/m) ^{*1} PK:105.2 (dBµV/m) ^{*2} PK: 110.8(dBµV/m) ^{*3} PK:122.2 (dBµV/m) ^{*4}	
	15.407(b)(4)(ii)	Emission limits in	section 15.247(d)	
	more above of the band ge increasing linearly to tt 5 MHz above.	a level ^{*4} from 5 MHz above	e increasing linearly to 10 Iz above. or below the band edge to a level of 27 dBm/MHz at	

Note:

The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

 $E = \frac{1000000\sqrt{30P}}{3}$ µV/m, whe

 μ V/m, where P is the eirp (Watts).

4.1.2 Test Instruments

For Radiated Emission test:

For Radiated Emission to	est:			
DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Spectrum Analyzer Keysight	N9020B	MY60112410	2022/3/13	2023/3/12
Software	ADT_Radiated_V8.7.08	NA	NA	NA
Boresight Antenna Tower & Turn Table Max-Full	MF-7802BS	MF780208530	NA	NA
Test Receiver KEYSIGHT	N9038A	MY59050100	2022/6/20	2023/6/19
Pre_Amplifier EMCI	EMC001340	980142	2022/6/2	2023/6/1
LOOP ANTENNA Electro-Metrics	EM-6879	264	2022/3/18	2023/3/17
RF Coaxial Cable JYEBO	5D-FB	LOOPCAB-001	2022/12/19	2023/12/18
RF Coaxial Cable JYEBO	5D-FB	LOOPCAB-002	2022/12/19	2023/12/18
Pre_Amplifier(20M-3G) EMCI	EMC330N	980852	2022/3/28	2023/3/27
Bilog Antenna Schwarzbeck	VULB 9168	9168-0942	2022/10/20	2023/10/19
RF Coaxial Cable COMMATE/PEWC	8D	966-6-1	2022/4/25	2023/4/24
RF Coaxial Cable COMMATE/PEWC	8D	966-6-2	2022/4/25	2023/4/24
RF Coaxial Cable COMMATE/PEWC	8D	966-6-3	2022/4/25	2023/4/24
Fixed attenuator Mini-Circuits	UNAT-5+	PAD-ATT5-01	2022/12/28	2023/12/27
Horn Antenna Schwarzbeck	BBHA 9120D	9120D-2035	2022/11/13	2023/11/12
Pre_Amplifier EMCI	EMC12630SE	980385	2022/8/15	2023/8/14
RF Coaxial Cable EMCI	EMC101G-KM-KM-10000	210708	2022/11/4	2023/11/3
RF Cable EMCI	EMC104-SM-SM-1300	210205	2022/5/10	2023/5/9
Pre_Amplifier EMCI	EMC184045SE	980387	2022/12/28	2023/12/27
Horn Antenna Schwarzbeck	BBHA 9170	BBHA9170519	2022/11/13	2023/11/12
RF Cable-Frequency range: 1-40GHz EMCI	EMC102-KM-KM-1200	160924	2022/12/28	2023/12/27
RF Coaxial Cable EMCI	EMC-KM-KM-4000	200214	2022/3/8	2023/3/7
Note:				

Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in 966 Chamber No. 6.

3. Tested Date: 2022/12/30 ~ 2023/2/1

For other test items: **DESCRIPTION &** CALIBRATED CALIBRATED MODEL NO. SERIAL NO. MANUFACTURER DATE UNTIL Spectrum Analyzer FSV40 2023/3/6 101516 2022/3/7 R&S Attenuator 2022/4/5 2023/4/4 MDCS18N-10 MDCS18N-10-01 WOKEN ADT_RF Test Software N/A N/A Software N/A V6.6.5.4

NOTE: 1. The test was performed in Oven room 2.

- 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 3. Tested Date: 2023/1/31

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

NOTE:

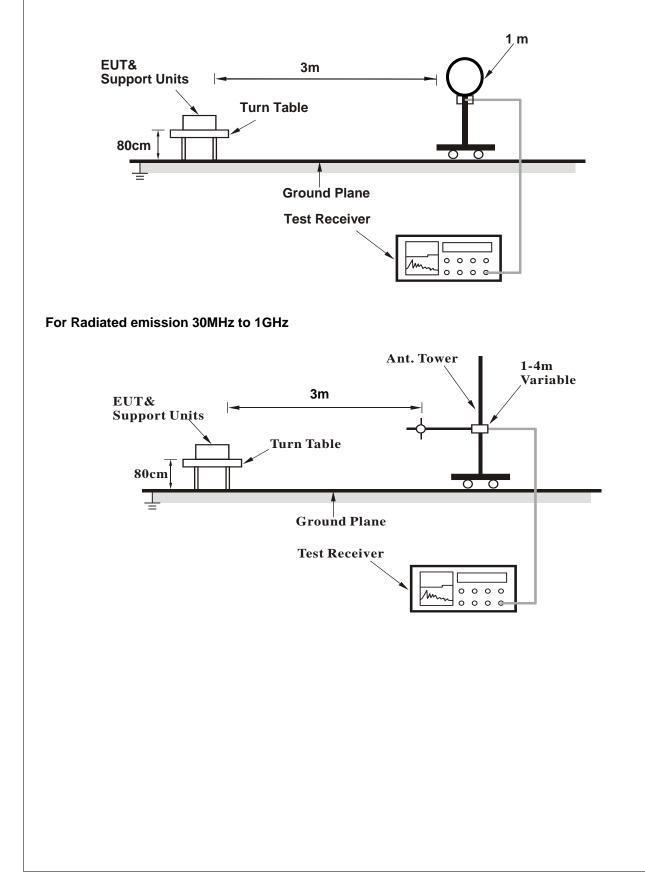
1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

For Radiated emission above 30MHz

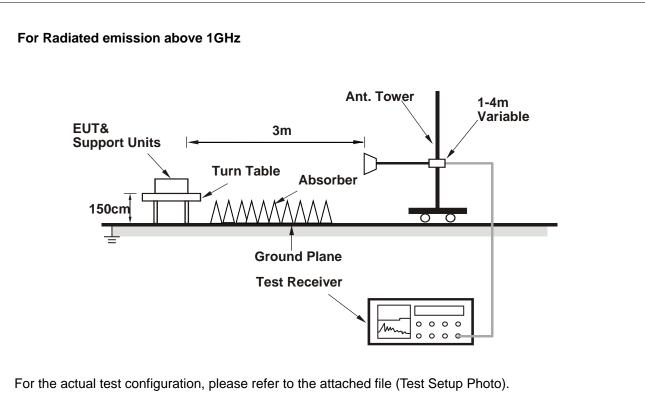
- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.


4.1.4 Deviation from Test Standard

No deviation.



4.1.5 Test Setup

For Radiated emission below 30MHz

- 4.1.6 EUT Operating Conditions
- a. Connected the EUT with the Laptop which is placed on remote site.
- b. Controlling software (accessMTool_REL_3_2_1_3) has been activated to set the EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results

Above 1GHz Data:

FREQUENCY RANGE 1G			Hz ~ 40GHz		DETECTOR FUNCTION		Peak (PK) Average (AV)			
Antenna Polarity & Test Distance : Horizontal at 3 m										
No	Frequency (MHz)	Emissi Level (dBuV/	on I	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	4874.00	46.5 Pł	<	74.0	-27.5	1.14 H	14	42.5	4.0	
2	4874.00	36.4 A\	/	54.0	-17.6	1.14 H	14	32.4	4.0	
3	7311.00	46.4 Pł	<	74.0	-27.6	1.21 H	16	36.3	10.1	
4	7311.00	36.3 A\	/	54.0	-17.7	1.21 H	16	26.2	10.1	
5	#10400.00	45.1 Pł	<	88.2	-43.1	1.51 H	18	30.9	14.2	
6	#13970.00	48.8 Pł	<	88.2	-39.4	1.77 H	186	31.4	17.4	
7	#13970.00	36.5 A\	/	68.2	-31.7	1.77 H	186	19.1	17.4	
8	15600.00	59.7 Pł	<	74.0	-14.3	1.56 H	360	44.9	14.8	
9	15600.00	46.8 A\	/	54.0	-7.2	1.56 H	360	32.0	14.8	
10	20955.00	55.8 Pł	<	74.0	-18.2	2.45 H	155	60.1	-4.3	
11	20955.00	43.0 A\	/	54.0	-11.0	2.45 H	155	47.3	-4.3	
Antenna Polarity & Test Distance : Vertical at 3 m										
No	Frequency (MHz)	Emissie Level (dBuV/	I	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	4874.00	45.4 Pł	<	74.0	-28.6	2.26 V	17	41.4	4.0	
2	4874.00	35.9 A\	/	54.0	-18.1	2.26 V	17	31.9	4.0	
3	7311.00	46.4 Pł	<	74.0	-27.6	2.17 V	6	36.3	10.1	
4	7311.00	36.3 A\	/	54.0	-17.7	2.17 V	6	26.2	10.1	
5	#10400.00	44.3 Pł	<	88.2	-43.9	1.45 V	283	30.1	14.2	
6	#13970.00	47.0 Pł	<	88.2	-41.2	2.32 V	140	29.6	17.4	
7	#13970.00	34.8 A\	/	68.2	-33.4	2.32 V	140	17.4	17.4	
8	15600.00	57.8 Pł	<	74.0	-16.2	1.53 V	308	43.0	14.8	
9	15600.00	45.8 A\	/	54.0	-8.2	1.53 V	308	31.0	14.8	
10	20955.00	54.8 Pł	<	74.0	-19.2	1.60 V	187	59.1	-4.3	
		100.0			44.6	1 00 1/	107	17.0	1 10	

Remarks:

20955.00

11

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

54.0

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

1.60 V

187

47.3

-4.3

-11.0

3. Margin value = Emission Level - Limit value

43.0 AV

4. The other emission levels were very low against the limit.

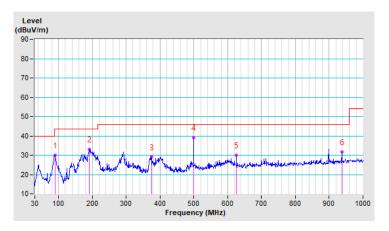
5. " # ": The radiated frequency is out of the restricted band.

Below 1GHz Data:	Be	low	1G	Hz	Da	ta:
------------------	----	-----	-----------	----	----	-----

FREQUENCY RANGE 30MHz ~ 1GHz	DETECTOR FUNCTION	Quasi-Peak (QP)
------------------------------	-------------------	-----------------

	Antenna Polarity & Test Distance : Horizontal at 3 m							
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	89.56	30.2 QP	43.5	-13.3	2.00 H	292	48.6	-18.4
2	190.79	33.1 QP	43.5	-10.4	3.00 H	289	48.4	-15.3
3	375.00	29.2 QP	46.0	-16.8	1.00 H	259	39.5	-10.3
4	499.99	39.2 QP	46.0	-6.8	1.50 H	183	46.6	-7.4
5	625.03	30.1 QP	46.0	-15.9	3.00 H	1	34.9	-4.8
6	937.53	31.8 QP	46.0	-14.2	1.50 H	1	31.9	-0.1

Remarks:

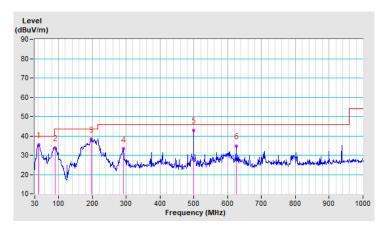

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.

5. The emission levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.



FRE	QUENCY RA	NGE 3	0MHz ~ 1GHz		DETECTOR F	JNCTION	Quasi-Peak (QP)		
		ļ	Antenna Polari	ty & Test [Distance : Vert	ical at 3 m			
No	Frequency (MHz)	Emission Level (dBuV/m)	LIMIT (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	42.22	35.4 QP	40.0	-4.6	1.00 V	3	48.1	-12.7	
2	90.00	33.9 QP	43.5	-9.6	1.50 V	228	52.3	-18.4	
3	196.31	38.3 QP	43.5	-5.2	1.50 V	1	54.3	-16.0	
4	291.28	33.3 QP	46.0	-12.7	1.50 V	163	45.7	-12.4	
5	499.99	42.9 QP	46.0	-3.1	1.00 V	233	50.3	-7.4	
6	624.98	34.7 QP	46.0	-11.3	1.00 V	221	39.4	-4.7	

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
- 5. The emission levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

	Conducted Limit (dBuV)					
Frequency (MHz)	Quasi-peak	Average				
0.15 - 0.5	66 - 56	56 - 46				
0.50 - 5.0	56	46				
5.0 - 30.0	60	50				

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2.2 Test Instruments

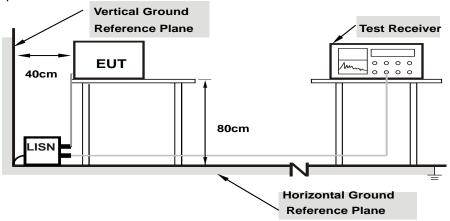
DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
TEST RECEIVER R&S	ESCS 30	847124/029	2022/10/14	2023/10/13
LISN R&S	ESH3-Z5	848773/004	2022/10/18	2023/10/17
50 ohm terminal resistance NA	NA	EMC-01	2022/9/27	2023/9/26
RF Coaxial Cable JYEBO	5D-FB	COCCAB-001	2022/8/24	2023/8/23
Fixed attenuator STI	STI02-2200-10	005	2022/8/24	2023/8/23
Software BVADT	BVADT_Cond_V7.3.7.4	NA	NA	NA

Note: 1. The test was performed in Conduction 1.

2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

3. Tested Date: 2023/1/3

4.2.3 Test Procedures


- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.

Note: The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

4.2.4 Deviation from Test Standard

No deviation.

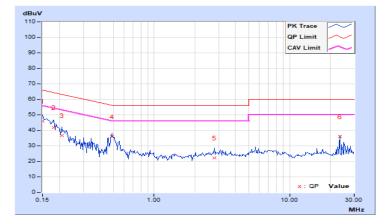
4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

Same as 4.1.6.


4.2.7 Test Results

Phase Line (L) Detector Function Quasi-Peak (QP) / Average (AV)
--

			Р	hase Of I	Power : L	ine (L)				
No	Frequency	Correction Factor		Reading Value (dBuV)		Emission Level (dBuV)		Limit (dBuV)		rgin B)
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15000	9.95	36.04	19.34	45.99	29.29	66.00	56.00	-20.01	-26.71
2	0.18125	9.96	32.05	14.89	42.01	24.85	64.43	54.43	-22.42	-29.58
3	0.20859	9.96	26.81	11.39	36.77	21.35	63.26	53.26	-26.49	-31.91
4	0.48984	9.97	25.80	19.15	35.77	29.12	56.17	46.17	-20.40	-17.05
5	2.77734	10.12	12.20	6.28	22.32	16.40	56.00	46.00	-33.68	-29.60
6	23.58797	11.26	24.72	22.74	35.98	34.00	60.00	50.00	-24.02	-16.00

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

Phase	e		Neutral (N)				Detector Function			Quasi-Peak (QP) / Average (AV)		
		Phase Of Powe					: Ne	utral (N)				
No	Frequency	Correct Facto		Readin (dB	-	Emi	issic (dB	on Level uV)	Lir (dB		Maı (d	gin B)
	(MHz)	(dB))	Q.P.	AV.	Q.	P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15000	9.95	5	36.00	19.46	45.	95	29.41	66.00	56.00	-20.05	-26.59
2	0.16953	9.95	5	33.67	16.79	43.	62	26.74	64.98	54.98	-21.36	-28.24
3	0.49375	9.97	7	22.19	12.65	32.	16	22.62	56.10	46.10	-23.94	-23.48
4	5.50781	10.2	7	13.15	6.42	23.	42	16.69	60.00	50.00	-36.58	-33.31
5	17.73828	10.8	8	15.77	10.71	26.	65	21.59	60.00	50.00	-33.35	-28.41
6	23.58594	11.0	0	24.46	20.39	35.	46	31.39	60.00	50.00	-24.54	-18.61

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

4.3 Conducted Out of Band Emission Measurement

4.3.1 Limits of Conducted Out of Band Emission Measurement

Below 30dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

4.3.2 Test Setup

4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedures

MEASUREMENT PROCEDURE REF

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW \ge 300 kHz.
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

MEASUREMENT PROCEDURE OOBE

- 1. Set RBW = 100 kHz.
- 2. Set VBW ≥ 300 kHz.
- 3. Detector = peak.
- 4. Sweep = auto couple.
- 5. Trace Mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum amplitude level.

4.3.5 Deviation from Test Standard

No deviation.

4.3.6 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at specific channel frequencies individually.

4.3.7 Test Results

The spectrum plots are attached on the following pages. D1 line indicates the highest level, and D2 line indicates the 30dB offset below D1. It shows compliance with the requirement.

	RBW 100 kHz VBW 300 kHz dB SW/T 400 ms		
		[T1] MP VEW Marker 1 [T1] 2.22335 GHz Marker 2 [T1] 2.31 dBm 2.43819 GHz	BBW 100 W1: [T1] MP VEW Marker 1 [T1] VEW 31.5 Ref 31.5 dBm Att 20 dB SWT 400 ma 2.26.30 31.5 Offset 21.5 dB SWT 400 ma 2.24.30 20 2.46.30 2.46.30
0		Marker 3 [T1] 4.3415 GHz 4.3415 GHz Marker 4 [T1] 50.0 BBm 5.2011 GHz Marker 5 [T1].4.2 dBm 3.37.6018 GHz	20 2 Marter 37 14/22 01,1297#8m 6000 6000 0 5201 5201 -10 5201 5201 -10 -10 35852 -20 -20 -20
D	Angel and the second second second second	S CONTRACTOR	
0	1	Stop 40 GHz	-60
nain2			
5 - Ref 31.5 dBm Att 20 Offset 21.5 dB 	RBVV 100 kHz VBW 300 HHz dB SWT 400 ms	[11] MP VEW Market 1 [71]	
2	3.397 GHz/	l Skop 40 GHz	

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ----