

Product Name	Wireless Keyboard
Model No	StarType ES500W
FCC ID.	I4LSTARTYPEES500W

Applicant	MICRO-STAR INT'L Co., LTD.
Address	No. 69, Li-De St., Jung-He City, Taipei Hsien, Taiwan, R.O.C.

Date of Receipt	Jul. 30, 2009
Issue Date	Oct. 01, 2009
Report No.	098086R-RFUSP42V01
Report Version	V1.0

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation. This report must not be used to claim product endorsement by NVLAP any agency of the U.S. Government

Test Report Certification

Issue Date: Oct. 01, 2009 Report No.: 098086R-RFUSP42V01

Accredited by NIST (NVLAP) NVLAP Lab Code: 200533-0

Product Name	Wireless Keyboard		
Applicant	MICRO-STAR INT'L Co., LTD.		
Address	No. 69, Li-De St., Jung-He City, Taipei Hsien, Taiwan, R.O.C.		
Manufacturer	MICRO-STAR INT'L Co., LTD.		
Model No.	StarType ES500W		
EUT Rated Voltage	DC 3V(Power by Battery)		
EUT Test Voltage	DC 3V(Power by Battery)		
Trade Name	MSI		
Applicable Standard	FCC CFR Title 47 Part 15 Subpart C: 2008		
	ANSI C63.4: 2003		
Test Result	Complied		

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation. This report must not be used to claim product endorsement by NVLAP any agency of the U.S. Government

Documented By

sanne lin

(Adm. Specialist / Joanne Lin)

Tested By

NoNo Chang

(Engineer / NoNo Chang)

//mhal

Testing Laboratory 0914

Approved By

(Manager / Vincent Lin)

TABLE OF CONTENTS

De	scription	Page
1.	GENERAL INFORMATION	5
1.1.	EUT Description	5
1.2.	Operational Description	
1.3.	Tested System Details	
1.4.	Configuration of Tested System	
1.5.	EUT Exercise Software	
1.6.	Test Facility	
2.	Peak Power Output	
2.1.	Test Equipment	10
2.2.	Test Setup	
2.2.	Limits	
2.3.	Test Procedure	
2.4.		
	Uncertainty	
2.6.	Test Result of Peak Power Output	
3.	Radiated Emission	
3.1.	Test Equipment	
3.2.	Test Setup	
3.3.	Limits	
3.4.	Test Procedure	
3.5.	Uncertainty	
3.6.	Test Result of Radiated Emission	
4.	RF antenna conducted test	23
4.1.	Test Equipment	
4.2.	Test Setup	
4.3.	Limits	
4.4.	Test Procedure	
4.5.	Uncertainty	
4.6.	Test Result of RF antenna conducted test	
5.	Band Edge	27
5.1.	Test Equipment	
5.2.	Test Setup	
5.3.	Limits	
5.4.	Test Procedure	
5.5.	Uncertainty	
5.6.	Test Result of Band Edge	
6.	Occupied Bandwidth	
6.1.	Test Equipment	
6.2.	Test Setup	
6.3.	Limits	
6.4.	Test Procedure	
6.5.	Uncertainty	
6.6.	Test Result of Occupied Bandwidth	
	Less result of Socupied Duild Hull	

7.	Power Density	
7.1.	Test Equipment	
7.2.	Test Setup	
7.3.	Limits	
7.4.	Test Procedure	
7.5.	Uncertainty	
7.6.	Test Result of Power Density	
8.	Duty Cycle	41
8.1.	Test Equipment	41
8.2.	Test Setup	
8.3.	Uncertainty	41
8.4.	Test Result of Duty Cycle	
9.	EMI Reduction Method During Compliance Testing	44

1. GENERAL INFORMATION

1.1. EUT Description

Product Name	Wireless Keyboard	
Trade Name	MSI	
Model No.	StarType ES500W	
FCC ID.	I4LSTARTYPEES500W	
Frequency Range	2404~2480MHz	
Number of Channels	77	
Type of Modulation	GFSK	
Antenna Type	Printed on PCB	
Antenna Gain	Refer to the table "Antenna List"	
Channel Control	Auto	

Antenna List

No.	Manufacturer	Part No.	Peak Gain
1	MSI	N/A	-1.32dBi for 2.4 GHz

Frequency of Each Channel

i i equency e	Tredwone J of Ewen Channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel 1:	2404 MHz	Channel 22:	2425 MHz	Channel 43:	2446 MHz	Channel 64:	2467 MHz
Channel 2:	2405 MHz	Channel 23:	2426 MHz	Channel 44:	2447 MHz	Channel 65:	2468 MHz
Channel 3:	2406 MHz	Channel 24:	2427 MHz	Channel 45:	2448 MHz	Channel 66:	2469 MHz
Channel 4:	2407 MHz	Channel 25:	2428 MHz	Channel 46:	2449 MHz	Channel 67:	2470 MHz
Channel 5:	2408 MHz	Channel 26:	2429 MHz	Channel 47:	2450 MHz	Channel 68:	2471 MHz
Channel 6:	2409 MHz	Channel 27:	2430 MHz	Channel 48:	2451 MHz	Channel 69:	2472 MHz
Channel 7:	2410 MHz	Channel 28:	2431 MHz	Channel 49:	2452 MHz	Channel 70:	2473 MHz
Channel 8:	2411 MHz	Channel 29:	2432 MHz	Channel 50:	2453 MHz	Channel 71:	2474 MHz
Channel 9:	2412 MHz	Channel 30:	2433 MHz	Channel 51:	2454 MHz	Channel 72:	2475 MHz
Channel 10:	2413 MHz	Channel 31:	2434 MHz	Channel 52:	2455 MHz	Channel 73:	2476 MHz
Channel 11:	2414 MHz	Channel 32:	2435 MHz	Channel 53:	2456 MHz	Channel 74:	2477 MHz
Channel 12:	2415 MHz	Channel 33:	2436 MHz	Channel 54:	2457 MHz	Channel 75:	2478 MHz
Channel 13:	2416 MHz	Channel 34:	2437 MHz	Channel 55:	2458 MHz	Channel 76:	2479 MHz
Channel 14:	2417 MHz	Channel 35:	2438 MHz	Channel 56:	2459 MHz	Channel 77:	2480 MHz
Channel 15:	2418 MHz	Channel 36:	2439 MHz	Channel 57:	2460 MHz		
Channel 16:	2419 MHz	Channel 37:	2440 MHz	Channel 58:	2461 MHz		
Channel 17:	2420 MHz	Channel 38:	2441 MHz	Channel 59:	2462 MHz		
Channel 18:	2421 MHz	Channel 39:	2442 MHz	Channel 60:	2463 MHz		
Channel 19:	2422 MHz	Channel 40:	2443 MHz	Channel 61:	2464 MHz		
Channel 20:	2423 MHz	Channel 41:	2444 MHz	Channel 62:	2465 MHz		
Channel 21:	2424 MHz	Channel 42:	2445 MHz	Channel 63:	2466 MHz		

- 1. The EUT is a Wireless Keyboard with a built-in 2.4GHz transceiver.
- 2. Regarding to the operation frequency, the lowest, middle and highest frequency are selected to perform the test.
- 3. Lowest and highest data rates are tested in each mode. Only worst case is shown in the report.
- 4. These tests are conducted on a sample for the purpose of demonstrating compliance with Part 15 Subpart C Paragraph 15.247 of spread spectrum devices
- 5. The radiation measurements are performed in X, Y, Z axis positioning. Only the worst case is shown in the report.

1.2. Operational Description

The EUT is 2.4GHz Wireless Keyboard built-in 2.4GHz transceiver. The operation frequency is from 2404 MHz to 2480MHz with GFSK modulation. The signal will be transmitted through 2.4 GHz RF signal from the Printed antenna. DC 3V shall be provided for EUT operation.

Test Mode:	Mode 1: Transmitter
------------	---------------------

1.3. Tested System Details

The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:

Pro	duct	Manufacturer	Model No.	Serial No.	Power Cord
1	N/A	N/A	N/A	N/A	N/A

Signal Cable Type		Signal cable Description	
A N/A		N/A	

1.4. Configuration of Tested System

	en state en state en state en		
	EUT		

1.5. EUT Exercise Software

1	Setup the EUT and display as shown on 1.4
2	Installs the battery.
3	The EUT will continuously transmit the radio signal.

1.6. Test Facility

Items	Required (IEC 68-1)	Actual
Temperature (°C)	15-35	20-35
Humidity (%RH)	25-75	50-65
Barometric pressure (mbar)	860-1060	950-1000

Ambient conditions in the laboratory:

The related certificate for our laboratories about the test site and management system can be downloaded from QuieTek Corporation's Web Site : <u>http://tw.quietek.com/modules/myalbum/</u> The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site : <u>http://www.quietek.com/</u>

Site Description: File on

Federal Communications Commission FCC Engineering Laboratory 7435 Oakland Mills Road Columbia, MD 21046 Registration Number: 92195

Accreditation on NVLAP NVLAP Lab Code: 200533-0

Site Name: Quietek Corporation Site Address: No. 5-22, Ruei-Shu Valley, Ruei-Ping Tsuen, Lin-Kou Shiang, Taipei, Taiwan, R.O.C. TEL: 886-2-8601-3788 / FAX : 886-2-8601-3789 E-Mail : <u>service@quietek.com</u>

FCC Accreditation Number: TW1014

2. Peak Power Output

2.1. Test Equipment

The following test equipments are used during the radiated emission tests:

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
X	Power Meter	Anritsu	ML2495A/6K00003357	May, 2009
Х	Power Sensor	Anritsu	MA2411B/0846193	May, 2009

Note: 1. All instruments are calibrated every one year.

2. The test instruments marked by "X" are used to measure the final test results.

2.2. Test Setup

Conducted Measurement

2.3. Limits

The maximum peak power shall be less 1 Watt.

2.4. Test Procedure

The EUT was tested according to DTS test procedure of Mar. 2005 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

2.5. Uncertainty

 \pm 1.27 dB

2.6. Test Result of Peak Power Output

Product	:	Wireless Keyboard
Test Item	:	Peak Power Output Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmitter

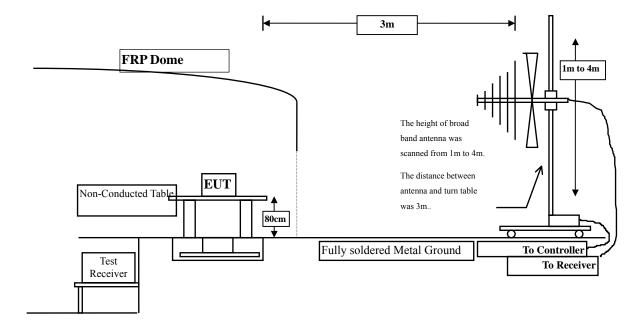
Channel No.	Frequency(MHz)	Measurement	Required Limit	Result
01	2404.00	0.18 dBm	1Watt= 30 dBm	Pass
39	2442.00	0.27 dBm	1Watt= 30 dBm	Pass
77	2480.00	0.22 dBm	1Watt= 30 dBm	Pass

Note: Peak Power Output Value =Reading value on peak power meter + cable loss

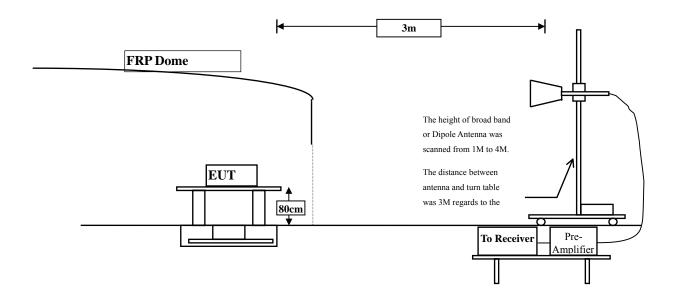
3. Radiated Emission

3.1. Test Equipment

Test Site		Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Site # 3	Х	Bilog Antenna	Schaffner Chase	CBL6112B/2673	Sep., 2009
	Х	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2009
	Х	Horn Antenna	Schwarzbeck	BBHA9170/208	Jul., 2009
	Х	Pre-Amplifier	AGILENT	8447D/2944A09549	Sep., 2009
	Х	Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2009
	Х	Spectrum Analyzer	Advantest	R3162/91700283	Oct., 2009
	Х	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2009
	Х	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	Х	Coaxial Switch	Anritsu	MP59B/6200265729	N/A


The following test equipment are used during the radiated emission test:

Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.


2. The test instruments marked with "X" are used to measure the final test results.

3.2. Test Setup

Radiated Emission Below 1GHz

Radiated Emission Above 1GHz

3.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15 Subpart C Paragraph 15.209(a) Limits						
Frequency MHz	uV/m@3m	dBuV/m@3m				
30-88	100	40				
88-216	150	43.5				
216-960	200	46				
Above 960	500	54				

Remarks: E field strength $(dBuV/m) = 20 \log E$ field strength (uV/m)

3.4. Test Procedure

The EUT was setup according to ANSI C63.4, 2003 and tested according to DTS test procedure of Mar. 2005 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned between 1 meter and 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.4:2003 on radiated measurement.

The resolution bandwidth below 1GHz setting on the field strength meter is 120 kHz and above 1GHz is 1MHz.

Radiated emission measurements below 1GHz are made using broadband Bilog antenna and above 1GHz are made using Horn Antennas.

The measurement is divided into the Preliminary Measurement and the Final Measurement. The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna. The worst radiated emission is measured in the Open Area Test Site on the Final Measurement. The measurement frequency range from 30MHz - 10th Harmonic of fundamental was investigated.

3.5. Uncertainty

- ± 3.9 dB above 1GHz
- ± 3.8 dB below 1GHz

3.6. Test Result of Radiated Emission

Product	:	Wireless Keyboard
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmitter (2404MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4808.000	9.610	52.550	62.160	-11.840	74.000
7212.000	14.321	35.970	50.291	-23.709	74.000
9616.000	19.692	39.780	59.472	-14.528	74.000
Vertical					
Peak Detector:					
4808.000	8.330	49.540	57.870	-16.130	74.000
7212.000	15.416	36.260	51.676	-22.324	74.000
9616.000	18.902	36.900	55.802	-18.198	74.000

Note:

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. The average measurement was not performed when the peak measured data under the limit of average detection.
- 6. The emission levels of other frequencies are very lower than the limit and not show in test report.

Peak	Duty Cycle	Measurement	Margin	Limit
Measurement	Factor	Level		
dBuV/m	dB	dBuV/m	dB	dBuV/m
62.16	-13.735	48.425	-5.575	54.000
50.291	-13.735	36.556	-17.444	54.000
59.472	-13.735	45.737	-8.263	54.000
57.87	-13.735	44.135	-9.865	54.000
51.676	-13.735	37.941	-16.059	54.000
55.802	-13.735	42.067	-11.933	54.000
	Measurement dBuV/m 62.16 50.291 59.472 57.87 51.676	Measurement dBuV/m Factor dB 62.16 -13.735 50.291 -13.735 59.472 -13.735 57.87 -13.735 51.676 -13.735	Measurement dBuV/m Factor dB Level dBuV/m 62.16 -13.735 48.425 50.291 -13.735 36.556 59.472 -13.735 45.737 57.87 -13.735 44.135 51.676 -13.735 37.941	Measurement dBuV/m Factor dB Level dBuV/m dB 62.16 -13.735 48.425 -5.575 50.291 -13.735 36.556 -17.444 59.472 -13.735 45.737 -8.263 57.87 -13.735 44.135 -9.865 51.676 -13.735 37.941 -16.059

- 1. AVG Measurement=Peak Measurement + Duty Cycle
- 2. The Duty Cycle is refer to section 8.
- If Duty Cycle is smaller than -20dB,based on FCC part15 the duty cycle correction factor is -20dB for calculating average emission.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.

Product	: Wireless Keyboard								
Test Item	: Harmonic Radiated Emission Data								
Test Site	: No.3 O	: No.3 OATS							
Test Mode	: Mode 1	: Transmitter (244	2 MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit				
	Factor	Level	Level						
MHz	dB	dBuV	dBuV/m	dB	dBuV/m				
Horizontal									
Peak Detector:									
4884.000	9.496	51.650	61.146	-12.854	74.000				
7236.000	14.401	35.270	49.671	-24.329	74.000				
9768.000	20.061	38.350	58.411	-15.589	74.000				
Vertical									
Peak Detector:									
4884.000	9.006	49.290	58.296	-15.704	74.000				
7326.000	15.264	35.140	50.404	-23.596	74.000				
9768.000	19.261	36.430	55.691	-18.309	74.000				

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. The average measurement was not performed when the peak measured data under the limit of average detection.
- 6. The emission levels of other frequencies are very lower than the limit and not show in test report.

Frequency	Peak	Duty Cycle	Measurement	Margin	Limit
	Measurement	Factor	Level		
MHz	dBuV/m	dB	dBuV/m	dB	dBuV/m
Horizontal					
Average Detector:					
4884	61.146	-13.735	47.411	-6.589	54.000
7236	49.671	-13.735	35.936	-18.064	54.000
9768	58.411	-13.735	44.676	-9.324	54.000
Vertical					
Average Detector:					
4884	58.296	-13.735	44.561	-9.439	54.000
7236	50.404	-13.735	36.669	-17.331	54.000
9768	55.691	-13.735	41.956	-12.044	54.000

- 1. AVG Measurement=Peak Measurement + Duty Cycle
- 2. The Duty Cycle is refer to section 8.
- If Duty Cycle is smaller than -20dB,based on FCC part15 the duty cycle correction factor is -20dB for calculating average emission.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.

Product	: Wireless Keyboard								
Test Item	: Harmon	: Harmonic Radiated Emission Data							
Test Site	: No.3 O	: No.3 OATS							
Test Mode	: Mode 1	: Transmitter (248	0 MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit				
	Factor	Level	Level						
MHz	dB	dBuV	dBuV/m	dB	dBuV/m				
Horizontal									
Peak Detector:									
4960.000	9.418	51.340	60.757	-13.243	74.000				
7440.000	15.012	35.170	50.183	-23.817	74.000				
9920.000	19.754	38.250	58.004	-15.996	74.000				
Vertical									
Peak Detector:									
4960.000	9.717	49.490	59.206	-14.794	74.000				
7440.000	15.386	35.710	51.096	-22.904	74.000				
9920.000	18.897	36.930	55.827	-18.173	74.000				

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. The average measurement was not performed when the peak measured data under the limit of average detection.
- 6. The emission levels of other frequencies are very lower than the limit and not show in test report.

Frequency MHz	Peak Measurement dBuV/m	Duty Cycle Factor dB	Measurement Level dBuV/m	Margin dB	Limit dBuV/m
Horizontal	uDu () III	uD	ubu (/m	uD	ubu (/m
Average Detector:					
4960	60.757	-13.735	47.022	-6.978	54.000
7440	50.183	-13.735	36.448	-17.552	54.000
9920	58.004	-13.735	44.269	-9.731	54.000
Vertical					
Average Detector:					
4960	59.206	-13.735	45.471	-8.529	54.000
7440	51.096	-13.735	37.361	-16.639	54.000
9920	55.827	-13.735	42.092	-11.908	54.000

- 1. AVG Measurement=Peak Measurement + Duty Cycle
- 2. The Duty Cycle is refer to section 8.
- If Duty Cycle is smaller than -20dB,based on FCC part15 the duty cycle correction factor is -20dB for calculating average emission.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.

Product	:	Wireless Keyboard
Test Item	:	General Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmitter (2442 MHz)

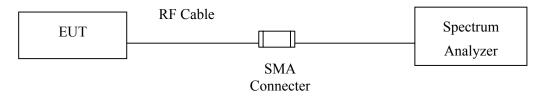
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
35.820	-4.537	35.103	30.566	-9.434	40.000
94.020	-8.453	30.082	21.628	-21.872	43.500
187.140	-11.912	32.590	20.678	-22.822	43.500
375.320	-1.779	27.108	25.329	-20.671	46.000
458.740	0.377	24.068	24.445	-21.555	46.000
544.100	2.992	25.619	28.611	-17.389	46.000
Vertical					
37.760	-4.281	32.514	28.234	-11.766	40.000
64.920	-12.760	43.014	30.254	-9.746	40.000
99.840	-7.789	33.993	26.204	-17.296	43.500
256.980	-5.478	27.144	21.666	-24.334	46.000
371.440	-1.634	26.691	25.056	-20.944	46.000
544.100	2.992	24.993	27.985	-18.015	46.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

4. **RF** antenna conducted test

4.1. Test Equipment

The following test equipments are used during the radiated emission tests:


	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Nov, 2008
	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2009
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2009

Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

2. The test instruments marked with "X" are used to measure the final test results.

4.2. Test Setup

RF antenna Conducted Measurement:

4.3. Limits

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

4.4. Test Procedure

The EUT was tested according to DTS test procedure of Mar. 2005 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

Set RBW = 100 kHz, Set VBW> RBW, scan up through 10th harmonic.

4.5. Uncertainty

The measurement uncertainty Conducted is defined as \pm 1.27dB

4.6. Test Result of RF antenna conducted test

Product	:	Wireless Keyboard
Test Item	:	RF antenna conducted test
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmitter

Channel 01 (2404MHz)

💴 Agilent Spectrum A	nalyzer - Swept SA									
<mark>Μ</mark> 50 Ω Display Line -	32.33 dBm	AC	SEN	Pun		ALIGNAUTO : Log-Pwr	TRAC	M Sep 28, 2009		Display
	Input: RF	PNO: Fast 😱 IFGain:Low	#Atten: 10			М	kr1 2.4	02 GHz 77 dBm		Annotation►
-10.0										Title▶
-20.0								-22.33 dBm -32.33 dBm	<u>On</u>	Graticule Of
-40.0									<u>On</u>	Display Line -32.33 dBm Of
-60.0	M. J. Will the share of	+ Han hur Joy Harden	au, siar	Water of the former of the former	the garne that	getyddiae yn de godd	her and a start of the second	wayshill all all		
-80.0	4 Jun	- WINNER	an Arbah a, a							System Display∙ Settings
Center 12.52 G #Res BW 100 k		#VBW	1.0 MHz			Sweep		4.97 GHz 1001 pts)		
MSG						STATUS				

Display	M Sep 28, 2009		ALIGN AUTO		NSE:INT	SE SE	A		50 Ω	
	E 1 2 3 4 5 6 E MWWWWW T P N N N N N	TRAC TYP DE	e: Log-Pwr	Avg T		Trig: Free #Atten: 10	PNO: Fast 😱 FGain:Low	Input: RF I	e -32.7	olay Lin
Annotatio	52 GHz 77 dBm		М					dBm	Ref 0.00	3/div F
Title									1	3
	-22.78dBm									
Graticu										
<u>On</u>	-32.78 dBm			-						
Display Li -32.78 dE On								2		
								I		
	White Manual	yor Manamintales	- Carater Carater	have a set	Lat.		here where you	Jon Pulling		
Systen Display Setting					q/>qLupili ⁴⁴ 8/	unnyn yn	Webally a weather a	full	Uh man	_₩ ₩₩₩₩₩₩₩
	4.97 GHz 1001 pts)		Sweep			1.0 MHz	#VBW			ter 12.5: s BW 10

Channel 39 (2442MHz)

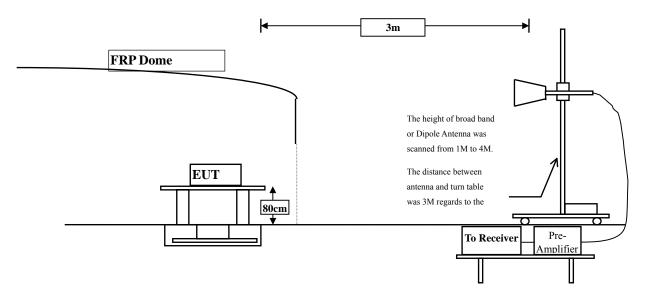
Channel 77 (2480MHz)

Display	11:10:05 AM Sep 28, 2009 TRACE 1 2 3 4 5 6 TYPE MWWWWW	ALIGNAUTO e: Log-Pwr · 14/100	Avg Typ Avg Hold		S⊨] Trig:Free	A	39 dBm	50 Q Line -32.3	isplay L
Annotatio	DET P N N N N N		Arginor		#Atten: 10	PNO: Fast 😱 FGain:Low	Input: RF		
Amotado	kr1 2.477 GHz -2.392 dBm	M					dBm	Ref 0.00) dB/div
Title								1	
	-22.39dBm								0.0
Graticu									0.0
<u>On</u>	-32.39 dBm								0.0
Display Li -32.39 dE								_	0.0
211									0.0
	Unan Internation	1 Hillow allow a group of	A.				B	r il	
Systen Displa Setting			AND	J. H. H. Hard Star	ulmy-ulme	-Melinderson and a second	w.J	Hell Frenning of	
- stilling			-						0.0
	Span 24.97 GHz 2.30 s (1001 pts)	Sweep		z	1.0 MHz	#VBW		2.52 GHz 100 kHz	

5. Band Edge

5.1. Test Equipment

The following test equipments are used during the band edge tests:


Test Site		Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Site # 3	Х	Bilog Antenna	Schaffner Chase	CBL6112B/2673	Sep., 2009
	Х	Pre-Amplifier	AGILENT	8447D/2944A09549	Sep., 2009
	Х	Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2009
	Х	Spectrum Analyzer	Advantest	R3162/91700283	Oct., 2009
	Х	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2009
	Х	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	Х	Coaxial Switch	Anritsu	MP59B/6200265729	N/A

Note: 1. All instruments are calibrated every one year.

2. The test instruments marked by "X" are used to measure the final test results.

5.2. Test Setup

RF Radiated Measurement:

5.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation. QuieTek

5.4. Test Procedure

The EUT was setup according to ANSI C63.4, 2003 and tested according to DTS test procedure of Mar. 2005 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.4:2003 on radiated measurement.

5.5. Uncertainty

± 3.9 dB above 1GHz

± 3.8 dB below 1GHz

5.6. Test Result of Band Edge

Product	:	Wireless Keyboard
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmitter

Fundamental Filed Strength

Antenna Pole	Frequency [MHz]	Reading Level [dBuV]	Correction Factor [dB/m]	Emission Level [dBuV/m]	Detector
Horizontal	2404	46.857	36.602	83.458	Peak
Vertical	2404	46.694	35.595	82.289	Peak

Note: 1:Spectrum Analyzer setting:

Peak detector: RBW=1MHz, VBW=1MHz

Band Edge Test Data

Antenna Pole	Test Frequency (MHz)	Fundamental (dBuV/m)	Δ (dB)	Band Edge Field Strength (dBuV/m)	Detector
Horizontal	2387.9	83.458	51.765	31.693	Peak
Horizontal					Average
Vertical	2387.9	82.289	51.765	30.524	Peak
Vertical					Average

Note:

The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge measurements

per the Marker-Delta Method with the following formula:

Band Edge field Strength = F - Δ

F = Fundamental field Strength (Peak or Average)

 Δ = Conducted Band Edge Delta (Peak or Average)

The Average Field Strength is Peak Field Strength + duty cycle

	Ω	Δ	AC SENSE:INT		ALIGN AUTO	10:39:51 A	M Sep 04, 2009	
nter Freq	2.39000000 Input: RF	0 GHz PNO: Fast G	Trig: Free Run #Atten: 10 dB		e: Log-Pwr d:>100/100	TYP	E 1 2 3 4 5 6 E MWWWWW T P N N N N N	Frequency
dB/div Re	ef 0.00 dBm				Mk		7 9 GHz 78 dBm	Auto Tu
				1				Contor F
0				\square				Center Fr 2.390000000 G
0								2.390000000
- D								
0								Start Fr
0			♦ ³ / ₄ 2					2.340000000
	- when a share a share with	the state of the second	mont former	and the second s	a dama da de la	*hew-*heeve	-	
o 0								Stop Fr
0								2.440000000 0
nter 2.390 es BW 1.0		-#\/D\M	1.0 MHz		#Sweep		00.0 MHz	CF St
		#VDVV						10.000000 N
N 1 f		.404 1 GHz	-10.513 dBm	UNCTION	UNCTION WIDTH	FUNCTIO	IN VALUE	<u>Auto</u> N
	2.	.390 0 GHz .387 9 GHz	-65.903 dBm -62.278 dBm					
N 1 f		.387 9 GHZ	-62.278 dBm					Freq Off
N 1 f	<u>_</u>			2				
<u>N 1 f</u>								0
N 1 f								0
N 1 f								0
								0

Peak Detector of conducted Band Edge Delta

Product	:	Wireless Keyboard
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmitter

Fundamental Filed Strength

Antenna Pole	Frequency [MHz]	Reading Level [dB(uV)]	Correction Factor [dB/m]	Emission Level [dB(uV/m)]	Detector
Horizontal	2480	45.828	36.706	82.534	Peak
Vertical	2480	46.069	36.162	82.230	Peak

Note: 1:Spectrum Analyzer setting:

Peak detector: RBW=1MHz, VBW=1MHz

Band Edge Test Data

Antenna Pole	Test Frequency (MHz)	Fundamental (dBuV/m)	Δ (dB)	Band Edge Field Strength (dBuV/m)	Detector
Horizontal	2483.5	82.534	51.202	31.341	Peak
Horizontal					Average
Vertical	2483.5	82.230	51.202	31.028	Peak
Vertical					Average

Note:

The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge measurements

per the Marker-Delta Method with the following formula:

Band Edge field Strength = F - Δ

F = Fundamental field Strength (Peak or Average)

 Δ = Conducted Band Edge Delta (Peak or Average)

The Average Field Strength is Peak Field Strength + duty cycle

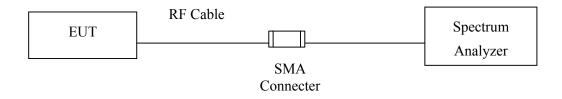
				ALIGN AUTO Type: Log-Pwr Iold: 82/100	10:41:26 AM Sep 04, 2009 TRACE 1 2 3 4 5 6 TYPE M Waterated	Marker
dB/div Ref 0.0	Input: RF PNO: Fa IFGain:L				DET P N N N N	Select Marker 3
						Norm
D.0 D.0 D.0			2			Delt
1.0 1.0 1.0						Fixed
enter 2.48350 GH Res BW 1.0 MHz G MODE TRE SCI		VBW 1.0 MHz		#Sweep	Span 100.0 MHz 500 ms (1001 pts) FUNCTION VALUE	c
2 N 1 f 3 4	2.483 5 GH					Properties
7 3 9 9 1						Mo 1 of

Peak Detector of conducted Band Edge Delta

6. Occupied Bandwidth

6.1. Test Equipment

The following test equipments are used during the radiated emission tests:


	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Nov, 2008
	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2009
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2009

Note: 1. All instruments are calibrated every one year.

2. The test instruments marked by "X" are used to measure the final test results.

6.2. Test Setup

_

6.3. Limits

The minimum bandwidth shall be at least 500 kHz.

6.4. Test Procedure

The EUT was setup according to ANSI C63.4, 2003; tested according to DTS test procedure of Mar. 2005 KDB558074 for compliance to FCC 47CFR 15.247 requirements. Set RBW = 100 kHz, Span greater than RBW.

6.5. Uncertainty

 \pm 150Hz

6.6. Test Result of Occupied Bandwidth

Product	:	Wireless Keyboard
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmitter (2404MHz)

Channel No	· Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
1	2404.00	526	>500	Pass

Figure Channel 1:

50 Ω larker 1 2.4039300			ALIGN AUTO Type: Log-Pwr Hold: 12/100	09:30:04 AM Sep 28, 2009 TRACE 1 2 3 4 5 6	Trace/Det
0 dB/div Ref 0.00 dE	IFGain:Low Att	en: 10 dB		2.403 930 GHz -2.510 dBm	Select Trace Trace 1
og 0.0		-6.00 dB			Clear Wri
0.0					Trace Avera
0.0					MaxHo
0.0 North Window Contraction	w ^r		William	Add galler galaxy mail a	Min Ho
0.0					View/Blan Trace O
enter 2.404000 GHz Res BW 100 kHz	#VBW 1.0	MHz	#Sweep	Span 5.000 MHz 500 ms (1001 pts)	

Product	:	Wireless Keyboard
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmitter (2442MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
39	2442.00	503	>500	Pass

Figure Channel 39:

50 Ω arker 1 2.4419200		AC SENSE:INT	ALIGN AUT Avg Type: Log-Pwi Avg Hold: 18/100		Peak Search
400	IFGain:Low	Atten: 10 dB	Mkr	1 2.441 920 GHz	NextPea
dB/div Ref 0.00 dE	3m			-2.303 dBm	
0.0			00 dB 3 kHz		Next Rig
D.0 D.0					Next L
5.0	man				Marker De
D.0 Hitson Assessition	rague V			Nughter and the state of the st	
D.0					Mkr→
0.0					Mkr→Refl
0.0					
enter 2.442000 GHz				Span 5.000 MHz	Mc 1 c
Res BW 100 kHz	#VBW	/ 1.0 MHz	#Sweet	500 ms (1001 pts)	

:	Wireless Keyboard
:	Occupied Bandwidth Data
:	No.3 OATS
:	Mode 1: Transmitter (2480MHz)
	:

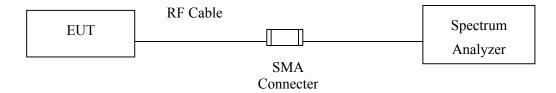
Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
77	2480.00	529	>500	Pass

Figure Channel 77:

50 Ω		AC	SENSE:INT		IGNAUTO		1 Sep 28, 2009	Trace/Det
	Input: RF PNO: IFGain		ee Run 🛛 🖌	Avg Type: L Vg Hold: 40		TYP	123456 MWWWWW PNNNNN	Select Trace
dB/div Ref 0.00	dBm				Mkr1	2.479 9 -2.66	05 GHz 33 dBm	Trace ′
0.0		and the second	1 -6.00 c					Clear Wri
0.0		A way	M.	V.,			·	Trace Avera
0.0	water Ward and a start water			WINK N	₩ _₩			Max Ho
0.0 .0 .0 .0	rseareft ^{hriv}				"Munu,	^l avedyhelinety, haapo	unalite	Min Ho
0.0								View/Blan Trace O
enter 2.480000 GH		#VBW 1.0 MH					000 MHz	M d 1 d

7. Power Density

7.1. Test Equipment


The following test equipments are used during the radiated emission tests:

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Nov, 2008
	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2009
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2009

Note: 1. All equipments are calibrated every one year.

2. The test instruments marked by "X" are used to measure the final test results.

7.2. Test Setup

7.3. Limits

The transmitted power density averaged over any 1 second interval shall not be greater +8dBm in any 3kHz bandwidth.

7.4. Test Procedure

The EUT was setup according to ANSI C63.4, 2003; tested according to DTS test procedure of Mar. 2005 KDB558074 for compliance to FCC 47CFR 15.247 requirements. Set RBW= 3 kHz, VBW=10KHz, Sweep time=(SPAN/3KHz), detector=Peak detector

7.5. Uncertainty

 \pm 1.27 dB

7.6. Test Result of Power Density

Product	:	Wireless Keyboard
Test Item	:	Power Density Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmitter (2404MHz)

Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result
1	2404.00	-5.015	< 8dBm	Pass

Figure Channel 1:

							wept SA		ilent Spectrun
Peak Search	09:53:38 AM Sep 28, 2009 TRACE 1 2 3 4 5 6 TYPE MWWWWW	ALIGNAUTO : Log-Pwr 1/100	Avg Type Avg Hold:	NSE:INT]			4039121	50 50 rker 1 2.4
Next Pe	403 912 1 GHz -5.015 dBm				Atten: 20	NO: Far 😱 iain:Low	IFG	inp ef 10.00 d	B/div Re
Next Rig				1)
Next Lo		~			\sim	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~ /	\sim	
Marker De		have prove	w (x			V V	Aut and and	\vee	
Mkr→0									
Mkr→RefL									
Mo 1 o	Span 300.0 kHz 100 s (1001 pts)	#Sweep			10 kHz	#VBW			nter 2.4039 es BW 3.0
	,	STATUS			and discourse of the	10000000000000000000000000000000000000		and a life to	

Product	:	Wireless Keyboard
Test Item	:	Power Density Data
Test Site	:	No.3OATS
Test Mode	:	Mode 1: Transmitter (2442MHz)

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
39	2442.000	-5.072	< 8dBm	Pass

Figure Channel 39:

arker 1 2.44191060 Inpu		Trig: Free Run Atten: 20 dB	ALIGNAUTO Avg Type: Log-Pwr Avg Hold: 1/100	09:50:51 AM Sep 28, 2009 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Peak Search
dB/div Ref 10.00 dl	Bm		Mkr1 2.	441 910 6 GHz -5.072 dBm	Next Pea
.00		1			Next Rig
		$ \wedge \wedge $	V von		Next Lo
					Marker De
0.0					Mkr→(
0.0					Mkr→RefL
enter 2.4419100 GHz Res BW 3.0 kHz	#VBW	10 kHz	#Sweep	Span 300.0 kHz 0 100 s (1001 pts)	Mo 1 o

:	Wireless Keyboard
:	Power Density Data
:	No.3 OATS
:	Mode 1: Transmitter (2480MHz)
	:

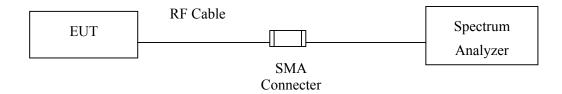
Channel No.	Frequency (MHz)	Measurement Level (dBm)	1	
77	2480.00	-5.422	< 8dBm	Pass

Figure Channel 77:

50 Ω larker 1 2.47990940 Ιηρι	It: BE PNO: Far	SENSE:INT Frig: Free Run Atten: 20 dB	ALIGNAUTO Avg Type: Log-Pwr Avg Hold: 1/100	09:47:31 AM Sep 28, 2009 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Peak Search
odB/div Ref 10.00 dl	Зm		Mkr1 2	.479 909 4 GHz -5.422 dBm	Next Pea
.00		1			Next Rig
0.0			m.m.m.		Next L
	V V				Marker De
0.0					Mkr→
5.0					Mkr→Refl
enter 2.4799094 GHz Res BW 3.0 kHz	#VBW 1	0 kHz	#Swee	Span 300.0 kHz p 100 s (1001 pts)	M o 1 o

8. Duty Cycle

8.1. Test Equipment


The following test equipments are used during the band edge tests:

Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr, 2009
X Spectrum Analyzer	R&S	FSP40 / 100170	Nov, 2008

Note: 1. All equipments are calibrated every one year.

2. The test equipments marked by "X" are used to measure the final test results.

8.2. Test Setup

8.3. Uncertainty

 \pm 150Hz

8.4. Test Result of Duty Cycle

Product	:	Wireless Keyboard
Test Item	:	Duty Cycle Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmitter

	⊃Ω ອີ100.0 n	ns]	ENSE:INT	Avg Type	ALIGNAUTO e: Log-Pwr	TRACE	1 Sep 04, 2009 1 2 3 4 5 6 WWWWWW	Sweep/Contro
	Inp	ut: RF PN IFG	IO: Fast 🔸 ain:Low	#Atten: 1				DE	PNNNNN	Sweep Tir 100.0
B/div R	ef 0.00 dE	Bm	8		1					
										Sweep Setu
			du .					ulita		
	mandral	p day be a second of the se	Jane Maria	Junior	HUILlin		pedinaliste	-	and the state of the	
ter 2.404	000000 G	Hz	3					s	pan 0 Hz	
8W 1.0 I			#VBW	1.0 MHz			Sweep 10	00.0 ms (1	001 pts)	
MODE TRC S		×		Ŷ	FU	NCTION	NCTION WIDTH	FUNCTIO	N VALUE	
										Gat [Off,LC
										Lon, Lo
										Poir
										10

Marker	01:10:13 PM Sep 04, 2009 TRACE 1 2 3 4 5 6	ALIGNAUTO Type: Log-Pwr		AC SENS		Ω 220.000	
Select Marke	DET P N N N N N			Trig: Video #Atten: 10 d	out: RF PNO: Fast IFGain:Low	Inp	
	Mkr1 220.0 µs -3.63 dB	Δ			3m	ef 0.00 dE	3/div R
Norm							
NOTI							
	TRIG LVL		HH			-+	++
De							
	1 <u>0</u> 2	my of Lyunger	A physical and	an warper of	atter Wellington and the	monorial Ulipo	M WW MAXWAN
Fixe							
c	Span 0 Hz 0.00 ms (1001 pts)	Sweep 10		W 1.0 MHz		000000 G /IHz	ter 2.404 BW 1.0 I
	FUNCTION VALUE	FUNCTION WIDTH	FUNCTION	γ Δ) -3.63 df	× 220.0 µs ()		Mode TRC SI A2 1 t
				-70.47 dBn	7.810 ms		F 1 t
Propertie							
						0	
Mo							
1 c							

Ton= (220us*11)*8.5= 20.57 ms Duty Cycle= 20.57 ms / 100 ms = 0.2057 Duty Cycle correction factor= 20 LOG 0.2057 = -13.735 dB

Duty Cycle correction factor	-13.735	dB
------------------------------	---------	----

Remark:

1. If Duty Cycle is smaller than -20dB,based on FCC part15 the duty cycle correction factor is -20dB for calculating average emission.

9. EMI Reduction Method During Compliance Testing

No modification was made during testing.