

FCC Test Report

FCC ID : I8811AXAP22

Equipment : 802.11ax (WiFi 6) Dual-Radio Unified Access Point

: WAX510D, NWA110AX Model No.

Multiple Listing : Refer to item 1.1.1 for more details.

Brand Name : ZYXEL

Applicant : Zyxel Communications Corporation

: No.2 Industry East RD. IX, Hsinchu Science Park, Address

Hsinchu 30075, Taiwan, R.O.C

Standard : 47 CFR FCC Part 15.407

Received Date : Dec. 18, 2019

Tested Date : Dec. 23, 2019 ~ Jan. 14, 2020

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Approved by: Reviewed by:

Testing Laboratory

Page: 1 of 174

2732

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Local Support Equipment List	
1.3	Test Setup Chart	
1.4	The Equipment List	13
1.5	Testing Applied Standards	14
1.6	Deviation from Test Standard and Measurement Procedure	14
1.7	Measurement Uncertainty	15
2	TEST CONFIGURATION	16
2.1	Testing Condition	16
2.2	The Worst Test Modes and Channel Details	17
3	TRANSMITTER TEST RESULTS	19
3.1	Conducted Emissions	19
3.2	Emission Bandwidth	28
3.3	RF Output Power	48
3.4	Peak Power Spectral Density	56
3.5	Transmitter Radiated and Band Edge Emissions	77
3.6	Frequency Stability	172
4	TEST LABORATORY INFORMATION	174

Page: 2 of 174

Release Record

Report No.	Version	Description	Issued Date
FR9D0202AN	Rev. 01	Initial issue	Jan. 21, 2020
FR9D0202AN	Rev. 02	 Adding B2 & B3 information Revising the accessories description & FCC ID 	Apr. 23, 2020

Report No.: FR9D0202AN Page: 3 of 174

Report Version: Rev. 02

Summary of Test Results

FCC Rules	Test Items	Measured	Result
15.207	Conducted Emissions	[dBuV]: 19.428MHz 41.177 (Margin -8.83dB) - AV	Pass
15.407(b) 15.209	Radiated Emissions	[dBuV/m at 3m]: 5150.00MHz 53.83 (Margin -0.17dB) - PK	Pass
15.407(a)	Emission Bandwidth	Meet the requirement of limit	Pass
15.407(e)	6dB bandwidth	Meet the requirement of limit	Pass
15.407(a)	RF Output Power	Max Power [dBm]: Non-beamforming mode 5150~5250MHz: 25.67 5250~5350MHz: 23.79 5470~5725MHz: 23.77 5725~5850MHz: 26.02 Beamforming mode 5150~5250MHz: 21.28 5250~5350MHz: 20.78 5470~5725MHz: 20.76 5725~5850MHz: 23.01	Pass
15.407(a)	Peak Power Spectral Density	Meet the requirement of limit	Pass
15.407(g)	Frequency Stability	Meet the requirement of limit	Pass
15.203	Antenna Requirement	Meet the requirement of limit	Pass

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Report No.: FR9D0202AN Page: 4 of 174

Report Version: Rev. 02

1 General Description

1.1 Information

1.1.1 Product Details

The following models are provided to this EUT.

Brand Name	Model Name	Product Name	Description
ZYXEL.	WAX510D	802.11ax (WiFi 6) Dual-Radio Unified Access Point	Difference between two models is software.
ZIXEL	NWA110AX		WAX510D (FAT/Thin/Cloud AP), NWA110AX (FAT/Cloud AP).

The above models, model **WAX510D** was selected as a representative one for the final test and only its data was recorded in this report.

Report No.: FR9D0202AN Report Version: Rev. 02 Page: 5 of 174

1.1.2 Specification of the Equipment under Test (EUT)

RF General Information					
Frequency Range (MHz)	IEEE Std. 802.11	Ch. Freq. (MHz)	Channel Number	Transmit Chains (N _{TX})	Data Rate / MCS
5150-5250 5250-5350 5470-5725 5725-5850	а	5180-5240 5260-5320 5500-5720 5745-5825	36-48 [4] 52-64 [4] 100-144 [12] 149-165 [5]	2	6-54 Mbps
5150-5250 5250-5350 5470-5725 5725-5850	n (HT20)	5180-5240 5260-5320 5500-5720 5745-5825	36-48 [4] 52-64 [4] 100-144 [12] 149-165 [5]	2	MCS 0-15
5150-5250 5250-5350 5470-5725 5725-5850	n (HT40)	5190-5230 5270-5310 5510-5710 5755-5795	38-46 [2] 54-62 [2] 102-142 [6] 151-159 [2]	2	MCS 0-15
5150-5250 5250-5350 5470-5725 5725-5850	ac (VHT20)	5180-5240 5260-5320 5500-5720 5745-5825	36-48 [4] 52-64 [4] 100-144 [12] 149-165 [5]	2	MCS 0-9
5150-5250 5250-5350 5470-5725 5725-5850	ac (VHT40)	5190-5230 5270-5310 5510-5710 5755-5795	38-46 [2] 54-62 [2] 102-142 [6] 151-159 [2]	2	MCS 0-9
5150-5250 5250-5350 5470-5725 5725-5850	ac (VHT80)	5210 5290 5530~5690 5775	42 [1] 58 [1] 106-138 [3] 155 [1]	2	MCS 0-9
5150-5250 5250-5350 5470-5725 5725-5850	ax (HE20)	5180-5240 5260-5320 5500-5720 5745-5825	36-48 [4] 52-64 [4] 100-144 [12] 149-165 [5]	2	MCS 0-11
5150-5250 5250-5350 5470-5725 5725-5850	ax (HE40)	5190-5230 5270-5310 5510-5710 5755-5795	38-46 [2] 54-62 [2] 102-142 [6] 151-159 [2]	2	MCS 0-11
5150-5250 5250-5350 5470-5725 5725-5850	ax (HE80)	5210 5290 5530~5690 5775	42 [1] 58 [1] 106-138 [3] 155 [1]	2	MCS 0-11

Note 1: Chip feature: OFDM/OFDMA- BPSK, QPSK, 16QAM, 64QAM, 256QAM and 1024 QAM modulation.

Report No.: FR9D0202AN

Note 2: Operating modes of this device are listed as above table.

Note 3: 802.11ax supports beamforming function.

1.1.3 Antenna Details

Ant.	Model Type		Connector	Operating Frequencies (MHz) / Antenna Gain (dBi)				
No.	Model	Турс	Commedia	2400~2483.5	5150~5250	5250~5350	5470~5725	5725~5850
1	AP886-V3	Dipole	IPEX		4.5	4.5	5.2	5.5
2	AP886-V3	PIFA	IPEX	0				
3	AP886-V3	Dipole	IPEX	0	4.5	4.5	5.2	5.5
4	AP886-V3	Dipole	IPEX	0	4.5	4.5	5.2	5.5

1.1.4 Power Supply Type of Equipment under Test (EUT)

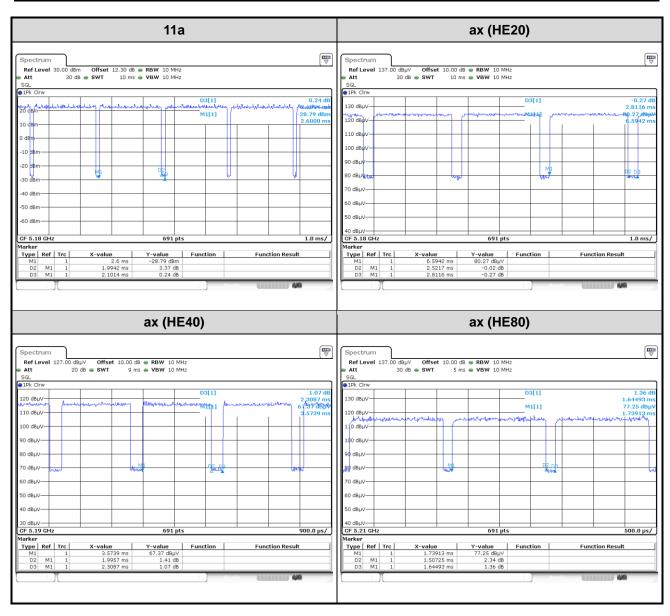
Power Supply Type	12Vdc from adapter 30~57Vdc from POE
-------------------	---

Note: The above power supply for POE is not bundled in market.

1.1.5 Accessories

	Accessories			
No.	Equipment	Description		
1	AC adapter (Only for model: NWA110AX)	Brand: APD Model: WB-18Q12R I/P: 100-240Vac, 50-60Hz, 0.6A Max O/P: 12Vdc, 1.5A Power Line: DC 1.5m non-shielded without core		

Report No.: FR9D0202AN Page: 7 of 174


1.1.6 Channel List

802.11a / n HT20 / a	ac VHT20 / ax HE20	802.11n HT40 / ac VHT40 / ax HE40		
Channel	Frequency(MHz)	Channel	Frequency(MHz)	
36	5180	38	5190	
40	5200	46	5230	
44	5220	54	5270	
48	5240	62	5310	
52	5260	102	5510	
56	5280	110	5550	
60	5300	118	5590	
64	5320	126	5630	
100	5500	134	5670	
104	5520	142	5710	
108	5540	151	5755	
112	5560	159	5795	
116	5580	802.11ac VHT80 / ax HE80		
120	5600	42	5210	
124	5620	58	5290	
128	5640	106	5530	
132	5660	122	5610	
136	5680	138	5690	
140	5700	155	5775	
144	5720			
149	5745			
153	5765			
157	5785			
161	5805			
165	5825			

1.1.7 Test Tool and Duty Cycle

Test Tool	QSPR, v5.0-00170			
	Mode	Duty Cycle (%)	Duty Factor (dB)	
	11a	94.90%	0.23	
Duty Cycle and Duty Factor	ax (HE20)	89.69%	0.47	
	ax (HE40)	86.44%	0.63	
	ax (HE80)	91.63%	0.38	

Report No.: FR9D0202AN Page: 9 of 174

1.1.8 Power Index of Test Tool

For Frequency band 5150-5250 MHz				
Modulation Mode	Test Frequency (MHz)	Power Index		
11a	5180	19.5		
11a	5200	23		
11a	5240	23.5		
ax (HE20)	5180	14.5		
ax (HE20)	5200	21		
ax (HE20)	5240	22		
ax (HE40)	5190	14.5		
ax (HE40)	5230	21.5		
ax (HE80)	5210	13.5		

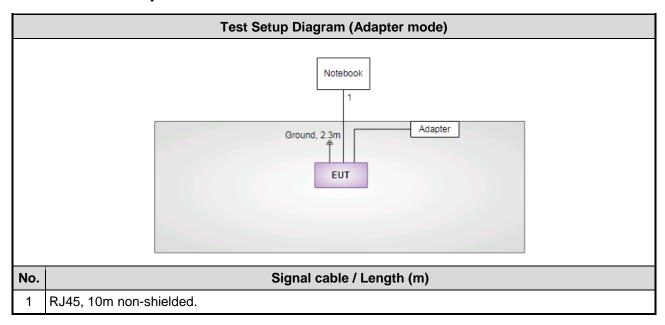
For Frequency band 5250~5350 MHz				
Modulation Mode	Test Frequency (MHz)	Power Index		
11a	5260	20		
11a	5300	20		
11a	5320	20		
ax (HE20)	5260	20		
ax (HE20)	5300	20		
ax (HE20)	5320	16.5		
ax (HE40)	5270	21.5		
ax (HE40)	5310	15.5		
ax (HE80)	5290	15		

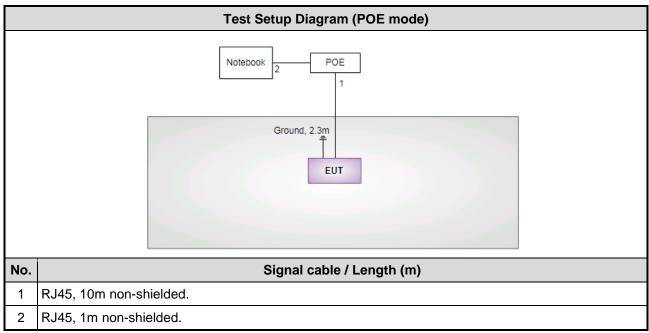
For Frequency band 5470~5725 MHz					
Modulation Mode Test Frequency (MHz) Pow					
11a	5500	19			
11a	5580	19			
11a	5700	19			
ax (HE20)	5500	14.5			
ax (HE20)	5580	19			
ax (HE20)	5700	14			
ax (HE40)	5510	13.5			
ax (HE40)	5590	21.5			
ax (HE40)	5670	15			
ax (HE80)	5530	16			
ax (HE80)	5610	19.5			

Channel that extends across the 5.725 GHz boundary

For Frequency band 5470~5725 MHz					
Modulation Mode Test Frequency (MHz) Power Index					
11a	5720MHz	19			
ax (HE20)	5720MHz	19			
ax (HE40)	5710MHz	21.5			
ax (HE80)	5690MHz	21.5			

For Frequency band 5725~5850 MHz						
Modulation Mode	Modulation Mode Test Frequency (MHz)					
11a	5745	24				
11a	5785	24				
11a	5825	24				
ax (HE20)	5745	24				
ax (HE20)	5785	24				
ax (HE20)	5825	24				
ax (HE40)	5755	24				
ax (HE40)	5795	24				
ax (HE80)	5775	21				


Page: 11 of 174



1.2 Local Support Equipment List

	Support Equipment List					
No.	Equipment	Brand	Model	FCC ID	Remarks	
1	Notebook	DELL	Latitude E5470	DoC		
2	POE Switch	ZYXEL	XS1930-12HP		Provided by applicant.	
3	Ground Cable	ICC	GC-2.3m			
4	RJ45	ICC	RJ45-10m			

1.3 Test Setup Chart

Report No.: FR9D0202AN Report Version: Rev. 02 Page: 12 of 174

The Equipment List 1.4

Test Item	Conducted Emission	Conducted Emission					
Test Site	Conduction room 1 / (CO01-WS)					
Tested Date	Jan. 06, 2020						
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until		
Receiver	R&S	ESR3	101657	Jan. 08, 2019	Jan. 07, 2020		
LISN	R&S	ENV216	101579	Mar. 08, 2019	Mar. 07, 2020		
RF Cable-CON	Woken	CFD200-NL	CFD200-NL-001	Oct. 22, 2019	Oct. 21, 2020		
Measurement Software	AUDIX e3 6.120210k NA NA						
Note: Calibration Interval of instruments listed above is one year.							

Test Item	Radiated Emission						
Test Site	966 chamber 3 / (03C	966 chamber 3 / (03CH03-WS)					
Tested Date	Dec. 23, 2019 ~ Jan. 14, 2020						
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until		
Spectrum Analyzer	R&S	FSV40	101498	Dec. 17, 2019	Dec. 16, 2020		
Receiver	R&S	ESR3	101658	Dec. 12, 2019	Dec. 11, 2020		
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-685	Apr. 17, 2019	Apr. 16, 2020		
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1096	Dec. 12, 2019	Dec. 11, 2020		
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	Nov. 15, 2019	Nov. 14, 2020		
Loop Antenna	R&S	HFH2-Z2	100330	Nov. 13, 2019	Nov. 12, 2020		
Loop Antenna Cable	KOAX KABEL	101354-BW	101354-BW	Oct. 07, 2019	Oct. 06, 2020		
Preamplifier	EMC	EMC02325	980187	Aug. 14, 2019	Aug. 13, 2020		
Preamplifier	Agilent	83017A	MY53270014	Aug. 07, 2019	Aug. 06, 2020		
Preamplifier	EMC	EMC184045B	980192	Aug. 01, 2019	Jul. 31, 2020		
RF cable-3M	HUBER+SUHNER	SUCOFLEX104	MY22620/4	Sep. 27, 2019	Sep. 26, 2020		
RF cable-8M	EMC	EMC104-SM-SM-80 00	181107	Sep. 27, 2019	Sep. 26, 2020		
RF cable-1M	HUBER+SUHNER	SUCOFLEX104	MY22624/4	Sep. 27, 2019	Sep. 26, 2020		
LF cable-0.8M	EMC	EMC8D-NM-NM-800	EMC8D-NM-NM-800 -001	Sep. 27, 2019	Sep. 26, 2020		
LF cable-3M	EMC	EMC8D-NM-NM-300 0	131103	Sep. 27, 2019	Sep. 26, 2020		
LF cable-13M	EMC	EMC8D-NM-NM-130 00	131104	Sep. 27, 2019	Sep. 26, 2020		
Measurement Software	AUDIX	e3	6.120210g	NA	NA		
Note: Calibration Inter	val of instruments liste	d above is one year.					

Report No.: FR9D0202AN Report Version: Rev. 02

Page: 13 of 174

Test Item	RF Conducted	RF Conducted					
Test Site	(TH01-WS)						
Tested Date	Jan. 06, 2020						
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until		
Spectrum Analyzer	R&S	FSV40	101063	Apr. 17, 2019	Apr. 16, 2020		
Power Meter	Anritsu	ML2495A	1241002	Oct. 23, 2019	Oct. 22, 2020		
Power Sensor	Anritsu	MA2411B	1207366	Oct. 23, 2019	Oct. 22, 2020		
AC POWER SOURCE	APC	AFC-500W	F312060012	Dec. 02, 2019	Dec. 01, 2020		
Measurement Software	Sporton	SENSE-15247_DTS	V5.9	NA	NA		
Note: Calibration Interval of instruments listed above is one year.							

1.5 Testing Applied Standards

According to the specification of EUT, the EUT must comply with following standards and KDB documents.

47 CFR FCC Part 15.407

ANSI C63.10-2013

FCC KDB 789033 D02 General UNII Test Procedures New Rules

FCC KDB 662911 D01 Multiple Transmitter Output v02r01

FCC KDB 412172 D01 Determining ERP and EIRP v01r01

1.6 Deviation from Test Standard and Measurement Procedure

None

Report No.: FR9D0202AN

Page: 14 of 174

1.7 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty					
Parameters Uncertaint					
Bandwidth	±34.130 Hz				
Conducted power	±0.808 dB				
Frequency error	±1x10 ⁻⁹				
Power density	±0.583 dB				
Conducted emission	±2.715 dB				
AC conducted emission	±2.92 dB				
Radiated emission ≤ 1GHz	±3.96 dB				
Radiated emission > 1GHz	±4.51 dB				
Time	±0.1%				
Temperature	±0.4 °C				

Page: 15 of 174

2 Test Configuration

2.1 Testing Condition

Test Item	Test Site	Ambient Condition	Tested By
AC Conduction	CO01-WS	23°C / 69%	Akun Chung
Radiated Emissions	03CH03-WS	21-22°C / 66-67%	Roger Lu Akun Chung
RF Conducted	TH01-WS	22°C / 63%	Brad Wu

FCC Designation No.: TW0009FCC site registration No.: 207696

➤ ISED#: 10807A

➤ CAB identifier: TW2732

Report No.: FR9D0202AN Page: 16 of 174

2.2 The Worst Test Modes and Channel Details

Frequency band 5150~5250 MHz / 5250~5350 MHz / 5470~5725 MHz						
Test item	Modulation Mode	Test Frequency (MHz)	Data Rate (Mbps) / MCS	Mode	Test Configuration	
Conducted Emissions	11a	5240	6 Mbps	TX	1, 2	
Radiated Emissions ≤1GHz	11a	5240	6 Mbps	TX	1, 2	
	11a	5180 / 5200 / 5240 / 5260 / 5300 / 5320 / 5500 / 5580 / 5700 / 5720	6 Mbps	TX		
RF Output Power	ax (HE20)	5180 / 5200 / 5240 / 5260 / 5300 / 5320 / 5500 / 5580 / 5700 / 5720	MCS 0	TX	1	
	ax (HE40)	5190 / 5230/ 5270 / 5310 / 5510/ 5590 / 5670 / 5710	MCS 0	TX		
	ax (HE80)	5210 / 5290 / 5530 / 5610 / 5690	MCS 0	TX		
	ax (HE20)	5180 / 5200 / 5240 / 5260 / 5300 / 5320 / 5500 / 5580 / 5700 / 5720	MCS 0	TX		
RF Output Power	ax (HE40)	5190 / 5230/ 5270 / 5310 / 5510/ 5590 / 5670 / 5710	MCS 0	TX	3	
	ax (HE80)	5210 / 5290 / 5530 / 5610 / 5690	MCS 0	TX		
	11a	5180 / 5200 / 5240 / 5260 / 5300 / 5320 / 5500 / 5580 / 5700 / 5720	6 Mbps	TX		
Radiated Emissions >1GHz Emission Bandwidth Peak Power Spectral Density	ax (HE20)	5180 / 5200 / 5240 / 5260 / 5300 / 5320 / 5500 / 5580 / 5700 / 5720	MCS 0	TX	1	
	ax (HE40)	5190 / 5230/ 5270 / 5310 / 5510 / 5590 / 5670 / 5710	MCS 0	TX		
	ax (HE80)	5210 / 5290 / 5530 / 5610 / 5690	MCS 0	TX		
Frequency Stability	Un-modulation	5320		TX	1	

NOTE:

- 1. The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement X, Y, and Z-plane. The **Z-plane** results were found as the worst case and were shown in this report.
- 2. The EUT had been tested by following test configurations.
 - 1) Configuration 1: Adapter mode, Non-Beamforming
 - 2) Configuration 2: POE mode, Non-Beamforming
 - 3) Configuration 3: Adapter mode, Beamforming

Report No.: FR9D0202AN

Report Version: Rev. 02

Frequency band 5725-5850 MHz					
Test item	Modulation Mode	Test Frequency (MHz)	Data Rate (Mbps) / MCS	Mode	Test Configuration
Conducted Emissions	ax (HE40)	5795	MCS 0	TX	1, 2
Radiated Emissions ≤1GHz	ax (HE40)	5795	MCS 0	TX	1, 2
	11a	5745 / 5785 / 5825	6 Mbps		
RF Output Power	ax (HE20)	5745 / 5785 / 5825	MCS 0	TV	4
Kr Output Fower	ax (HE40)	5755 / 5795	MCS 0	TX	1
	ax (HE80)	5775	MCS 0		
	ax (HE20)	5745 / 5785 / 5825	MCS 0		
RF Output Power	ax (HE40)	5755 / 5795	MCS 0	TX	3
	ax (HE80)	5775	MCS 0		
Radiated Emissions >1GHz	11a	5745 / 5785 / 5825	6 Mbps		
Emission Bandwidth	ax (HE20)	5745 / 5785 / 5825	MCS 0	TX	
6dB bandwidth	ax (HE40)	5755 / 5795	MCS 0		1
Peak Power Spectral Density	ax (HE80)	5775	MCS 0		
Frequency Stability	Un-modulation	5785		TX	1

NOTE:

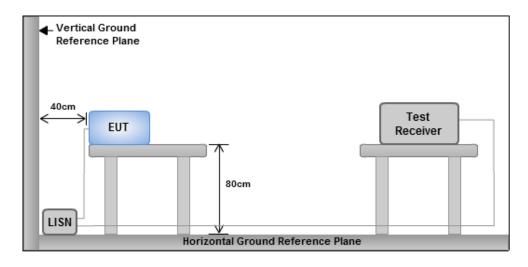
- 1. The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement X, Y, and Z-plane. The **Z-plane** results were found as the worst case and were shown in this report.
- 2. The EUT had been tested by following test configurations.
 - 1) Configuration 1: Adapter mode, Non-Beamforming
 - 2) Configuration 2: POE mode, Non-Beamforming
 - 3) Configuration 3: Adapter mode, Beamforming

The previous version of the test report has been cancelled and replaced by new version.

Page: 18 of 174

3 Transmitter Test Results

3.1 Conducted Emissions

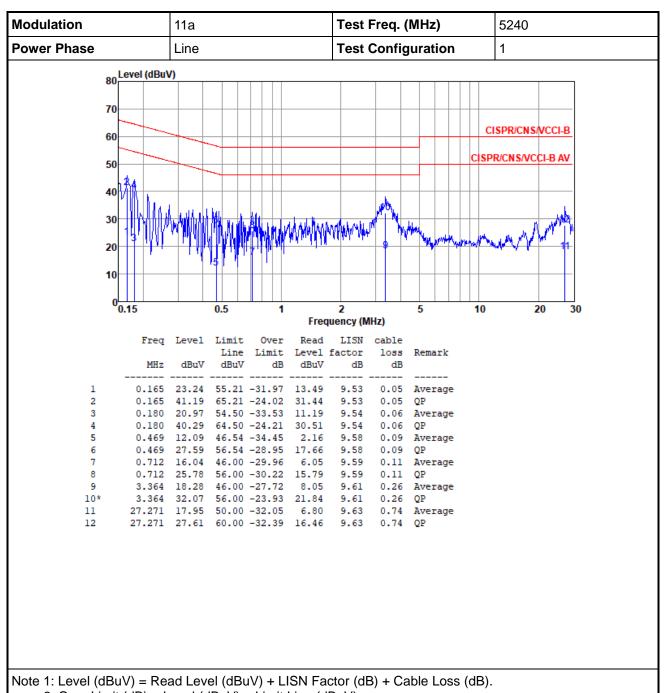

3.1.1 Limit of Conducted Emissions

Conducted Emissions Limit						
Frequency Emission (MHz) Quasi-Peak Average						
0.15-0.5	66 - 56 *	56 - 46 *				
0.5-5	56	46				
5-30 60 50						
Note 1: * Decreases with the logarithm of the frequency.						

3.1.2 Test Procedures

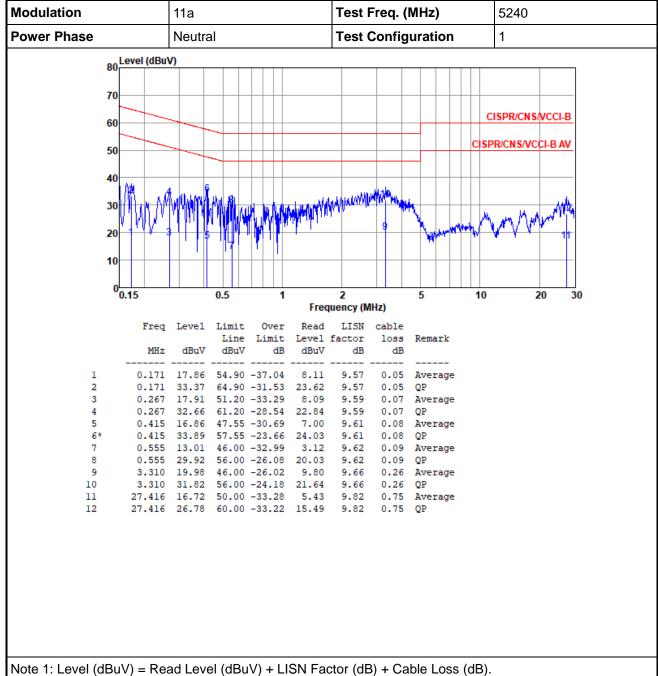
- 1. The device is placed on a test table, raised 80 cm above the reference ground plane. The vertical conducting plane is located 40 cm to the rear of the device.
- 2. The device is connected to line impedance stabilization network (LISN) and other accessories are connected to other LISN. Measured levels of AC power line conducted emission are across the 50 Ω LISN port.
- 3. AC conducted emission measurements is made over frequency range from 150 kHz to 30 MHz.
- 4. This measurement was performed with AC 120V/60Hz

3.1.3 Test Setup

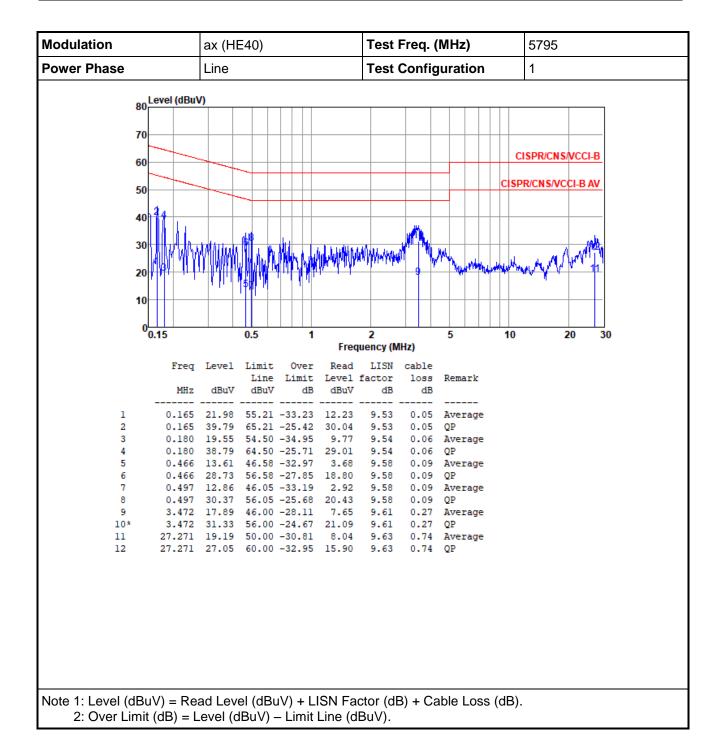

Note: 1. Support units were connected to second LISN.

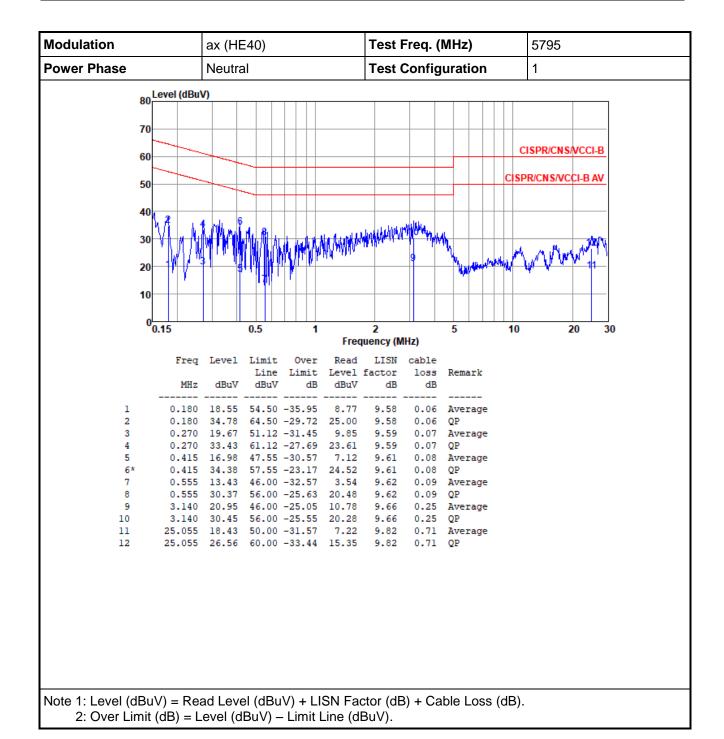
Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

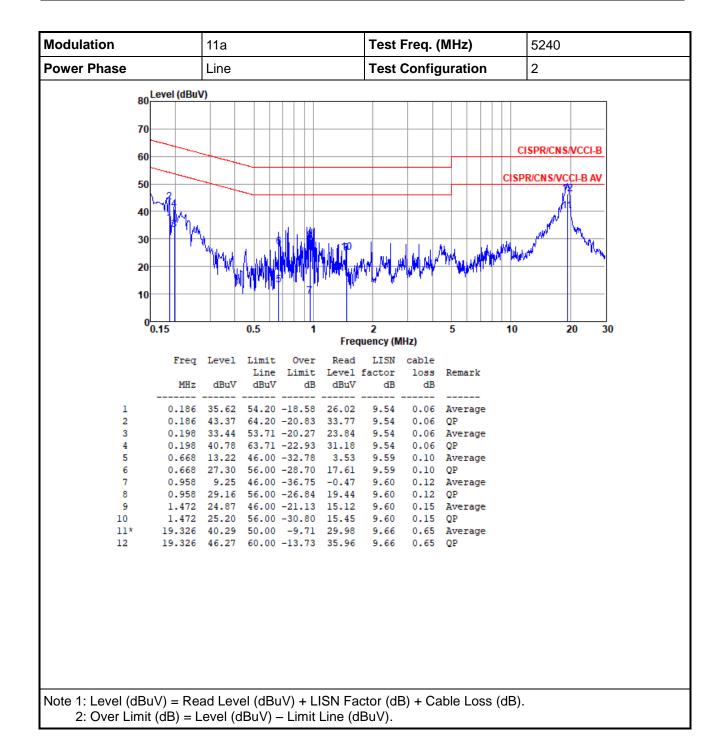
Report No.: FR9D0202AN Page: 19 of 174



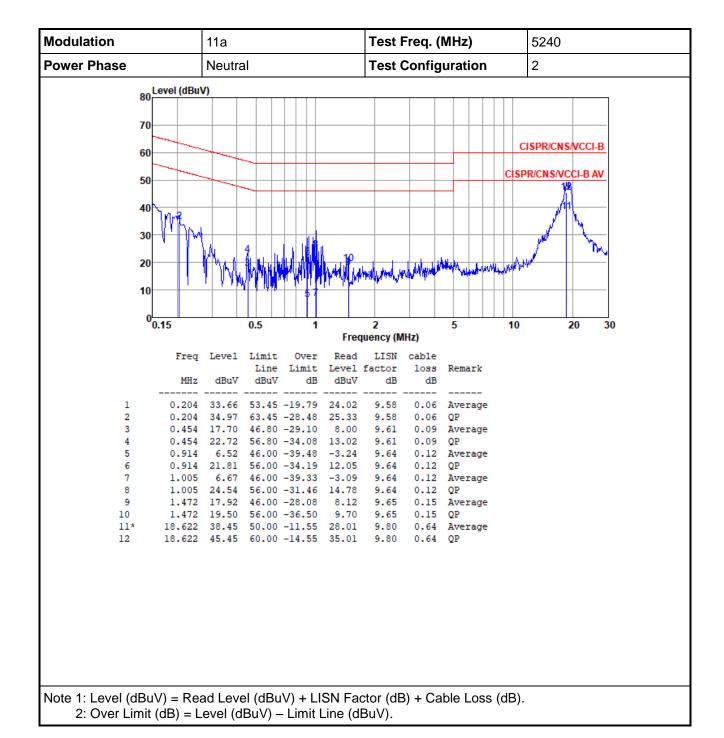
3.1.4 Test Result of Conducted Emissions


2: Over Limit (dB) = Level (dBuV) – Limit Line (dBuV).

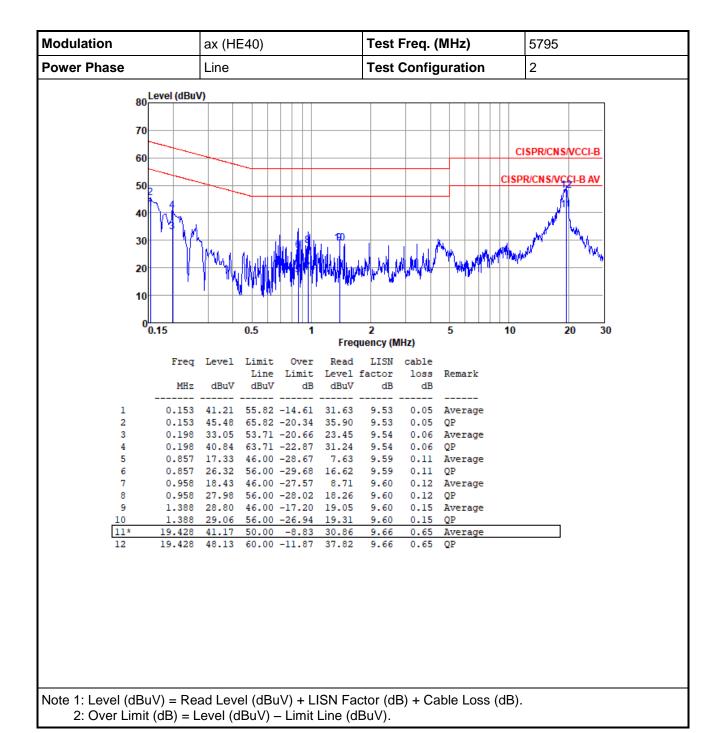

2: Over Limit (dB) = Level (dBuV) - Limit Line (dBuV).

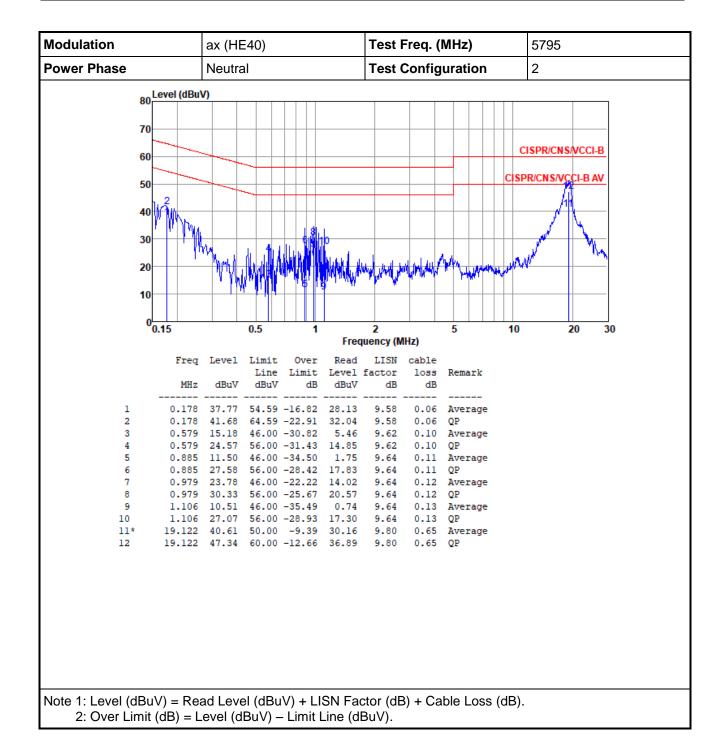

Report No.: FR9D0202AN Page: 22 of 174

Report No.: FR9D0202AN Page: 23 of 174



Report No.: FR9D0202AN Page: 24 of 174


Report Version: Rev. 02


Report No.: FR9D0202AN Page: 25 of 174

Report No.: FR9D0202AN Page: 26 of 174

Report No.: FR9D0202AN Page: 27 of 174

3.2 Emission Bandwidth

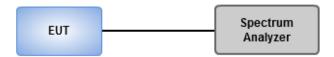
3.2.1 Limit of Emission Bandwidth

Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

3.2.2 Test Procedures

26dB Bandwidth

- 1. Set RBW = approximately 1% of the emission bandwidth.
- 2. Set the VBW > RBW, Detector = Peak.
- Trace mode = max hold.
- 4. Measure the maximum width of the emission that is 26 dB down from the peak of the emission.


Occupied Bandwidth

- 1. Set RBW = 1 % to 5 % of the OBW.
- 2. Set VBW ≥ 3 RBW.
- 3. Sample detection and single sweep mode shall be used.
- 4. Use the 99 % power bandwidth function of the instrument.

6dB Bandwidth

- 1. Set RBW = 100kHz, VBW = 300kHz.
- 2. Detector = Peak, Trace mode = max hold.
- 3. Allow the trace to stabilize.
- 4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

3.2.3 Test Setup

Report No.: FR9D0202AN Page: 28 of 174

3.2.4 Test Result of Emission Bandwidth

Summary

Mode	Max-N dB	Max-OBW	ITU-Code	Min-N dB	Min-OBW
	(Hz)	(Hz)		(Hz)	(Hz)
5.15-5.25GHz	-	-	-	-	-
802.11a_Nss1,(6Mbps)_2TX	23.696M	16.498M	16M5D1D	19.13M	16.353M
802.11ax HEW20_Nss1,(MCS0)_2TX	40.145M	18.958M	19M0D1D	22.174M	18.886M
802.11ax HEW40_Nss1,(MCS0)_2TX	73.333M	37.916M	37M9D1D	43.623M	37.916M
802.11ax HEW80_Nss1,(MCS0)_2TX	82.319M	76.99M	77M0D1D	81.739M	76.99M
5.25-5.35GHz	-	-	-	-	-
802.11a_Nss1,(6Mbps)_2TX	19.348M	16.425M	16M4D1D	18.841M	16.353M
802.11ax HEW20_Nss1,(MCS0)_2TX	28.116M	18.958M	19M0D1D	22.681M	18.813M
802.11ax HEW40_Nss1,(MCS0)_2TX	73.043M	37.916M	37M9D1D	44.928M	37.771M
802.11ax HEW80_Nss1,(MCS0)_2TX	82.319M	76.99M	77M0D1D	82.319M	76.99M
5.47-5.725GHz	-	-	-	-	-
802.11a_Nss1,(6Mbps)_2TX	19.348M	16.425M	16M4D1D	14.348M	13.155M
802.11ax HEW20_Nss1,(MCS0)_2TX	27.754M	18.958M	19M0D1D	16.87M	14.414M
802.11ax HEW40_Nss1,(MCS0)_2TX	76.232M	37.916M	37M9D1D	37.029M	33.734M
802.11ax HEW80_Nss1,(MCS0)_2TX	82.319M	77.279M	77M3D1D	75.217M	73.155M
5.725-5.85GHz	-	-	-	-	-
802.11a_Nss1,(6Mbps)_2TX	16.377M	16.932M	16M9D1D	3.13M	3.415M
802.11ax HEW20_Nss1,(MCS0)_2TX	18.913M	22.576M	22M6D1D	4.406M	4.457M
802.11ax HEW40_Nss1,(MCS0)_2TX	37.971M	43.994M	44M0D1D	4M	4.226M
802.11ax HEW80_Nss1,(MCS0)_2TX	77.101M	77.569M	77M6D1D	4M	4.631M

Max-N dB = Maximum 6dB down bandwidth for 5.725-5.85GHz band / Maximum 26dB down bandwidth for other band; Max-OBW = Maximum 99% occupied bandwidth;
Min-N dB = Minimum 6dB down bandwidth for 5.725-5.85GHz band / Maximum 26dB down bandwidth for other band;

Min-OBW = Minimum 99% occupied bandwidth;

Report Version: Rev. 02

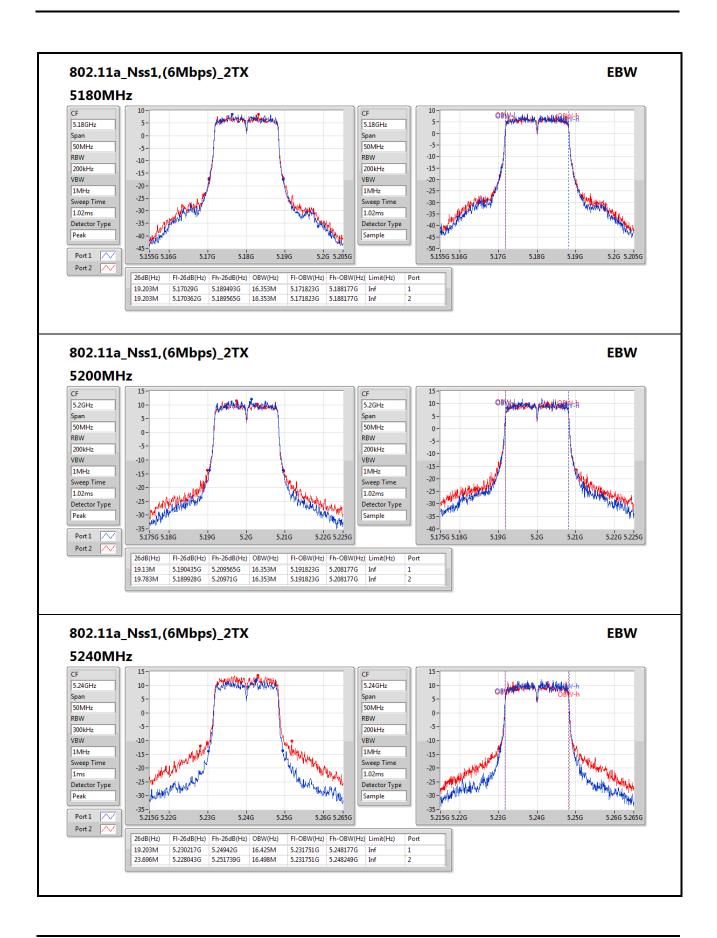
Report No.: FR9D0202AN Page: 29 of 174

Result

Mode	Result	Limit	Port 1- N dB	Port 1- OBW	Port 2- N dB	Port 2- OBW
		(Hz)	(Hz)	(Hz)	(Hz)	(Hz)
802.11a_Nss1,(6Mbps)_2TX	-	-	-	-	-	-
5180MHz	Pass	Inf	19.203M	16.353M	19.203M	16.353M
5200MHz	Pass	Inf	19.13M	16.353M	19.783M	16.353M
5240MHz	Pass	Inf	19.203M	16.425M	23.696M	16.498M
5260MHz	Pass	Inf	18.986M	16.425M	19.058M	16.353M
5300MHz	Pass	Inf	18.986M	16.353M	19.348M	16.353M
5320MHz	Pass	Inf	18.841M	16.353M	19.275M	16.353M
5500MHz	Pass	Inf	18.841M	16.353M	18.768M	16.353M
5580MHz	Pass	Inf	18.913M	16.353M	19.203M	16.425M
5700MHz	Pass	Inf	19.13M	16.353M	19.348M	16.353M
5720MHz Straddle 5.47-5.725GHz	Pass	Inf	14.609M	13.155M	14.348M	13.198M
5720MHz Straddle 5.725-5.85GHz	Pass	500k	3.13M	3.415M	3.13M	3.415M
5745MHz	Pass	500k	16.304M	16.425M	15.942M	16.932M
5785MHz	Pass	500k	16.304M	16.425M	15.435M	16.932M
5825MHz	Pass	500k	16.377M	16.425M	16.014M	16.715M
802.11ax HEW20_Nss1,(MCS0)_2TX	-	-	-	-	-	-
5180MHz	Pass	Inf	22.174M	18.958M	22.826M	18.886M
5200MHz	Pass	Inf	22.536M	18.886M	25.58M	18.886M
5240MHz	Pass	Inf	24.638M	18.958M	40.145M	18.958M
5260MHz	Pass	Inf	22.681M	18.886M	27.464M	18.958M
5300MHz	Pass	Inf	22.754M	18.886M	28.116M	18.958M
5320MHz	Pass	Inf	22.754M	18.813M	23.043M	18.958M
5500MHz	Pass	Inf	22.899M	18.813M	22.319M	18.886M
5580MHz	Pass	Inf	22.681M	18.958M	27.754M	18.886M
5700MHz	Pass	Inf	22.609M	18.886M	21.812M	18.958M
5720MHz Straddle 5.47-5.725GHz	Pass	Inf	16.87M	14.414M	19.217M	14.501M
5720MHz Straddle 5.725-5.85GHz	Pass	500k	4.406M	4.457M	4.406M	4.573M
5745MHz	Pass	500k	18.913M	18.958M	18.551M	22.431M
5785MHz	Pass	500k	18.913M	18.958M	18.841M	22.576M
5825MHz	Pass	500k	18.913M	19.03M	18.478M	21.056M
802.11ax HEW40_Nss1,(MCS0)_2TX	-	-	-	-	-	-
5190MHz	Pass	Inf	44.638M	37.916M	43.623M	37.916M
5230MHz	Pass	Inf	46.522M	37.916M	73.333M	37.916M
5270MHz	Pass	Inf	47.971M	37.916M	73.043M	37.916M
5310MHz	Pass	Inf	44.928M	37.771M	45.362M	37.916M
5510MHz	Pass	Inf	43.333M	37.916M	44.058M	37.627M
5590MHz	Pass	Inf	44.348M	37.916M	76.232M	37.916M

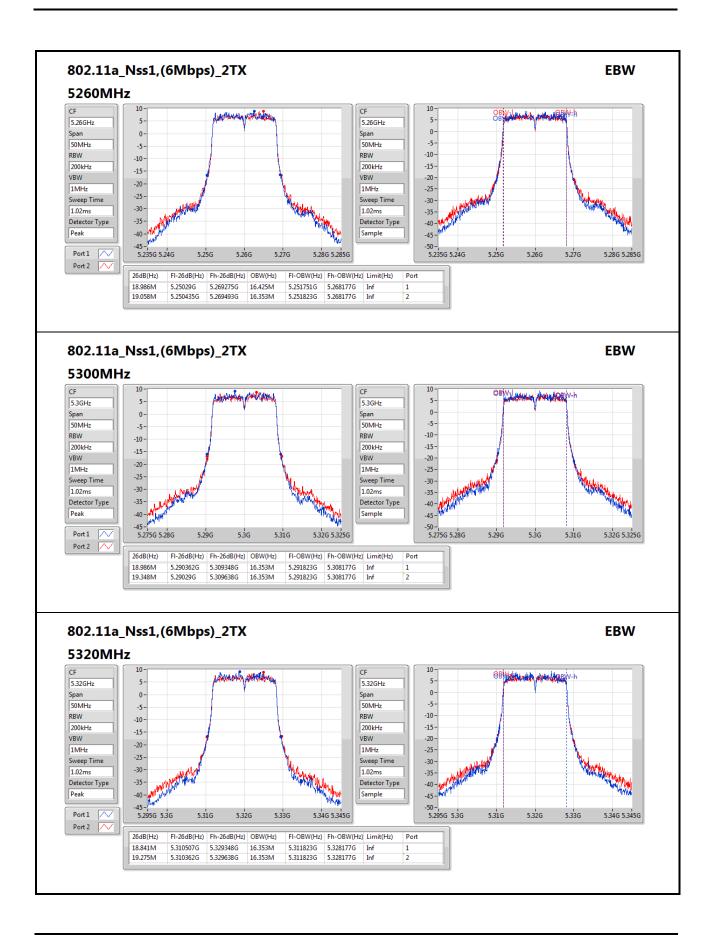
Report No.: FR9D0202AN

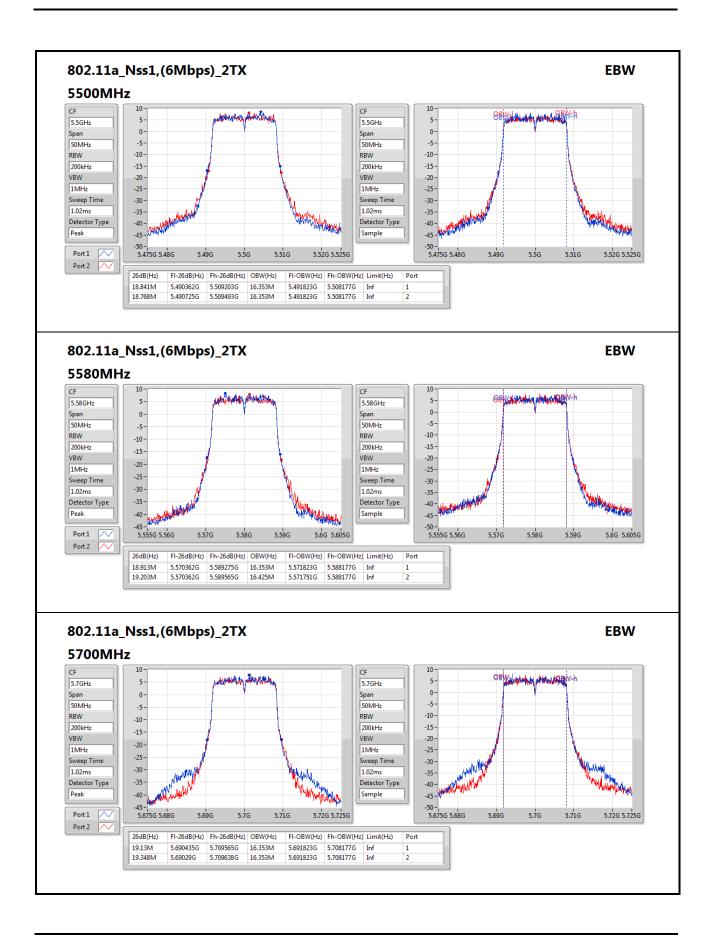
Report Version: Rev. 02



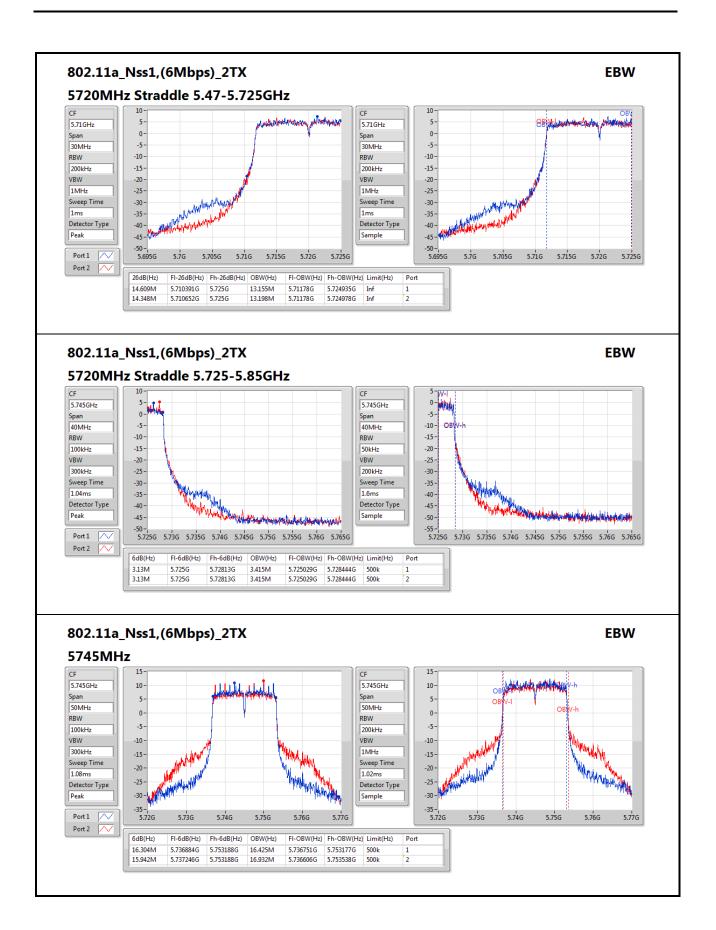
Mode	Result	Limit	Port 1- N dB	Port 1- OBW	Port 2- N dB	Port 2- OBW
		(Hz)	(Hz)	(Hz)	(Hz)	(Hz)
5670MHz	Pass	Inf	43.768M	37.916M	44.058M	37.771M
5710MHz Straddle 5.47-5.725GHz	Pass	Inf	37.029M	33.734M	54.478M	34.038M
5710MHz Straddle 5.725-5.85GHz	Pass	500k	4M	4.226M	4M	8.973M
5755MHz	Pass	500k	37.971M	37.916M	37.826M	38.495M
5795MHz	Pass	500k	37.971M	37.916M	37.826M	43.994M
802.11ax HEW80_Nss1,(MCS0)_2TX	-	-	-	-	-	-
5210MHz	Pass	Inf	82.319M	76.99M	81.739M	76.99M
5290MHz	Pass	Inf	82.319M	76.99M	82.319M	76.99M
5530MHz	Pass	Inf	82.029M	76.99M	82.319M	76.99M
5610MHz	Pass	Inf	82.319M	76.99M	82.029M	77.279M
5690MHz Straddle 5.47-5.725GHz	Pass	Inf	75.217M	73.155M	75.87M	73.372M
5690MHz Straddle 5.725-5.85GHz	Pass	500k	4.116M	4.631M	4M	10.709M
5775MHz	Pass	500k	77.101M	76.99M	75.072M	77.569M

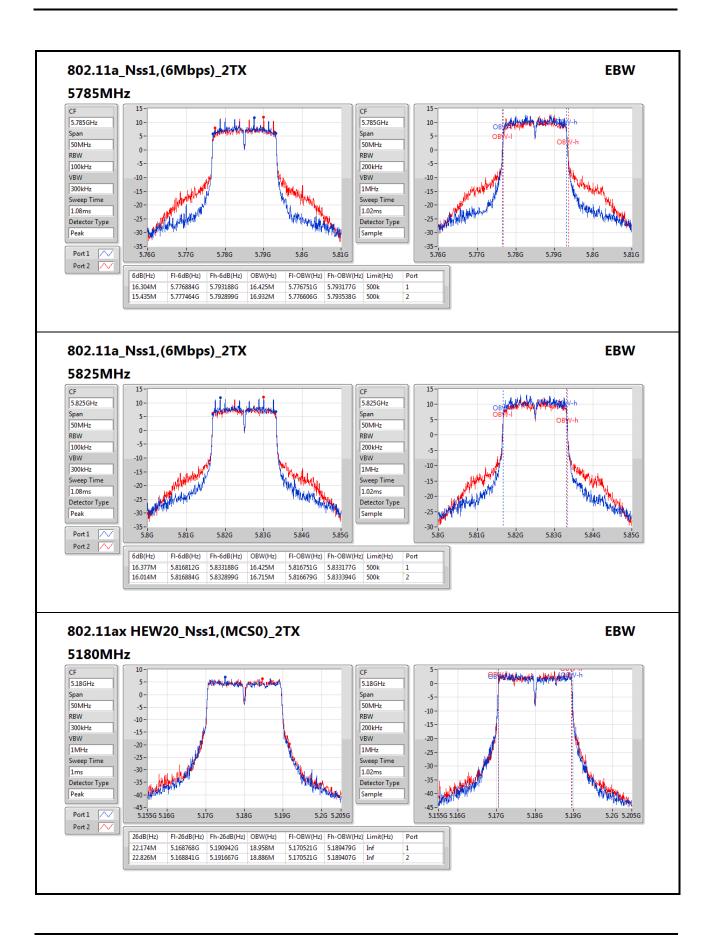
Port X-N dB = Port X 6dB down bandwidth for 5.725-5.85GHz band / 26dB down bandwidth for other band Port X-OBW = Port X 99% occupied bandwidth;

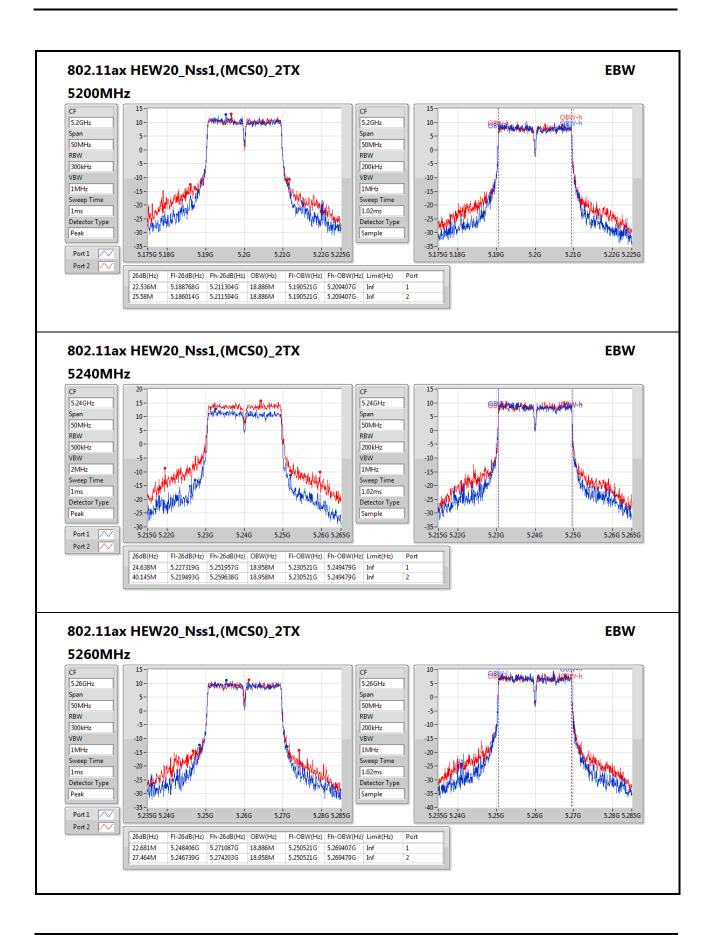

Report No.: FR9D0202AN Report Version: Rev. 02



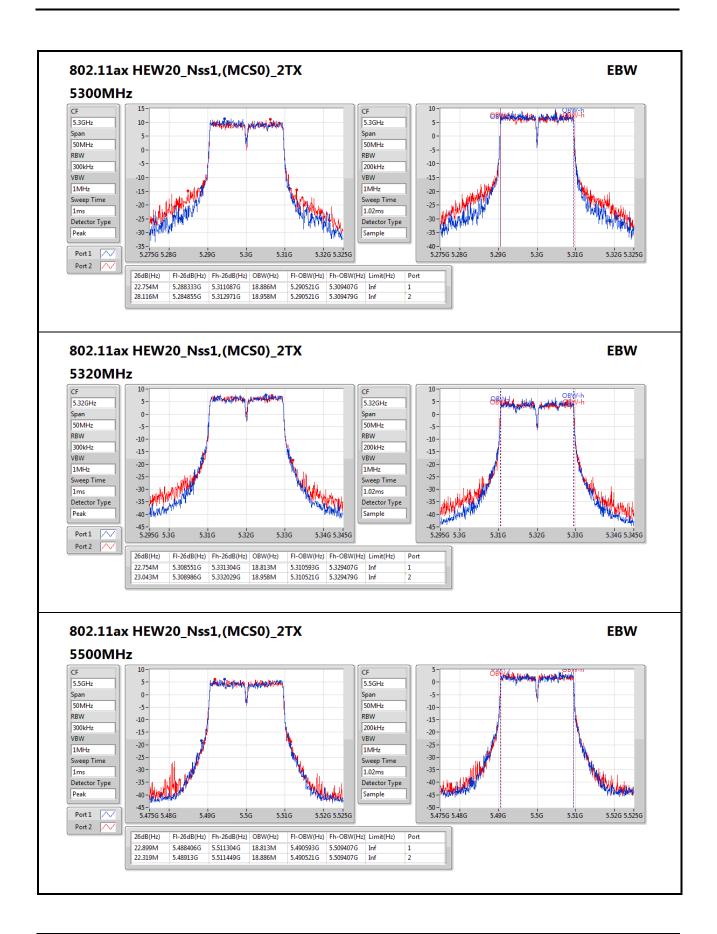
:: FR9D0202AN Page : 32 of 174





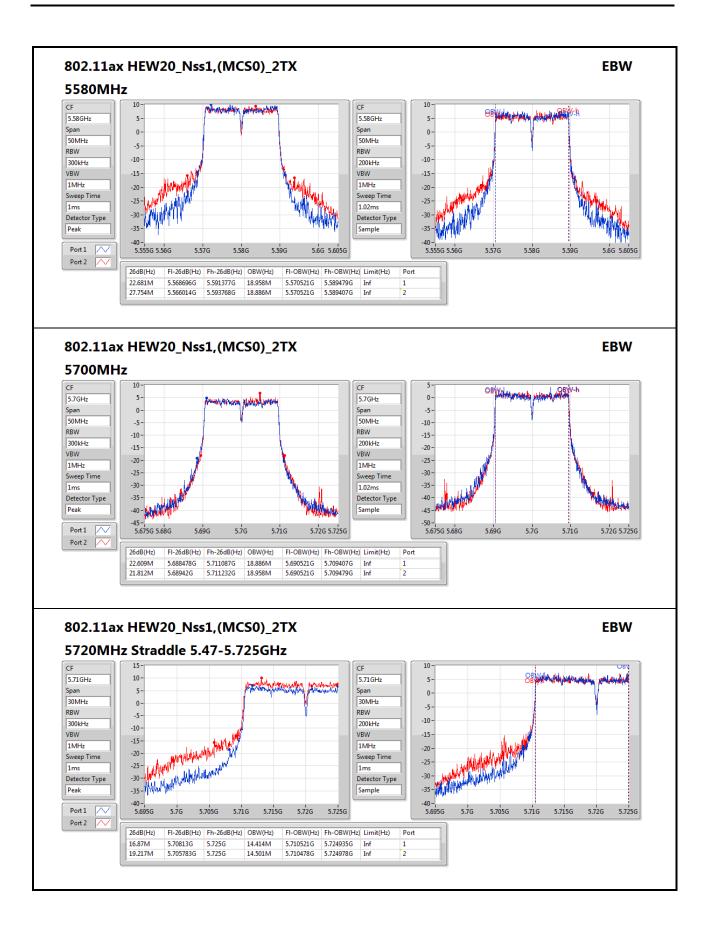

Page: 35 of 174

Report No.: FR9D0202AN
Report Version: Rev. 02

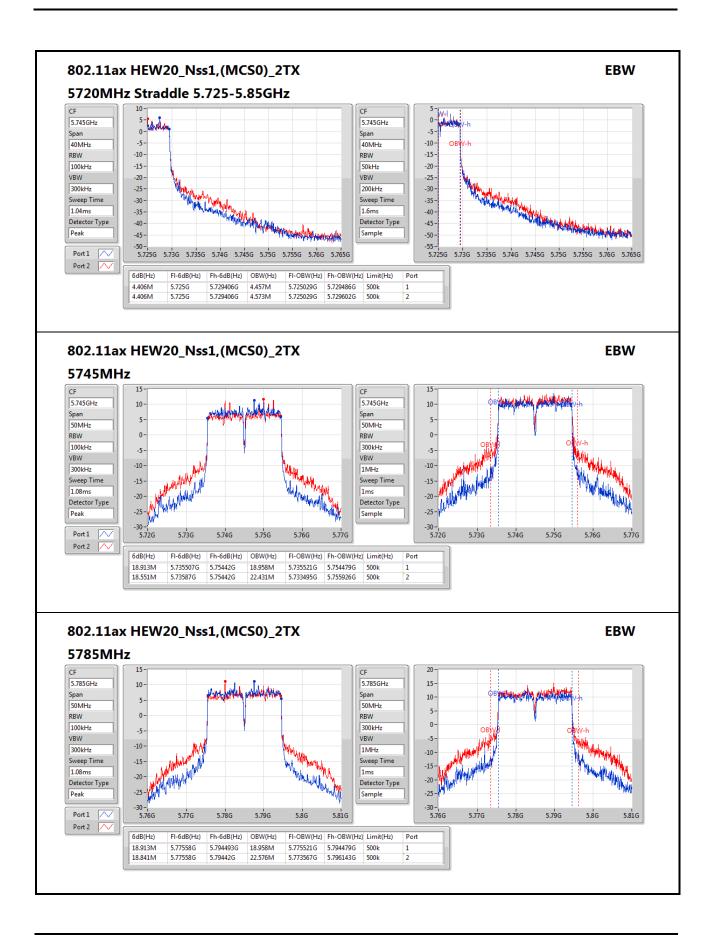


Report No.: FR9D0202AN

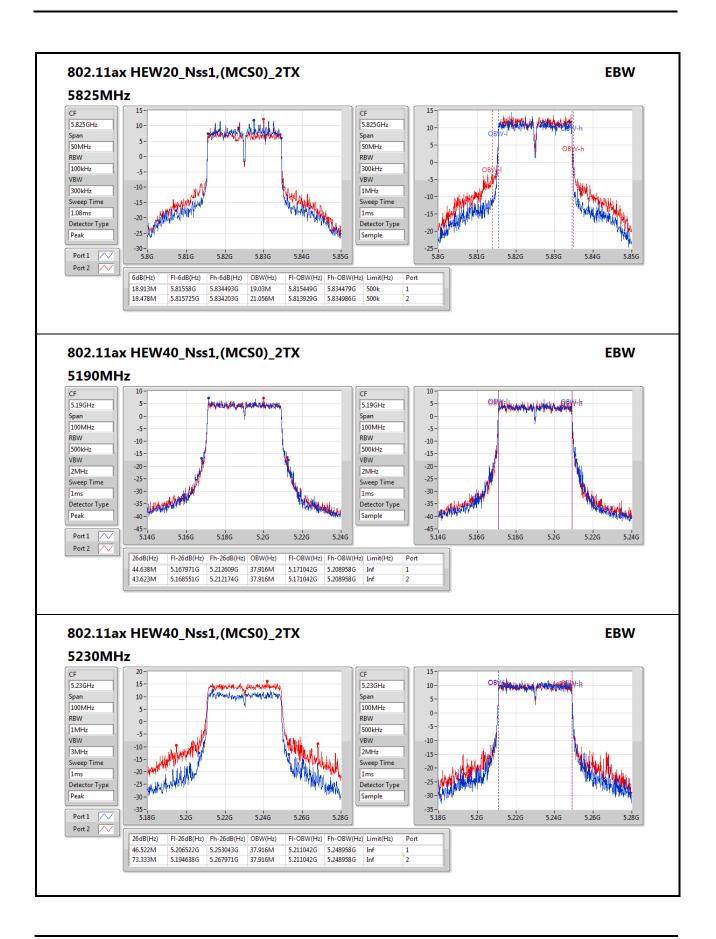
Report Version: Rev. 02
The previous version of the test report has been cancelled and replaced by new version.

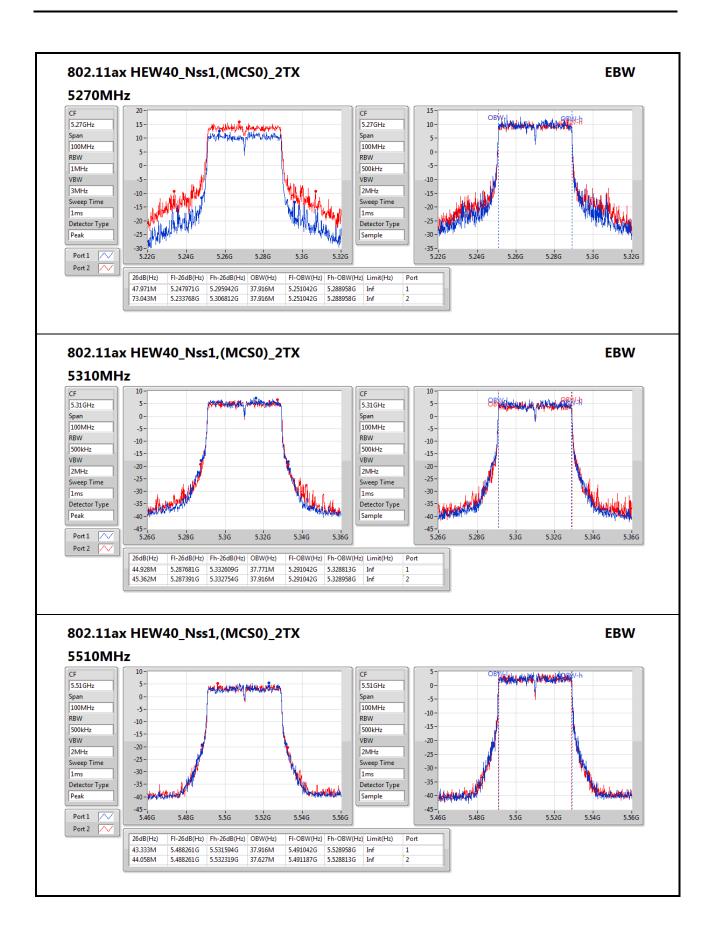


Page: 38 of 174

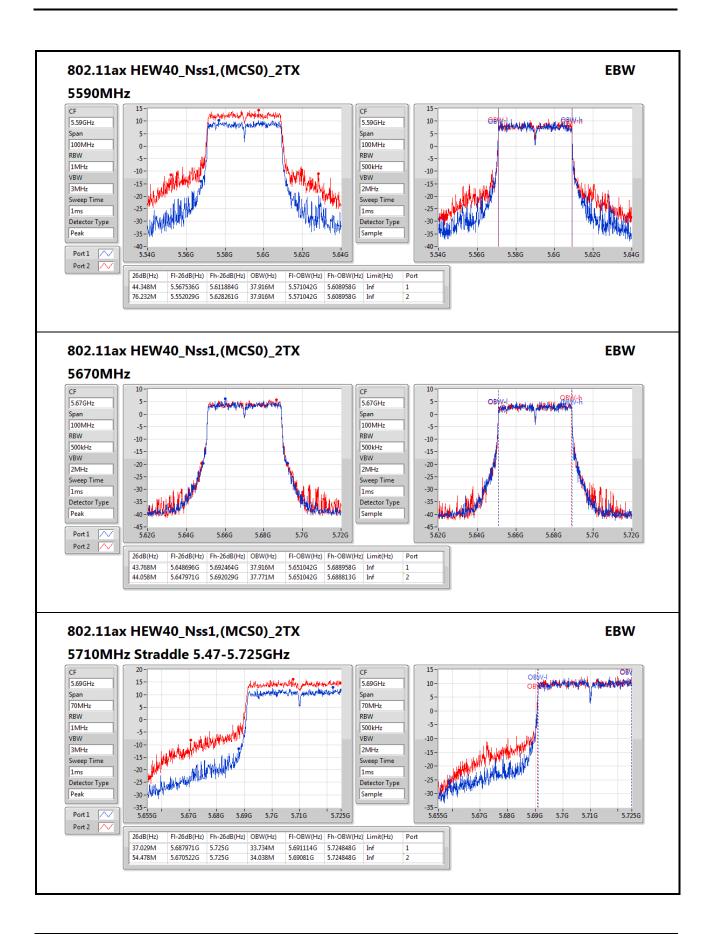

Report No.: FR9D0202AN

Report Version: Rev. 02



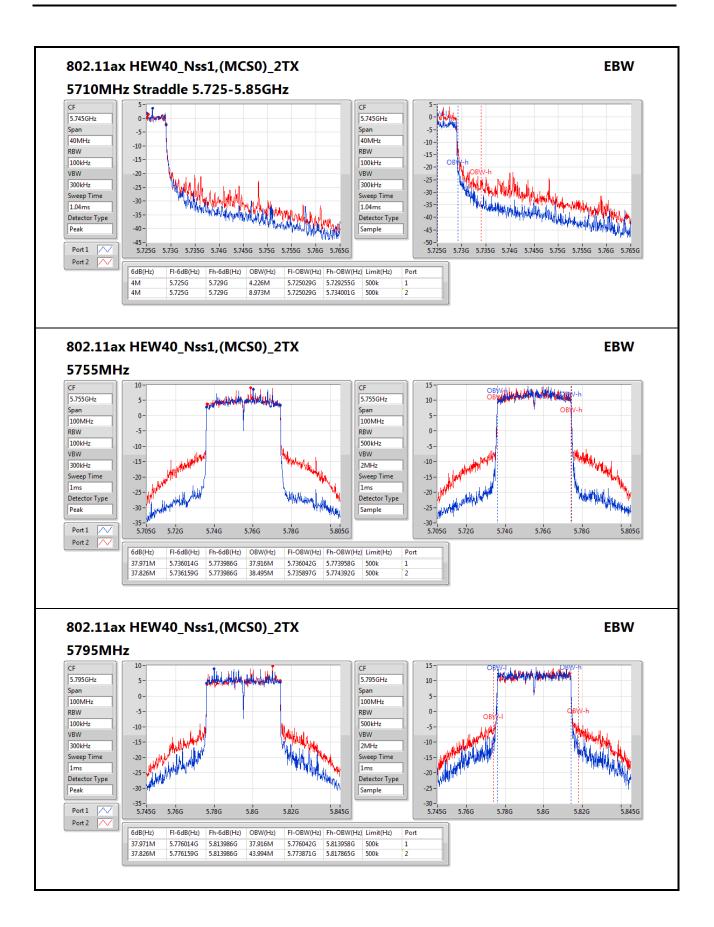


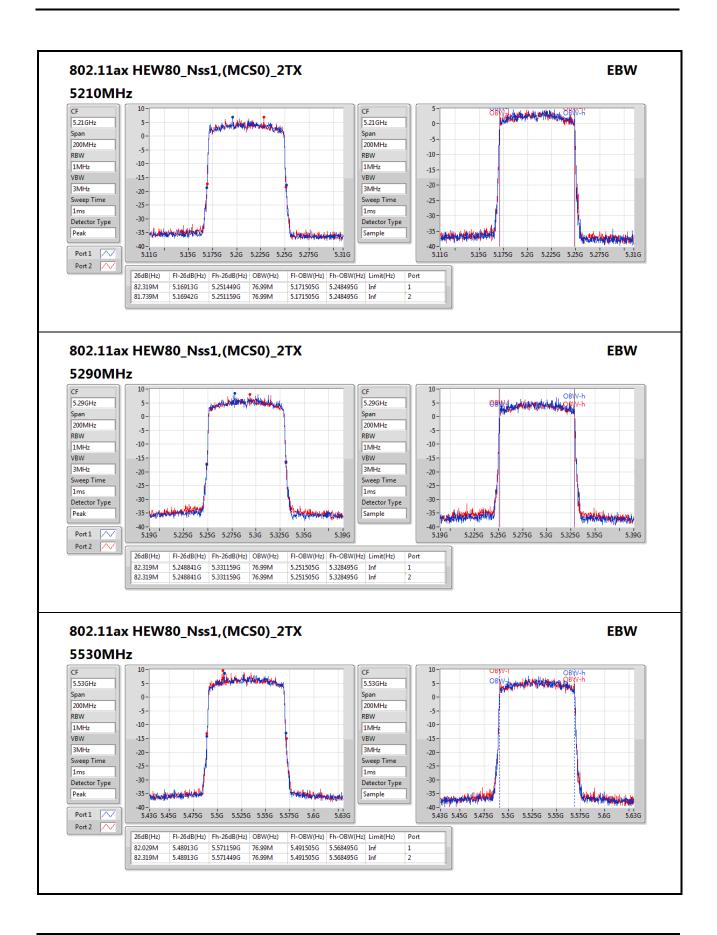
Page: 41 of 174



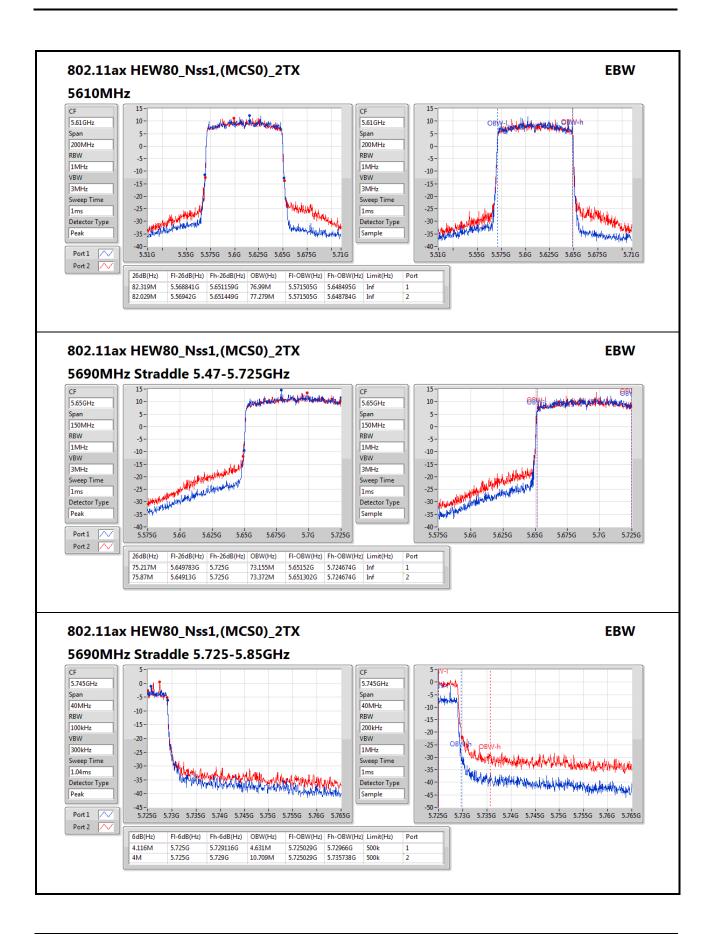
Page: 42 of 174

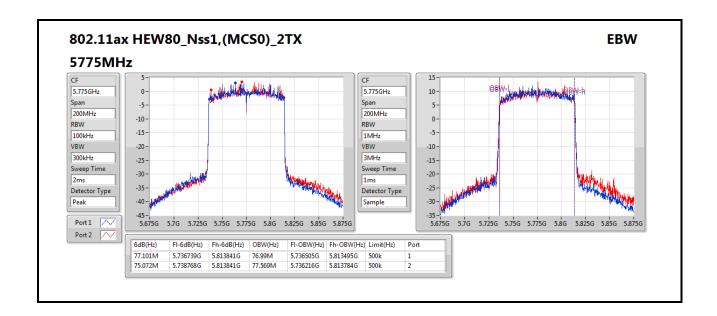
Report No.: FR9D0202AN
Report Version: Rev. 02




Page: 43 of 174

Report No.: FR9D0202AN
Report Version: Rev. 02





Report No.: FR9D0202AN

Page: 46 of 174

Report Version: Rev. 02

3.3 RF Output Power

3.3.1 Limit of RF Output Power

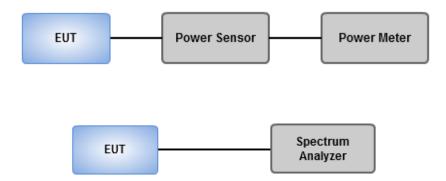
	Frequency band 5150-5250 MHz								
Оре	erating Mode	Limit							
		Conducted Power: 1 W The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm)							
\boxtimes	Indoor access point	Conducted Power: 1 W							
	Fixed point-to-point access points	Conducted Power: 1 W							
	Client devices	Conducted Power: 250 mW							

Free	quency Band (MHz)	Limit					
\boxtimes	5250 ~ 5350	Conducted Power: 250mW or 11dBm+10 log B					
\boxtimes	5470 ~ 5725	Conducted Power: 250mW or 11dBm+10 log B					
\boxtimes	5725 ~ 5850	Conducted Power: 1 W					
Note	Note: "B" is the 26dB emission bandwidth in MHz.						

3.3.2 Test Procedures

Method PM-G (Measurement using a gated RF average power meter)

Measurements is performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.


Spectrum analyzer (For channel that extends across the 5.725 GHz boundary)

- Set RBW = 1MHz, VBW = 3MHz, Sweep time = Auto, Detector = RMS.
- 2. Trace average at least 100 traces in power averaging mode.
- 3. Compute power by integrating the spectrum across the 26 dB EBW.
- 4. Add 10 log(1/X, X:duty cycle) if duty cycle is <98%).

Report Version: Rev. 02

3.3.3 Test Setup

3.3.4 Test Result of Maximum Conducted Output Power

Non-beamforming mode

Summary

Mode	Total Power	Total Power	EIRP	EIRP
	(dBm)	(W)	(dBm)	(W)
5.15-5.25GHz	-	-	-	-
802.11a_Nss1,(6Mbps)_2TX	25.67	0.36898	30.17	1.03992
802.11ax HEW20_Nss1,(MCS0)_2TX	24.29	0.26853	28.79	0.75683
802.11ax HEW40_Nss1,(MCS0)_2TX	23.97	0.24946	28.47	0.70307
802.11ax HEW80_Nss1,(MCS0)_2TX	16.73	0.04710	21.23	0.13274
5.25-5.35GHz	-	-	-	-
802.11a_Nss1,(6Mbps)_2TX	22.44	0.17539	26.94	0.49431
802.11ax HEW20_Nss1,(MCS0)_2TX	22.49	0.17742	26.99	0.50003
802.11ax HEW40_Nss1,(MCS0)_2TX	23.79	0.23933	28.29	0.67453
802.11ax HEW80_Nss1,(MCS0)_2TX	18.02	0.06339	22.52	0.17865
5.47-5.725GHz	-	-	-	-
802.11a_Nss1,(6Mbps)_2TX	21.46	0.13996	26.66	0.46345
802.11ax HEW20_Nss1,(MCS0)_2TX	21.29	0.13459	26.49	0.44566
802.11ax HEW40_Nss1,(MCS0)_2TX	23.77	0.23823	28.97	0.78886
802.11ax HEW80_Nss1,(MCS0)_2TX	23.03	0.20091	28.23	0.66527
5.725-5.85GHz	-	-	-	-
802.11a_Nss1,(6Mbps)_2TX	25.90	0.38905	31.40	1.38038
802.11ax HEW20_Nss1,(MCS0)_2TX	25.78	0.37844	31.28	1.34276
802.11ax HEW40_Nss1,(MCS0)_2TX	26.02	0.39994	31.52	1.41906
802.11ax HEW80_Nss1,(MCS0)_2TX	23.32	0.21478	28.82	0.76208

Page: 50 of 174

Report No.: FR9D0202AN

Report Version: Rev. 02

Result

Result Mode	Result	DG	Port 1	Port 2	Total	Power	EIRP	EIRP
Wiode	Nesun				Power	Limit		Limit
		(dBi)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)
802.11a_Nss1,(6Mbps)_2TX	-	-	-	-	-	-	-	-
5180MHz	Pass	4.50	19.11	19.35	22.24	30.00	26.74	36.00
5200MHz	Pass	4.50	22.28	22.13	25.22	30.00	29.72	36.00
5240MHz	Pass	4.50	22.84	22.47	25.67	30.00	30.17	36.00
5260MHz	Pass	4.50	19.47	19.38	22.44	23.78	26.94	29.78
5300MHz	Pass	4.50	19.38	19.21	22.31	23.78	26.81	29.78
5320MHz	Pass	4.50	19.37	19.20	22.30	23.75	26.80	29.75
5500MHz	Pass	5.20	18.47	18.43	21.46	23.73	26.66	29.73
5580MHz	Pass	5.20	18.36	18.18	21.28	23.77	26.48	29.77
5700MHz	Pass	5.20	18.15	18.13	21.15	23.82	26.35	29.82
5720MHz Straddle 5.47-5.725GHz	Pass	5.20	17.45	17.64	20.56	22.57	25.76	28.57
5720MHz Straddle 5.725-5.85GHz	Pass	5.50	10.38	10.59	13.50	30.00	19.00	36.00
5745MHz	Pass	5.50	23.08	22.05	25.61	30.00	31.11	36.00
5785MHz	Pass	5.50	23.11	22.16	25.67	30.00	31.17	36.00
5825MHz	Pass	5.50	23.46	22.23	25.90	30.00	31.40	36.00
802.11ax HEW20_Nss1,(MCS0)_2TX	-	-	-	-	-	-	-	-
5180MHz	Pass	4.50	14.76	14.67	17.73	30.00	22.23	36.00
5200MHz	Pass	4.50	20.44	20.37	23.42	30.00	27.92	36.00
5240MHz	Pass	4.50	21.43	21.13	24.29	30.00	28.79	36.00
5260MHz	Pass	4.50	19.52	19.43	22.49	24.00	26.99	30.00
5300MHz	Pass	4.50	19.47	19.26	22.38	24.00	26.88	30.00
5320MHz	Pass	4.50	16.25	16.26	19.27	24.00	23.77	30.00
5500MHz	Pass	5.20	14.31	14.63	17.48	24.00	22.68	30.00
5580MHz	Pass	5.20	18.42	18.14	21.29	24.00	26.49	30.00
5700MHz	Pass	5.20	13.27	13.64	16.47	24.00	21.67	30.00
5720MHz Straddle 5.47-5.725GHz	Pass	5.20	17.19	17.15	20.18	23.27	25.38	29.27
5720MHz Straddle 5.725-5.85GHz	Pass	5.50	11.45	11.56	14.52	30.00	20.02	36.00
5745MHz	Pass	5.50	23.01	22.03	25.56	30.00	31.06	36.00
5785MHz	Pass	5.50	23.02	22.23	25.65	30.00	31.15	36.00
5825MHz	Pass	5.50	23.32	22.13	25.78	30.00	31.28	36.00
802.11ax HEW40_Nss1,(MCS0)_2TX	-	-	-	-	-	-	-	-
5190MHz	Pass	4.50	14.67	14.68	17.69	30.00	22.19	36.00
5230MHz	Pass	4.50	20.99	20.93	23.97	30.00	28.47	36.00
5270MHz	Pass	4.50	20.93	20.63	23.79	24.00	28.29	30.00
5310MHz	Pass	4.50	15.54	15.46	18.51	24.00	23.01	30.00

Page : 51 of 174

Report No.: FR9D0202AN Report Version: Rev. 02

Mode	Result	DG	Port 1	Port 2	Total Power	Power Limit	EIRP	EIRP Limit
		(dBi)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)
5510MHz	Pass	5.20	13.39	13.67	16.54	24.00	21.74	30.00
5590MHz	Pass	5.20	20.89	20.63	23.77	24.00	28.97	30.00
5670MHz	Pass	5.20	14.34	14.29	17.33	24.00	22.53	30.00
5710MHz Straddle 5.47-5.725GHz	Pass	5.20	19.75	19.89	22.83	24.00	28.03	30.00
5710MHz Straddle 5.725-5.85GHz	Pass	5.50	11.42	11.62	14.53	30.00	20.03	36.00
5755MHz	Pass	5.50	22.99	22.56	25.79	30.00	31.29	36.00
5795MHz	Pass	5.50	23.25	22.76	26.02	30.00	31.52	36.00
802.11ax HEW80_Nss1,(MCS0)_2TX	-	-	-	-	-	-	-	-
5210MHz	Pass	4.50	13.71	13.73	16.73	30.00	21.23	36.00
5290MHz	Pass	4.50	15.02	14.99	18.02	24.00	22.52	30.00
5530MHz	Pass	5.20	15.83	15.77	18.81	24.00	24.01	30.00
5610MHz	Pass	5.20	18.55	18.71	21.64	24.00	26.84	30.00
5690MHz Straddle 5.47-5.725GHz	Pass	5.20	20.05	19.99	23.03	24.00	28.23	30.00
5690MHz Straddle 5.725-5.85GHz	Pass	5.50	7.19	7.15	10.18	30.00	15.68	36.00
5775MHz	Pass	5.50	20.59	20.02	23.32	30.00	28.82	36.00

DG = Directional Gain;**Port X** = Port X output power

Page: 52 of 174

Beamforming mode Summary

Mode	Total Power	Total Power	EIRP	EIRP
	(dBm)	(W)	(dBm)	(W)
5.15-5.25GHz	-	-	-	-
802.11ax HEW20-BF_Nss1,(MCS0)_2TX	21.28	0.13428	28.79	0.75683
802.11ax HEW40-BF_Nss1,(MCS0)_2TX	20.96	0.12474	28.47	0.70307
802.11ax HEW80-BF_Nss1,(MCS0)_2TX	13.72	0.02355	21.23	0.13274
5.25-5.35GHz	-	-	-	-
802.11ax HEW20-BF_Nss1,(MCS0)_2TX	19.48	0.08872	26.99	0.50003
802.11ax HEW40-BF_Nss1,(MCS0)_2TX	20.78	0.11967	28.29	0.67453
802.11ax HEW80-BF_Nss1,(MCS0)_2TX	15.01	0.03170	22.52	0.17865
5.47-5.725GHz	-	-	-	-
802.11ax HEW20-BF_Nss1,(MCS0)_2TX	18.28	0.06730	26.49	0.44566
802.11ax HEW40-BF_Nss1,(MCS0)_2TX	20.76	0.11912	28.97	0.78886
802.11ax HEW80-BF_Nss1,(MCS0)_2TX	20.02	0.10046	28.23	0.66527
5.725-5.85GHz	-	-	-	-
802.11ax HEW20-BF_Nss1,(MCS0)_2TX	22.77	0.18923	31.28	1.34276
802.11ax HEW40-BF_Nss1,(MCS0)_2TX	23.01	0.19999	31.52	1.41906
802.11ax HEW80-BF_Nss1,(MCS0)_2TX	20.31	0.10740	28.82	0.76208

Report No.: FR9D0202AN

Page: 53 of 174

Report Version: Rev. 02

Result

Mode	Result	DG	Port 1	Port 2	Total Power	Power Limit	EIRP	EIRP Limit
		(dBi)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)
802.11ax HEW20-BF_Nss1,(MCS0)_2TX	-	-	-	-	-	-	-	-
5180MHz	Pass	7.51	11.75	11.66	14.72	28.49	22.23	36.00
5200MHz	Pass	7.51	17.43	17.36	20.41	28.49	27.92	36.00
5240MHz	Pass	7.51	18.42	18.12	21.28	28.49	28.79	36.00
5260MHz	Pass	7.51	16.51	16.42	19.48	22.49	26.99	30.00
5300MHz	Pass	7.51	16.46	16.25	19.37	22.49	26.88	30.00
5320MHz	Pass	7.51	13.24	13.25	16.26	22.49	23.77	30.00
5500MHz	Pass	8.21	11.3	11.62	14.47	21.79	22.68	30.00
5580MHz	Pass	8.21	15.41	15.13	18.28	21.79	26.49	30.00
5700MHz	Pass	8.21	10.26	10.63	13.46	21.79	21.67	30.00
5720MHz Straddle 5.47-5.725GHz	Pass	8.21	14.18	14.14	17.17	21.06	25.38	29.27
5720MHz Straddle 5.725-5.85GHz	Pass	8.51	8.44	8.55	11.51	27.49	20.02	36.00
5745MHz	Pass	8.51	20	19.02	22.55	27.49	31.06	36.00
5785MHz	Pass	8.51	20.01	19.22	22.64	27.49	31.15	36.00
5825MHz	Pass	8.51	20.31	19.12	22.77	27.49	31.28	36.00
802.11ax HEW40-BF_Nss1,(MCS0)_2TX	-	-	-	-	-	-	-	-
5190MHz	Pass	7.51	11.66	11.67	14.68	28.49	22.19	36.00
5230MHz	Pass	7.51	17.98	17.92	20.96	28.49	28.47	36.00
5270MHz	Pass	7.51	17.92	17.62	20.78	22.49	28.29	30.00
5310MHz	Pass	7.51	12.53	12.45	15.50	22.49	23.01	30.00
5510MHz	Pass	8.21	10.38	10.66	13.53	21.79	21.74	30.00
5550MHz	Pass	8.21	17.88	17.62	20.76	21.79	28.97	30.00
5670MHz	Pass	8.21	11.33	11.28	14.32	21.79	22.53	30.00
5710MHz Straddle 5.47-5.725GHz	Pass	8.21	16.74	16.88	19.82	21.79	28.03	30.00
5710MHz Straddle 5.725-5.85GHz	Pass	8.51	8.41	8.61	11.52	27.49	20.03	36.00
5755MHz	Pass	8.51	19.98	19.55	22.78	27.49	31.29	36.00
5795MHz	Pass	8.51	20.24	19.75	23.01	27.49	31.52	36.00

Port X = Port X output power

DG = Directional Gain

For 5.15 ~ 5.25 GHz

Directional gain = 4.5 + 10*log(2/1)=7.51 dBi > 6 dBi , Power limit shall be reduced to 30 dBm - (7.51 dBi - 6 dBi) = 28.49 dBm For $5.25 \sim 5.35 GHz$

Directional gain = 4.5 + 10*log(2/1)=7.51 dBi > 6 dBi , Power limit shall be reduced to 24 dBm – (7.51 dBi – 6 dBi) = 22.49 dBm For $5.47 \sim 5.725$ GHz

Directional gain = 5.2 + 10*log(2/1)=8.21 dBi > 6 dBi , Power limit shall be reduced to 24 dBm – (8.21 dBi - 6 dBi) = 21.79 dBm For $5.725 \sim 5.85$ GHz

Directional gain = 5.5 + 10*log(2/1) = 8.51 dBi > 6 dBi, Power limit shall be reduced to 30 dBm - (8.51 dBi - 6 dBi) = 27.49 dBm

Report No.: FR9D0202AN Page: 54 of 174

Report Version: Rev. 02

Mode	Result	DG	Port 1	Port 2	Total Power	Power Limit	EIRP	EIRP Limit
		(dBi)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)
802.11ax HEW80-BF_Nss1,(MCS0)_2TX	-	-	1	ı	ı	ı	-	-
5210MHz	Pass	7.51	10.7	10.72	13.72	28.49	21.23	36.00
5290MHz	Pass	7.51	12.01	11.98	15.01	22.49	22.52	30.00
5530MHz	Pass	8.21	12.82	12.76	15.80	21.79	24.01	30.00
5610MHz	Pass	8.21	15.54	15.7	18.63	21.79	26.84	30.00
5690MHz Straddle 5.47-5.725GHz	Pass	8.21	17.04	16.98	20.02	21.79	28.23	30.00
5690MHz Straddle 5.725-5.85GHz	Pass	8.51	4.18	4.14	7.17	27.49	15.68	36.00
5775MHz	Pass	8.51	17.58	17.01	20.31	27.49	28.82	36.00

Port X = Port X output power

DG = Directional Gain

For 5.15 ~ 5.25 GHz

Directional gain = 4.5 + 10*log(2/1)=7.51 dBi > 6 dBi , Power limit shall be reduced to 30 dBm - (7.51 dBi - 6 dBi) = 28.49 dBm For $5.25 \sim 5.35$ GHz

Directional gain = 4.5 + 10*log(2/1)=7.51 dBi > 6 dBi , Power limit shall be reduced to 24 dBm – (7.51 dBi – 6 dBi) = 22.49 dBm For $5.47 \sim 5.725$ GHz

Directional gain = 5.2 + 10*log(2/1)=8.21 dBi > 6 dBi , Power limit shall be reduced to 24 dBm - (8.21 dBi - 6 dBi) = 21.79 dBm For $5.725 \sim 5.85$ GHz

Directional gain = 5.5 + 10*log(2/1)=8.51 dBi > 6 dBi , Power limit shall be reduced to 30 dBm - (8.51 dBi - 6 dBi) = 27.49 dBm

Report No.: FR9D0202AN Page: 55 of 174

Report Version: Rev. 02

3.4 Peak Power Spectral Density

3.4.1 Limit of Peak Power Spectral Density

	Frequency band 5150-5250 MHz						
Оре	erating Mode	Limit					
	Outdoor access point	17 dBm / MHz					
\boxtimes	Indoor access point	17 dBm / MHz					
	Fixed point-to-point access points	17 dBm / MHz					
	Client devices	11 dBm / MHz					

Free	quency Band (MHz)	Limit
\boxtimes	5250 ~ 5350	11 dBm / MHz
\boxtimes	5470 ~ 5725	11 dBm / MHz
\boxtimes	5725 ~ 5850	30 dBm /500 kHz

Report No.: FR9D0202AN Page: 56 of 174

Report Version: Rev. 02

3.4.2 Test Procedures

For 5150 ~ 5250 MHz / 5250 ~ 5350 MHz / 5470 ~ 5725 MHz

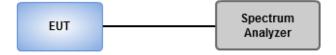
Duty cycle ≥ 98 %

- 1. Set RBW = 1 MHz, VBW = 3 MHz, Sweep time = auto, Detector = RMS.
- 2. Trace average 100 traces.
- 3. Use the peak marker function to determine the maximum amplitude level.

Duty cycle < 98 %

- 1. Set RBW = 1 MHz, VBW = 3 MHz, Detector = RMS.
- 2. Set sweep time ≥ 10 * (number of points in sweep) * (total on/off period of the transmitted signal).
- 3. Perform a single sweep.
- 4. Use the peak marker function to determine the maximum amplitude level.
- 5. Add 10 log(1/x), where x is the duty cycle.

For 5725 ~ 5850 MHz


Duty cycle ≥ 98 %

- 1. Set RBW = 500 kHz, VBW = 3 MHz, Sweep time = auto, Detector = RMS.
- Trace average 100 traces.
- 3. Use the peak marker function to determine the maximum amplitude level.

Duty cycle < 98 %

- 1. Set RBW = 500 kHz, VBW = 3 MHz, Detector = RMS.
- 2. Set sweep time ≥ 10 * (number of points in sweep) * (total on/off period of the transmitted signal).
- 3. Perform a single sweep.
- 4. Use the peak marker function to determine the maximum amplitude level.
- 5. Add 10 log(1/x), where x is the duty cycle.

3.4.3 Test Setup

Report No.: FR9D0202AN Page: 57 of 174

3.4.4 Test Result of Peak Power Spectral Density

Summary

Mode	PD	EIRP PD
	(dBm/RBW)	(dBm/RBW)
5.15-5.25GHz	-	-
802.11a_Nss1,(6Mbps)_2TX	12.33	19.84
802.11ax HEW20_Nss1,(MCS0)_2TX	10.04	17.55
802.11ax HEW40_Nss1,(MCS0)_2TX	7.33	14.84
802.11ax HEW80_Nss1,(MCS0)_2TX	-2.57	4.94
5.25-5.35GHz	-	-
802.11a_Nss1,(6Mbps)_2TX	9.34	16.85
802.11ax HEW20_Nss1,(MCS0)_2TX	9.33	16.84
802.11ax HEW40_Nss1,(MCS0)_2TX	8.19	15.70
802.11ax HEW80_Nss1,(MCS0)_2TX	-1.21	6.30
5.47-5.725GHz	-	-
802.11a_Nss1,(6Mbps)_2TX	8.43	16.64
802.11ax HEW20_Nss1,(MCS0)_2TX	8.31	16.52
802.11ax HEW40_Nss1,(MCS0)_2TX	8.03	16.24
802.11ax HEW80_Nss1,(MCS0)_2TX	4.98	13.19
5.725-5.85GHz	-	-
802.11a_Nss1,(6Mbps)_2TX	11.65	20.16
802.11ax HEW20_Nss1,(MCS0)_2TX	10.58	19.09
802.11ax HEW40_Nss1,(MCS0)_2TX	7.96	16.47
802.11ax HEW80_Nss1,(MCS0)_2TX	2.65	11.16

RBW = 500kHz for 5.725-5.85GHz band / 1MHz for other band;

Report No.: FR9D0202AN Report Version: Rev. 02

The previous version of the test report has been cancelled and replaced by new version.

Page: 58 of 174

Result

Mode	Resu It	DG	Port 1	Port 2	PD	PD Limit	EIRP PD	EIRP PD Limit
		(dBi)	(dBm/R BW)	(dBm/R BW)	(dBm/R BW)	(dBm/R BW)	(dBm/R BW)	(dBm/R BW)
802.11a_Nss1,(6Mbps)_2TX	-	-	-	-	-	-	-	-
5180MHz	Pass	7.51	6.07	6.08	8.96	15.49	16.47	23.00
5200MHz	Pass	7.51	9.27	9.02	12.05	15.49	19.56	23.00
5240MHz	Pass	7.51	9.62	9.11	12.33	15.49	19.84	23.00
5260MHz	Pass	7.51	6.60	6.19	9.34	9.49	16.85	17.00
5300MHz	Pass	7.51	6.48	6.06	9.27	9.49	16.78	17.00
5320MHz	Pass	7.51	6.57	6.15	9.24	9.49	16.75	17.00
5500MHz	Pass	8.21	5.57	5.23	8.35	8.79	16.56	17.00
5580MHz	Pass	8.21	5.70	5.24	8.43	8.79	16.64	17.00
5700MHz	Pass	8.21	5.05	4.98	8.02	8.79	16.23	17.00
5720MHz Straddle 5.47-5.725GHz	Pass	8.21	5.31	5.52	8.40	8.79	16.61	17.00
5720MHz Straddle 5.725-5.85GHz	Pass	8.51	2.59	2.69	5.65	27.49	14.16	36.00
5745MHz	Pass	8.51	8.46	7.72	11.09	27.49	19.60	36.00
5785MHz	Pass	8.51	8.55	8.09	11.31	27.49	19.82	36.00
5825MHz	Pass	8.51	8.96	8.33	11.65	27.49	20.16	36.00
802.11ax HEW20_Nss1,(MCS0)_2TX	-	-	-	-	-	-	-	-
5180MHz	Pass	7.51	1.06	1.03	4.03	15.49	11.54	23.00
5200MHz	Pass	7.51	6.95	6.73	9.79	15.49	17.30	23.00
5240MHz	Pass	7.51	7.41	6.74	10.04	15.49	17.55	23.00
5260MHz	Pass	7.51	6.59	6.21	9.33	9.49	16.84	17.00
5300MHz	Pass	7.51	6.49	6.06	9.20	9.49	16.71	17.00
5320MHz	Pass	7.51	2.90	2.53	5.63	9.49	13.14	17.00
5500MHz	Pass	8.21	0.98	0.83	3.87	8.79	12.08	17.00
5580MHz	Pass	8.21	5.59	5.14	8.31	8.79	16.52	17.00
5700MHz	Pass	8.21	-0.12	-0.15	2.83	8.79	11.04	17.00
5720MHz Straddle 5.47-5.725GHz	Pass	8.21	5.33	5.18	8.24	8.79	16.45	17.00
5720MHz Straddle 5.725-5.85GHz	Pass	8.51	2.24	2.30	5.27	27.49	13.78	36.00
5745MHz	Pass	8.51	7.63	6.92	10.29	27.49	18.80	36.00
5785MHz	Pass	8.51	7.65	7.25	10.44	27.49	18.95	36.00
5825MHz	Pass	8.51	7.98	7.19	10.58	27.49	19.09	36.00
802.11ax HEW40_Nss1,(MCS0)_2TX	-	-	-	-	-	-	-	-
5190MHz	Pass	7.51	-1.83	-1.95	1.06	15.49	8.57	23.00
5230MHz	Pass	7.51	4.57	4.20	7.33	15.49	14.84	23.00
5270MHz	Pass	7.51	5.63	4.90	8.19	9.49	15.70	17.00
5310MHz	Pass	7.51	-0.86	-1.38	1.82	9.49	9.33	17.00

Page: 59 of 174

Report No.: FR9D0202AN

Report Version: Rev. 02

Mode	Resu It	DG	Port 1	Port 2	PD	PD Limit	EIRP PD	EIRP PD Limit
		(dBi)	(dBm/R BW)	(dBm/R BW)	(dBm/R BW)	(dBm/R BW)	(dBm/R BW)	(dBm/R BW)
5510MHz	Pass	8.21	-2.80	-2.98	-0.01	8.79	8.20	17.00
5590MHz	Pass	8.21	5.33	4.85	8.03	8.79	16.24	17.00
5670MHz	Pass	8.21	-2.22	-2.29	0.70	8.79	8.91	17.00
5710MHz Straddle 5.47-5.725GHz	Pass	8.21	4.74	4.86	7.79	8.79	16.00	17.00
5710MHz Straddle 5.725-5.85GHz	Pass	8.51	2.57	2.66	5.60	27.49	14.11	36.00
5755MHz	Pass	8.51	4.75	4.64	7.71	27.49	16.22	36.00
5795MHz	Pass	8.51	4.93	5.12	7.96	27.49	16.47	36.00
802.11ax HEW80_Nss1,(MCS0)_2TX	-	-	-	-	-	-	-	-
5210MHz	Pass	7.51	-5.32	-5.62	-2.57	15.49	4.94	23.00
5290MHz	Pass	7.51	-3.94	-4.35	-1.21	9.49	6.30	17.00
5530MHz	Pass	8.21	-3.08	-3.43	-0.40	8.79	7.81	17.00
5610MHz	Pass	8.21	-0.17	-0.44	2.62	8.79	10.83	17.00
5690MHz Straddle 5.47-5.725GHz	Pass	8.21	2.09	1.89	4.98	8.79	13.19	17.00
5690MHz Straddle 5.725-5.85GHz	Pass	8.51	-1.80	-1.88	1.16	27.49	9.67	36.00
5775MHz	Pass	8.51	-0.31	-0.32	2.65	27.49	11.16	36.00

RBW = 500kHz for 5.725-5.85GHz band / 1MHz for other band;

PD = trace bin-by-bin of each transmits port summing can be performed maximum power density; **Port X** = Port Xpower density;

Page: 60 of 174

DG = Directional Gain

For 5.15 ~ 5.25 GHz

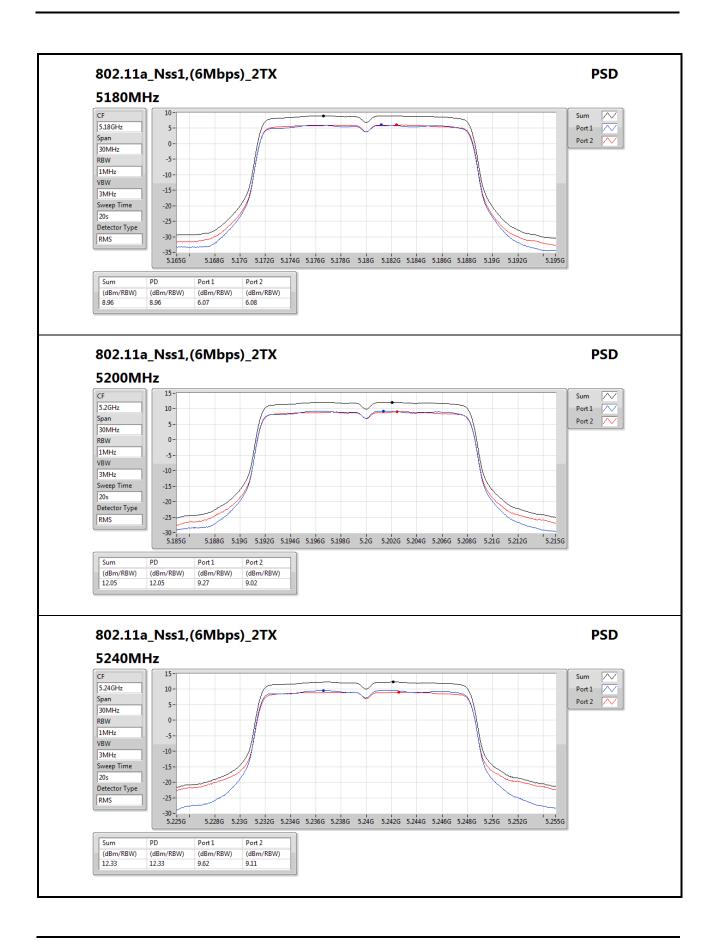
 $Directional\ gain = 4.5 + 10*log(2/1) = 7.51\ dBi > 6\ dBi\ ,\ PD\ limit\ shall\ be\ reduced\ to\ 17\ dBm - (7.51\ dBi - 6\ dBi\) = 15.49\ dBm$

For 5.25 ~ 5.35 GHz

Directional gain = 4.5 + 10*log(2/1)=7.51 dBi > 6 dBi, PD limit shall be reduced to 11 dBm - (7.51 dBi - 6 dBi) = 9.49 dBm

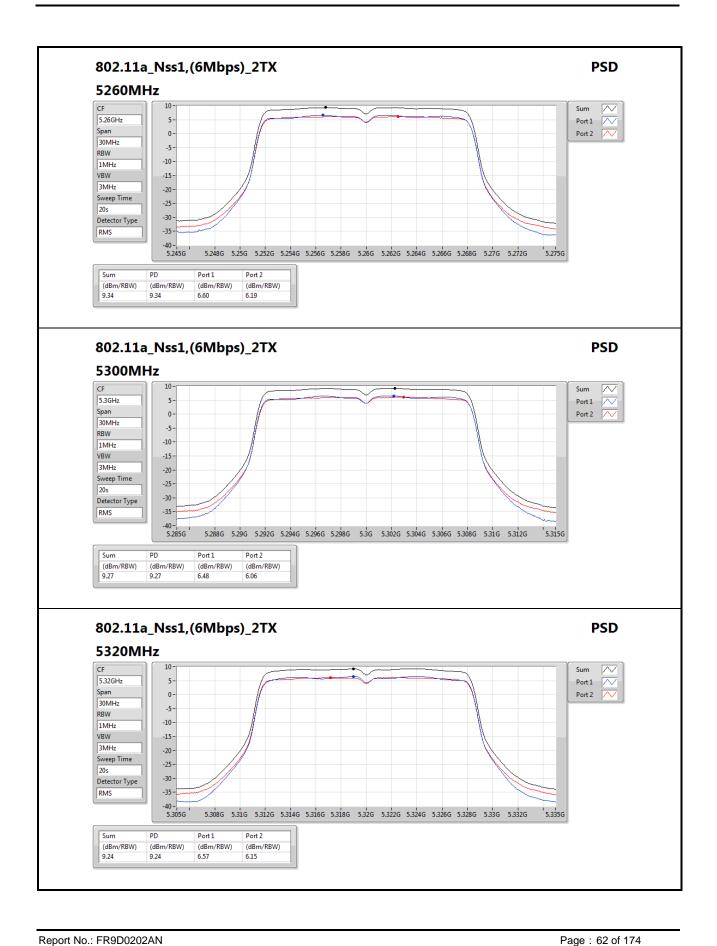
For 5.47 ~ 5.725 GHz

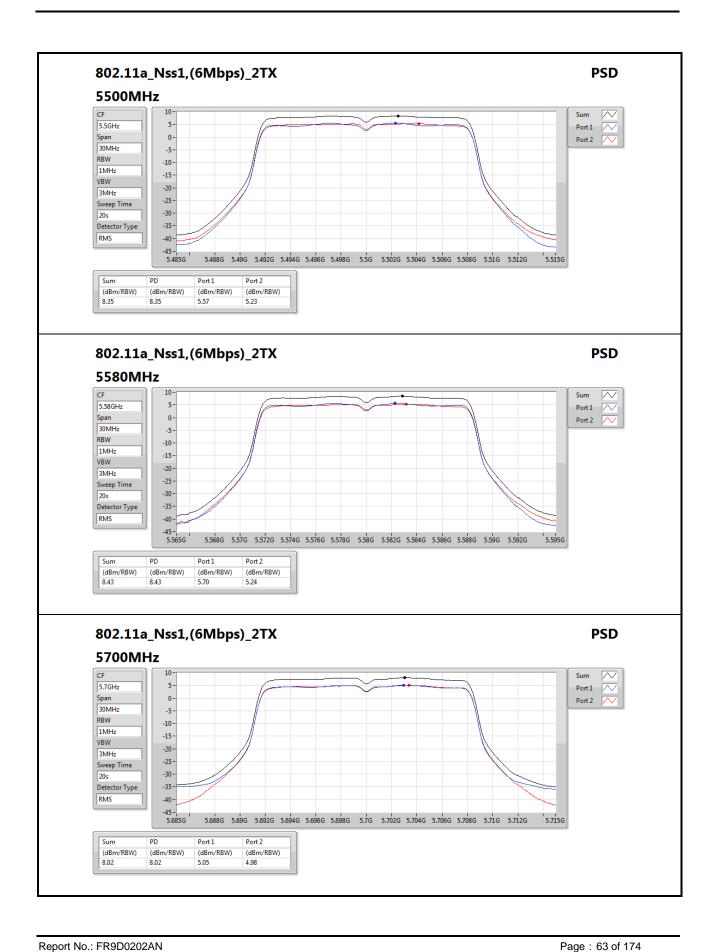
Directional gain = $5.2 + 10*\log(2/1)=8.21$ dBi > 6 dBi , PD limit shall be reduced to 11 dBm - (8.21 dBi - 6 dBi)=8.79 dBm


For 5.725 ~ 5.85 GHz

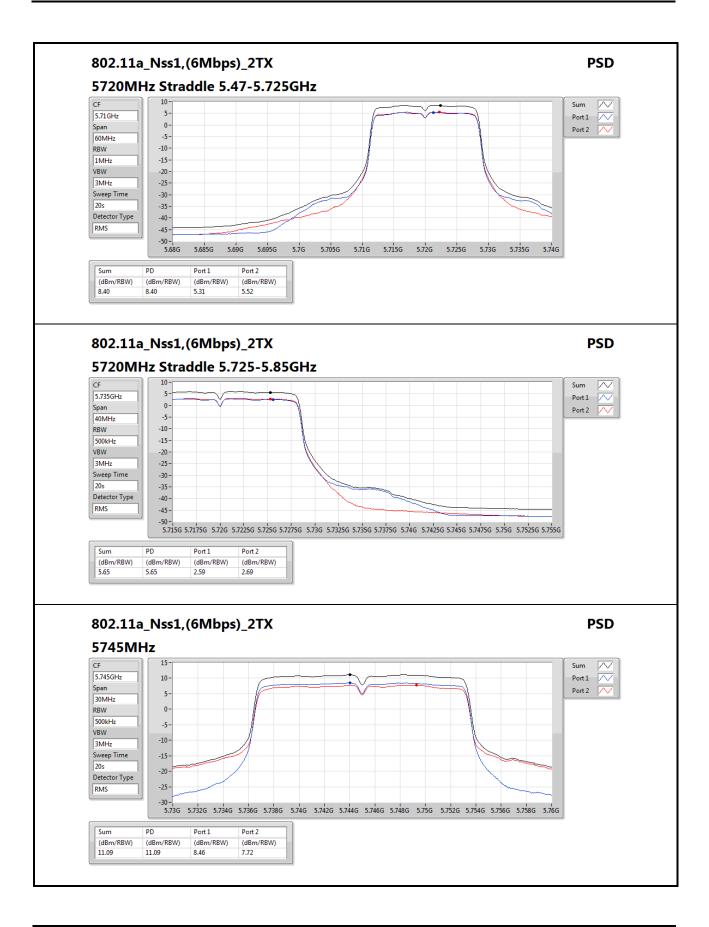
Directional gain = 5.5 + 10*log(2/1)=8.51 dBi > 6 dBi , PD limit shall be reduced to 30 dBm - (8.51 dBi - 6 dBi) = 27.49 dBm

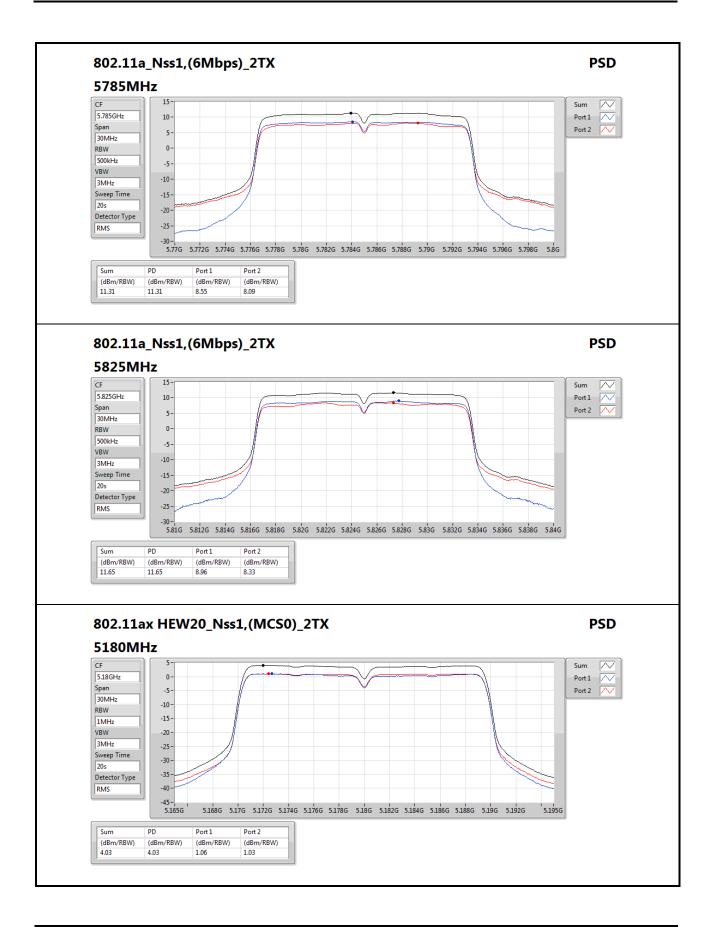
Report No.: FR9D0202AN


Report Version: Rev. 02

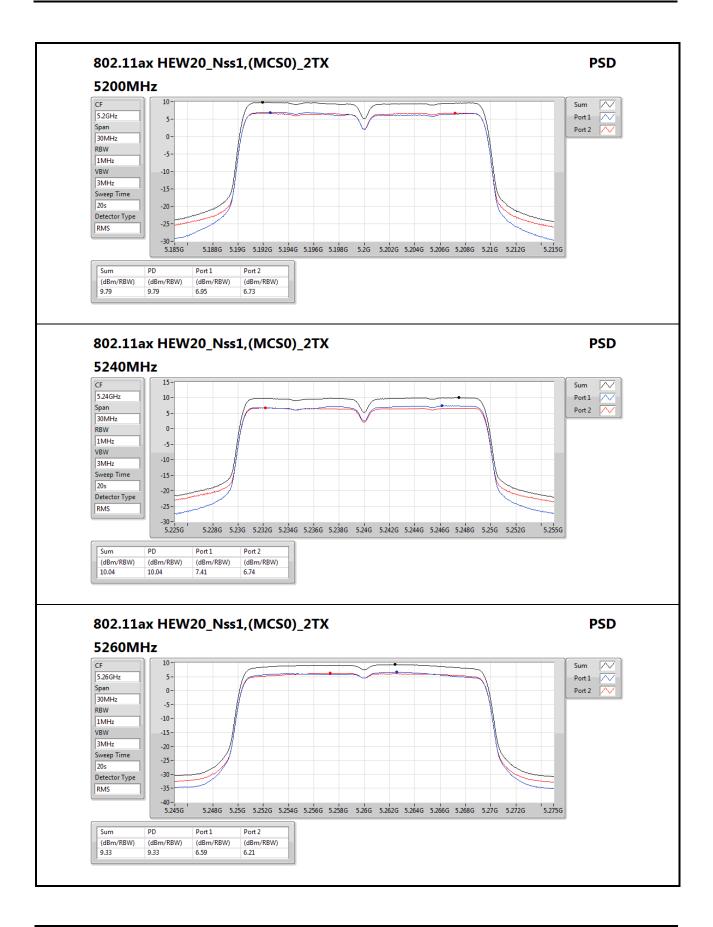

Page : 61 of 174

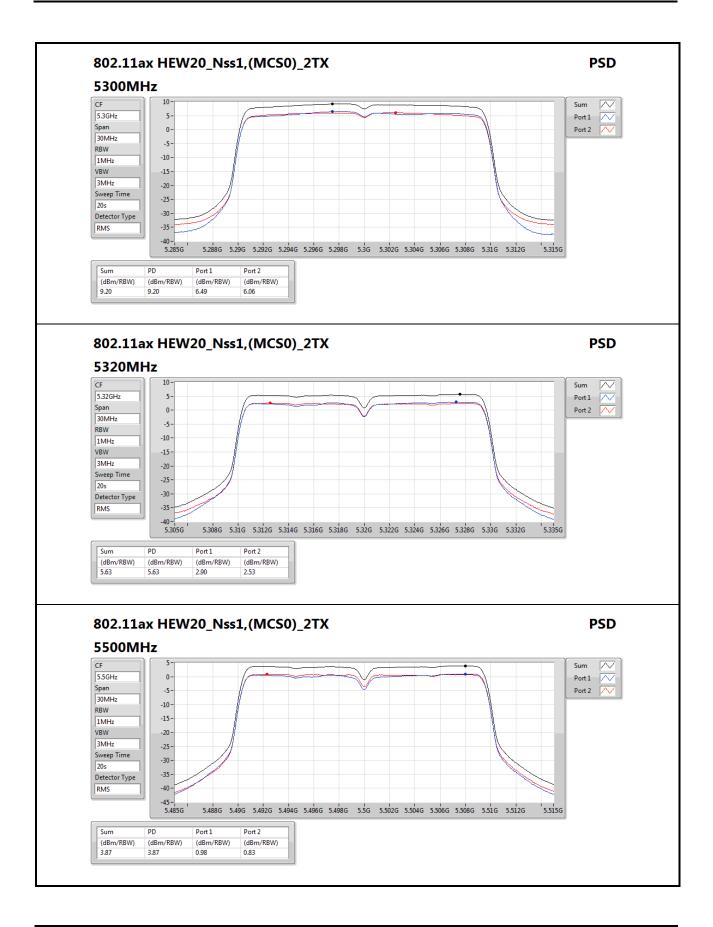
Report Version: Rev. 02

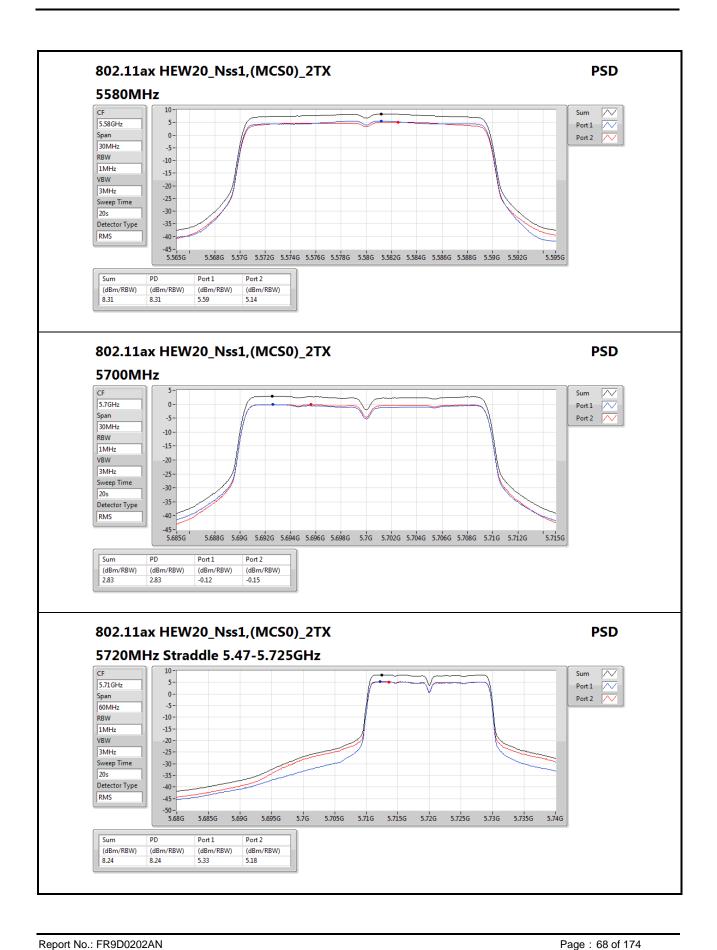


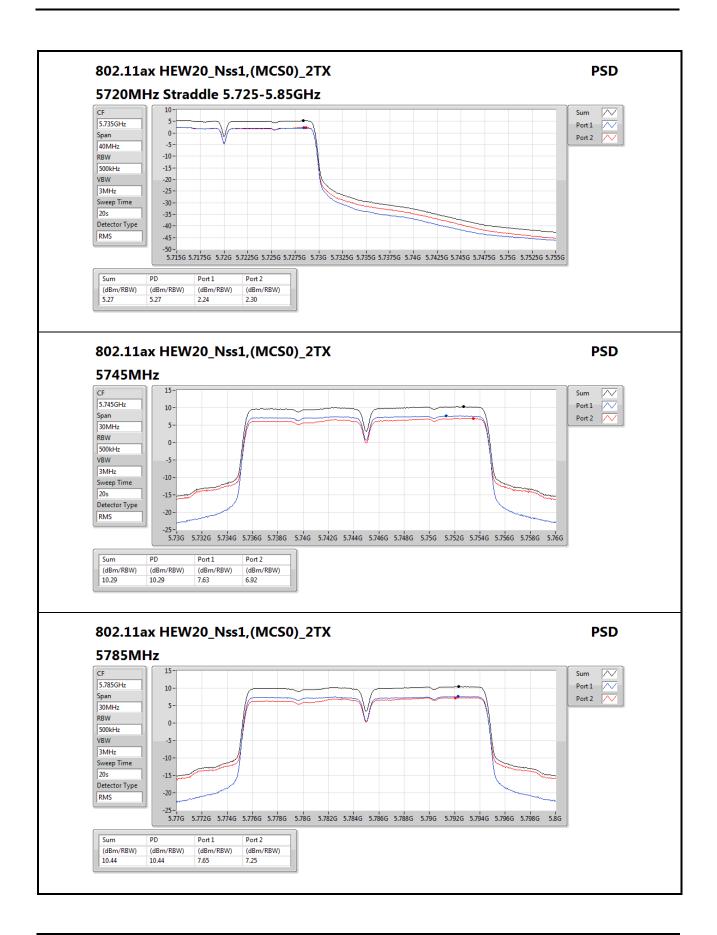

Report Version: Rev. 02

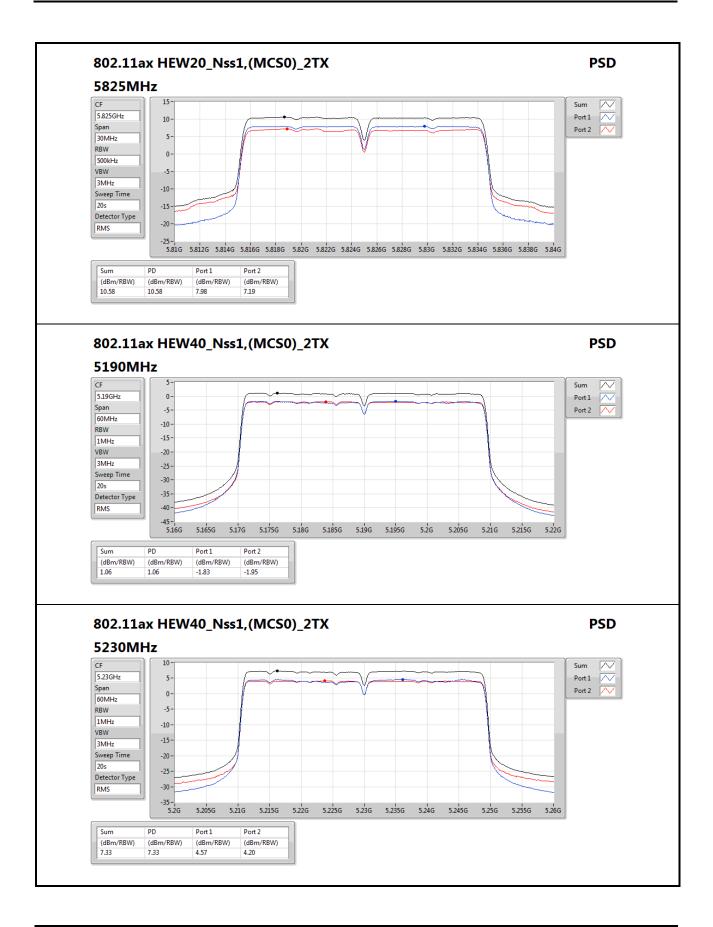
- Pay 60



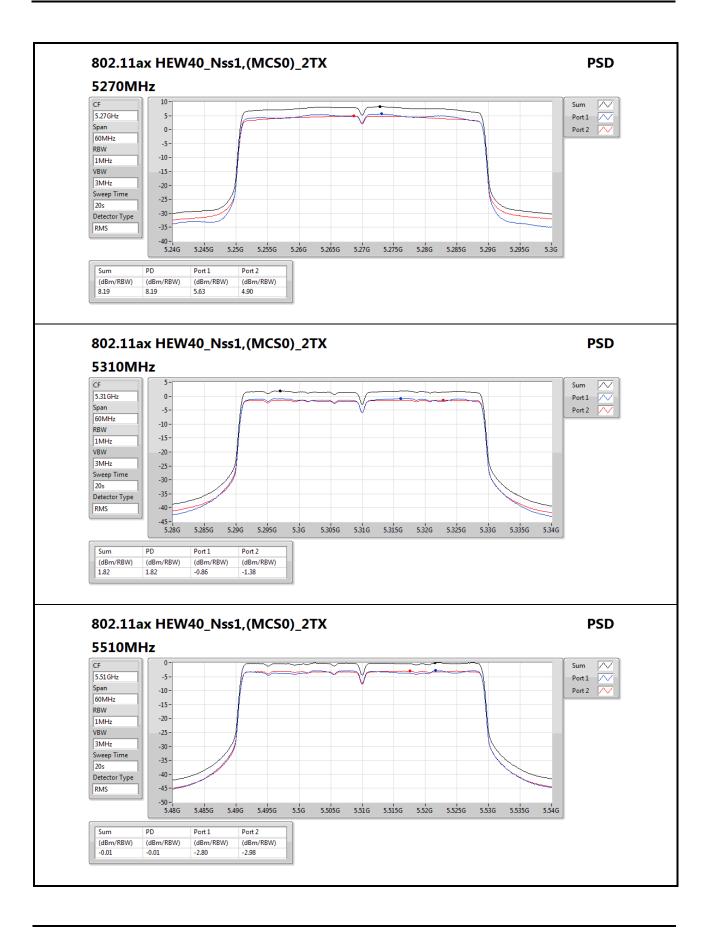


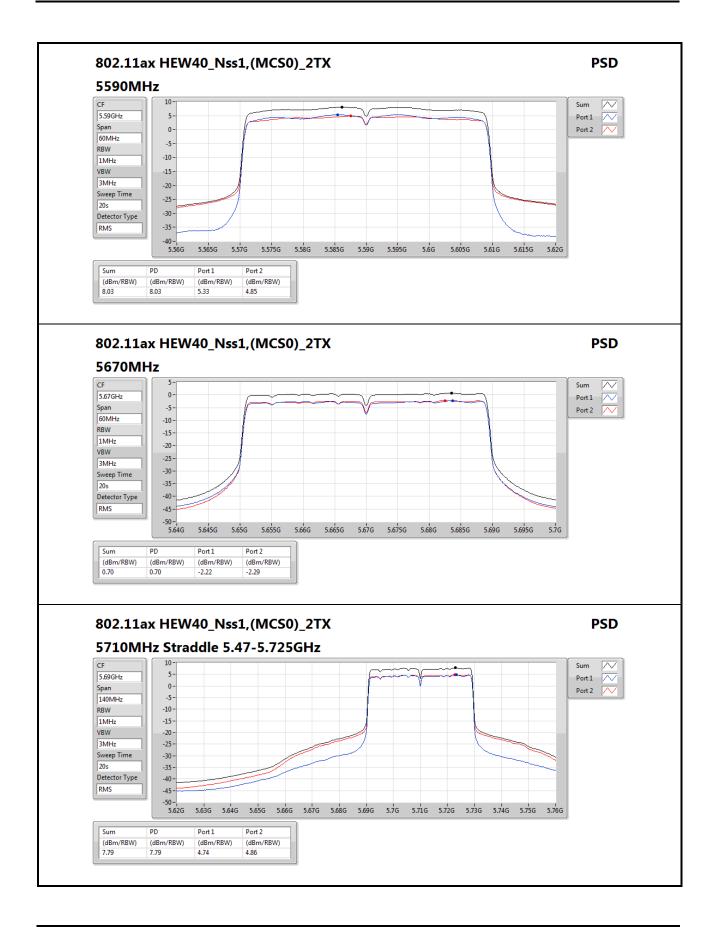


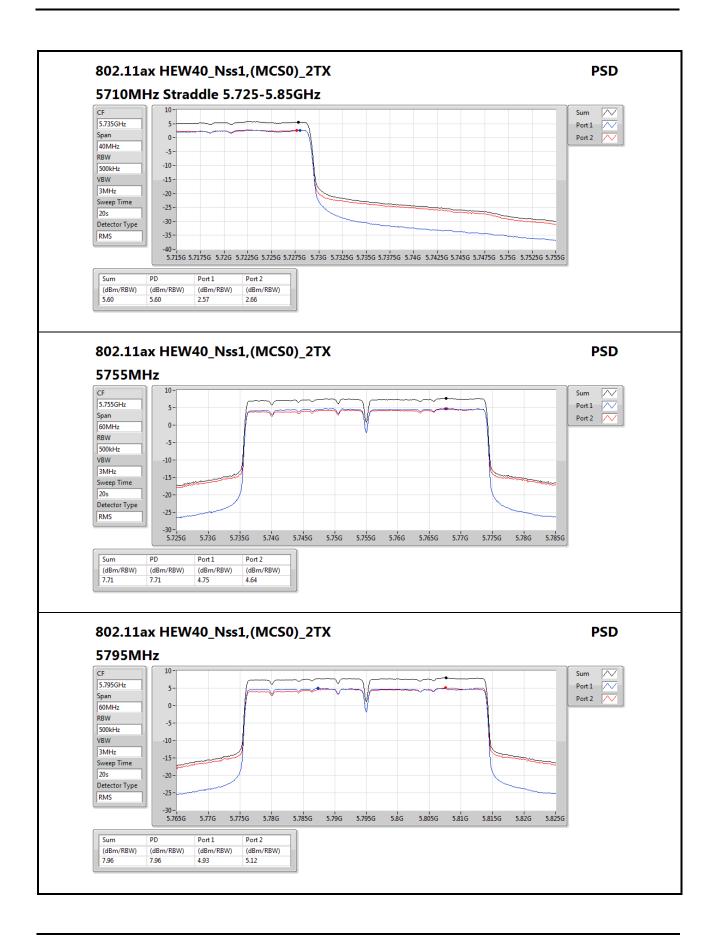


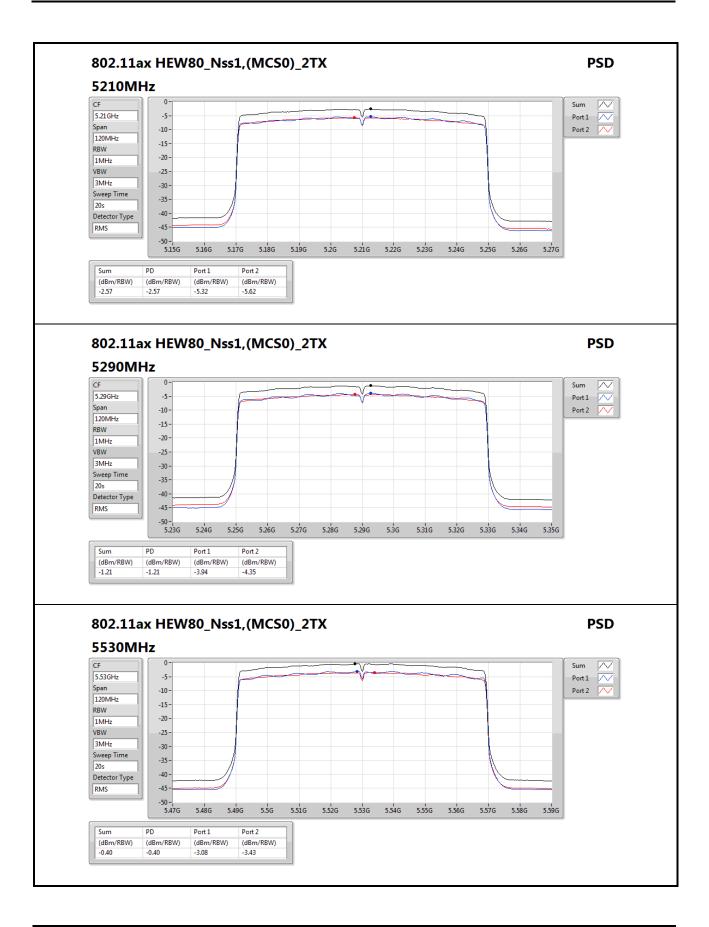

Report Version: Rev. 02

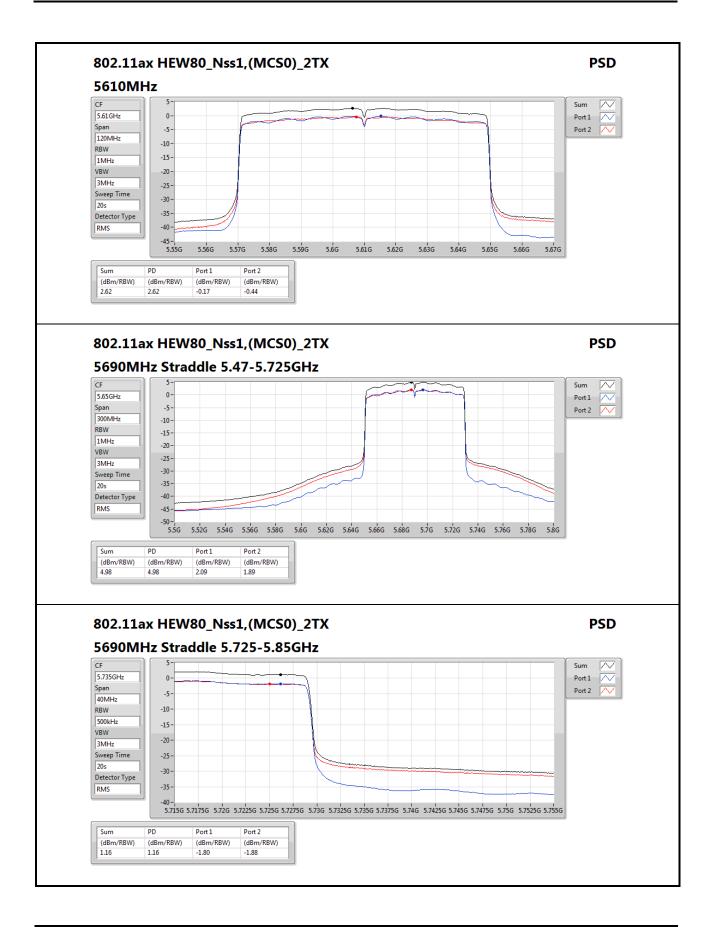
ort Version: Rev. 02

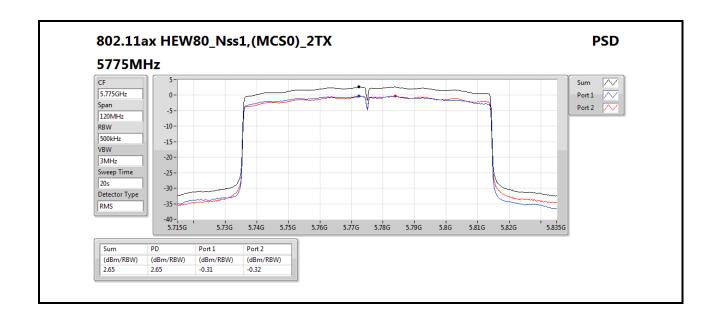









Report No.: FR9D0202AN Report Version: Rev. 02


Report No.: FR9D0202AN Report Version: Rev. 02

Report No.: FR9D0202AN Report Version: Rev. 02

3.5 Transmitter Radiated and Band Edge Emissions

3.5.1 Limit of Transmitter Radiated and Band Edge Emissions

	Restricted Band	Emissions Limit	
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300
0.490~1.705	24000/F(kHz)	33.8 - 23	30
1.705~30.0	30	29	30
30~88	100	40	3
88~216	150	43.5	3
216~960	200	46	3
Above 960	500	54	3

Note 1:

Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit **Note 2:**

Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

	Un-restricted band emissions above 1GHz Limit
Operating Band	Limit
5.15 - 5.25 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]
5.25 - 5.35 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]
5.47 - 5.725 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]
5.725 - 5.850 GHz	All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

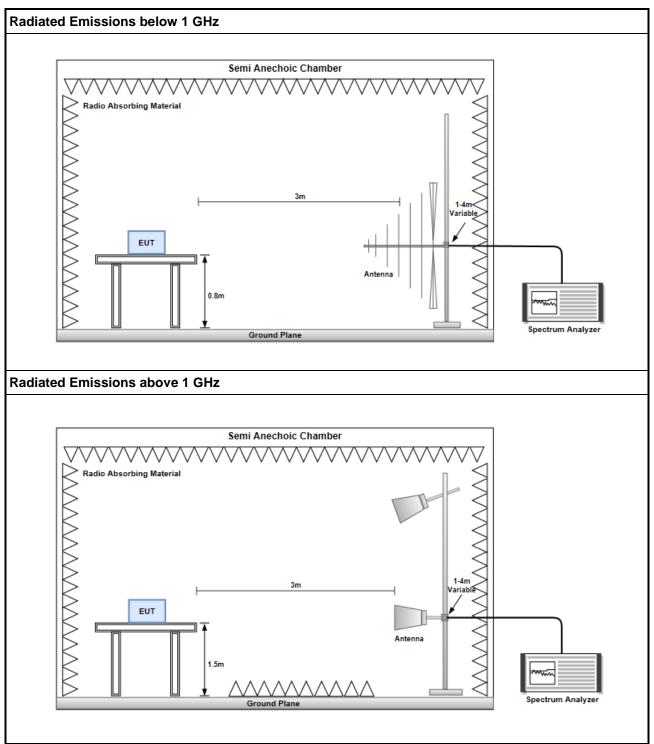
Note 1: Measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

Report Version: Rev. 02

3.5.2 Test Procedures

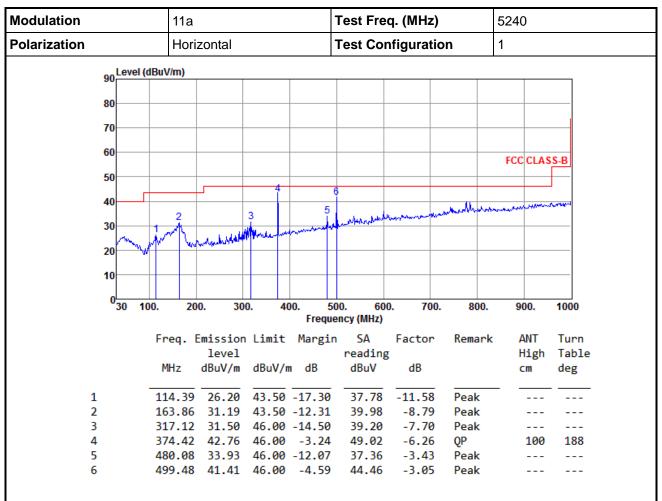
- 1. Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at test table. For emissions testing at or below 1 GHz, the table height is 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height is 1.5 m
- 2. Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.

Note:


- 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
- 2. RBW=1MHz, VBW=3MHz and Peak detector is for peak measured value of radiated emission above 1GHz.
- 3. RBW=1MHz, VBW=1/T and Peak detector is for average measured value of radiated emission above 1GHz.

Report No.: FR9D0202AN

Page: 78 of 174


3.5.3 Test Setup

Page: 79 of 174

3.5.4 Transmitter Radiated Unwanted Emissions (Below 1GHz)

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) - Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR9D0202AN

Report Version: Rev. 02

Modulation			11a				Test Fre	q. (MHz)		5240	
Polarization			Vert	ical		,	Test Co	nfiguratio	on	1	
	an.l	Level (d	iBuV/m)								
	80										
	70										
	60										
	00									FCC CLAS	SS-B
	50										
	40				5		5				do A
		Λ.			. 1		an Bakan	يعزه فاستروروا المام	العاماء المستقيلة والروابسي	Tall-ville and and an inches	(Sec. Albridge)
	30	Win	B Mr.uAs.⊥	۱.,	4	Mary market of the second	A CALL DE LA CALLES				
	20	₩	W W	Annahara Annah	*****						
	10										
	0	30 10	10 20	00. 30	0 40	00. 50	00. 60	0. 700.	800.	900.	1000
	•	00 10	. 20	. 50	0. 40		ency (MHz)	. 100.		500.	1000
			Freq.	Emission	Limit	Margin	SA	Factor	Remark	ANT	Turn
				level			reading	g		High	Table
			MHz	dBuV/m	dBuV/r	n dB	dBuV	dB		cm	deg
	1		43.46	35.38	40.00	-4.62	44.26	-8.88	QP .	100	184
	2		74.62			-10.94	40.94		Peak		
	3		105.66	28.15		-15.35	40.80		Peak		
	4		317.12			-17.53			Peak		
	5			42.10							
+	6		499.48	39.13	46.00	-6.87	42.18	-3.05	Peak		

The previous version of the test report has been cancelled and replaced by new version.

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR9D0202AN Report Version: Rev. 02

Page: 81 of 174

Modulation			ax (I	HE40)			Test Fre	q. (MHz)		5795		
Polarization			Hori	zontal			Test Co	nfiguratio	on	1		
	oo Le	evel (dBu	V/m)									
	90											
	80											
	70											
	60											
										FCC CLAS	SS-B	
	50				4		2					
	40			_			9		u 1111	A LE SERVICE DE LA CONTRACTION DEL CONTRACTION DE LA CONTRACTION D	ALL COLOR	
	30		٦ 2		3	5	Maharake	alingua sandaran sandaran	Christian Colored	ACTIVITY AND		
	30	المأدانية	\sim	ver vite minist	Maryan	A Desired to the second second						
	20	- AM	- 1	Mr Man								
	10											
	030	100.	20	0. 30	0. 4	00. 5	00. 60	0. 700.	800.	900.	1000	
						Freque	ency (MHz)					
		Fr	req. [Emission	Limit	Margir	n SA	Factor	Remark	ANT	Turn	
				level			reading			High	Table	
								- JD		cm	deg	
		ı	MHz	dBuV/m	dBuV/ı	m dB	dBuV	dB		CIII	ace	
	1	_							Peak			
	1	11	13.42	26.72	43.50	-16.78	38.41	-11.69	Peak Peak			
	1 2 3	11		26.72 33.21	43.50 43.50			-11.69 -8.97	Peak Peak Peak			
	2	11 16 31	13.42 67.74 17.12	26.72 33.21	43.50 43.50 46.00	-16.78 -10.29 -15.77	38.41 42.18	-11.69 -8.97 -7.70	Peak	 100	 189	
	2	11 16 31 37	13.42 67.74 17.12	26.72 33.21 30.23 42.86	43.50 43.50 46.00 46.00	-16.78 -10.29 -15.77	38.41 42.18 37.93 49.12	-11.69 -8.97 -7.70	Peak Peak			

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Page: 82 of 174

;	90 Level (dBu	Verti	cal			Test Coi	nfiguratio	on	1	
;	70	V/m)								_
;	70									
	60									
		-								
1	50								FCC CLAS	S-B
	40 1			5	6					
	30 2	3 4			and a	Samuel Land Bullery	and we have	and the second	Andrew March Street Control Street	(manara)
	IN AUV	w/w/	and the same	Murane	Mark Market Harden					
	20									
	10									
	⁰ 30 100.	200	0. 300	0. 40		00. 60 ency (MHz)	0. 700.	800.	900.	1000
	F	req. E	mission	Limit	Margin		Factor	Remark	ANT	Turn
		MHz	level dBuV/m	dBuV/n	a dB	reading dBuV	g dB		High	Table
	'	МПΖ	ubuv/m	ubuv/II	ii ub	ubuv	ub		CM	deg
1		45.48	35.80		-4.20	44.46	-8.66	QP	100	18
2		76.56	29.56		-10.44	42.08	-12.52	Peak		
3	_	63.86			-15.29	37.00	-8.79	Peak		
4			29.06			41.03		Peak		
5 6		74.35 99.48	42.02 39.24	46.00	-3.98 -6.76	48.29 42.29	-6.27 -3.05	Peak Peak		

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Page: 83 of 174

Modulation		11a				Test Fre	q. (MHz)		5240	
Polarization		Hori	zontal			Test Cor	nfiguratio	n	2	
	90 Level (dB	uV/m)								
	80									
	70									
	60									
	00								FCC CLAS	SS-B
	50									_
	40		_			6			A STATE OF THE PROPERTY OF	Seed A. Pr
					5	Marian	Marylan and Maryland and and	A STATE OF THE PARTY OF THE PAR	Apply of the same of the same of the same	,
	30 1 2	3	بالمسمليل المسارية	pagananahan	March College					
	20	Marin M	A CONTRACTOR OF THE PARTY							
	40									
	10									
	030 100	. 20	0. 30	0. 40	00. 5	00. 60	0. 700.	800.	900.	1000
					Frequ	ency (MHz)				
		Freq. F	Emission	Limit	Margi	n SA	Factor	Remark	ANT	Turn
									Hi ab	Table
			level			reading			High	I abic
		MHz	level dBuV/m	dBuV/r	n dB	reading dBuV	g dB		cm	deg
1	_	MHz 38.73	dBuV/m		n dB -12.88	dBuV		 Peak		
1 2	_		dBuV/m 27.12	40.00		dBuV	dB	Peak Peak		
	_	38.73	dBuV/m 27.12	40.00	-12.88	36.45 37.02 35.43	dB -9.33			
2 3 4		38.73 55.22 163.86 301.60	27.12 28.11 26.64 28.53	40.00 40.00 43.50 46.00	-12.88 -11.89 -16.86 -17.47	36.45 37.02 35.43 36.83	-9.33 -8.91 -8.79 -8.30	Peak Peak Peak		
2		38.73 55.22 163.86 301.60	27.12 28.11 26.64 28.53 33.16	40.00 40.00 43.50 46.00 46.00	-12.88 -11.89 -16.86 -17.47	36.45 37.02 35.43 36.83 36.59	-9.33 -8.91 -8.79	Peak Peak		

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR9D0202AN Report Version: Rev. 02

Modulation	118	a		-	Test Fre	q. (MHz)		5240		
Polarization	Ve	rtical		-	Test Cor	nfiguratio	n	2	2	
90 Le	vel (dBuV/m)									
70										
60—								FCC CLAS	SS-B	
50 40										
30	4		5	aspergraphy of the state of the	- Aller - Sugar and	and an all the second	are the second	AND METAL PROPERTY AND		
20	Maria Maria	and had bridge with the	L. Harden Calabrida .							
10										
0 30	100.	200. 30	0. 40	00. 50 Freque	0. 600 ncy (MHz)	0. 700.	800.	900.	1000	
	Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table	
	MHz	dBuV/m	dBuV/r	n dB	dBuV	dB		cw	deg	
1		5 34.51			44.23	-9.72	QP	100	356	
2	46.5		40.00	-6.03	42.58	-8.61	QP Dools	100	354	
3 4	55.2 124.0			-3.21 -18.20	45.70 35.99	-8.91 -10.69	Peak Peak			

375.32 29.70 46.00 -16.30 35.93 -6.23 Peak 499.48 33.96 46.00 -12.04 37.01 -3.05 Peak

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Page: 85 of 174

Report No.: FR9D0202AN

5

Report Version: Rev. 02

Modulation			ax (H	IE40)			Test Fre	q. (MHz)		5795	
Polarization			Horiz	ontal			Test Co	nfiguratio	n	2	
	gn Lev	el (dBuV/	m)								
	80										
	70										
	60										
										FCC CLAS	SS-B
	50										
	40					5	6	March March		and the second second	Pharmaco.
	30 1 2			4			mentingano	March Market Consu	(All record and all records)	-	
	JM.	مسلّد ا	$\sim_{M_{M}}$	ment work	المحاوريسياريا والمراج	The state of the s					
	20	M									
	10										
		100.	200). 300	0. 40		00. 60 ency (MHz)	0. 700.	800.	900.	1000
						Frequ	ency (MHz)		800.		
				mission		Frequ	ency (MHz)	Factor			1000 Turn Table
			eq. E	mission	Limit	Frequ Margi	ency (MHz) n SA	Factor		ANT	Turn
	030	Fre MH	eq. E	mission level dBuV/m	Limit dBuV/r	Frequ Margi m dB	ency(MHz) n SA reading dBuV	Factor g dB	Remark	ANT High	Turn Table
	0 <mark>30</mark>	Fre	eq. E	mission level	Limit dBuV/r 40.00	Frequence Margin dB	ency(MHz) n SA reading	Factor dB		ANT High	Turn Table
	030	Fre	eq. E	mission level dBuV/m 28.22 29.14	dBuV/r 40.00 40.00	Frequ Margi m dB	n SA reading dBuV 37.94 38.05	Factor dB -9.72 -8.91	Remark Peak	ANT High	Turn Table
	030 1 2	Fre MH 36 55	eq. E	mission level dBuV/m 28.22 29.14 26.21	dBuV/r 40.00 40.00 43.50	Frequ Margi n dB -11.78 -10.86	ency (MHz) n SA reading dBuV 37.94 38.05 36.90	Factor dB -9.72 -8.91 -10.69	Remark Peak Peak	ANT High	Turn Table
	030 1 2 3	Fre MH 36 55 124 284	eq. E	mission level dBuV/m 28.22 29.14 26.21	dBuV/r 40.00 40.00 43.50 46.00	Frequ Margi n dB -11.78 -10.86 -17.29	ency (MHz) n SA reading dBuV 37.94 38.05 36.90 36.59	Factor dB -9.72 -8.91 -10.69 -8.72	Remark Peak Peak Peak	ANT High	Turn Table

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR9D0202AN Report Version: Rev. 02

Modulation			ax (HE40)			Test Fre	q. (MHz)		5795	
Polarization			Vert	ical			Test Co	nfiguratio	n	2	
İ		l evel (d	BuV/m)								
	90										
	80										
ı	70										
1	60										
ı										FCC CLAS	SS-B
1	50										_
	40										
1		<i>18</i> 4.			_		6	Landranaman	والمساورة	Chapter Stranger of profit contraction of the contr	A PART
	30	MA.	4		<u>ت</u> سالاسلىماس	L. North and Market Street	and the state of t				
	20	$\parallel \downarrow$	and the Whole	Mary Mary Market Brown of	Video de la constante de la co						
	20										
	10										
	0										
		30 10	0. 20	0. 30	0. 4		00. 60 ency (MHz)	0. 700.	800.	900.	1000
			Enoa	Emiccion	limi+	Margin		Factor	Remark	: ANT	Turn
			ii eq.	level	LIMIL	nai gri	reading		Kellal K	High	Table
			MHz	dBuV/m	dBuV/	m dB	dBuV	dB		cm	deg
1				,	,						0
ı	1	-	38.47	34.93	40.00	-5.07	44.28	-9.35	QP	100	352
ı	2		46.55	33.94	40.00	-6.06	42.54	-8.60	QР	100	358
	3		56.19				45.80		Peak		
	4		124.09			-17.89			Peak		
	5		374.35	28.63	46.00	-17.37	34.90	-6.27	Peak		

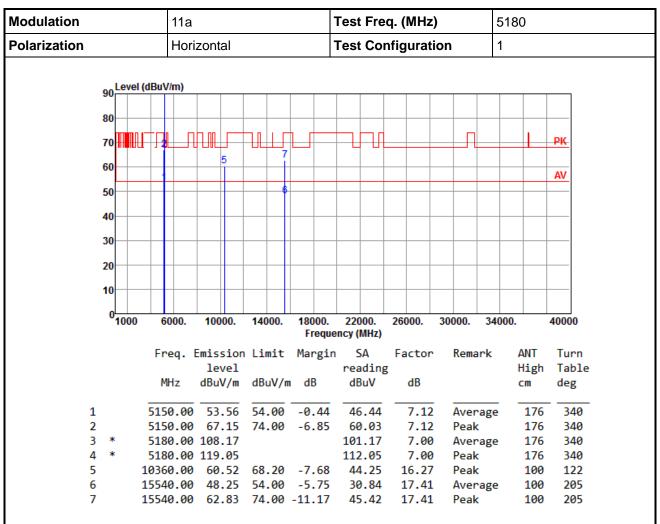
-3.05

Peak

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).


Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

499.48 34.12 46.00 -11.88 37.17

Report No.: FR9D0202AN Report Version: Rev. 02

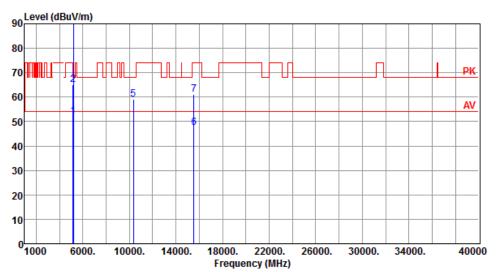
3.5.1 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 11a

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

The previous version of the test report has been cancelled and replaced by new version.

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).


Note 3:"*" is Peak / Average value of fundamental frequency

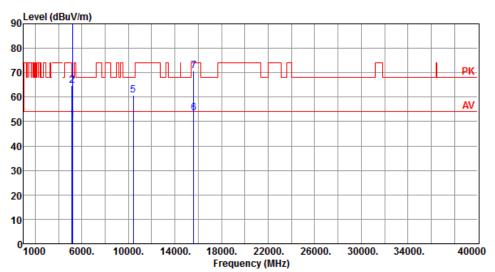
Report No.: FR9D0202AN Report Version: Rev. 02

Page: 88 of 174

Modulation	11a	Test Freq. (MHz)	5180
Polarization	Vertical	Test Configuration	1

		Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1		5150.00	51.97	54.00	-2.03	44.85	7.12	Average	218	321
2		5150.00	65.24	74.00	-8.76	58.12	7.12	Peak	218	321
3	*	5180.00	107.63			100.63	7.00	Average	218	321
4	*	5180.00	118.04			111.04	7.00	Peak	218	321
5		10360.00	59.27	68.20	-8.93	43.00	16.27	Peak	225	24
6		15540.00	47.63	54.00	-6.37	30.22	17.41	Average	286	204
7		15540.00	61.04	74.00	-12.96	43.63	17.41	Peak	286	204

The previous version of the test report has been cancelled and replaced by new version.


*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

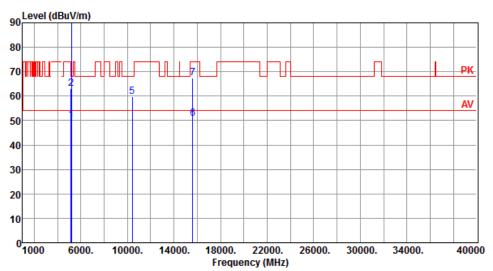
Note 3:"*" is Peak / Average value of fundamental frequency

Modulation	11a	Test Freq. (MHz)	5200
Polarization	Horizontal	Test Configuration	1

		Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1		5150.00	50.67	54.00	-3.33	43.55	7.12	Average	185	345
2		5150.00	64.63	74.00	-9.37	57.51	7.12	Peak	185	345
3	*	5200.00	111.88			104.95	6.93	Average	185	345
4	*	5200.00	120.96			114.03	6.93	Peak	185	345
5		10400.00	60.63	68.20	-7.57	44.25	16.38	Peak	100	125
6		15600.00	53.55	54.00	-0.45	36.18	17.37	Average	300	239
7		15600.00	70.81	74.00	-3.19	53.44	17.37	Peak	300	239

The previous version of the test report has been cancelled and replaced by new version.

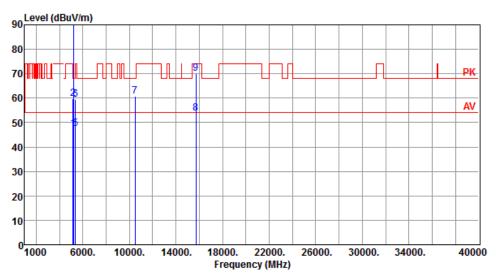
Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).


Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN Report Version: Rev. 02

Page: 90 of 174

Modulation	11a	Test Freq. (MHz)	5200
Polarization	Vertical	Test Configuration	1


		Freq.	Emission level	Limit	Margin	reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/n	ı dB	dBuV	dB		cm	deg
1		5150.00	50.08	54.00	-3.92	42.96	7.12	Average	201	326
2		5150.00	62.97	74.00	-11.03	55.85	7.12	Peak	201	326
3	*	5200.00	110.81			103.88	6.93	Average	201	326
4	*	5200.00	120.78			113.85	6.93	Peak	201	326
5		10400.00	59.65	68.20	-8.55	43.27	16.38	Peak	266	20
6		15600.00	50.92	54.00	-3.08	33.55	17.37	Average	289	206
7		15600.00	67.30	74.00	-6.70	49.93	17.37	Peak	289	206

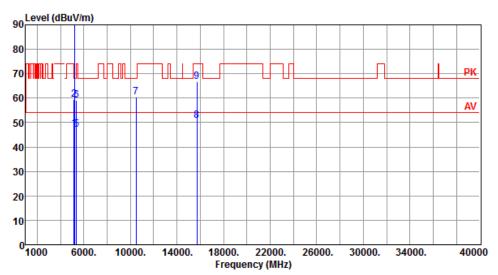
Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3:"*" is Peak / Average value of fundamental frequency

Modulation	11a	Test Freq. (MHz)	5240
Polarization	Horizontal	Test Configuration	1

		Freq. MHz	Emission level dBuV/m	Limit dBuV/n	Ū	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1		5150.00	47.62	54.00	-6.38	40.50	7.12	Average	188	345
2		5150.00	59.67	74.00	-14.33	52.55	7.12	Peak	188	345
3	*	5240.00	112.18			105.38	6.80	Average	188	345
4	*	5240.00	121.56			114.76	6.80	Peak	188	345
5		5350.00	47.38	54.00	-6.62	40.53	6.85	Average	188	345
6		5350.00	59.36	74.00	-14.64	52.51	6.85	Peak	188	345
7		10480.00	60.63	68.20	-7.57	44.12	16.51	Peak	105	124
8		15720.00	53.64	54.00	-0.36	36.72	16.92	Average	303	229
9		15720.00	69.94	74.00	-4.06	53.02	16.92	Peak	303	229

The previous version of the test report has been cancelled and replaced by new version.


*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3:"*" is Peak / Average value of fundamental frequency

Modulation	11a	Test Freq. (MHz)	5240
Polarization	Vertical	Test Configuration	1

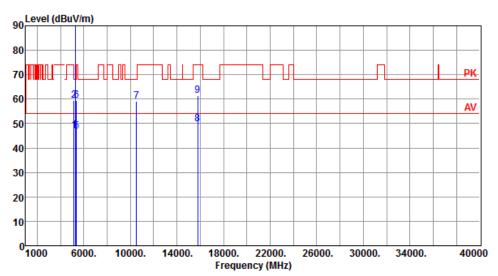
		Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/m	ı dB	dBuV	dB		cm	deg
1		5150.00	47.33	54.00	-6.67	40.21	7.12	Average	208	321
2		5150.00	59.28	74.00	-14.72	52.16	7.12	Peak	208	321
3	*	5240.00	111.05			104.25	6.80	Average	208	321
4	*	5240.00	120.32			113.52	6.80	Peak	208	321
5		5350.00	47.27	54.00	-6.73	40.42	6.85	Average	208	321
6		5350.00	59.26	74.00	-14.74	52.41	6.85	Peak	208	321
7		10480.00	60.40	68.20	-7.80	43.89	16.51	Peak	252	16
8		15720.00	50.88	54.00	-3.12	33.96	16.92	Average	285	201
9		15720.00	66.79	74.00	-7.21	49.87	16.92	Peak	285	201

Page: 93 of 174

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).


Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN

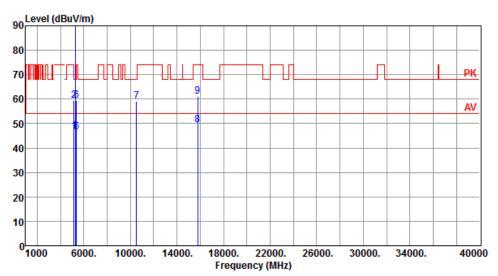
Report Version: Rev. 02

Modulation	11a	Test Freq. (MHz)	5260
Polarization	Horizontal	Test Configuration	1

		Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1		5150.00	46.99	54.00	-7.01	39.87	7.12	Average	176	340
2		5150.00	59.58	74.00	-14.42	52.46	7.12	Peak	176	340
3	*	5260.00	110.38			103.58	6.80	Average	176	340
4	*	5260.00	119.49			112.69	6.80	Peak	176	340
5		5350.00	46.73	54.00	-7.27	39.88	6.85	Average	176	340
6		5350.00	59.48	74.00	-14.52	52.63	6.85	Peak	176	340
7		10520.00	59.19	68.20	-9.01	42.69	16.50	Peak	100	357
8		15780.00	49.76	54.00	-4.24	32.82	16.94	Average	100	350
9		15780.00	61.49	74.00	-12.51	44.55	16.94	Peak	100	350

The previous version of the test report has been cancelled and replaced by new version.

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).


Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN Report Version: Rev. 02

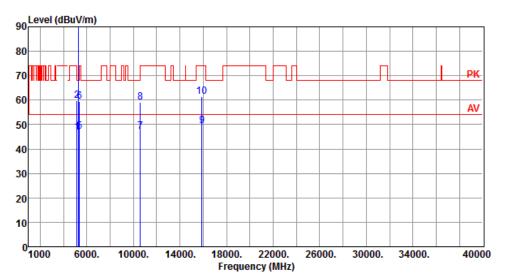
Page: 94 of 174

Modulation	11a	Test Freq. (MHz)	5260
Polarization	Vertical	Test Configuration	1

		Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1		5150.00	46.76	54.00	-7.24	39.64	7.12	Average	220	331
2		5150.00	59.44	74.00	-14.56	52.32	7.12	Peak	220	331
3	*	5260.00	110.21			103.41	6.80	Average	220	331
4	*	5260.00	119.36			112.56	6.80	Peak	220	331
5		5350.00	46.53	54.00	-7.47	39.68	6.85	Average	220	331
6		5350.00	59.30	74.00	-14.70	52.45	6.85	Peak	220	331
7		10520.00	59.06	68.20	-9.14	42.56	16.50	Peak	100	185
8		15780.00	49.59	54.00	-4.41	32.65	16.94	Average	100	190
9		15780.00	61.26	74.00	-12.74	44.32	16.94	Peak	100	190

Page: 95 of 174

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)


*Factor includes antenna factor, cable loss and amplifier gain

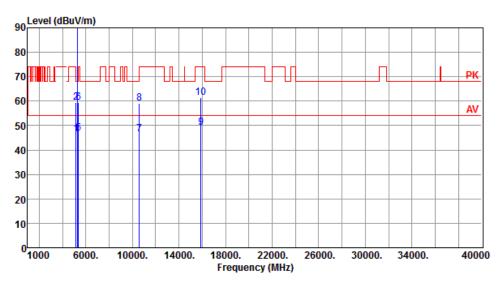
Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3:"*" is Peak / Average value of fundamental frequency

Modulation	11a	Test Freq. (MHz)	5300
Polarization	Horizontal	Test Configuration	1

		Freq. I	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1		5150.00	46.69	54.00	-7.31	39.57	7.12	Average	192	341
2		5150.00	59.69	74.00	-14.31	52.57	7.12	Peak	192	341
3	*	5300.00	110.26			103.35	6.91	Average	192	341
4	*	5300.00	119.43			112.52	6.91	Peak	192	341
5		5350.00	47.21	54.00	-6.79	40.36	6.85	Average	192	341
6		5350.00	59.51	74.00	-14.49	52.66	6.85	Peak	192	341
7		10600.00	47.20	54.00	-6.80	30.84	16.36	Average	100	349
8		10600.00	59.21	74.00	-14.79	42.85	16.36	Peak	100	349
9		15900.00	49.56	54.00	-4.44	32.47	17.09	Average	100	353
10		15900.00	61.57	74.00	-12.43	44.48	17.09	Peak	100	353

*Factor includes antenna factor, cable loss and amplifier gain


Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

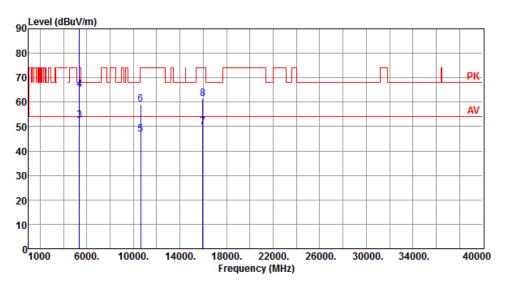
Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN Report Version: Rev. 02

Modulation	11a	Test Freq. (MHz)	5300
Polarization	Vertical	Test Configuration	1

		Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1		5150.00	46.56	54.00	-7.44	39.44	7.12	Average	225	332
2		5150.00	59.58	74.00	-14.42	52.46	7.12	Peak	225	332
3	*	5300.00	110.12			103.21	6.91	Average	225	332
4	*	5300.00	119.32			112.41	6.91	Peak	225	332
5		5350.00	46.96	54.00	-7.04	40.11	6.85	Average	225	332
6		5350.00	59.41	74.00	-14.59	52.56	6.85	Peak	225	332
7		10600.00	46.60	54.00	-7.40	30.24	16.36	Average	100	182
8		10600.00	59.20	74.00	-14.80	42.84	16.36	Peak	100	182
9		15900.00	49.26	54.00	-4.74	32.17	17.09	Average	100	189
10		15900.00	61.42	74.00	-12.58	44.33	17.09	Peak	100	189

Page: 97 of 174


Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB) *Factor includes antenna factor , cable loss and amplifier gain

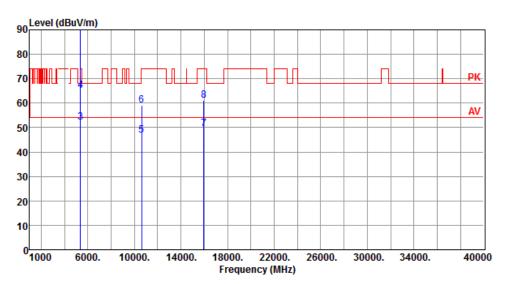
Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3:"*" is Peak / Average value of fundamental frequency

Modulation	11a	Test Freq. (MHz)	5320
Polarization	Horizontal	Test Configuration	1

		Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	*	5320.00	110.16			103.27	6.89	Average	189	344
2	*		119.37			112.48	6.89	Peak	189	344
3		5350.00	52.59	54.00	-1.41	45.74	6.85	Average	189	344
4		5350.00	65.18	74.00	-8.82	58.33	6.85	Peak	189	344
5		10640.00	46.93	54.00	-7.07	30.52	16.41	Average	100	352
6		10640.00	59.25	74.00	-14.75	42.84	16.41	Peak	100	352
7		15960.00	49.72	54.00	-4.28	32.85	16.87	Average	100	353
8		15960.00	61.39	74.00	-12.61	44.52	16.87	Peak	100	353

*Factor includes antenna factor, cable loss and amplifier gain


Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3:"*" is Peak / Average value of fundamental frequency

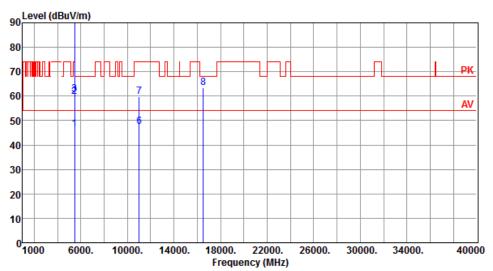
Report No.: FR9D0202AN Report Version: Rev. 02

Modulation	11a	Test Freq. (MHz)	5320
Polarization	Vertical	Test Configuration	1

		Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	*	5320.00	110.02			103.13	6.89	Average	221	335
2	*	5320.00	119.21			112.32	6.89	Peak	221	335
3		5350.00	52.21	54.00	-1.79	45.36	6.85	Average	221	335
4		5350.00	64.96	74.00	-9.04	58.11	6.85	Peak	221	335
5		10640.00	46.87	54.00	-7.13	30.46	16.41	Average	100	183
6		10640.00	59.07	74.00	-14.93	42.66	16.41	Peak	100	183
7		15960.00	49.64	54.00	-4.36	32.77	16.87	Average	100	180
8		15960.00	61.22	74.00	-12.78	44.35	16.87	Peak	100	180

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).


Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN

Report Version: Rev. 02

Modulation	11a	Test Freq. (MHz)	5500
Polarization	Horizontal	Test Configuration	1

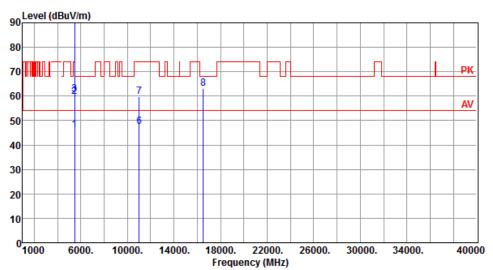
		Freq. MHz	Emission level dBuV/m	Limit dBuV/m	Ü	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1		5460.00	46.38	54.00	-7.62	39.21	7.17	Average	189	340
2		5460.00	59.80	74.00	-14.20	52.63	7.17	Peak	189	340
3		5470.00	60.87	68.20	-7.33	53.65	7.22	Peak	189	340
4	*	5500.00	107.08			99.72	7.36	Average	189	340
5	*	5500.00	115.56			108.20	7.36	Peak	189	340
6		11000.00	47.62	54.00	-6.38	30.58	17.04	Average	100	178
7		11000.00	59.90	74.00	-14.10	42.86	17.04	Peak	100	178
8		16500.00	63.38	68.20	-4.82	44.84	18.54	Peak	100	183

Page: 100 of 174

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).


Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN

Report Version: Rev. 02

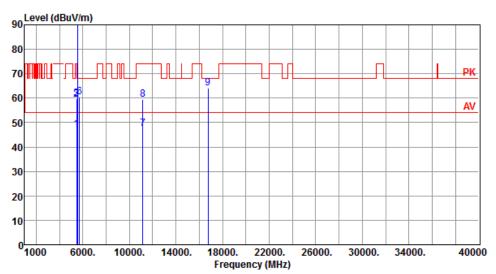
Modulation	11a	Test Freq. (MHz)	5500
Polarization	Vertical	Test Configuration	1

		Freq. MHz	Emission level dBuV/m	Limit dBuV/m	Ü	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1		5460.00	46.28	54.00	-7.72	39.11	7.17	Average	221	333
2		5460.00	59.62	74.00	-14.38	52.45	7.17	Peak	221	333
3		5470.00	60.68	68.20	-7.52	53.46	7.22	Peak	221	333
4	*	5500.00	106.31			98.95	7.36	Average	221	333
5	*	5500.00	114.81			107.45	7.36	Peak	221	333
6		11000.00	47.45	54.00	-6.55	30.41	17.04	Average	100	181
7		11000.00	59.69	74.00	-14.31	42.65	17.04	Peak	100	181
8		16500.00	63.19	68.20	-5.01	44.65	18.54	Peak	100	189

Page: 101 of 174

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB) *Factor includes antenna factor , cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).


Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN

Report Version: Rev. 02

Modulation	11a	Test Freq. (MHz)	5580
Polarization	Horizontal	Test Configuration	1

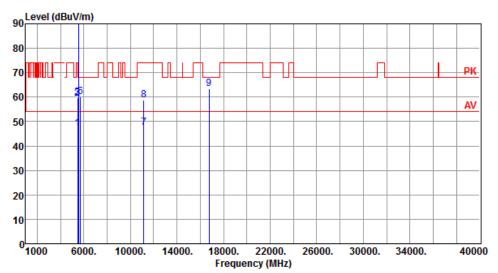
		Freq. MHz	Emission level dBuV/m	Limit dBuV/m	J	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
		1112	ubuv/iii	abav/ii	u u u	abav	ub		CIII	ucg
1		5460.00	47.16	54.00	-6.84	39.99	7.17	Average	179	349
2		5460.00	59.42	74.00	-14.58	52.25	7.17	Peak	179	349
3		5470.00	59.85	68.20	-8.35	52.63	7.22	Peak	179	349
4	*	5580.00	107.17			99.69	7.48	Average	179	349
5	*	5580.00	116.87			109.39	7.48	Peak	179	349
6		5725.00	60.43	68.20	-7.77	52.87	7.56	Peak	179	349
7		11160.00	47.38	54.00	-6.62	30.85	16.53	Average	100	187
8		11160.00	59.42	74.00	-14.58	42.89	16.53	Peak	100	187
9		16740.00	64.14	68.20	-4.06	44.67	19.47	Peak	100	184

Page: 102 of 174

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).


Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN

Report Version: Rev. 02

Modulation	11a	Test Freq. (MHz)	5580
Polarization	Vertical	Test Configuration	1

		Freq. MHz	Emission level dBuV/m	Limit dBuV/m	J	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1		5460.00	47.03	54.00	-6.97	39.86	7.17	Average	225	333
2		5460.00	59.28	74.00	-14.72	52.11	7.17	Peak	225	333
3		5470.00	59.78	68.20	-8.42	52.56	7.22	Peak	225	333
4	*	5580.00	106.69			99.21	7.48	Average	225	333
5	*	5580.00	116.60			109.12	7.48	Peak	225	333
6		5725.00	60.24	68.20	-7.96	52.68	7.56	Peak	225	333
7		11160.00	47.34	54.00	-6.66	30.81	16.53	Average	100	184
8		11160.00	58.89	74.00	-15.11	42.36	16.53	Peak	100	184
9		16740.00	63.58	68.20	-4.62	44.11	19.47	Peak	100	188

Page: 103 of 174

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN

Report Version: Rev. 02

3

4

5

Modulation				11a							Γest	Fre	q. (MHz	:)		570	00	
Polarization				Hori	zont	al				7	Test Configuration 1					1	1		
	9	Level	(dBuV	/m)															
	8	0																	
	7	0	\Box	П				щ										4	PK
			.	Ш,		5			6	'						'		<u> </u>	
	6	0				Ĭ													AV
	5	0	_			4			+							+	+		+
	4	0																	
	3	0																	
	2																		
	10	0																	
		1000	60	000.	100	00.	140	00.		000. reque		000. MHz)	260	000.	30000).	34000		40000
			Fr	eq. I	mis	sion	Lin	nit	Ma	rgin	9	A	Fa	actor	Re	mar	k	ANT	Turi
					le	vel					rea	ding						High	
			М	Hz	dBu\	V/m	dBu	ıV/m	C	IB	dE	BuV		dB				CM	deg
	1	*	570	0.00	107	. 24	_	_			99	.84	_	7.40	Av	era	ge	196	340
	2	*	570	0.00	117	.35					109	.95		7.40		ak	_	196	340

60.43

30.84

7.56

16.83

16.83

19.74

Peak

Peak

Peak

Average

196

100

100

100

340

174

174

175

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

5725.00 67.99 68.20 -0.21

11400.00 59.68 74.00 -14.32 42.85

17100.00 64.20 68.20 -4.00 44.46

54.00 -6.33

11400.00 47.67

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN Page: 104 of 174

Report Version: Rev. 02

Modulation				11a					-	Test	Fre	q. (Mł	łz)		Ę	5700		
Polarization				Vert	ical					Test Configuration 1					1			
		Leve	el (dBu	V/m)														
	90		`															
	80	-						+					+					
	70							1	5								L	PK
	60	+				5 		+										AV
	50					4												
	40																	
	30	<u> </u>																
	20	+																
	10	.				\perp		-					_					
	(1000) (6000.	100	00.	14000.	1	8000. Freque	220 ency (f		26000	. ;	30000.	340	000.		40000
			F	rea.	Emiss	ion	Limit	M	Margin	. S	Α .	Fact	or	Rema	ark	,	ANT	Turn
					lev				. 6.2		ding		-				High	
			ı	MHz	dBu\	//m	dBuV/	m	dB	dB	uV	dB				(cm	deg
:	1 ;	k	570	00.00	106.	42	=	-		99	.02	7.	40	Ave	rage	-	223	331
	_	k		00.00						109		7.		Peal			223	
	3 4			25.00	67. 47.		68.20 54.00		1.00 6.73	59	.64 .44	7.	56 83	Peal	K		223 100	

16.83

19.74

Peak

Peak

100

100

180

178

Page: 105 of 174

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

11400.00 59.46 74.00 -14.54 42.63

17100.00 64.06 68.20 -4.14 44.32

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN

5

Report Version: Rev. 02

Modulation	11a		Test Fred	q. (MHz)	5720	
Polarization	Horizontal		Test Con	figuration	1	
90 Level (d	BuV/m)					
80						
70						PK
60	36 8	9				AV
50	7					AV
40						
30						
20						
10						
0 1000	6000. 10000.	14000. 18000. Frequ	22000. ency (MHz)	26000. 30000.	34000.	40000
	Freq. Emission	Limit Margi			ark ANT	Turn
	level MHz dBuV/m	dBuV/m dB	reading dBuV	dB	High cm	Table deg
1	5460.00 46.71	54.00 -7.29	39.34	7.37 Ave	rage 182	351
		74.00 -15.19		7.37 Pea	k 182	351
	5470.00 59.75	68.20 -8.45		7.42 Pea		
	5720.00 107.66		99.92		rage 182	
	5720.00 117.20	CO 20 O F4	109.46	7.74 Pea		
	5850.00 59.66 1440.00 47.91			8.12 Pea 16.78 Ave	ık 182 erage 100	
	1440.00 47.31			16.78 Pea		
	7160.00 63.54			18.50 Pea		

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) - Limit (dBuV/m).

Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN

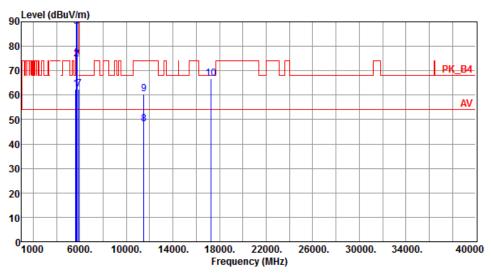
Page: 106 of 174

Modulation	11a	Test Freq. (MHz)	5720
Polarization	Vertical	Test Configuration	1
90 Level (dBu	uV/m)		
80			
70			PK
60	2 8 9		
			AV
50			
40			
30			
20			
10			
01000	6000. 10000. 14000. 18000. Frequ	22000. 26000. 30000. 34 ency (MHz)	4000. 40000
F	req. Emission Limit Margi		ANT Turn
	level	reading	High Table
	MHz dBuV/m dBuV/m dB	dBuV dB	cm deg
1 54	460.00 47.32 54.00 -6.68	39.95 7.37 Average	e 224 331
	160.00 59.25 74.00 -14.75	51.88 7.37 Peak	224 331
	170.00 59.39 68.20 -8.81	51.97 7.42 Peak	224 331
	720.00 107.20	99.46 7.74 Average	
	720.00 117.01	109.27 7.74 Peak	224 331
	350.00 60.33 68.20 -7.87 140.00 47.61 54.00 -6.39	52.21 8.12 Peak 30.83 16.78 Average	224 331 e 100 182
	140.00 47.61 34.00 -6.39 140.00 59.29 74.00 -14.71		100 182
	140.00 59.29 74.00 -14.71 160.00 62.98 68.20 -5.22	44.48 18.50 Peak	100 189
			

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) - Limit (dBuV/m).

Note 3:"*" is Peak / Average value of fundamental frequency


Report No.: FR9D0202AN

Page: 107 of 174

Report Version: Rev. 02

Modulation	11a	Test Freq. (MHz)	5745
Polarization	Horizontal	Test Configuration	1

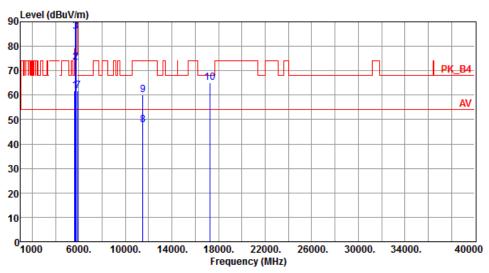
		Freq.	Emission level	n Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/r	n dB	dBuV	dB		cm	deg
1		5650.00	62.50	68.20	-5.70	55.11	7.39	Peak	130	13
2		5700.00	74.62	105.20	-30.58	67.22	7.40	Peak	130	13
3		5720.00	88.15	110.80	-22.65	80.63	7.52	Peak	130	13
4		5725.00	93.66	122.20	-28.54	86.10	7.56	Peak	130	13
5	*	5745.00	110.60			102.92	7.68	Average	130	13
6	*	5745.00	122.58			114.90	7.68	Peak	130	13
7		5925.00	62.38	68.20	-5.82	54.21	8.17	Peak	130	13
8		11490.00	48.00	54.00	-6.00	31.23	16.77	Average	235	118
9		11490.00	60.33	74.00	-13.67	43.56	16.77	Peak	235	118
10		17235.00	66.59	68.20	-1.61	46.28	20.31	Peak	283	311

Page: 108 of 174

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).


Note 3:"*" is Peak / Average value of fundamental frequency

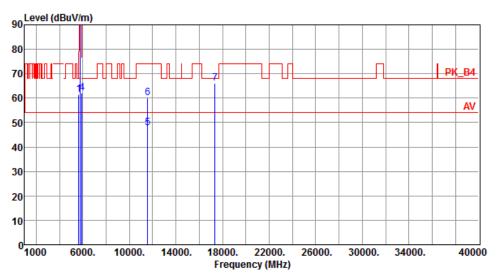
Report No.: FR9D0202AN

Report Version: Rev. 02

Modulation	11a	Test Freq. (MHz)	5745
Polarization	Vertical	Test Configuration	1

		Freq.	Emissior level	n Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/m	ı dB	dBuV	dB		cm	deg
1		5650.00	61.64	68.20	-6.56	54.25	7.39	Peak	183	325
2		5700.00	73.26	105.20	-31.94	65.86	7.40	Peak	183	325
3		5720.00	86.04	110.80	-24.76	78.52	7.52	Peak	183	325
4		5725.00	91.80	122.20	-30.40	84.24	7.56	Peak	183	325
5	*	5745.00	109.09			101.41	7.68	Average	183	325
6	*	5745.00	121.19			113.51	7.68	Peak	183	325
7		5925.00	61.76	68.20	-6.44	53.59	8.17	Peak	183	325
8		11490.00	47.83	54.00	-6.17	31.06	16.77	Average	100	122
9		11490.00	59.99	74.00	-14.01	43.22	16.77	Peak	100	122
10		17235.00	65.20	68.20	-3.00	44.89	20.31	Peak	100	249

*Factor includes antenna factor, cable loss and amplifier gain


Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN Report Version: Rev. 02

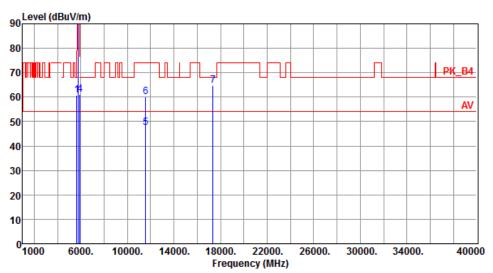
Modulation	11a	Test Freq. (MHz)	5785
Polarization	Horizontal	Test Configuration	1

		Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1		5650.00	61.56	68.20	-6.64	54.17	7.39	Peak	152	25
2	*	5785.00	110.78			103.00	7.78	Average	152	25
3	*	5785.00	121.66			113.88	7.78	Peak	152	25
4		5925.00	62.17	68.20	-6.03	54.00	8.17	Peak	152	25
5		11570.00	47.96	54.00	-6.04	31.21	16.75	Average	240	124
6		11570.00	60.26	74.00	-13.74	43.51	16.75	Peak	240	124
7		17355.00	66.22	68.20	-1.98	45.33	20.89	Peak	300	302

Page: 110 of 174

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain


Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN Report Version: Rev. 02

Modulation 11a		Test Freq. (MHz)	5785
Polarization Vertical	al	Test Configuration	1

		Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1		5650.00	60.91	68.20	-7.29	53.52	7.39	Peak	179	318
2	*	5785.00	109.77			101.99	7.78	Average	179	318
3	*	5785.00	120.52			112.74	7.78	Peak	179	318
4		5925.00	61.03	68.20	-7.17	52.86	8.17	Peak	179	318
5		11570.00	47.63	54.00	-6.37	30.88	16.75	Average	100	129
6		11570.00	59.95	74.00	-14.05	43.20	16.75	Peak	100	129
7		17355.00	64.73	68.20	-3.47	43.84	20.89	Peak	100	247

Page: 111 of 174

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN

Report Version: Rev. 02

Modulation				11a						•	Test	Fre	q. (MHz)		582	5		
Polarization				Hori	zonta	al				-	Test	Co	nfig	jurat	ion		1			
										,										
	90	Level (dBuV/	/m)																
				Ì																
	80	Ш.							Ι,									1.		
	70			\sqcup			$\square \!\!\! \perp$		10			$-\coprod$				Щ		PK	<u>B4</u>	
	60		1			9														
		Щ.		_		\dashv													AV	
	50					- 8														
	40	-				_														
	30																			
	30																			
	20																			
	10																			
	0	1000	60	000.	100	00.	1400	00.		000. reque	220 ncy (260	000.	30000). 3	4000.		40000)
			Fre	eq. E	miss	sion	n Lim	it	Ма	rgin	5	Α	Fa	ctor	Re	mark		ANT	Tur	n
				-	lev	/el				_	rea	ding	_				H	High	Tab	
			MH	łz	dBu\	//m	dBu	V/n	ı d	В	dE	luV		dB			(cm	deg	
	1		5656	0.00	61.	.50	68.	20	-6	.70	54	.11	_	7.39	Pe	ak		235	12	2
	2 *	k			110							.95		7.91		erag	e	235		
	3 *	k			123.							.09		7.91		ak		235		
	4						122.					.99		8.02		ak		235	12	
	5			5.00			110.					.96		8.03		ak		235	12	
	6		58/5	5.00	/4.	. 84	105.	20	-30	.36	66	.76		8.08	Pe	ak		235	12	2

55.81

8.17

16.53

16.53

21.51

Peak

Peak

Peak

Average

235

235

235

271

122

122

122

316

Page: 112 of 174

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

5925.00 63.98 68.20 -4.22

11650.00 47.86 54.00 -6.14 31.33

11650.00 60.10 74.00 -13.90 43.57

17475.00 66.51 68.20 -1.69 45.00

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN

7

8

9

10

Report Version: Rev. 02

Modulation	11a	Test Freq. (MHz)	5825
Polarization	Vertical	Test Configuration	1
90 Level (dBu) 80 70 60 50 40 30 20	V/m) 1 9		PK_B4
0 1000 6	6000. 10000. 14000. 18000.	22000. 26000. 30000. 3ency (MHz)	4000. 40000

		Freq. 1	Emission level	n Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/m	ı dB	dBuV	dB		cm	deg
1		5650.00	60.60	68.20	-7.60	53.21	7.39	Peak	187	329
2	*	5825.00	109.37			101.46	7.91	Average	187	329
3	*	5825.00	121.92			114.01	7.91	Peak	187	329
4		5850.00	87.24	122.20	-34.96	79.22	8.02	Peak	187	329
5		5855.00	80.69	110.80	-30.11	72.66	8.03	Peak	187	329
6		5875.00	70.59	105.20	-34.61	62.51	8.08	Peak	187	329
7		5925.00	61.76	68.20	-6.44	53.59	8.17	Peak	187	329
8		11650.00	47.38	54.00	-6.62	30.85	16.53	Average	100	123
9		11650.00	59.73	74.00	-14.27	43.20	16.53	Peak	100	123
10		17475.00	64.71	68.20	-3.49	43.20	21.51	Peak	100	247

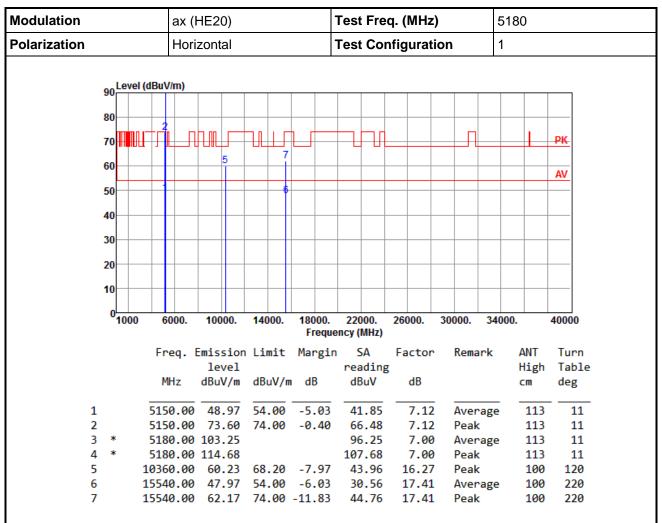
Frequency (MHz)

Page: 113 of 174

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor , cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).


Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN

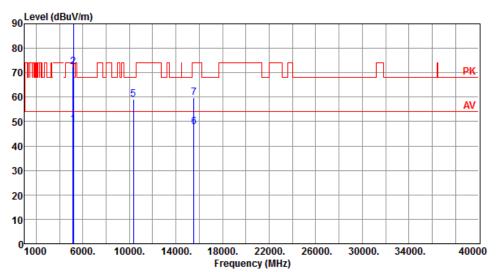
Report Version: Rev. 02

3.5.2 Transmitter Radiated Unwanted Emissions (Above 1GHz) for ax (HE20)

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) - Limit (dBuV/m).


Note 3:"*" is Peak / Average value of fundamental frequency

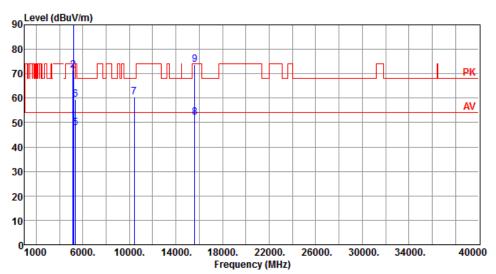
Report No.: FR9D0202AN
Report Version: Rev. 02

Report No.: FR9D0202AN Page: 114 of 174

Modulation	ax (HE20)	Test Freq. (MHz)	5180
Polarization	Vertical	Test Configuration	1

		Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1		5150.00	48.83	54.00	-5.17	41.71	7.12	Average	189	324
2		5150.00	72.49	74.00	-1.51	65.37	7.12	Peak	189	324
3	*	5180.00	102.44			95.44	7.00	Average	189	324
4	*	5180.00	114.35			107.35	7.00	Peak	189	324
5		10360.00	59.16	68.20	-9.04	42.89	16.27	Peak	254	23
6		15540.00	47.70	54.00	-6.30	30.29	17.41	Average	300	204
7		15540.00	59.78	74.00	-14.22	42.37	17.41	Peak	300	204

*Factor includes antenna factor, cable loss and amplifier gain


Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN Report Version: Rev. 02 Page: 115 of 174

Modulation	ax (HE20)	Test Freq. (MHz)	5200
Polarization	Horizontal	Test Configuration	1

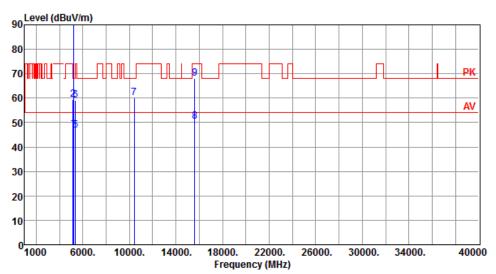
		Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1		5150.00	50.80	54.00	-3.20	43.68	7.12	Average	118	13
2		5150.00	71.36	74.00	-2.64	64.24	7.12	Peak	118	13
3	*	5200.00	109.53			102.60	6.93	Average	118	13
4	*	5200.00	121.11			114.18	6.93	Peak	118	13
5		5350.00	47.84	54.00	-6.16	40.99	6.85	Average	118	13
6		5350.00	59.54	74.00	-14.46	52.69	6.85	Peak	118	13
7		10400.00	60.36	68.20	-7.84	43.98	16.38	Peak	100	122
8		15600.00	52.06	54.00	-1.94	34.69	17.37	Average	301	222
9		15600.00	73.58	74.00	-0.42	56.21	17.37	Peak	301	222

Page: 116 of 174

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).


Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN

Report Version: Rev. 02

Modulation	ax (HE20)	Test Freq. (MHz)	5200
Polarization	Vertical	Test Configuration	1

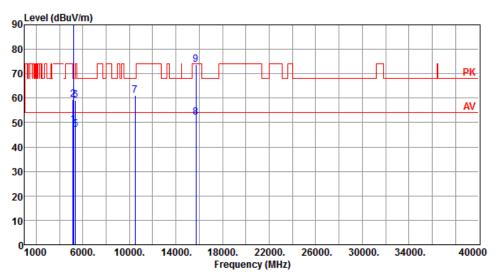
		Freq. MHz	Emission level dBuV/m	Limit dBuV/m	J	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1		5150.00	47.56	54.00	-6.44	40.44	7.12	Average	189	327
2		5150.00	59.47	74.00	-14.53	52.35	7.12	Peak	189	327
3	*	5200.00	108.68			101.75	6.93	Average	189	327
4	*	5200.00	121.29			114.36	6.93	Peak	189	327
5		5350.00	46.96	54.00	-7.04	40.11	6.85	Average	189	327
6		5350.00	59.24	74.00	-14.76	52.39	6.85	Peak	189	327
7		10400.00	60.23	68.20	-7.97	43.85	16.38	Peak	253	15
8		15600.00	50.63	54.00	-3.37	33.26	17.37	Average	284	206
9		15600.00	67.93	74.00	-6.07	50.56	17.37	Peak	284	206

Page: 117 of 174

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).


Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN

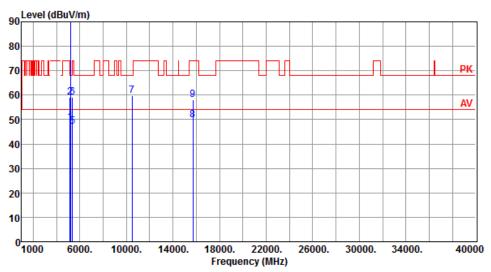
Report Version: Rev. 02

Modulation	ax (HE20)	Test Freq. (MHz)	5240
Polarization	Horizontal	Test Configuration	1

		Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/m	ı dB	dBuV	dB		CM	deg
1		5150.00	48.99	54.00	-5.01	41.87	7.12	Average	120	21
2		5150.00	59.47	74.00	-14.53	52.35	7.12	Peak	120	21
3	*	5240.00	110.42			103.62	6.80	Average	120	21
4	*	5240.00	121.85			115.05	6.80	Peak	120	21
5		5350.00	47.18	54.00	-6.82	40.33	6.85	Average	120	21
6		5350.00	59.26	74.00	-14.74	52.41	6.85	Peak	120	21
7		10480.00	61.09	68.20	-7.11	44.58	16.51	Peak	100	125
8		15720.00	52.30	54.00	-1.70	35.38	16.92	Average	304	233
9		15720.00	73.69	74.00	-0.31	56.77	16.92	Peak	304	233

Page: 118 of 174

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB) *Factor includes antenna factor , cable loss and amplifier gain


Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN Report Version: Rev. 02

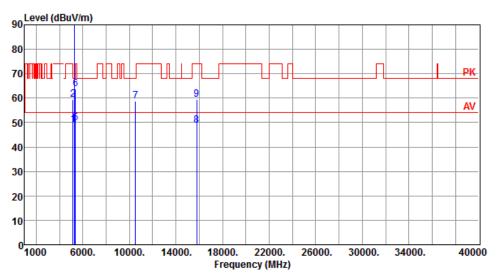
Modulation	ax (HE20)	Test Freq. (MHz)	5240
Polarization	Vertical	Test Configuration	1

		Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1		5150.00	48.69	54.00	-5.31	41.57	7.12	Average	188	326
2		5150.00	59.26	74.00	-14.74	52.14	7.12	Peak	188	326
3	*	5240.00	109.68			102.88	6.80	Average	188	326
4	*	5240.00	120.89			114.09	6.80	Peak	188	326
5		5350.00	47.02	54.00	-6.98	40.17	6.85	Average	188	326
6		5350.00	59.02	74.00	-14.98	52.17	6.85	Peak	188	326
7		10480.00	59.76	68.20	-8.44	43.25	16.51	Peak	255	23
8		15720.00	49.91	54.00	-4.09	32.99	16.92	Average	284	204
9		15720.00	58.09	74.00	-15.91	41.17	16.92	Peak	284	204

Page: 119 of 174

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain


Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN Report Version: Rev. 02

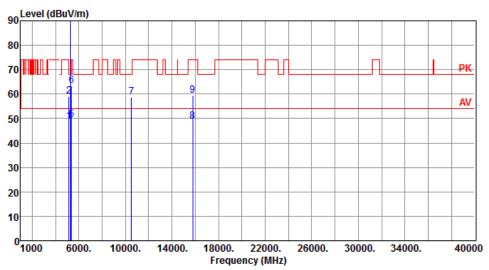
Modulation	ax (HE20)	Test Freq. (MHz)	5260
Polarization	Horizontal	Test Configuration	1

		Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/m	ı dB	dBuV	dB		cm	deg
1		5150.00	49.19	54.00	-4.81	42.07	7.12	Average	199	345
2		5150.00	59.44	74.00	-14.56	52.32	7.12	Peak	199	345
3	*	5260.00	109.21			102.41	6.80	Average	199	345
4	*	5260.00	121.92			115.12	6.80	Peak	199	345
5		5350.00	49.85	54.00	-4.15	43.00	6.85	Average	199	345
6		5350.00	63.73	74.00	-10.27	56.88	6.85	Peak	199	345
7		10520.00	58.73	68.20	-9.47	42.23	16.50	Peak	100	188
8		15780.00	48.98	54.00	-5.02	32.04	16.94	Average	100	352
9		15780.00	59.57	74.00	-14.43	42.63	16.94	Peak	100	352

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3:"*" is Peak / Average value of fundamental frequency


Report No.: FR9D0202AN

Page: 120 of 174

Report Version: Rev. 02

Modulation	ax (HE20)	Test Freq. (MHz)	5260
Polarization	Vertical	Test Configuration	1

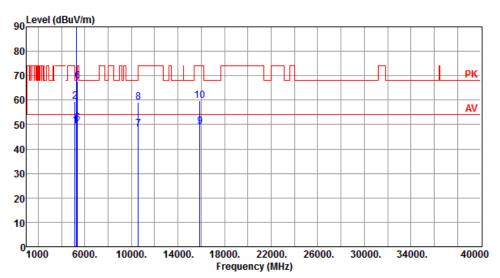
		Freq. MHz	Emission level dBuV/m	Limit dBuV/m	Ü	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
			,	,						
1		5150.00	48.67	54.00	-5.33	41.55	7.12	Average	223	331
2		5150.00	59.24	74.00	-14.76	52.12	7.12	Peak	223	331
3	*	5260.00	108.93			102.13	6.80	Average	223	331
4	*	5260.00	121.81			115.01	6.80	Peak	223	331
5		5350.00	49.41	54.00	-4.59	42.56	6.85	Average	223	331
6		5350.00	63.27	74.00	-10.73	56.42	6.85	Peak	223	331
7		10520.00	58.86	68.20	-9.34	42.36	16.50	Peak	200	182
8		15780.00	48.83	54.00	-5.17	31.89	16.94	Average	100	185
9		15780.00	59.50	74.00	-14.50	42.56	16.94	Peak	100	185

Page: 121 of 174

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).


Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN

Report Version: Rev. 02

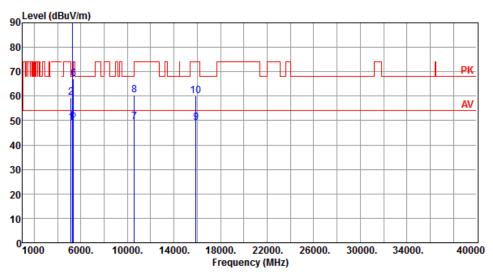
Modulation	ax (HE20)	Test Freq. (MHz)	5300
Polarization	Horizontal	Test Configuration	1

		Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/m	ı dB	dBuV	dB		cm	deg
1		5150.00	49.37	54.00	-4.63	42.25	7.12	Average	218	343
2		5150.00	59.42	74.00	-14.58	52.30	7.12	Peak	218	343
3	*	5300.00	109.26			102.35	6.91	Average	218	343
4	*	5300.00	122.16			115.25	6.91	Peak	218	343
5		5350.00	50.39	54.00	-3.61	43.54	6.85	Average	218	343
6		5350.00	67.83	74.00	-6.17	60.98	6.85	Peak	218	343
7		10600.00	48.12	54.00	-5.88	31.76	16.36	Average	100	351
8		10600.00	59.24	74.00	-14.76	42.88	16.36	Peak	100	351
9		15900.00	49.31	54.00	-4.69	32.22	17.09	Average	100	350
10		15900.00	59.94	74.00	-14.06	42.85	17.09	Peak	100	350

Page: 122 of 174

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB) *Factor includes antenna factor , cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).


Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN

Report Version: Rev. 02

Modulation	ax (HE20)	Test Freq. (MHz)	5300
Polarization	Vertical	Test Configuration	1

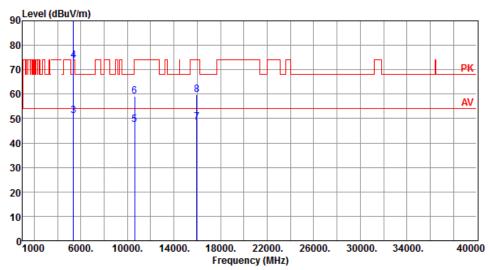
		Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/m	ı dB	dBuV	dB		cm	deg
1		5150.00	49.24	54.00	-4.76	42.12	7.12	Average	223	335
2		5150.00	59.28	74.00	-14.72	52.16	7.12	Peak	223	335
3	*	5300.00	108.93			102.02	6.91	Average	223	335
4	*	5300.00	122.04			115.13	6.91	Peak	223	335
5		5350.00	50.09	54.00	-3.91	43.24	6.85	Average	223	335
6		5350.00	67.10	74.00	-6.90	60.25	6.85	Peak	223	335
7		10600.00	49.47	54.00	-4.53	33.11	16.36	Average	204	188
8		10600.00	60.58	74.00	-13.42	44.22	16.36	Peak	204	188
9		15900.00	49.10	54.00	-4.90	32.01	17.09	Average	100	158
10		15900.00	59.95	74.00	-14.05	42.86	17.09	Peak	100	158

Page: 123 of 174

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).


Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN

Report Version: Rev. 02

Modulation	ax (HE20)	Test Freq. (MHz)	5320
Polarization	Horizontal	Test Configuration	1

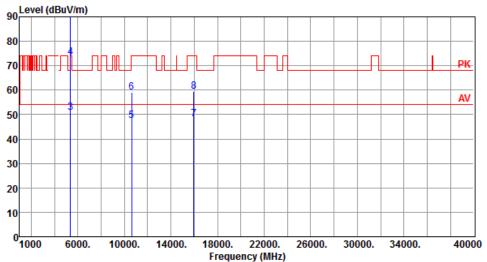
		Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	*	5320.00	105.18			98.29	6.89	Average	185	341
2	*	5320.00	117.11			110.22	6.89	Peak	185	341
3		5350.00	51.08	54.00	-2.92	44.23	6.85	Average	185	18
4		5350.00	73.72	74.00	-0.28	66.87	6.85	Peak	185	18
5		10640.00	47.64	54.00	-6.36	31.23	16.41	Average	100	353
6		10640.00	59.19	74.00	-14.81	42.78	16.41	Peak	100	353
7		15960.00	48.53	54.00	-5.47	31.66	16.87	Average	100	354
8		15960.00	59.74	74.00	-14.26	42.87	16.87	Peak	100	354

Page: 124 of 174

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).


Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN

Report Version: Rev. 02

Modulation	ax (HE20)	Test Freq. (MHz)	5320
Polarization	Vertical	Test Configuration	1

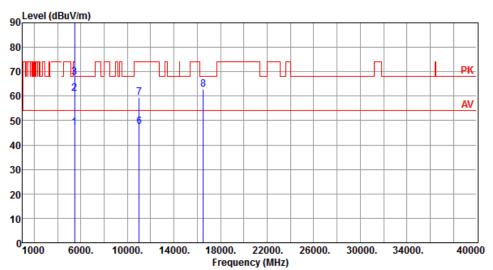
		Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	*	5320.00	104.90			98.01	6.89	Average	228	330
2	*	5320.00	116.92			110.03	6.89	Peak	228	330
3		5350.00	50.97	54.00	-3.03	44.12	6.85	Average	228	330
4		5350.00	73.32	74.00	-0.68	66.47	6.85	Peak	228	330
5		10640.00	47.56	54.00	-6.44	31.15	16.41	Average	100	189
6		10640.00	59.10	74.00	-14.90	42.69	16.41	Peak	100	189
7		15960.00	48.10	54.00	-5.90	31.23	16.87	Average	100	185
8		15960.00	59.33	74.00	-14.67	42.46	16.87	Peak	100	185

Page: 125 of 174

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).


Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN

Report Version: Rev. 02

Modulation	ax (HE20)	Test Freq. (MHz)	5500
Polarization	Horizontal	Test Configuration	1

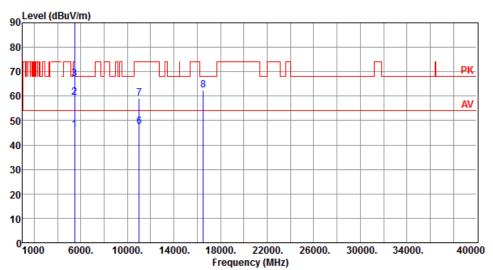
		Freq. MHz	Emission level dBuV/m	Limit dBuV/m	J	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1		5460.00	47.05	54.00	-6.95	39.88	7.17	Average	196	344
2		5460.00	60.99	74.00	-13.01	53.82	7.17	Peak	196	344
3		5470.00	67.73	68.20	-0.47	60.51	7.22	Peak	196	344
4	*	5500.00	102.90			95.54	7.36	Average	196	344
5	*	5500.00	115.92			108.56	7.36	Peak	196	344
6		11000.00	47.56	54.00	-6.44	30.52	17.04	Average	100	184
7		11000.00	59.43	74.00	-14.57	42.39	17.04	Peak	100	184
8		16500.00	62.76	68.20	-5.44	44.22	18.54	Peak	100	182

Page: 126 of 174

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).


Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN

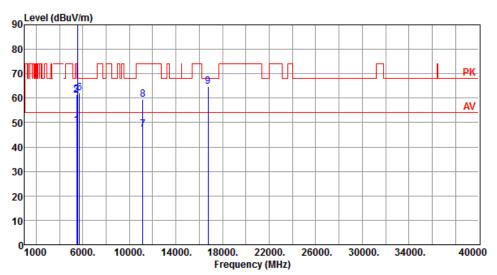
Report Version: Rev. 02

Modulation	ax (HE20)	Test Freq. (MHz)	5500
Polarization	Vertical	Test Configuration	1

		Freq. MHz	Emission level dBuV/m	Limit dBuV/m	Ū	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1		5460.00	46.15	54.00	-7.85	38.98	7.17	Average	241	320
2		5460.00	59.34	74.00	-14.66	52.17	7.17	Peak	241	320
3		5470.00	67.04	68.20	-1.16	59.82	7.22	Peak	241	320
4	*	5500.00	102.24			94.88	7.36	Average	241	320
5	*	5500.00	115.32			107.96	7.36	Peak	241	320
6		11000.00	47.46	54.00	-6.54	30.42	17.04	Average	100	185
7		11000.00	59.26	74.00	-14.74	42.22	17.04	Peak	100	185
8		16500.00	62.59	68.20	-5.61	44.05	18.54	Peak	100	188

Page: 127 of 174

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB) *Factor includes antenna factor , cable loss and amplifier gain


Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN

Modulation	ax (HE20)	Test Freq. (MHz)	5580
Polarization	Horizontal	Test Configuration	1

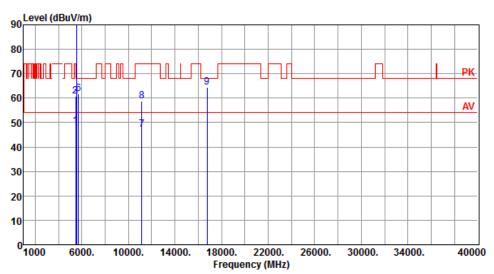
		Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/m	ı dB	dBuV	dB		cm	deg
1		5460.00	48.80	54.00	-5.20	41.63	7.17	Average	194	346
2		5460.00	61.07	74.00	-12.93	53.90	7.17	Peak	194	346
3		5470.00	61.47	68.20	-6.73	54.25	7.22	Peak	194	346
4	*	5580.00	107.45			99.97	7.48	Average	194	346
5	*	5580.00	119.01			111.53	7.48	Peak	194	346
6		5725.00	62.18	68.20	-6.02	54.62	7.56	Peak	194	346
7		11160.00	47.20	54.00	-6.80	30.67	16.53	Average	100	187
8		11160.00	59.49	74.00	-14.51	42.96	16.53	Peak	100	187
9		16740.00	64.87	68.20	-3.33	45.40	19.47	Peak	100	189

Page: 128 of 174

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).


Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN

Report Version: Rev. 02

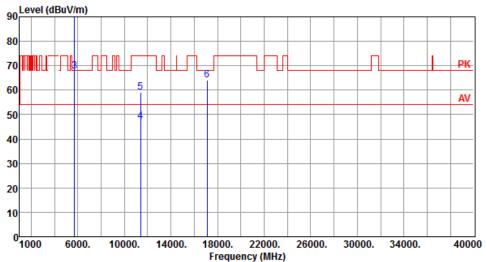
Modulation	ax (HE20)	Test Freq. (MHz)	5580
Polarization	Vertical	Test Configuration	1

			Emission level		J	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/m	ı dB	dBuV	dB		CM	deg
1		5460.00	48.32	54.00	-5.68	41.15	7.17	Average	222	334
2		5460.00	60.71	74.00	-13.29	53.54	7.17	Peak	222	334
3		5470.00	60.90	68.20	-7.30	53.68	7.22	Peak	222	334
4	*	5580.00	106.33			98.85	7.48	Average	222	334
5	*	5580.00	117.94			110.46	7.48	Peak	222	334
6		5725.00	61.79	68.20	-6.41	54.23	7.56	Peak	222	334
7		11160.00	47.05	54.00	-6.95	30.52	16.53	Average	100	48
8		11160.00	58.89	74.00	-15.11	42.36	16.53	Peak	100	48
9		16740.00	64.34	68.20	-3.86	44.87	19.47	Peak	100	52

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3:"*" is Peak / Average value of fundamental frequency


Report No.: FR9D0202AN

Page: 129 of 174

Report Version: Rev. 02

Modulation	ax (HE20)	Test Freq. (MHz)	Test Freq. (MHz) 5700				
Polarization	Horizontal	Test Configuration	ı	1			
90 Level (d	IBuV/m)				_		

		Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/m	ı dB	dBuV	dB		cm	deg
1	*	5700.00	102.66			95.26	7.40	Average	169	342
2	*	5700.00	115.62			108.22	7.40	Peak	169	342
3		5725.00	67.91	68.20	-0.29	60.35	7.56	Peak	169	342
4		11400.00	47.15	54.00	-6.85	30.32	16.83	Average	100	183
5		11400.00	59.16	74.00	-14.84	42.33	16.83	Peak	100	183
6		17100.00	64.09	68.20	-4.11	44.35	19.74	Peak	100	182

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB) *Factor includes antenna factor , cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m). Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN Page: 130 of 174

Report Version: Rev. 02

Modulation				ax (I	HE20))				-	Test	Fre	q. (l	MHz)		Ę	5700)	
Polarization				Vert	ical					•	Test	Co	nfig	urat	ion		1	1		
	90	Leve	el (dBu\	//m)																
	0.0																			
	80						_ ,		, ,											
	70	H	\mathbb{H}			\vdash	$\Box \Box$	_	6			$- \Box $								PK
	60					5			Ť						_					
		\mathbb{H}																		AV
	50	7				4														
	40	\vdash													_					
	30																			
	20																			
	10	\vdash																		
	(Щ																		
	Ì	1000	0 6	000.	1000	00.	1400	0.	180 Fr		220 ency (l		260	000.	300	00.	340	000.		40000
			Fr	ea. I	Emiss	ion	Limi	it		-			Fa	ctor	R	Rema	rk	_	ANT	Turn
					lev					0		ding	g					H	ligh	Tabl
			М	Hz	dBuV	//m	dBu\	//m	dE	3	dE	luV		dB				(cm .	deg
	1 ,	k	570	0.00	101.	72		_		_	94	.32	_	7.40	_	lver	age	-	226	320
	_	k			115.							.63		7.40		eak			226	
	3						68.2					.47		7.56		eak	:		226	
	4						54.6					.14		6.83			age		100	
	5		1140	0.00	59.	10	74.6	10	-14.	90	42	.27	1	6.83	P	eak			100	189

17100.00 63.99 68.20 -4.21 44.25 19.74

Peak

100

184

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor , cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN Report Version: Rev. 02

Page: 131 of 174

Modulation		а	x (HE20)			Test Free	q. (MHz)		5720	
Polarization		Н	lorizontal			Test Con	figuratio	n	1	
	90 Lev	el (dBuV/m	1)							
	80									
		nn 1—————			<u> </u>	—				DI.
	70				9					PK-
	60	2								AV
	50	- 1	7							
	40									
	30									
	20									
	10									
	0									
	~100	0 600	0. 10000.	14000.	18000. Frequ	22000. ency (MHz)	26000.	30000. 3	4000.	40000
		Freq	. Emission	Limit	Margin		Factor	Remark	ANT	Turn
		MII	level	JD. 377-	. 40	reading			High	Table
		MHz	dBuV/m	abuv/n	і ав	dBuV	dB		CM	deg
	l	5460.	00 47.70	54.00	-6.30	40.33	7.37	Averag	e 192	341
	2	5460.			-14.29	52.34	7.37	Peak	192	341
	3 4 *	5470.	00 60.31 00 107.80	68.20	-7.89	52.89 100.06	7.42 7.74	Peak	192 e 192	341 341
	+ ·· 5 *		00 119.66			111.92	7.74	Averag Peak	e 192 192	341
	5		00 62.66	68.20	-5.54	54.54	8.12	Peak	192	341
	7		00 47.18	54.00	-6.82		16.78	Averag		183
								_		
	3	11440.	00 59.54	74.00	-14.46	42.76	16.78	Peak	100	183

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) - Limit (dBuV/m).

Note 3:"*" is Peak / Average value of fundamental frequency

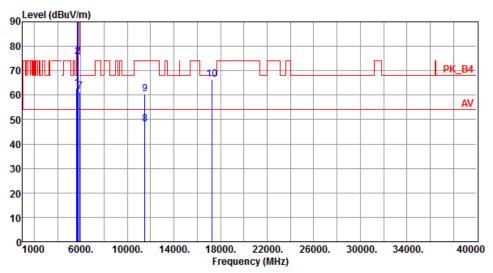
Report No.: FR9D0202AN

Page: 132 of 174

Report Version: Rev. 02

Modulation	ax (HE20)	Test Freq. (MHz)	Test Freq. (MHz) 5720			
Polarization	Vertical	Test Configuration	1			
90 Level (dB	BuV/m)	•				
90						
80						
70			PK			
60	36 8 9					
			AV			
50	1 7 1					
40						
30						
20						
10						
0						
1000	6000. 10000. 14000. 18000 Fred). 22000. 26000. 30000. 3 Juency (MHz)	34000. 40000			
1	Freq. Emission Limit Marg	in SA Factor Remark	c ANT Turn			
	level	reading	High Table			
	MHz dBuV/m dBuV/m dB	dBuV dB	cm deg			
1 54	460.00 47.71 54.00 -6.2	9 40.34 7.37 Averag	ge 223 335			
2 54	460.00 60.78 74.00 -13.2	2 53.41 7.37 Peak	223 335			
	470.00 59.64 68.20 -8.5		223 335			
	720.00 106.69	98.95 7.74 Averag				
,	720.00 118.33 850.00 61.85 68.20 -6.3	110.59 7.74 Peak 5 53.73 8.12 Peak	223 335 223 335			
	.440.00 47.28 54.00 -6.7					
	440.00 59.48 74.00 -14.5		100 50			
	440.00 39.46 /4.00 -14 3	/ 4/-/0 10-/0 2038				

*Factor includes antenna factor, cable loss and amplifier gain


Note 2: Margin (dB) = Emission level (dBuV/m) - Limit (dBuV/m).

Note 3:"*" is Peak / Average value of fundamental frequency

Report Version: Rev. 02

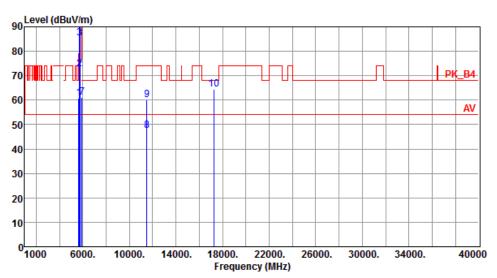
Modulation	ax (HE20)	Test Freq. (MHz)	5745
Polarization	Horizontal	Test Configuration	1

		Freq.	Emissior level	n Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/m	ı dB	dBuV	dB		cm	deg
1		5650.00	62.75	68.20	-5.45	55.36	7.39	Peak	138	17
2		5700.00	75.79	105.20	-29.41	68.39	7.40	Peak	138	17
3		5720.00	88.98	110.80	-21.82	81.46	7.52	Peak	138	17
4		5725.00	93.81	122.20	-28.39	86.25	7.56	Peak	138	17
5	*	5745.00	110.51			102.83	7.68	Average	138	17
6	*	5745.00	122.33			114.65	7.68	Peak	138	17
7		5925.00	61.39	68.20	-6.81	53.22	8.17	Peak	138	17
8		11490.00	48.23	54.00	-5.77	31.46	16.77	Average	235	129
9		11490.00	60.35	74.00	-13.65	43.58	16.77	Peak	235	129
10		17235.00	66.49	68.20	-1.71	46.18	20.31	Peak	320	316

Page: 134 of 174

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB) *Factor includes antenna factor , cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).


Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN

Report Version: Rev. 02

Modulation	ax (HE20)	Test Freq. (MHz)	5745
Polarization	Vertical	Test Configuration	1

		Freq.	Emission level	n Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/n	n dB	dBuV	dB		cm	deg
1		5650.00	60.64	68.20	-7.56	53.25	7.39	Peak	193	332
2		5700.00	72.65	105.20	-32.55	65.25	7.40	Peak	193	332
3		5720.00	85.38	110.80	-25.42	77.86	7.52	Peak	193	332
4		5725.00	90.80	122.20	-31.40	83.24	7.56	Peak	193	332
5	*	5745.00	109.23			101.55	7.68	Average	193	332
6	*	5745.00	121.20			113.52	7.68	Peak	193	332
7		5925.00	61.18	68.20	-7.02	53.01	8.17	Peak	193	332
8		11490.00	47.63	54.00	-6.37	30.86	16.77	Average	100	120
9		11490.00	59.98	74.00	-14.02	43.21	16.77	Peak	100	120
10		17235.00	64.36	68.20	-3.84	44.05	20.31	Peak	100	244

Page: 135 of 174

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN

Report Version: Rev. 02

Modulation	ax (HE20)	Test Freq. (MHz)	5785
Polarization	Horizontal	Test Configuration	1

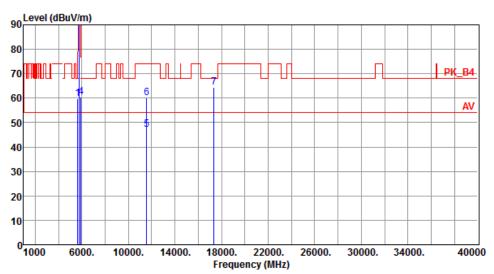
		Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/m	ı dB	dBuV	dB		cm	deg
1		5650.00	60.61	68.20	-7.59	53.22	7.39	Peak	142	25
2	*	5785.00	110.63			102.85	7.78	Average	142	25
3	*	5785.00	122.45			114.67	7.78	Peak	142	25
4		5925.00	61.78	68.20	-6.42	53.61	8.17	Peak	142	25
5		11570.00	47.98	54.00	-6.02	31.23	16.75	Average	240	121
6		11570.00	60.21	74.00	-13.79	43.46	16.75	Peak	240	121
7		17355.00	66.34	68.20	-1.86	45.45	20.89	Peak	296	314

Page: 136 of 174

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).


Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN

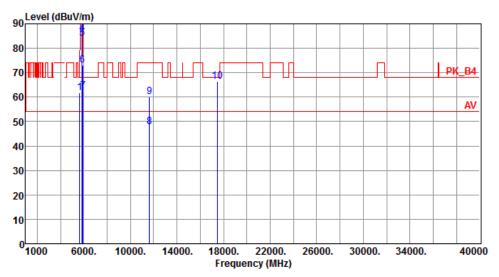
Report Version: Rev. 02

Modulation	ax (HE20)	Test Freq. (MHz)	5785
Polarization	Vertical	Test Configuration	1

		Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1		5650.00	59.92	68.20	-8.28	52.53	7.39	Peak	186	329
2	*	5785.00	109.03			101.25	7.78	Average	186	329
3	*	5785.00	121.34			113.56	7.78	Peak	186	329
4		5925.00	60.32	68.20	-7.88	52.15	8.17	Peak	186	329
5		11570.00	47.31	54.00	-6.69	30.56	16.75	Average	100	129
6		11570.00	60.26	74.00	-13.74	43.51	16.75	Peak	100	129
7		17355.00	64.50	68.20	-3.70	43.61	20.89	Peak	100	245

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).


Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN Page: 137 of 174

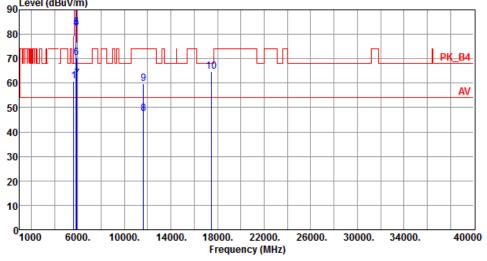
Report Version: Rev. 02

Modulation	ax (HE20)	Test Freq. (MHz)	5825
Polarization	Horizontal	Test Configuration	1

		Freq. I	Emission level	n Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/n	ı dB	dBuV	dB		cm	deg
1		5650.00	61.61	68.20	-6.59	54.22	7.39	Peak	142	23
2	*	5825.00	110.72			102.81	7.91	Average	142	23
3	*	5825.00	112.67			104.76	7.91	Peak	142	23
4		5850.00	85.90	122.20	-36.30	77.88	8.02	Peak	142	23
5		5855.00	83.99	110.80	-26.81	75.96	8.03	Peak	142	23
6		5875.00	72.93	105.20	-32.27	64.85	8.08	Peak	142	23
7		5925.00	62.51	68.20	-5.69	54.34	8.17	Peak	142	23
8		11650.00	47.81	54.00	-6.19	31.28	16.53	Average	233	124
9		11650.00	59.95	74.00	-14.05	43.42	16.53	Peak	233	124
10		17475.00	66.47	68.20	-1.73	44.96	21.51	Peak	283	290

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).


Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN Report Version: Rev. 02

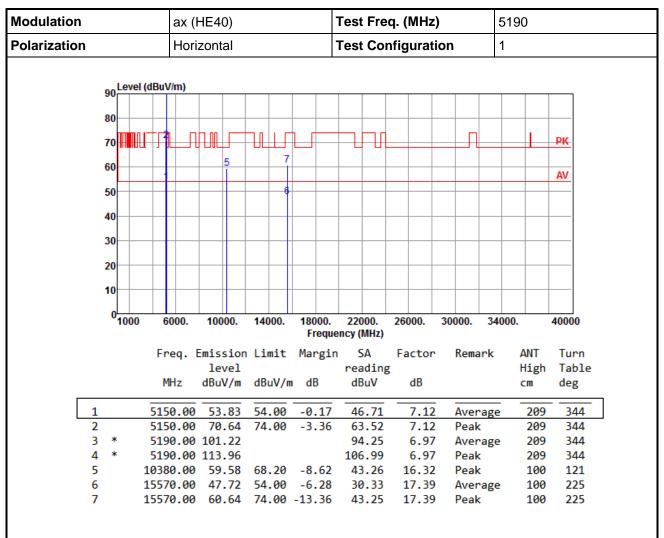
Page: 138 of 174

Modulation	ax (HE2	0))			Test Freq. (MHz)				5	5825					
Polarization		Vertical				1	Гest	Conf	igura	tion		1				
	Level (dBu\	//m)														
80													\dashv			

		Freq. 1	Emission level	n Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/n	ı dB	dBuV	dB		cm	deg
1		5650.00	60.67	68.20	-7.53	53.28	7.39	Peak	187	328
2	*	5825.00	109.61			101.70	7.91	Average	187	328
3	*	5825.00	111.44			103.53	7.91	Peak	187	328
4		5850.00	82.27	122.20	-39.93	74.25	8.02	Peak	187	328
5		5855.00	82.61	110.80	-28.19	74.58	8.03	Peak	187	328
6		5875.00	70.37	105.20	-34.83	62.29	8.08	Peak	187	328
7		5925.00	61.76	68.20	-6.44	53.59	8.17	Peak	187	328
8		11650.00	47.39	54.00	-6.61	30.86	16.53	Average	100	127
9		11650.00	59.73	74.00	-14.27	43.20	16.53	Peak	100	127
10		17475.00	64.71	68.20	-3.49	43.20	21.51	Peak	100	247

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB) *Factor includes antenna factor , cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m). Note 3:"*" is Peak / Average value of fundamental frequency


The previous version of the test report has been cancelled and replaced by new version.

Report No.: FR9D0202AN

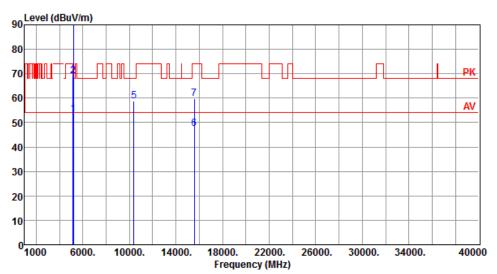
Page: 139 of 174

3.5.3 Transmitter Radiated Unwanted Emissions (Above 1GHz) for ax (HE40)

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Page: 140 of 174


Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN

Modulation	ax (HE40)	Test Freq. (MHz)	5190
Polarization	Vertical	Test Configuration	1

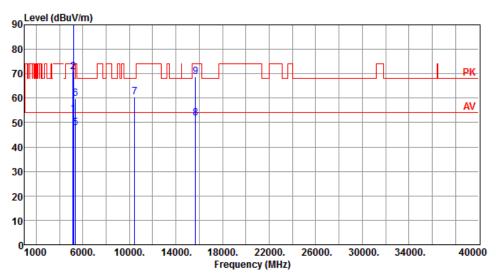
		Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1		5150.00	53.40	54.00	-0.60	46.28	7.12	Average	196	326
2		5150.00	69.00	74.00	-5.00	61.88	7.12	Peak	196	326
3	*	5190.00	100.60			93.63	6.97	Average	196	326
4	*	5190.00	112.59			105.62	6.97	Peak	196	326
5		10380.00	58.65	68.20	-9.55	42.33	16.32	Peak	251	17
6		15570.00	47.53	54.00	-6.47	30.14	17.39	Average	284	205
7		15570.00	59.86	74.00	-14.14	42.47	17.39	Peak	284	205

Page: 141 of 174

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).


Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN

Report Version: Rev. 02

Modulation	ax (HE40)	Test Freq. (MHz)	5230
Polarization	Horizontal	Test Configuration	1

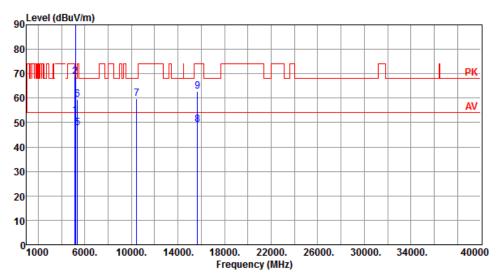
		Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1		5150.00	53.56	54.00	-0.44	46.44	7.12	Average	175	337
2		5150.00	70.82	74.00	-3.18	63.70	7.12	Peak	175	337
3	*	5230.00	107.49			100.66	6.83	Average	175	337
4	*	5230.00	119.05			112.22	6.83	Peak	175	337
5		5350.00	47.96	54.00	-6.04	41.11	6.85	Average	175	337
6		5350.00	59.81	74.00	-14.19	52.96	6.85	Peak	175	337
7		10460.00	60.37	68.20	-7.83	43.90	16.47	Peak	100	122
8		15690.00	51.83	54.00	-2.17	34.87	16.96	Average	178	214
9		15690.00	68.78	74.00	-5.22	51.82	16.96	Peak	178	214

Page: 142 of 174

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).


Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN

Report Version: Rev. 02

Modulation	ax (HE40)	Test Freq. (MHz)	5230
Polarization	Vertical	Test Configuration	1

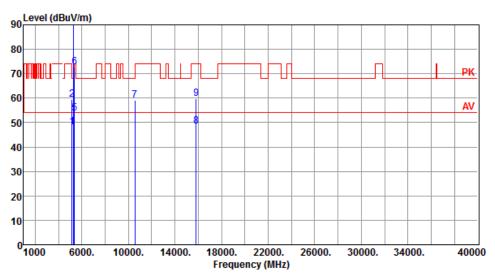
		Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1		5150.00	52.97	54.00	-1.03	45.85	7.12	Average	200	321
2		5150.00	68.69	74.00	-5.31	61.57	7.12	Peak	200	321
3	*	5230.00	106.70			99.87	6.83	Average	200	321
4	*	5230.00	118.30			111.47	6.83	Peak	200	321
5		5350.00	47.94	54.00	-6.06	41.09	6.85	Average	200	321
6		5350.00	59.32	74.00	-14.68	52.47	6.85	Peak	200	321
7		10460.00	59.73	68.20	-8.47	43.26	16.47	Peak	251	19
8		15690.00	49.07	54.00	-4.93	32.11	16.96	Average	281	212
9		15690.00	62.82	74.00	-11.18	45.86	16.96	Peak	281	212

Page: 143 of 174

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).


Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN

Report Version: Rev. 02

Modulation	ax (HE40)	Test Freq. (MHz)	5270	
Polarization	Horizontal	Test Configuration	1	

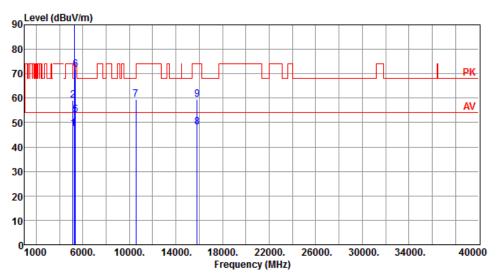
		Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/n	ı dB	dBuV	dB		cm	deg
1		5150.00	48.10	54.00	-5.90	40.98	7.12	Average	198	349
2		5150.00	59.47	74.00	-14.53	52.35	7.12	Peak	198	349
3	*	5270.00	108.68			101.85	6.83	Average	198	349
4	*	5270.00	120.65			113.82	6.83	Peak	198	349
5		5350.00	53.88	54.00	-0.12	47.03	6.85	Average	198	349
6		5350.00	72.75	74.00	-1.25	65.90	6.85	Peak	198	349
7		10540.00	59.11	68.20	-9.09	42.64	16.47	Peak	100	345
8		15810.00	48.49	54.00	-5.51	31.53	16.96	Average	100	351
9		15810.00	59.82	74.00	-14.18	42.86	16.96	Peak	100	351

Page: 144 of 174

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).


Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN

Report Version: Rev. 02

Modulation	ax (HE40)	Test Freq. (MHz)	5270
Polarization	Vertical	Test Configuration	1

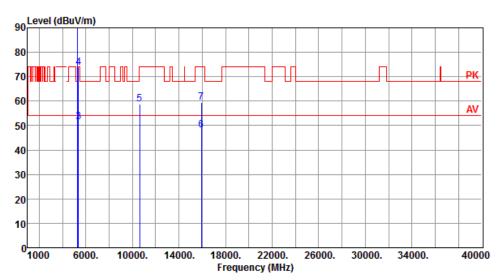
		Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/r	n dB	dBuV	dB		cm	deg
1		5150.00	47.60	54.00	-6.40	40.48	7.12	Average	222	335
2		5150.00	59.26	74.00	-14.74	52.14	7.12	Peak	222	335
3	*	5270.00	108.28			101.45	6.83	Average	222	335
4	*	5270.00	120.40			113.57	6.83	Peak	222	335
5		5350.00	53.10	54.00	-0.90	46.25	6.85	Average	222	335
6		5350.00	71.74	74.00	-2.26	64.89	6.85	Peak	222	335
7		10540.00	59.32	68.20	-8.88	42.85	16.47	Peak	100	153
8		15810.00	48.20	54.00	-5.80	31.24	16.96	Average	100	188
9		15810.00	59.52	74.00	-14.48	42.56	16.96	Peak	100	188

Page: 145 of 174

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).


Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN

Report Version: Rev. 02

Modulation	ax (HE40)	Test Freq. (MHz)	5310
Polarization	Horizontal	Test Configuration	1

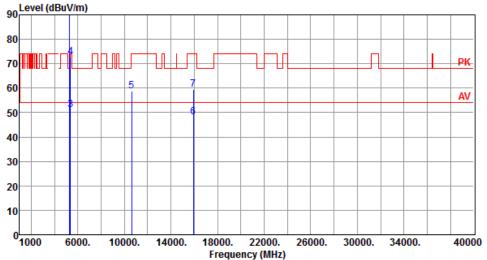
		Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	*	5310.00	101.92			95.02	6.90	Average	186	348
2	*	5310.00	114.79			107.89	6.90	Peak	186	348
3		5350.00	51.41	54.00	-2.59	44.56	6.85	Average	186	348
4		5350.00	73.70	74.00	-0.30	66.85	6.85	Peak	186	348
5		10620.00	58.94	74.00	-15.06	42.55	16.39	Peak	100	350
6		15930.00	48.23	54.00	-5.77	31.25	16.98	Average	100	355
7		15930.00	59.56	74.00	-14.44	42.58	16.98	Peak	100	355

Page: 146 of 174

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).


Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN

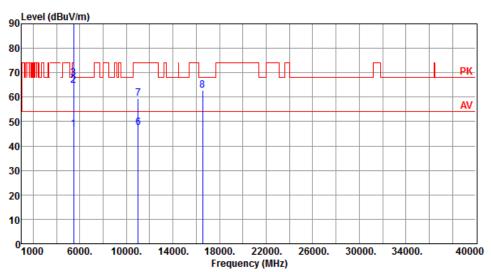
Report Version: Rev. 02

Modulation	ax (HE40)	Test Freq. (MHz)	5310		
Polarization	Vertical	Test Configuration	1		
90 Level (dBu	V/m)				

		Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	*	5310.00	101.24			94.34	6.90	Average	247	323
2	*	5310.00	113.70			106.80	6.90	Peak	247	323
3		5350.00	51.14	54.00	-2.86	44.29	6.85	Average	247	323
4		5350.00	72.88	74.00	-1.12	66.03	6.85	Peak	247	323
5		10620.00	58.84	74.00	-15.16	42.45	16.39	Peak	100	187
6		15930.00	48.11	54.00	-5.89	31.13	16.98	Average	100	190
7		15930.00	59.52	74.00	-14.48	42.54	16.98	Peak	100	190

Page: 147 of 174

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB) *Factor includes antenna factor , cable loss and amplifier gain


Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m). Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN

Report Version: Rev. 02

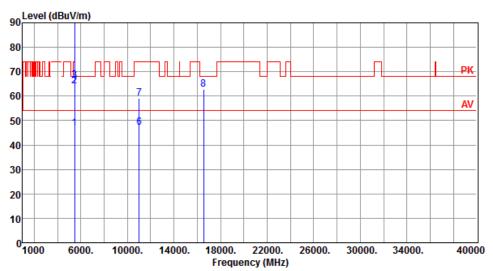
Modulation	ax (HE40)	Test Freq. (MHz)	5510
Polarization	Horizontal	Test Configuration	1

		•	Emission level		ŭ	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB		CM	deg
1		5460.00	46.93	54.00	-7.07	39.76	7.17	Average	176	347
2		5460.00	64.67	74.00	-9.33	57.50	7.17	Peak	176	347
3		5470.00	67.80	68.20	-0.40	60.58	7.22	Peak	176	347
4	*	5510.00	100.03			92.64	7.39	Average	176	347
5	*	5510.00	111.27			103.88	7.39	Peak	176	347
6		11020.00	47.36	54.00	-6.64	30.39	16.97	Average	100	185
7		11020.00	59.36	74.00	-14.64	42.39	16.97	Peak	100	185
8		16530.00	62.81	68.20	-5.39	44.11	18.70	Peak	100	185

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).


Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN

Report Version: Rev. 02

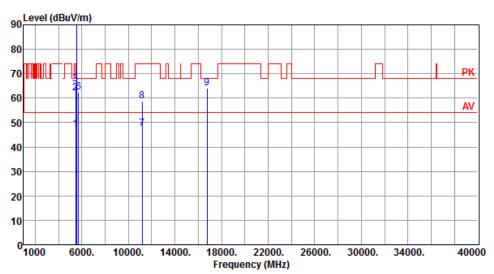
Modulation	ax (HE40)	Test Freq. (MHz)	5510
Polarization	Vertical	Test Configuration	1

		Freq. MHz	Emission level dBuV/m	Limit dBuV/m	Ū	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
		PHIZ	ubuv/III	ubuv/III	ub	ubuv	ub		CIII	ueg
1		5460.00	46.75	54.00	-7.25	39.58	7.17	Average	278	327
2		5460.00	64.12	74.00	-9.88	56.95	7.17	Peak	278	327
3		5470.00	66.43	68.20	-1.77	59.21	7.22	Peak	278	327
4	*	5510.00	99.43			92.04	7.39	Average	278	327
5	*	5510.00	110.57			103.18	7.39	Peak	278	327
6		11020.00	47.18	54.00	-6.82	30.21	16.97	Average	100	188
7		11020.00	59.22	74.00	-14.78	42.25	16.97	Peak	100	188
8		16530.00	62.71	68.20	-5.49	44.01	18.70	Peak	100	191

Page: 149 of 174

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain


Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN Report Version: Rev. 02

Modulation	ax (HE40)	Test Freq. (MHz)	5590
Polarization	Horizontal	Test Configuration	1

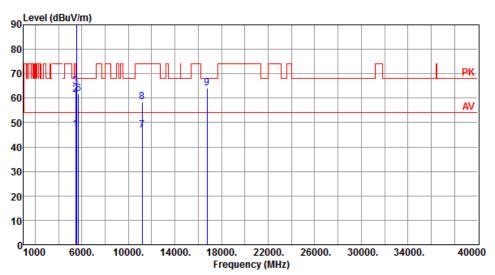
			Emission level		J	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/m	ı dB	dBuV	dB		CM	deg
1		5460.00	47.22	54.00	-6.78	40.05	7.17	Average	198	349
2		5460.00	62.18	74.00	-11.82	55.01	7.17	Peak	198	349
3		5470.00	65.82	68.20	-2.38	58.60	7.22	Peak	198	349
4	*	5590.00	107.59			100.11	7.48	Average	198	349
5	*	5590.00	119.02			111.54	7.48	Peak	198	349
6		5725.00	62.43	68.20	-5.77	54.87	7.56	Peak	198	349
7		11180.00	47.34	54.00	-6.66	30.86	16.48	Average	100	195
8		11180.00	58.87	74.00	-15.13	42.39	16.48	Peak	100	195
9		16770.00	64.16	68.20	-4.04	44.51	19.65	Peak	100	188

Page: 150 of 174

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).


Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN

Report Version: Rev. 02

Modulation	ax (HE40)	Test Freq. (MHz)	5590
Polarization	Vertical	Test Configuration	1

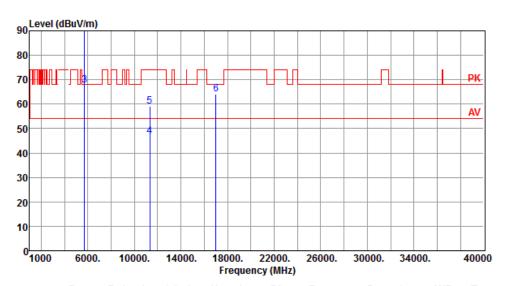
		Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/m	ı dB	dBuV	dB		cm	deg
1		5460.00	47.03	54.00	-6.97	39.86	7.17	Average	222	333
2		5460.00	61.43	74.00	-12.57	54.26	7.17	Peak	222	333
3		5470.00	64.71	68.20	-3.49	57.49	7.22	Peak	222	333
4	*	5590.00	106.74			99.26	7.48	Average	222	333
5	*	5590.00	118.17			110.69	7.48	Peak	222	333
6		5725.00	61.67	68.20	-6.53	54.11	7.56	Peak	222	333
7		11180.00	46.96	54.00	-7.04	30.48	16.48	Average	100	55
8		11180.00	58.59	74.00	-15.41	42.11	16.48	Peak	100	55
9		16770.00	63.98	68.20	-4.22	44.33	19.65	Peak	100	44

Page: 151 of 174

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).


Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN

Report Version: Rev. 02

Modulation	ax (HE40)	Test Freq. (MHz)	5670
Polarization	Horizontal	Test Configuration	1

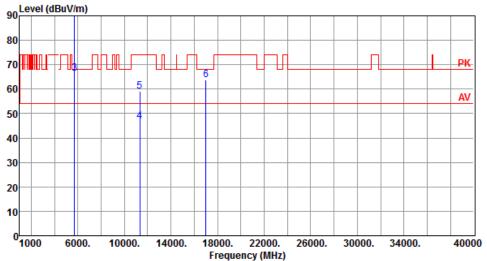
		Freq.	Emission	Limit	Margin	SA	Factor	Remark	ANT	Turn
			level			reading			High	Table
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	*	5670.00	100.76			93.37	7.39	Average	165	346
2	*	5670.00	114.18			106.79	7.39	Peak	165	346
3		5725.00	67.72	68.20	-0.48	60.16	7.56	Peak	165	346
4		11340.00	46.97	54.00	-7.03	30.35	16.62	Average	100	179
5		11340.00	59.24	74.00	-14.76	42.62	16.62	Peak	100	179
6		17010.00	64.17	68.20	-4.03	44.28	19.89	Peak	100	188

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3:"*" is Peak / Average value of fundamental frequency


Report No.: FR9D0202AN

Page: 152 of 174

Report Version: Rev. 02

Modulation	ax (HE40)	Test Freq. (MHz)	5670		
Polarization	Vertical	Test Configuration	1		
90 Level (dBu	//m)				

		Freq.	Emission level	Limit	Margin	SA reading		Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	*	5670.00	100.24			92.85	7.39	Average	234	324
2	*		113.60			106.21	7.39	Peak	234	324
3		5725.00	66.43	68.20	-1.77	58.87	7.56	Peak	234	324
4		11340.00	46.83	54.00	-7.17	30.21	16.62	Average	100	183
5		11340.00	59.18	74.00	-14.82	42.56	16.62	Peak	100	183
6		17010.00	63.91	68.20	-4.29	44.02	19.89	Peak	100	185

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN

Page: 153 of 174

Report Version: Rev. 02

Modulation				ax (l	HE40))				Tes	t Fre	eq. ((MHz)		571	0	
Polarization				Hori	zonta	al				Tes	t Co	nfig	gurati	ion		1		
	90	Leve	el (dBuV	//m)														
	90	'┌		Π.														
	80	<u> </u>				_		+								_		
	70						Ш	Д			П				Д		1	PK
	60		2	∦		8			9									
	00	"																AV
	50					7		+								+		
	40																	
	40	'																
	30	-				-		+								-		
	20																	
	20	<u>'</u>																
	10	 				+		+		+	+				-	+		
		Ш																
	•	1000) 6	000.	1000	00.	14000).	18000 Freq		000. (MHz)		000.	30000). 34	4000.		40000
			En	on 1	micc	ion	Limi	+	Margi	_	SA ,		actor	Re	mark		ANT	Turn
				cq. i	lev		CIMI		i lai g.		adin		ac coi	I.C	mai K		High	
			М	Hz			dBuV	/m	dB		BuV		dB				cm	deg
	1		546	0.00	46.	85	54.0	 0	-7.1	= =	9.48	_	7.37	Av	erag	– - e	199	352
	2		546	0.00	61.	34	74.0	0 -	-12.66	5 5	3.97		7.37		ak		199	352
	3			0.00			68.2	0	-6.83		3.97		7.42		ak		199	
	4 *			0.00							0.31		7.72		erag	e	199	
	•	k		0.00							1.87		7.72		ak		199	
	6								-4.5		5.55		8.12		ak		199	
	7			0.00					-6.08		1.17		16.75		erag	e	100	196
	8		1142	0.00	59.	06	74.0	0 -	-14.94	. 4	2.31	1	16.75	Pe	ak		100	196

44.79

18.51

Peak

100

192

Page: 154 of 174

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

17130.00 63.30 68.20 -4.90

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN

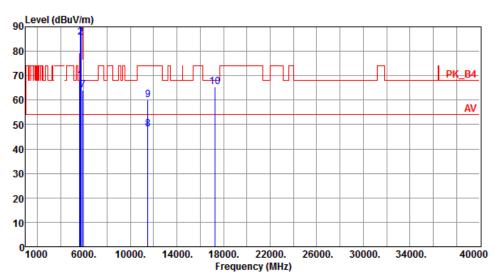
Report Version: Rev. 02

Modulation	ax (HE40)		Test Freq	ı. (MHz)	57	10	
Polarization	Vertical		Test Conf	figuration	1		
90 Level (dBu	·V/m)						
90							
80							
70					۱		PK
70 HI III J			 		4		PK
60	2 8						
							AV
50	1 7						
40							
30							
20							
20							
10							
01000	6000. 10000.	14000. 18000 Fred	. 22000. uency (MHz)	26000. 30000.	34000).	40000
E,	rea Emissio	n Limit Marg		Factor Ren	ark	ANT	Turn
	level	TIME THE	reading	raccor nei	iui k	High	Table
1		dBuV/m dB	dBuV	dB		cm	deg
							330
1 546	60.00 46.75	54.00 -7.2	5 39.38	7.37 Ave	rage	221	
	60.00 46.75 60.00 59.98			7.37 Ave 7.37 Pea	rage k	221	330
2 546	60.00 59.98		2 52.61		k		
2 546 3 547	60.00 59.98	74.00 -14.0	2 52.61	7.37 Pea 7.42 Pea 7.72 Ave	k	221	330
2 540 3 547 4 * 573 5 * 573	60.00 59.98 70.00 61.06 10.00 107.11 10.00 118.57	74.00 -14.00 68.20 -7.10	2 52.61 4 53.64 99.39 110.85	7.37 Pea 7.42 Pea 7.72 Ave 7.72 Pea	k k rage k	221 221 221 221	330 330 330 330
2 546 3 547 4 * 577 5 * 577 6 589	60.00 59.98 70.00 61.06 10.00 107.11 10.00 118.57 50.00 62.26	74.00 -14.0 68.20 -7.1 68.20 -5.9	2 52.61 4 53.64 99.39 110.85 4 54.14	7.37 Pea 7.42 Pea 7.72 Ave 7.72 Pea 8.12 Pea	k k rage k k	221 221 221 221 221 221	330 330 330 330 330
2 546 3 547 4 * 577 5 * 577 6 588 7 1147	60.00 59.98 70.00 61.06 10.00 107.11 10.00 118.57 50.00 62.26 20.00 47.19	74.00 -14.0 68.20 -7.1 68.20 -5.9 54.00 -6.8	2 52.61 4 53.64 99.39 110.85 4 54.14 1 30.44	7.37 Pea 7.42 Pea 7.72 Ave 7.72 Pea 8.12 Pea 16.75 Ave	k rage k k k	221 221 221 221 221 201 100	330 330 330 330 330 56
2 546 3 547 4 * 577 5 * 577 6 589 7 1147 8 1147	60.00 59.98 70.00 61.06 10.00 107.11 10.00 118.57 50.00 62.26 20.00 47.19 20.00 59.00	74.00 -14.0 68.20 -7.1 68.20 -5.9	2 52.61 4 53.64 99.39 110.85 4 54.14 1 30.44 2 42.25	7.37 Pea 7.42 Pea 7.72 Ave 7.72 Pea 8.12 Pea	ik ik rage ik ik rage	221 221 221 221 221 221	330 330 330 330 330 56

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) - Limit (dBuV/m).


Note 3:**" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN Page: 155 of 174

Report Version: Rev. 02

Modulation	ax (HE40)	Test Freq. (MHz)	5755
Polarization	Horizontal	Test Configuration	1

		Freq.	Emissior level	n Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/m	ı dB	dBuV	dB		cm	deg
1		5650.00	67.98	68.20	-0.22	60.59	7.39	Peak	149	20
2		5700.00	85.76	105.20	-19.44	78.36	7.40	Peak	149	20
3		5720.00	97.35	110.80	-13.45	89.83	7.52	Peak	149	20
4		5725.00	97.83	122.20	-24.37	90.27	7.56	Peak	149	20
5	*	5755.00	108.15			100.44	7.71	Average	149	20
6	*	5755.00	119.39			111.68	7.71	Peak	149	20
7		5925.00	64.16	68.20	-4.04	55.99	8.17	Peak	149	20
8		11510.00	48.29	54.00	-5.71	31.52	16.77	Average	244	120
9		11510.00	59.99	74.00	-14.01	43.22	16.77	Peak	244	120
10		17265.00	65.32	68.20	-2.88	44.88	20.44	Peak	240	300

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN Report Version: Rev. 02

Modulation	ax (HE40)	Test Freq. (MHz)	5755
Polarization	Vertical	Test Configuration	1

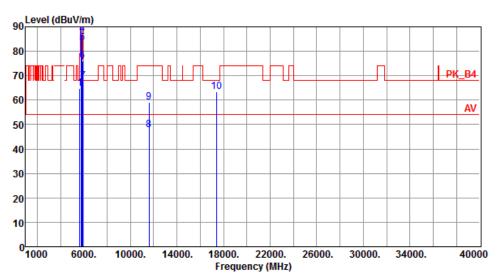
		Freq.	Emission level	n Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/n	ı dB	dBuV	dB		cm	deg
1		5650.00	64.25	68.20	-3.95	56.86	7.39	Peak	180	322
2		5700.00	83.65	105.20	-21.55	76.25	7.40	Peak	180	322
3		5720.00	93.77	110.80	-17.03	86.25	7.52	Peak	180	322
4		5725.00	92.90	122.20	-29.30	85.34	7.56	Peak	180	322
5	*	5755.00	107.32			99.61	7.71	Average	180	322
6	*	5755.00	118.24			110.53	7.71	Peak	180	322
7		5925.00	62.76	68.20	-5.44	54.59	8.17	Peak	180	322
8		11510.00	47.66	54.00	-6.34	30.89	16.77	Average	100	129
9		11510.00	59.63	74.00	-14.37	42.86	16.77	Peak	100	129
10		17265.00	64.02	68.20	-4.18	43.58	20.44	Peak	100	246

Page: 157 of 174

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).


Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN

Report Version: Rev. 02

Modulation	ax (HE40)	Test Freq. (MHz)	5795
Polarization	Horizontal	Test Configuration	1

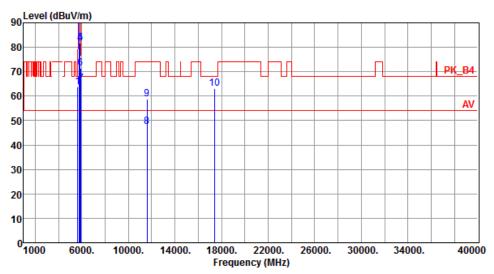
		Freq.	Emission level	n Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/n	ı dB	dBuV	dB		cm	deg
1		5650.00	64.72	68.20	-3.48	57.33	7.39	Peak	147	29
2	*	5795.00	108.46			100.66	7.80	Average	147	29
3	*	5795.00	119.86			112.06	7.80	Peak	147	29
4		5850.00	87.00	122.20	-35.20	78.98	8.02	Peak	147	29
5		5855.00	83.30	110.80	-27.50	75.27	8.03	Peak	147	29
6		5875.00	76.02	105.20	-29.18	67.94	8.08	Peak	147	29
7		5925.00	67.71	68.20	-0.49	59.54	8.17	Peak	147	29
8		11590.00	47.85	54.00	-6.15	31.10	16.75	Average	204	122
9		11590.00	59.04	74.00	-14.96	42.29	16.75	Peak	204	122
10		17385.00	63.33	68.20	-4.87	42.30	21.03	Peak	236	241

Page: 158 of 174

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).


Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN

Report Version: Rev. 02

Modulation	ax (HE40)	Test Freq. (MHz)	5795
Polarization	Vertical	Test Configuration	1

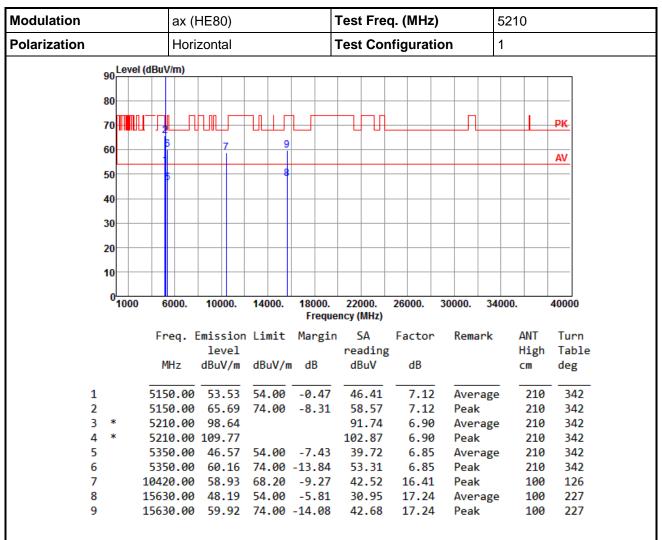
		Freq.	Emission level	n Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/n	ı dB	dBuV	dB		cm	deg
1		5650.00	63.60	68.20	-4.60	56.21	7.39	Peak	172	317
2	*	5795.00	107.36			99.56	7.80	Average	172	317
3	*	5795.00	118.80			111.00	7.80	Peak	172	317
4		5850.00	81.54	122.20	-40.66	73.52	8.02	Peak	172	317
5		5855.00	81.55	110.80	-29.25	73.52	8.03	Peak	172	317
6		5875.00	71.32	105.20	-33.88	63.24	8.08	Peak	172	317
7		5925.00	65.07	68.20	-3.13	56.90	8.17	Peak	172	317
8		11590.00	47.60	54.00	-6.40	30.85	16.75	Average	100	120
9		11590.00	58.94	74.00	-15.06	42.19	16.75	Peak	100	120
10		17385.00	63.21	68.20	-4.99	42.18	21.03	Peak	100	246

Page: 159 of 174

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).


Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN

Report Version: Rev. 02

3.5.4 Transmitter Radiated Unwanted Emissions (Above 1GHz) for ax (HE80)

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) - Limit (dBuV/m).

Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN

Report Version: Rev. 02

Modulation			ax (l	HE80)			•	Test	Fre	q. (MHz)		5210)	
Polarization			Vert	ical			-	Гest	Cor	nfig	jurat	ion		1		
	Leve	el (dBuV	//m)													
,	90	ÌП	Ť													
8	BO		-		-											
-	70		ι п			LΓ			$\neg \sqcap$							PK.
		, i i	Щ (Ч							<u> </u>	
•	60		5	7		9										AV
	50					9										AV
`			7			Ĭ										
4	40					\dashv										<u> </u>
2	30					_										
2	20															
	10					_										
	1000	0 6	000.	10000.	1400	0.	18000. Freque	220 ncy (I		26	000.	30000	34	000.		40000
		Fr	eq.	Emissio	on Lim	it	Margin	S	Α	Fa	actor	Rer	nark	1	ANT	Turn
				level	l		_	rea	ding	3				H	ligh	Table
		М	Hz	dBuV/r	n dBu	V/m	ı dB	dB	uV		dB			(m	deg
1		515	a aa	51.08	5/1		-2.92	/13	.96	_	7.12		erage	-	245	337
2				63.66			-10.40		.48		7.12				245	337
3	*	521	0.00	96.35	5			89	.45		6.90		erage		245	337
4	*	521	0.00	106.28	3			99	.38		6.90	Pea	ak		245	337
_							-7.83		.32		6.85		erage		245	337
5			a aa	59.26	74.	00	-14.74	52	.41		6.85	Pea	ak		245	337
6												_				
		1042	0.00	58.58 47.48			-9.62 -6.52		.17 .24		L6.41 L7.24		ak erage		100 100	

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m). Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN

Page: 161 of 174

Modulation				ax (HE80)			-	Γest	Fre	q. (MHz	:)		529	90	
Polarization				Hori	zonta	ıl			•	Γest	Cor	nfig	jurat	ion		1		
		Leve	l (dBu\	//m)														
	90		ÌП															
	80	\vdash				-		+			-			-		-		
	70			о п		\Box		H		\neg	$\neg \sqcap$						lı.	PK
	70										ш							T-IX
	60	\vdash	+4			7		9			\rightarrow			-	-	+		AV
	E0)														AV
	50							Ĭ										
	40	\vdash						+			\rightarrow			-	-	+		
	30																	
	30																	
	20	\vdash																
	10																	
	10																	
	0	1000	6	000.	1000	0.	14000).	18000. Freque	220 ncy (N		260	000.	300	00.	34000		40000
			Fr	eq.	Emiss	ion	Limi	t I	Margin	S	4	Fa	actor	. R	Remarl	(ANT	Turn
				•	lev						ding						High	Table
			М	Hz	dBuV	/m	dBuV	/m	dB	dB	υV		dB				cm	deg
	1		515	0.00	47.	28	54.0	0 -	-6.72	40	.16	_	7.12		vera	 	191	344
	2			0.00					16.01		.87		7.12		eak	,-	191	
	3 *	c	529	0.00	99.	80				92	.92		6.88	3 A	vera	ge	191	344
	4 *	c			110.					103			6.88		eak		191	
	5						54.0		-0.26		.89		6.85		lvera	ge	191	
	6				66.	-	74.0		-7.60		. 55		6.85		eak		191	
			1059	0.00	58.	96	68.2	0	-9.24	42	. 57	1	16.39		eak		100	
	7																	
	7 8 9		1587	0.00	47. 59.		54.0		-6.39 14.37		.57 .59		17.04 17.04		lvera Peak	ge	100 100	

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m). Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN

Page: 162 of 174

Report Version: Rev. 02

Modulation		ax (I	HE80)			Test Fre	q. (MHz)		5290	
Polarization		Verti	ical			Test Co	nfiguratio	on	1	
on Le	vel (dBuV	//m)								
90										
80										
70		Шπ			<u> </u>					PK
70										
60 —	1		7		9					AV
50)								AV
50										
40—										
30—										
30										
20										
40										
10										
010	00 6	000.	10000.	14000.	18000.	22000.	26000.	30000. 34	4000.	40000
					Freque	ency (MHz)				
	Fr	eq. E	Emissio	n Limit	Margir	s SA	Factor	Remark	ANT	Turn
			level			reading	g		Hig	
	М	Hz	dBuV/m	dBuV/	m dB	dBuV	dB		cm	deg
1	E4.E	0.00	40.20	F4 00		41 16	7 12	A		1 222
1 2		0.00	48.28 59.33		-5.72 -14.67	41.16 52.21	7.12 7.12	Averag Peak	e 25 25	
3 *		0.00			-14.0/	92.18	6.88	Averag		
4 *			111.13			104.25	6.88	Peak	25	
5	535	0.00	53.43	54.00	-0.57	46.58	6.85	Averag	e 25	
_	535	0.00	66.73	74.00	-7.27	59.88	6.85	Peak	25	1 322
6		0.00	58.85	68.20	-9.35	42.46	16.39	Peak	10	0 180
6 7	1058	0.00	50.05							
	1587	0.00	47.47 59.50	54.00	-6.53 -14.50	30.43 42.46		Averag	e 10 10	

The previous version of the test report has been cancelled and replaced by new version.

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m). Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN Report Version: Rev. 02

Modulation			ax (HE80)				Test	Fre	q. ((MHz))	5	530		
Polarization			Hor	izonta	ı				Test	Cor	nfig	jurati	on	1			
	_ Le	vel (dBu	ıV/m)														
	90	Ė	Π														
	80				_		+								_	_	
		m n 1————	nd			- n i	\forall			$\neg d$							DI
	70		4				1	_									PK
	60				7		8										
	 -		1-		\perp		+										AV
	50				6		\forall									\dashv	
	40		4				4										
	30						+								\neg		
	20				Ш		Щ										
	-																
	10				+		+									\dashv	
	0																
	~10	00 (6000.	1000	0.	14000	. 1	8000. Freque	220 ency (l		260	000.	30000.	3400	00.	,	40000
		F	req.	Emiss	ion	Limi	t M	largin	S	Α	Fa	actor	Rema	ark	ΑN	ΙT	Turn
				lev						ding					Hi	igh	Table
		ı	MHz	dBuV	/m	dBuV	/m	dB	dB	uV		dB			cn	1	deg
4		F 4	<u> </u>		4.2	F4 0		0.07			_	7 47	<u> </u>		_	70	
1 2			60.00 60.00	53. 64.		54.0 74.0		9.63		.96 .20		7.17 7.17		rage v		L79 L79	347 347
3				67.		68.2		0.35		.63		7.22				179 179	347
4	*			98.		00.2		0.55		.23		7.43		rage		179	347
5	*			112.						.66		7.43		_		179	347
6						54.0	a -	6.05		.12		16.83		rage		100	185
7				59.		74.0				.54		16.83		_		100	185
8				61.		68.2				.69		19.02		le.		100	180

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m). Note 3:"*" is Peak / Average value of fundamental frequency

Report Version: Rev. 02

Report No.: FR9D0202AN Page: 164 of 174

Modulation				ax (I	HE80)				Ī	Test	Fre	q. (MHz)		5	5530)		
Polarization				Vert	ical					•	Test	Coı	nfig	jurat	ion		1	1			
	90	Level	(dBu\	//m)																	
	30																				
	80	\vdash						\dashv													
	70		ЩД													\Box				PK	
	60					7			8												
	00					\perp														AV	
	50					6															
	40																				
	30																				
	20																				
	20																				
	10					+															
	0	1000	- 6	000.	1000	10	1400		180	00	220	00	261	000.	300	000	340	000.		40000	,
		1000	U	000.	1000	ю.	1400	٠.			ncy (l		20	000.	300		340			40000	,
			Fr	eq. I			Limi	t	Mar	gin		Α		actor		Rema	ırk		ANT	Tur	
					lev							ding	3						ligh	Tab	
			М	Hz	dBuV	/m	dBu∖	/m	dE	3	dB	uV		dB				C	m	deg	
:	1		546	0.00	52.	49	54.0	0	-1.	51	45	.32		7.17		Aver	age	_	256	32	1
:	2		546	0.00	65.	87	74.6	0	-8.	13	58	.70		7.17	' I	Peak			256	32	1
	3				66.		68.2	0	-1.	99		.99		7.22		Peak			256		
	4 *				97.							.39		7.43			age		256	32	
	5 *	c			109.							.09		7.43		Peak			256	32	
	5						54.0					.06		16.83			age		100		
	7				59.		74.0					.45		16.83		Peak			100		
	8		1659	0.00	61.	58	68.2	0	-6.	62	42	.56	1	19.02		Peak			100	18	6

The previous version of the test report has been cancelled and replaced by new version.

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m). Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN

Page: 165 of 174

Modulation	_			ax (HE8	0)			_		Test	Fre	q. (MHz)	·	5	610)	
Polarization				Hor	izont	al					Test	Coı	nfig	urati	ion		1			
	90	Leve	l (dBu	V/m)																
	80		,,,	10 -	1 - nn	_														
	70			B			H	Ш	6			Ш								PK
	60	\vdash	_	+	-	5			Ť	-							_			AV
	50					4														AV
	40																			
	30	+																		
	20	\vdash	_	-	-												_			
	10								Ш											
	U	1000	(6000.	100	00.	140	000.		000. reque	220 ency (I		260	000.	300	000.	3400	00.		40000
			Fr	req.	Emis	sion	n Li	mit	Ma	rgin	S	Α	Fa	ctor		Rema	rk	Δ	MT	Tur
						vel				_		ding						Н	ligh	Tab
			ı	MHz	dBu	V/m	dB	uV/n	n d	В	dB	uV		dB				C	m	deg
:	ı *	k	563	10.00	102	.35	_				94	.88	_	7.47		Aver	age	-	183	34
:	2 *	k	563	10.00	113	.62					106	.15		7.47		Peak			183	34
	3		572	25.00	67	.71	68	.20	-0	.49	60	.15		7.56		Peak			183	1
	1			20.00				.00		.54		.02		6.44		Aver	age		100	
	5			20.00						.05		.51		6.44		Peak			100	18
	5		1693	30.00	62	73	68	20	5	17	112	.85	- 1	9.88		Peak			100	18

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m). Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN

Report Version: Rev. 02

The previous version of the test report has been cancelled and replaced by new version.

Page: 166 of 174

4

5

Modulation				ax (I	HE8)				Te	st Fr	eq.	(MHz	z)			561	0	
Polarization				Vert	ical					Те	st Co	nf	igura	tion			1		
	90	Level	(dBu\	//m)															
	80																		
			Щ	П											П			4	PK
	60					5_			6									ľ	
						+													AV
	50					1													
	40											†							
	30		+									+							
	20		+								+	+							
	10	-	+								-	+							
	(1000	6	000.	100	00.	140	00.	18000). 2 Juency	2000. (MHz		6000.	300	000.	34	000.		40000
			Fr	ea. I	Emis	sior	n Lim	it	Marg				Factor	r	Rema	ark		ANT	Turn
					le	vel				r	eadin							High	
			М	lHz	dBu\	V/m	dBu	ıV/m	dB	•	lBuV		dB				•	cm	deg
	-	k		0.00							94.39		7.47		Aver			227	
	2 [;] 3	k		0.00			68	20	-1.1		95.87 59.46		7.47		Peak Peak			227 227	318 318

16.44

Average

Peak

Peak

100

100

100

185

185

188

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN Page: 167 of 174

11220.00 47.49 54.00 -6.51 31.05

11220.00 58.90 74.00 -15.10 42.46 16.44

16830.00 62.56 68.20 -5.64 42.68 19.88

Report Version: Rev. 02

Modulation			ax (I	HE80)			Test Fre	q. (MHz)	56	690	•
Polarization			Hori	zontal			Test Co	nfigurati	ion	1		
	Le	vel (dBu	V/m)									
	90		T									
	80									-		
	70		ш									PK
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		، سوان			9					<u> </u>	
	60		4	8								AV
	50			7								
	40									\rightarrow		
	30											
	20											
	10									-		
	010	00	6000.	10000.	14000.	18000. Freque	22000. ency (MHz)	26000.	30000.	3400	00.	40000
		F	req. I	Emissior	Limit	Margir	n SA	Factor	Rema	rk	ANT	Turn
				level			reading	_			High	Table
		ı	MHz	dBuV/m	dBuV/ı	n dB	dBuV	dB			CM	deg
	1	54	60.00	47.34	54.00	-6.66	39.97	7.37	Aver	age	148	13
	2			57.34		-16.66	49.97				148	
	3	54	70.00	59.36		-8.84	51.94	7.42	Peak		148	13
	4 *			104.28			96.65	7.63			148	
	5 *			116.24			108.61	7.63			148	
	6			65.96			57.84				148	
	7			47.86	54.00					_	100	
	8			58.93		-15.07					100	
	9	1 /0	70.00	63.38	68.20	-4.82	44.76	18.62	Peak		100	185

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m). Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN

Page: 168 of 174

Report Version: Rev. 02

Modulation Polarization				ax (HE80) Vertical					Test Freq. (MHz) 5						5690 1		
									Test Configuration 1								
	Le	vel (dBu	V/m)	//m)													
•	90																
:	80		#		+					-							
-	70						1_			\Box							PK
	""	100			8		9	1	П	"						•	
•	60		4		i												AV
:	50		1		7												
	40																
•	40				T												
;	30—				+												
	20																
•	20																
	10				+					_							
	0			40000	Щ	44000	Щ										
	10	00	6000.	10000).	14000.		000. reque	220 ncy (N		260	00.	30000.	340	000.		40000
																	_
		г	req.	Emissi	.OII	Limit	Ma	ırgin	S	4	Fa	ctor	Rema	ark	1	MT	Turn
				leve	1			_	rea	ding			Rem	ark		NT ligh	Table
			req. MHz		1	dBuV/r		_		ding		ctor dB	Rem	ark	H		
1			MHz	leve dBuV/	m	dBuV/r	n d	IB	rea dB	ding uV	_	dB			F C	ligh :m	Table deg
1 2		54	MHz	leve dBuV/ 47.1	1 m 0		n d	IB 5.90	dB 39	ding				rage	F C	ligh	Table
_		54 54	MHz 60.00	1eve dBuV/ 47.1 57.2	1 m .0	dBuV/r	n d	IB 5.90 5.80	39 49	ding uV .73		dB 7.37	Ave	rage k	F C	ligh m	Table deg
2 3 4	*	54 54 54 54	MHz 60.00 60.00 70.00 90.00	1eve dBuV/ 47.1 57.2 59.1 103.7	1 m .0 .0	dBuV/r 54.00 74.00	n d	IB 5.90 5.80	39 49 51 96	.73 .83 .77	-	7.37 7.37 7.42 7.63	Ave Peal Peal	rage k k rage	H 0	225 225 225 225 225	Table deg 323 323 323 323
2 3 4 5	*	54 54 54 56 56	MHz 60.00 60.00 70.00 90.00	1eve dBuV/ 47.1 57.2 59.1 103.7 115.6	1 m .0 .0 .9 .6 .3	54.00 74.00 68.20	-6 -16 -9	iB 5.90 5.80 9.01	39 49 51 96	.73 .83 .77 .13		7.37 7.37 7.42 7.63 7.63	Ave Peal Peal Ave Peal	rage k k rage k	H 0	225 225 225 225 225 225	323 323 323 323 323 323 323
2 3 4 5		54 54 54 56 56 58	MHz 60.00 60.00 70.00 90.00 90.00 50.00	1eve dBuV/ 47.1 57.2 59.1 103.7 115.6 65.3	1 0 0 9 6 3	dBuV/r 54.00 74.00 68.20	-6 -16 -9	iB 5.90 5.80 9.01	39 49 51 96 108 57	.73 .83 .77 .13 .00		7.37 7.37 7.42 7.63 7.63 8.12	Ave Peal Peal Ave Peal Peal	rage k k rage k	-	225 225 225 225 225 225 225	Table deg 323 323 323 323 323 323 323
2 3 4 5		54 54 54 56 56 58 113	MHz 60.00 60.00 70.00 90.00 90.00 50.00 80.00	1eve dBuV/ 47.1 57.2 59.1 103.7 115.6	1 m .0 .0 .9 .6 .3 .9 .3	54.00 74.00 68.20	-6 -16 -9	iB 5.90 5.80 9.01	39 49 51 96 108 57	.73 .83 .77 .13	1	7.37 7.37 7.42 7.63 7.63	Ave Peal Peal Ave Peal Peal	rage k k rage k k	-	225 225 225 225 225 225	323 323 323 323 323 323 323

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m). Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN

Report Version: Rev. 02

The previous version of the test report has been cancelled and replaced by new version.

Page: 169 of 174

Modulation	ax (HE80)						Test Freq. (MHz) 5					5775								
Polarization	olarization				Horizontal					Test Configuration 1					1					
	on Le	vel (dBu\	//m)																	
	90		4																	7
	80		1						+	-										-
	70		П				ЦГ				ПΓ				ШП			Lpi	C B4	
			٠ -		12	, ""		13	\$	-					┌			1		-
	60				- 12			\Box											AV	<i>-</i>
	50				1														-	-
	40							\Box												-
	30		_																	-
	20																			
	20																			
	10		▙		\dashv			\vdash	+	-										-
		1 1																	1	
	الم]
	010	00 6	000.	1000	00.	140	00.		000. reque)00. MHz)		000.	30	000.	340	000.		400	00
	010							F	reque	ency (MHz)							NNT.		
	0 <mark>10</mark>		000. eq. [Emiss	io	n Lir		F	reque	ency (MHz) SA	Fa	000.		000. Rema		L	ANT digh	Tı	urn
	010	Fr			io el	n Lir	nit	Ma	reque	ency(n <u>s</u> rea	MHz)	Fa					, ,	ANT High	Tı Ta	urn able
	010	Fr	eq. [Emiss lev	io el	n Lir	nit	Ma	reque	ency(n <u>s</u> rea	MHz) SA adin	Fa	acto				, ,	ligh	Tı Ta	urn
1	010	Fr M 565	eq. [Emiss lev dBuV	ion rel //m 79	dBu	nit uV/n	Ma n d	requence reginal regin	rea dE	MHz) SA ading BuV	Fa g —	dB 7.39	r 9	Rema	ark 	, ,	High cm	Tu Ta de	urn able eg
2	0 <mark>1</mark> 0	Fr N 565 576	eq. [Emiss lev dBuV 67. 79.	ion/el //m 79 65	dBu 68.	nit uV/n .20	Ma n d -0	requergir	rea de de 72	MHz) Ading BuV 0.40	Fa B	dB 7.39	r 9	Rema Peak	ark 	, ,	148 148	Tu Tá de	urn able eg 18 18
2	010	Fr N 565 576 572	eq. [IHz 0.00 0.00	Emiss lev dBuV 67. 79.	ion //m 79 65 34	dBu 68, 105,	nit uV/n .20 .20	Ma n d -0 -25	reque rgir B .41	rea de de 72	MHz) 5A ading 3uV 0.40 2.25	Fa g —	dB 7.39 7.40 7.50	r 9 0 2	Peak Peak Peak	ark c	, ,	148 148 148	Tu Ta de	urn able eg 18 18 18
2 3 4		Fr 565 572 572	eq. 6 1Hz 50.00 10.00 10.00	Emiss 1ev dBuV 67. 79. 82.	79 65 34	dBu 68, 105,	nit uV/n .20 .20	Ma n d -0 -25	reque rgir B .41	ency (n S rea de de 72 74	MHz) 5A ading 3uV 2.40 2.25 1.82	Fa g	7.39 7.40 7.52	r 9 0 2 6	Peak Peak Peak Peak	ark	# H G	148 148 148 148	Tu Tá de	urn able eg 18 18 18
2 3 4 5	*	Fr 565 572 572 577	1Hz 50.00 00.00 20.00 25.00	1ev dBuV 67. 79. 82. 84.	79 65 34 44	dBu 68, 105,	nit uV/n .20 .20	Ma n d -0 -25	reque rgir B .41	ency (rea dE 72 74 99	MHz) 5A ading 3uV 0.40 2.25 1.82 5.88	Fa	7.39 7.40 7.50 7.70	r 9 0 2 6	Peak Peak Peak Peak Peak Aver	ark c c	# H G	148 148 148 148 148	Tu Tá de	urn able eg 18 18 18 18
2 3 4 5 6		Fr 565 570 572 577 577	Neq. E	Emiss lev dBuV 67. 79. 82. 84. 103.	79 65 34 44 03	dBu 68, 105, 110,	.20 .20 .20	-0 -25 -28	.41 .55 .46	ency (rea dE 72 74 76 95	MHz) 5A ading 3uV 2.25 1.82 5.88 5.27 7.60	Fa B	7.39 7.40 7.50 7.70 7.70	r 9 0 2 6 6 6	Peak Peak Peak Peak Peak Aver	ark c c c c c	# H G	148 148 148 148 148 148	Tu Ta de	urn able 28 18 18 18 18 18
2 3 4 5 6 7	*	565 572 572 577 577 585	Neq. E 1Hz 60.00 10.00 15.00 15.00 15.00 16.00	Emiss lev dBuV 67. 79. 82. 84. 103. 115.	79 65 34 44 03 36	dBu 68. 105. 110. 122.	.20 .20 .20 .20	-0 -25 -28 -37	.41 .55 .46	ency (rea dE 72 74 76 95	MHz) 5A 3uV 0.40 2.25 1.82 5.88 5.27 7.60	Fa B	7.39 7.40 7.50 7.70 7.70 8.00	r 9 0 2 6 6 6 2	Peak Peak Peak Peak Aver Peak Peak	ark c c c c	# H G	148 148 148 148 148 148 148	Tu Ta de	18 18 18 18 18 18 18
2 3 4 5 6 7 8	*	565 570 572 577 577 585 585	Neq. [6] 1Hz 10.00 10.00 15.00 15.00 15.00 15.00	Emiss 1ev dBuV 67. 79. 82. 84. 103. 115. 78.	79 65 34 44 03 36 22 73	dBu 68. 105. 110. 122.	.20 .20 .20 .20	-43	.41 .55 .46 .76	rea de 72 74 76 95 107	MHz) 5A 3uV 	Fa	7.39 7.40 7.50 7.70 8.00	r 9 9 2 6 6 6 6 2	Peak Peak Peak Peak Aver Peak Peak	ark	# H G	148 148 148 148 148 148 148 148	Tu Tá de	18 18 18 18 18 18 18 18
2 3 4 5 6 7 8	*	565 576 572 577 577 585 585 585	Hz 0.00 0.00 0.00 25.00 25.00 25.00 60.00 55.00	67. 79. 82. 84. 103. 115. 78.	79 65 34 44 03 36 22 73	68. 105. 110. 122. 122.	nit uV/n .20 .20 .80 .20	-43	.41 .55 .46 .76	rea dE 72 74 76 95 107 76 69 64	MHz) 5A ading 3uV 0.40 2.25 1.82 5.88 5.27 7.60 0.20 0.70 1.81	Fa	7.39 7.40 7.50 7.70 7.70 8.00 8.00	79 99 90 22 66 66 22 33 88	Peak Peak Peak Aver Peak Peak Peak Peak	ark	# H G	148 148 148 148 148 148 148 148 148	Tu Tá de	18 18 18 18 18 18 18 18 18
2 3 4 5 6 7 8 9	*	565 576 572 577 577 577 585 585 587	Hz 0.00 0.00 0.00 25.00 25.00 25.00 25.00 25.00	Emiss lev dBuV 67. 79. 82. 84. 103. 115. 78. 77. 64.	79 65 34 44 03 36 22 73 89	68. 105. 110. 122. 110. 105. 68.	.20 .20 .20 .20 .20	-43 -32 -32	Requestration of the second of	66 72 74 76 95 107 69 64	MHz) 5A ading 0.40 2.25 1.82 5.27 7.60 0.20 1.81 5.48	Fag	7.39 7.40 7.50 7.70 7.70 8.00 8.00 8.11	-9 9 0 2 6 6 6 6 2 3 3 8 7	Peak Peak Peak Aver Peak Peak Peak Peak	ark	# H C	148 148 148 148 148 148 148 148 148	Tu Tá de	18 18 18 18 18 18 18 18 18 18
2 3 4 5 6 7 8	*	565 576 572 577 577 585 585 587 592 1155	Hz 0.00 0.00 0.00 25.00 25.00 25.00 60.00 55.00	Emiss lev dBuV 67. 79. 82. 84. 103. 115. 78. 77. 72. 64.	79 65 34 44 03 36 22 73 89 65 72	68. 105. 110. 122. 122.	.20 .20 .20 .20 .20	-43 -33 -32 -33		72 76 99 107 76 65 36 36 36 36	MHz) 5A ading 3uV 0.40 2.25 1.82 5.88 5.27 7.60 0.20 0.70 1.81	Fagg —	7.39 7.40 7.50 7.70 7.70 8.00 8.00	7 9 0 2 6 6 6 2 3 3 8 7 6	Peak Peak Peak Aver Peak Peak Peak Peak	ark c c c c c c c c c c c c c c c c c c	# H C	148 148 148 148 148 148 148 148 148	Tu Ta de	18 18 18 18 18 18 18 18 18

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m). Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AN

Report Version: Rev. 02

The previous version of the test report has been cancelled and replaced by new version.

Page: 170 of 174

Modulation	a	ax (HE80)					, , ,					5775 1						
Polarization			Vertical												1			
	Lev	el (dBuV/n	n)				•											
	90]
	80																	
	70			\Box	Ш	1 1			П				П			Lрк	B4	
		וחרד			+	13		4								1		
	60			12													AV	
	50			11														
	40																	
	40																	
	30																	
	20				_													
	10																	
	0																	
	^U 100	0 600	00. 1000	0. 14	000.	180	00.	220	00.	260	000.	300	000.	340	00.		4000] 10
	0 <mark>100</mark>	0 600	00. 1000	0. 14	000.	180 Fr		220 ncy (I		260	000.	300	000.	340	00.		4000))0
	⁰ 100		00. 1000 q. Emiss			Fr	eque	ncy (I			000.		000. Rema			NT	400 0	
	100	Fre	q. Emiss lev	ion Li el	mit	Fr Mar	eque gin	ncy (I S rea	MHz) A ding	Fa	ictor				А	NT igh	Tu Ta	rn ble
	100		q. Emiss lev	ion Li	mit	Fr Mar	eque gin	ncy (I S rea	ИHz) А	Fa					A		Tu	rn ble
1		Fre	q. Emiss lev z dBuV	ion Li el /m dB	mit BuV/n	Fr Mar n dE	eque gin	ncy (N S rea dB	MHz) A ding	Fa g	dB			ark 	A H c	igh	Tu Ta de	rn ble
1 2		Fre	q. Emiss lev z dBuV .00 67.	ion Li el /m dB	BuV/n	Fr Mar n dE	eque gin	rea dB	MHz) A ding uV	Fa	ictor	·	Rema	ark 	A H c	igh m	Tu Ta de	rn ble g
		Fre MH: 5650	q. Emiss lev z dBuV .00 67.	ion Li el /m dB 	mit BuV/m B.20	Fr Mar n dE -0.	eque gin 80 40	rea dB 60	MHz) A ding uV	Fa	dB 7.39	9	Rema Peak	ark 	A H c	igh m	Tu Ta de	rn ble g
2		Fred MH: 5650 5700 5720 5725	q. Emiss lev z dBuV .00 67. .00 77. .00 79.	ion Li el /m dB 40 68 80 105 01 110 48 122	BuV/n 3.20 5.20	-0. -27.	eque gin 80 40 79	ncy (N rea dB 60 70	MHz) A ding uV .01	Fa	7.39 7.40 7.52	9	Rema Peak	ark	A H c	igh m 186 186	Tu Ta de 	rn ble g 20 20 20 20
2		Fred MH: 5650 5700 5720 5725	q. Emiss lev z dBuV .00 67. .00 77.	ion Li el /m dB 40 68 80 105 01 110 48 122	BuV/n 3.20 5.20	-0. -27.	eque gin 80 40 79	rea dB 60 70 71	MHz) A ding uV .01 .40 .49	Fa	7.39 7.40	9	Rema Peak Peak Peak	ark	A H c	igh m 186 186 186	Tu Ta de 	rn ble g 20 20 20
2 3 4		Free MH: 5650 5700 5720 5725 5775	q. Emiss lev z dBuV .00 67. .00 77. .00 79.	ion Li el /m dB 40 68 80 105 01 110 48 122	BuV/n 3.20 5.20	-0. -27.	eque gin 80 40 79	rea dB 60 70 71 73 95	MHz) A ding uV .01 .40 .49	Fa	7.39 7.40 7.52	2	Rema Peak Peak Peak Peak	ark	A H c	igh m 186 186 186 186	Tu Ta de - 3 3 3 3	rn ble g 20 20 20 20
2 3 4 5	*	Free MH: 5650 5700 5720 5725 5775	q. Emiss lev z dBuV .00 67. .00 77. .00 79. .00 81.	ion Li el /m dB 40 68 80 105 01 110 48 122 81	BuV/m 3.20 5.20 5.20 0.80	-0. -27. -31.	eque gin 80 40 79 72	rea dB 60 70 71 73 95 107	MHz) A ding uV .01 .40 .49 .92	Fa	7.39 7.40 7.50 7.50	9	Peak Peak Peak Peak Peak Aver	ark C C C C cage	A H c	igh m 186 186 186 186 186	Tu Ta de - 3 3 3 3 3	rn ble g 20 20 20 20 20
2 3 4 5 6	*	Free MH: 5650 5700 5720 5725 5775 5775	q. Emiss lev z dBuV .00 67. .00 77. .00 79. .00 81. .00 102. .00 115.	ion Li el /m dB 40 68 80 105 01 110 48 122 81	mit 3.20 5.20 5.20 9.80 9.20	-0. -27. -31. -40.	80 40 79 72	70 70 70 71 73 95 107 67	MHz) A ding uV .01 .40 .49 .92 .05	Fa	7.39 7.40 7.52 7.50 7.70	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Peak Peak Peak Peak Peak Aver	ark	A H c	186 186 186 186 186 186	Tu Ta de - 3 3 3 3 3 3	rn ble g 20 20 20 20 20 20
2 3 4 5 6 7	*	Free MH: 5650 5700 5720 5725 5775 5775 5850 5855	q. Emiss lev z dBuV .00 67. .00 77. .00 79. .00 81. .00 102. .00 115.	ion Li el /m dB 40 68 80 105 01 110 48 122 81 20 92 122 64 110	3.20 5.20 5.20 9.80 9.20	-0. -27. -31. -40.	80 40 79 72	70 70 70 70 71 73 95 107 67 66	MHz) A ding uV .01 .40 .49 .92 .05 .44	Fa	7.39 7.40 7.52 7.50 7.70 8.00	2 5 5 5 2 3	Peak Peak Peak Peak Aver Peak Peak	ark	A H c	186 186 186 186 186 186 186	Tu Ta de - 3 3 3 3 3 3	rn ble g 20 20 20 20 20 20 20
2 3 4 5 6 7 8 9	*	Free MH: 5650 5700 5720 5725 5775 5775 5850 5855 5875	q. Emiss lev z dBuV	ion Li el /m dB 40 68 80 105 01 110 48 122 81 20 92 122 64 110	3.20 5.20 5.20 9.80 9.20	-0. -27. -31. -40.	80 40 79 72 28 16 59	rea dB 60 70 71 73 95 107 67 66 62	MHz) A ding uV .01 .40 .49 .92 .05 .44 .90 .61 .53	Fa	7.39 7.46 7.52 7.56 7.76 8.02 8.03	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Peak Peak Peak Peak Aver Peak Peak Peak	ark	A H c	186 186 186 186 186 186 186 186	Tu Ta de 33 33 33 33 33 33 33 33	rn ble g 20 20 20 20 20 20 20 20 20 20 20 20 20
2 3 4 5 6 7 8 9	*	Free MH: 5650 5700 5725 5775 5775 5850 5855 5875 5925	q. Emiss lev z dBuV .00 6700 7700 7900 8100 10200 11500 7500 7400 70.	ion Li el /m dB 40 68 80 105 01 110 48 122 81 20 92 122 64 110 61 105 71 68	3.20 5.20 5.20 2.20 2.20	-0. -27. -31. -40.	80 40 79 72 28 16 59 49	70 70 70 71 73 95 107 66 62 53	MHz) A ding uV .01 .40 .92 .05 .44 .90 .61 .53	Fa	7.39 7.40 7.50 7.76 7.76 8.00 8.00 8.01		Peak Peak Peak Aver Peak Peak Peak Peak	ark c c c c c	A H c	186 186 186 186 186 186 186 186 186	Tu Ta de 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	rn ble g 20 20 20 20 20 20 20 20 20 20 20 20 20
2 3 4 5 6 7 8 9	*	Free MH: 5650 5700 5720 5725 5775 5775 5850 5855 5875	q. Emiss lev z dBuV .00 6700 7700 7900 8100 10200 11500 7500 7400 7000 61.	ion Li el /m dB 40 68 80 105 01 110 48 122 81 20 92 122 64 110	3.20 3.20 3.20 3.20 3.20 2.20	-0. -27. -31. -40. -46. -36. -34. -6.	80 40 79 72 28 16 59 49 42	ncy (N S rea dB 60 70 71 73 95 107 67 66 62 53 30	MHz) A ding uV .01 .40 .49 .92 .05 .44 .90 .61 .53	Fa	7.39 7.46 7.52 7.56 7.76 8.02 8.03	2 2 3 3 3 3 7 7	Peak Peak Peak Peak Aver Peak Peak Peak	cccccccccccccccccccccccccccccccccccccc	A H c	186 186 186 186 186 186 186 186	Tu Ta de de 3 3 3 3 3 3 3 3 3 3 3 1	rn ble g 20 20 20 20 20 20 20 20 20 20 20 20 20

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m). Note 3:"*" is Peak / Average value of fundamental frequency

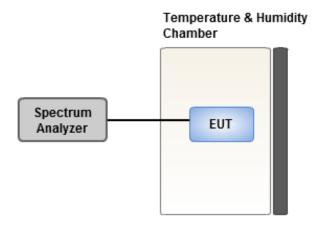
Report No.: FR9D0202AN

Report Version: Rev. 02

The previous version of the test report has been cancelled and replaced by new version.

Page: 171 of 174

3.6 Frequency Stability


3.6.1 Limit of Frequency Stability

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

3.6.2 Test Procedures

- 1. The EUT is installed in an environment test chamber with external power source.
- Set the chamber to operate at 20 centigrade and external power source to output at nominal voltage of EUT.
- 3. A sufficient stabilization period at each temperature is used prior to each frequency measurement.
- 4. When temperature is stabled, measure the frequency stability.
- 5. The test shall be performed under normal and extreme condition for temperature and voltage.

3.6.3 Test Setup

Report No.: FR9D0202AN Page: 172 of 174

3.6.4 Test Result of Frequency Stability

Frequency: 5320 MHz		Frequency Drift (ppm)									
Temperature (°C)	0 minute	2 minutes	5 minutes	10 minutes							
T20°CVmax	0.58	0.08	0.68	0.30							
T20°CVmin	-0.42	-1.14	-1.41	-0.52							
T50CVnom	-1.60	-1.40	-0.65	-1.13							
T40°CVnom	1.38	0.95	1.01	0.52							
T30°CVnom	-0.05	0.21	-0.13	0.73							
T20°CVnom	0.56	-0.18	0.68	0.20							
T10°CVnom	-3.12	-3.68	-3.86	-3.66							
T0°CVnom	-4.44	-4.43	-3.76	-3.95							
T-10°CVnom	-2.05	-1.98	-2.38	-1.49							
T-20°CVnom	-6.31	-6.79	-6.58	-6.44							
T-30°CVnom	-8.51	-8.74	-8.68	-8.51							
Vnom [Vac]: 120		Vmax [Vac]: 138		Vmin [Vac]: 102							
Tnom [°C]: 20		Tmax [°C]: 50		Tmin [°C]: -30							

Frequency: 5785 MHz		Frequency Drift (ppm)									
Temperature (°C)	0 minute	2 minutes	5 minutes	10 minutes							
T20°CVmax	0.38	0.70	0.86	0.35							
T20°CVmin	0.21	0.82	0.18	-0.12							
T50CVnom	1.08	0.92	1.51	0.97							
T40°CVnom	0.18	0.41	0.10	0.28							
T30°CVnom	-0.24	-0.71	0.55	0.34							
T20°CVnom	0.32	0.37	0.63	0.40							
T10°CVnom	-3.38	-2.92	-3.45	-3.09							
T0°CVnom	-3.88	-4.03	-4.17	-3.91							
T-10°CVnom	-2.25	-2.31	-1.85	-1.80							
T-20°CVnom	-6.01	-5.99	-5.83	-6.35							
T-30°CVnom	-7.67	-7.04	-7.68	-7.63							
Vnom [Vac]: 120		Vmax [Vac]: 138	•	Vmin [Vac]: 102							
Tnom [°C]: 20		Tmax [°C]: 50		Tmin [°C]: -30							

Report No.: FR9D0202AN Page: 173 of 174

Report Version: Rev. 02

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp (EMC and Wireless Communication Laboratory), it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan District. Location map can be found on our website http://www.icertifi.com.tw.

Linkou

Tel: 886-2-2601-1640 No. 30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City,

Taiwan, R.O.C.

Kwei Shan

Tel: 886-3-271-8666 No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C.

Kwei Shan Site II

Tel: 886-3-271-8640

No. 14-1, Lane 19, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C.

Page: 174 of 174

If you have any suggestion, please feel free to contact us as below information.

Tel: 886-3-271-8666 Fax: 886-3-318-0155

Email: ICC_Service@icertifi.com.tw

Report Version: Rev. 02