

Date of Issue: Oct. 17, 2017 Report No: F17082301

FCC 47 CFR PART 15 SUBPART C

TEST REPORT

FOR

Force GC30 GAMING Controller

Model: GC30

Trade Name: msi

Issued to

MICRO-STAR INT' L CO., LTD.

No.69, Lide St., Zhonghe Dist., New Taipei City 235, Taiwan (R.O.C.)

Issued by

WH Technology Corp.

Open Site		No. 120, Ln. 5, Hudong St., Xizhi Dist., New Taipei City 221, Taiwan (R.O.C.)
EMC Test	Xizhi Office	12F3, No.27-1, Ln. 169, Kangning St., Xizhi Dist.,
Site	and Lab	New Taipei City 221, Taiwan (R.O.C.)

Note: This test refers exclusively to the test presented test model and sample. This report shall not be reproduced except in full, without the written approval of WH Technology Corp. This document may be altered or revised by WH Technology Corp. Personnel only, and shall be noted in the revision section of the document.

APPENDIX 2 PHOTOS OF EUT

WH Technology Corp.

Date of Issue: Oct. 17, 2017 Report No: F17082301

TABL	E OF CONTENTS	2
1. GI	ENERAL INFORMATION	3
1.1	DESCRIPTION OF THE TESTED SAMPLES	4
2. TE	EST METHODOLOGY	6
2.1 2.2 2.3 2.4	GENERAL TEST PROCEDURESFCC PART 15.205 RESTRICTED BANDS OF OPERATIONS	7 8
3. TE	EST AND MEASUREMENT EQUIPMENT	10
3.1 3.2	CALIBRATIONEQUIPMENT	
4. SE	ECTION 15.249 REQUIREMENTS (FUNDAMENTAL/ HARMONICS)	12
4.1 4.2 4.3 4.4	TEST SETUP	12 12
5. SE	ECTION 15.205 REQUIREMENTS (BAND EDGE)	18
5.1 5.2 5.3 5.4	TEST SETUP	26 19
6. SE	ECTION 15.209 REQUIREMENTS (GENERAL RADIATED EMISSION)	22
6.1 6.2 6.3 6.4 6.5	TEST SETUP LIMIT TEST PROCEDURE RESULT: PASSED TEST DATA:	23 34 34
7. SE	ECTION 15.207 REQUIREMENTS (POWERLINE CONDUCTED EMISSIONS)	28
APPEI	NDIX 1 PHOTOS OF TEST CONFIGURATION	

Date of Issue: Oct. 17, 2017 Report No: F17082301

GENERAL INFORMATION 1.

Applicant MICRO-STAR INT' L CO., LTD.

Address : No.69, Lide St., Zhonghe Dist., New Taipei City 235, Taiwan

(R.O.C.)

Manufacturer MICRO-STAR INT' L CO., LTD.

Address No.69, Lide St., Zhonghe Dist., New Taipei City 235, Taiwan

(R.O.C.)

: Force GC30 GAMING Controller **EUT**

Model Name **GC30**

Model N/A

Differences

Is here with confirmed to comply with the requirements set out in the FCC Rules and Regulations Part 15 Subpart C and the measurement procedures were according to ANSI C63.4-2014. The said equipment in the configuration described in this report shows the maximum emission levels emanating from equipment are within the compliance requirements.

FCC part 15 subpart C

Final Test Date: 10/17/2017 Receipt Date: 08/23/2017

Tested By: Reviewed by:

Oct. 17, 2017

Oct. 17, 2017 Bell Wei/ Engineer Date Mike Lee / Manager Date

Designation Number: TW1083

Date of Issue: Oct. 17, 2017 Report No: F17082301

1.1 DESCRIPTION OF THE TESTED SAMPLES

EUT Name	: Force GC30 GAMING Controller
Model Number	:: GC30
FCCID Number	I4LGC30TX
Receipt Date	: 10/17/2017
Input Voltage	: 5 Vdc (From PC)
Power From	☐ Inside ☑Outside ☐Adaptor ☐BATTERY ☐AC Power Source ☐DC Power Source ☑Support Unit PC
Operate Frequency	: Refer to the channel list as described below
Modulation Technique	: GFSK
Number of Channels	: 63
Channel spacing	: □N/A ☑ <u>1 M</u> Hz
Operating Mode	: □Simplex ☑ Half Duplex
Antenna Type	: ☑integral antenna: PCB Printing
	□a dedicated antenna
Antenna gain	0 dBi

Date of Issue: Oct. 17, 2017 Report No: F17082301

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2412	20	2432	40	2452	60	2472
01	2413	21	2433	41	2453	61	2473
02	2414	22	2434	42	2454	62	2474
03	2415	23	2435	43	2455	63	2475
04	2416	24	2436	44	2456		
05	2417	25	2437	45	2457		
06	2418	26	2438	46	2458		
07	2419	27	2439	47	2459		
08	2420	28	2440	48	2460		
09	2421	29	2441	49	2461		
10	2422	30	2442	50	2462		
11	2423	31	2443	51	2463		
12	2424	32	2444	52	2464		
13	2425	33	2445	53	2465		
14	2426	34	2446	54	2466		
15	2427	35	2447	55	2467		
16	2428	36	2448	56	2468		
17	2429	37	2449	57	2469		
18	2430	38	2450	58	2470		
19	2431	39	2451	59	2471		

Date of Issue: Oct. 17, 2017 Report No: F17082301

2. TEST METHODOLOGY

All testing as described bellowed were performed in accordance with ANSI C63.4:2014 and FCC CFR 47 Part 15 Subpart C.

2.1 GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on a wood table, which is at 0.8 m above ground plane acceding to clause 15.207 and requirements of ANSI C63.4:2014. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz are using CISPR Quasi-Peak / Average detectors.

Radiated Emissions

The EUT is a placed on a turn table, which is 0.8 m above ground plane. The turntable was rotated through 360 degrees to determine the position of maximum emission level. The EUT is placed at 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.

Date of Issue: Oct. 17, 2017 Report No: F17082301

2.2 FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

<u>:</u>	permitted in any of the frequency barries indea below.								
MHz	MHz	MHz	GHz						
0.090 - 0.110 10.495 - 0.505 2.1735 - 2.1905 4.125 - 4.128 4.17725 - 4.17775 4.20725 - 4.20775 6.215 - 6.218 6.26775 - 6.26825 6.31175 - 6.31225 8.291 - 8.294 8.362 - 8.366 8.37625 - 8.38675 8.41425 - 8.41475 12.29 - 12.293 12.51975 - 12.52025 13.36 - 13.41	16.42 - 16.423 16.69475 - 16.69525 16.80425 - 16.80475 25.5 - 25.67 37.5 - 38.25 73 - 74.6 74.8 - 75.2 108 - 121.94 123 - 138 149.9 - 150.05 156.52475 - 156.52525 156.7 - 156.9 162.0125 - 167.17 167.72 - 173.2 240 - 285 322 - 335.4	399.9 - 410 608 - 614 960 - 1240 1300 - 1427 1435 - 1626.5 1645.5 - 1646.5 1660 - 1710 1718.8 - 1722.2 2200 - 2300 2310 - 2390 2483.5 - 2500 2655 - 2900 3260 - 3267 3332 - 3339 3345.8 - 3358 3600 - 4400	4.5 - 5.15 5.35 - 5.46 7.25 - 7.75 8.025 - 8.5 9.0 - 9.2 9.3 - 9.5 10.6 - 12.7 13.25 - 13.4 14.47 - 14.5 15.35 - 16.2 17.7 - 21.4 22.01 - 23.12 23.6 - 24.0 31.2 - 31.8 36.43 - 36.5						

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

2.3 DESCRIPTION OF TEST MODES

The EUT was tested under following modes:

Modes:

1. Continuous transmitting

Channels:

- 1. 2.412 GHz (Lowest Channel)
- 2. 2.440 GHz (Middle Channel)
- 3. 2.475 GHz (Highest Channel)

² Above 38.6

⁽b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

Date of Issue: Oct. 17, 2017 Report No: F17082301

2.4 DESCRIPTION OF THE SUPPORT EQUIPMENTS

Setup Diagram

See test photographs attached in appendix 1 for the actual connections between EUT and support equipment.

EUT

Date of Issue: Oct. 17, 2017 Report No: F17082301

Support Equipment

Peripherals Devices:

	OUTSIDE SUPPORT EQUIPMENT								
No.	Equipment	Equipment Model		FCC ID/	Trade	Data Cable	Power		
NO.	Ечартнети	Model	No.	BSMI ID	name	Data Cable	Cord		
1.	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
		IN	ISIDE SUPI	PORT EQU	IPMENT				
No.	Equipment	Model	Serial	FCC ID/	Trade	Data Cable	Power		
1 1 1 ()									
	Ечиричен	Model	No.	BSMI ID	name	Data Cable	Cord		

Note: All the above equipment /cable were placed in worse case position to maximize emission signals during emission test

Grounding: Grounding was in accordance with the manufacturer's requirement and conditions for the intended use.

Date of Issue: Oct. 17, 2017 Report No: F17082301

3. TEST AND MEASUREMENT EQUIPMENT

3.1 CALIBRATION

The measuring equipment utilized to perform the tests documented in the report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

3.2 EQUIPMENT

The following list contains measurement equipment used for testing. The equipment conforms to the requirement of CISPR 16-1, ANSI C63.2 and. Other required standards.

Calibration of all test and measurement, including any accessories that may effect such calibration, is checked frequently to ensure the accuracy. Adjustments are made and correction factors are applied in accordance with the instructions contained in the respective.

Table 1 List of Test and Measurement Equipment

Test Site	Instrument Manufacturer		Model No.	S/N	Next Cal. Date
	Spectrum (9K3GHz)	R&S	FSP3	833387/01 0	2018/09/20
	EMI Receiver	R&S	ESHS10	830223/00 8	2018/06/06
Conduction	LISN	Rolf Heine Hochfrequenztech nik	NNB-2/16z	98062	2018/06/11
	ISN	Schwarzbeck	8-Wire ISN CAT5	CAT5-8158 -0094	2018/09/21
	RF Cable	N/A	N/A	EMI-3	2017/10/19
	Bilog antenna(30M- 1G)	antenna(30M- ETC		BLB16M0 4004/JB-5- 004	2018/05/18
	Double Ridged Guide Horn antenna(1G-18 G)	ETC	MCTD 1209	DRH15N0 2009	2017/11/23
5	Horn antenna (18G-26G)	com-power	AH-826	81000	2018/08/16
Radiation	LOOP Antenna com-power (Below 30M)		AL-130	17117	2018/10/04
	Pre amplifier (30M-1G)	EMC INSTRUMENT	EMC9135	980334	2018/05/03
	Microwave Preamplifier (1G-18G)	EMC INSTRUMENT	EMC051845	980108&A T -18001	2017/10/23
	Pre amplifier	MITEQ	JS4-18002600-30-	808329	2018/08/09

Date of Issue: Oct. 17, 2017 Report No: F17082301

	_		1	ı	
	(18G~26G)		5A		
	EMI Test Receiver	R&S	ESVS30 (20M-1000MHz)	826006/002	2017/11/28
	RF Cable (open site)	EMCI	N male on end of both sides (EMI4)	30m	2017/10/19
	RF CABLE (1~26G)	HARBOUT INDUSTRIES	LL142MI(4M+4M)	NA	2018/04/17
	RF CABLE (1~26G)	HARBOUR INDUSTRIES	LL142MI(7M)	NA	2018/08/09
	Spectrum (9K7GHz)	R&S	FSP7	830180/006	2018/04/14
	Spectrum (9K40GHz)	AGILENT	8564EC	4046A0032	2018/03/01
Software	e3	AUDIX	N/A	N/A	N/A
SG	SINGAL GENTERATOR (100k-1GHz)	НР	8648A	3619U0042 6	N/A

[•] CALIBRATION INTERVAL OF INSTRUMENTS LISTED ABOVE IS ONE YEAR

Date of Issue: Oct. 17, 2017 Report No: F17082301

4. SECTION 15.249 REQUIREMENTS (FUNDAMENTAL/ HARMONICS)

4.1 TEST SETUP

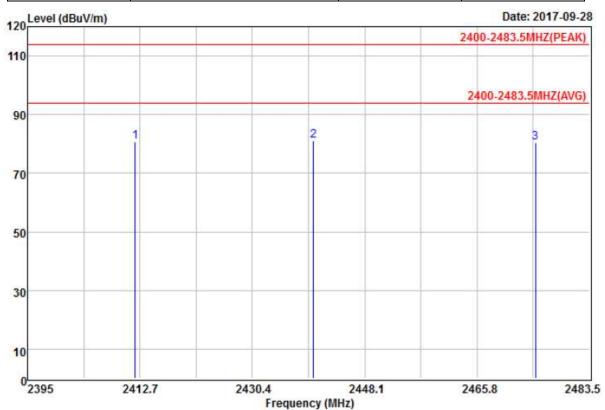
Refer to paragraph 6.1.

4.2 LIMIT

Fundamental Frequency (MHz)	Field Strength of Fundamental (dBµV/m at 3-meter)	Detector	
902 - 928			
2400 – 2483	114	Peak	
5725 - 5875			
902 - 928			
2400 – 2483	94	AV	
5725 - 5875			

Fundamental Frequency (MHz)	Field Strength of Harmonics (dBµV/m at 3-meter)	Detector	
902 - 928			
2400 – 2483	74	Peak	
5725 - 5875			
902 - 928			
2400 – 2483	54	AV	
5725 - 5875			

4.3 RESULT: PASSED


4.4 TEST DATA:

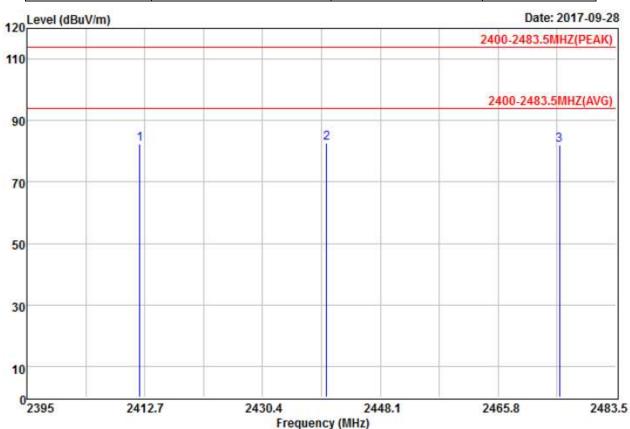
Date of Issue: Oct. 17, 2017 Report No: F17082301

Fundamental

Power	:	DC 5V			Pol/Phase	:	HORIZONTAL
Test Mode 1	:	TX-LO 2475MF	2412-MI Iz	2440-HI	Temperature	:	33 °C
Memo	:				Humidity	:	64 %

Remarks:

: 1.Result=Read Value+Factor


: 2.Factor=Antenna Factor+Cable loss-

				Limit	Over		
	Freq		Factor	Leve1			
-	MHz	dBuV	dB/m	$\overline{dBuV/m}$	dBuV/m	dB	
	2412.000 2440.000						
	2475.000						

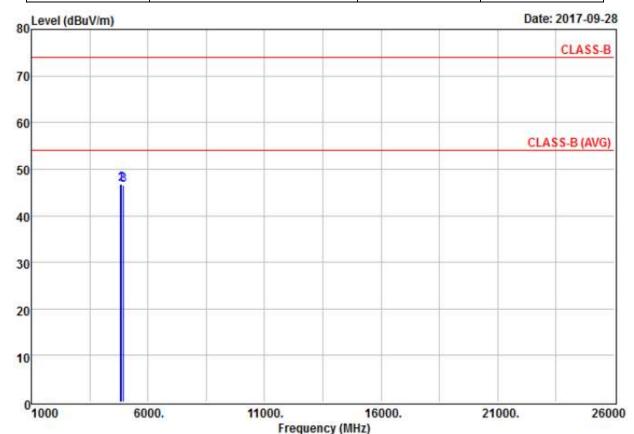
Date of Issue: Oct. 17, 2017 Report No: F17082301

Power :	DC 5V	Pol/Phase :	VERTICAL
Test Mode 1 :	TX-LO 2412-MI 2440-HI 2475MHz	Temperature :	33 °C
Memo :		Humidity :	64 %

Remarks:

: 1.Result=Read Value+Factor

: 2.Factor=Antenna Factor+Cable loss-

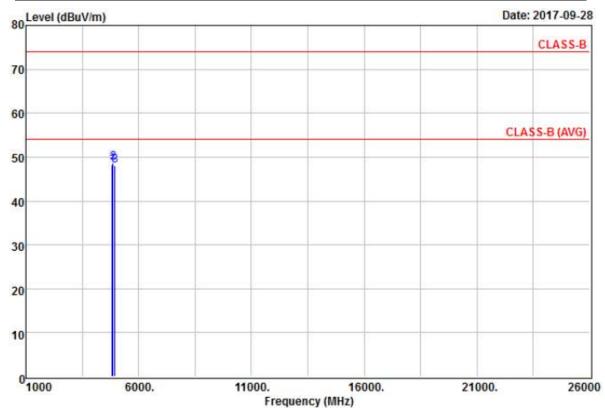

		Freq	Read Level	Factor	Level	And the second second second second second	Over Limit	Remark
	-	MHz	dBuV	dB/m	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	
2	@	2412.000 2440.000 2475.000	96.54	-13.93	82.61	114.00	-31.39	Peak

Date of Issue: Oct. 17, 2017 Report No: F17082301

Harmonics

Power	:	DC 5V	Pol/Phase :	HORIZONTAL
Test Mode 1	:	TX-LO 2412-MI 2440-HI 2475MHz	Temperature :	33 °C
Memo	:		Humidity :	64 %

Remarks: : 1.Result=Read Value+Factor


: 2.Factor=Antenna Factor+Cable loss-

		•	The state of the s	Factor	Leve1		Over Limit	Remark	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		
2	@	4824.000 4880.000 4950.000	53.00	-6.17	46.83	74.00	-27.17	Peak	

Date of Issue: Oct. 17, 2017 Report No: F17082301

Power :	DC 5V	Pol/Phase :	VERTICAL
Test Mode 1 :	TX-LO 2412-MI 2440-HI 2475MHz	Temperature :	33 °C
Memo :		Humidity :	64 %

Remarks: : 1.Result=Read Value+Factor

: 2.Factor=Antenna Factor+Cable loss-

: Amplifier Factor

Date of Issue: Oct. 17, 2017 Report No: F17082301

Note:

- 1. Emission level = Reading level + Correction factor
- 2. Correction factor: Antenna factor, Cable loss, Pre-Amp, etc.
- 3. All emissions as described above were determining by rotating the EUT through three orthogonal axes to maximizing the emissions if the EUT belongs to hand-held or body-worn devices.
- Measurements above 1000 MHz, Peak detector setting: use a 1 MHz RBW, a 3 MHz VBW.
- 5. Measurements above 1000 MHz, Average detector setting: 1 MHz RBW with 10 Hz VBW
- 6. Peak detector measurement data will represent the worst case results.
- 7. "---" denotes the data which is not available.

Date of Issue: Oct. 17, 2017 Report No: F17082301

5. SECTION 15.205 REQUIREMENTS (BAND EDGE)

5.1 TEST SETUP

Refer to paragraph 6.1.

5.2 LIMIT

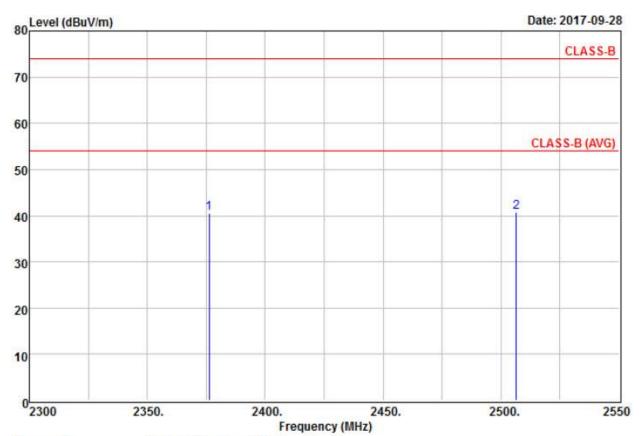
Restricted Bands:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)
13.36 - 13.41			

Operation within the bands:

902 - 928 MHz, 2400 - 2483.5 MHz, 5725 - 5875 MHz, and 24.0 - 24.25 GHz.

Frequency (Hz)	Field Strength (μV/m at 3-meter)	Field Strength (dBµV/m at 3-meter)		
1.705-30	30 (at 30-meter)	49.5		
30-88	100	40		
88-216	150	43		
216-960	200	46		
Above 960	500	54		



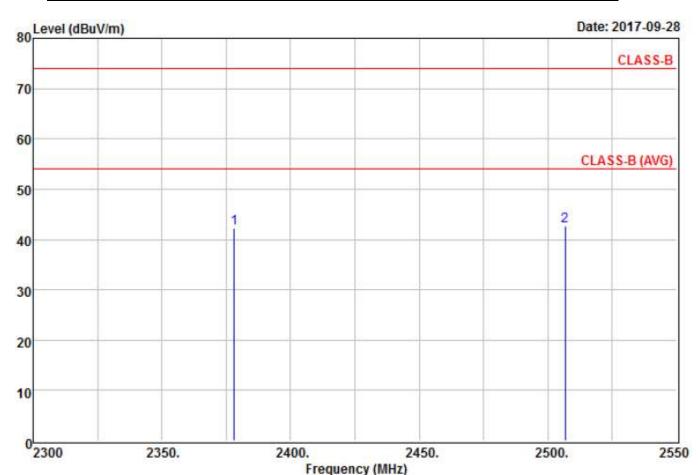
Date of Issue: Oct. 17, 2017 Report No: F17082301

5.3 RESULT: PASSED

5.4 TEST DATA:

Power		DC 5V	Pol/Phase	:	HORIZONTAL
Test Mode 1		CH LO & HI –Restricted Bands	Temperature	:	33 °C
Memo	:		Humidity	:	64 %

Remarks: : 1.Result=Read Value+Factor


: 2.Factor=Antenna Factor+Cable loss-

: Amplifier Factor

Date of Issue: Oct. 17, 2017 Report No: F17082301

Power	:	DC 5V	Pol/Phase :	VERTICAL
Test Mode 1	:	CH LO & HI –Restricted Bands	Temperature :	33 °C
Memo	:		Humidity :	64 %

Remarks:

: 1.Result=Read Value+Factor

: 2.Factor=Antenna Factor+Cable loss-

: Amplifier Factor

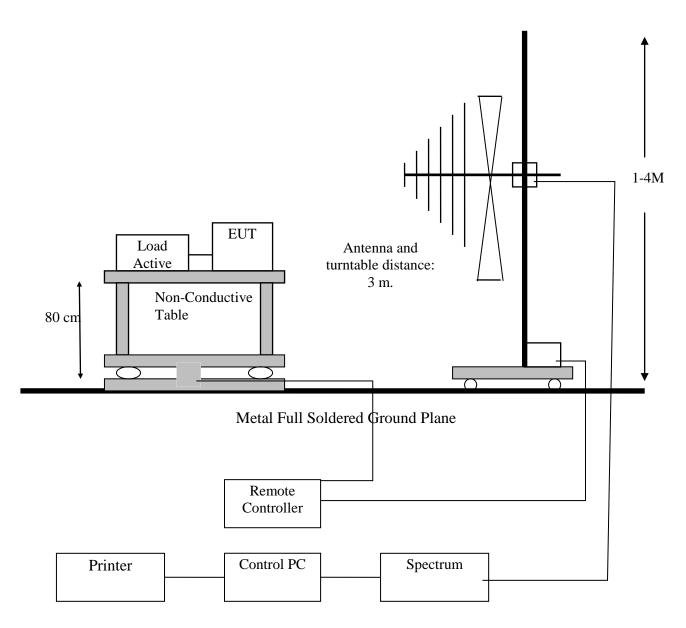
Read Limit Over
Freq Level Factor Level Line Limit Remark

MHz dBuV dB/m dBuV/m dBuV/m dBuV/m dB

1 2378.200 56.36 -14.08 42.28 74.00 -31.72 Peak
2 @ 2506.600 56.37 -13.78 42.59 74.00 -31.41 Peak

Date of Issue: Oct. 17, 2017 Report No: F17082301

Note:


- 1. Emission level = Reading level + Correction factor
- 2. Correction factor: Antenna factor, Cable loss, Pre-Amp, etc.
- All emissions as described above were determining by rotating the EUT through three orthogonal axes to maximizing the emissions if the EUT belongs to hand-held or body-worn devices.
- 4. Measurements above 1000 MHz, Peak detector setting: use a 1 MHz RBW, a 3 MHz VBW.
- 5. Measurements above 1000 MHz, Average detector setting: 1 MHz RBW with 10 Hz VBW.
- 6. Peak detector measurement data will represent the worst case results.

Date of Issue: Oct. 17, 2017 Report No: F17082301

6. SECTION 15.209 REQUIREMENTS (GENERAL RADIATED EMISSION)

6.1 TEST SETUP

Date of Issue: Oct. 17, 2017 Report No: F17082301

6.2 LIMIT

The field strength of any emissions which appear outside of this band shall not exceed the general radiated emission limits in section 15.209 as below.

Frequency (MHz)	Field Strength (mV/m)	Measurement Distance (m)
1.705-30	30	30
30-88	100*	3
88-216	150*	3
216-960	200*	3
Above 960	500*	3

^{*}Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under

other sections of this Part, e.g., Sections 15.231 and 15.241.

In the above emission table, the tighter limit applies at the band edges.

Frequency (Hz)	Field Strength (μV/m at 3-meter)	Field Strength (dBµV/m at 3-meter)		
1.705-30	30 (at 30-meter)	49.5		
30-88	100	40		
88-216	150	43		
216-960	200	46		
Above 960	500	54		

Date of Issue: JAN. 09, 2014 Report No: F13121306

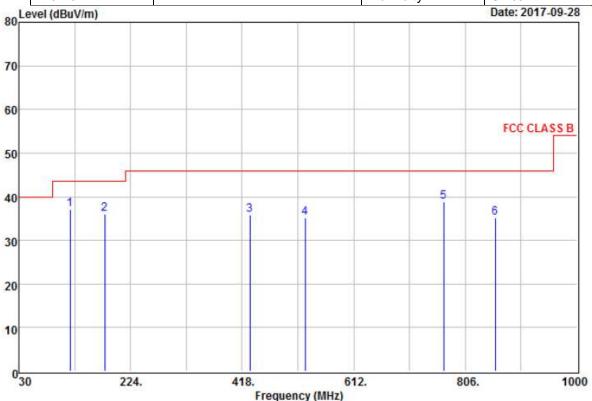
6.3 TEST PROCEDURE

- 1. The EUT was placed on a turntable, which was 0.8m above ground plane.
- 2. The turntable was rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT was set at 3m away from the receiving antenna, which was varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was maximized by changing the polarization of receiving antenna, both

horizontal and vertical.

6. Repeated above procedures until the measurements for all frequencies are completed.

6.4 RESULT: PASSED



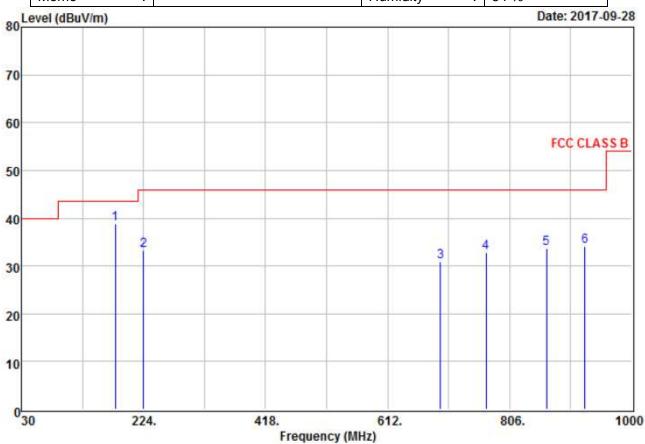
Date of Issue: JAN. 09, 2014 Report No: F13121306

6.5 TEST DATA:

All frequencies not described in this test report and within the range of the general radiated emission limits are not detectable significantly. The table as below is representing worst emissions found.

Power	:	DC 5V	Pol/Phase	:	HORIZONTAL
Test Mode 1	:	TX 2440MHz	Temperature	:	33 °C
Memo	:		Humidity	:	64 %

Remarks: : 1.Result=Read Value+Factor


: 2.Factor=Antenna Factor+Cable loss-

	Freq		Factor	Leve1		Over Limit	Remark
-	MHz	dBuV	dB/m	dBuV/m	dBuV/m	₫B	
1 @	119.240	52.12	-15.03	37.09	43.50	-6.41	OP
2	179.380	55.21	-19.18	36.03	43.50	-7.47	OP
3	179.380 431.580	46.38	-10.51	35.87	46.00	-10.13	OP
4	527.610	44.24	-9.03	35.21	46.00	-10.79	OP
5	768.170	44.78	-5.87	38.91	46.00	-7.09	OP
6	527.610 768.170 858.380	39.24	-4.05	35.19	46.00	-10.81	QP

Date of Issue: JAN. 09, 2014 Report No: F13121306

Power	:	DC 5V	Pol/Phase :	VERTICAL
Test Mode 1	:	TX 2440MHz	Temperature :	33 °C
Memo	:		Humidity :	64 %

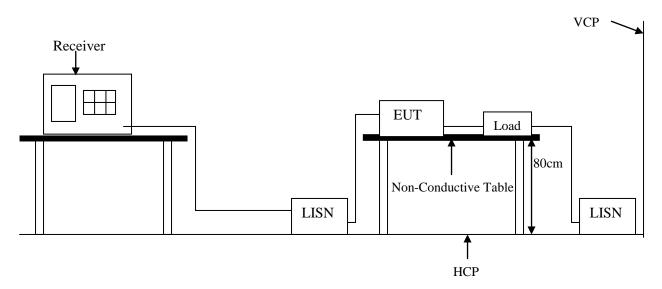
Remarks: : 1.Result=Read Value+Factor

: 2.Factor=Antenna Factor+Cable loss-

				1.7.1					
		Freq		Factor	Level		Over Limit	Remark	
	-	MHz	dBuV	dB/m	$\overline{dBuV/m}$	dBuV/m	dB		
1	@	179.380							
2		224.000 696.390	37.95	-7.08	30.87	46.00	-15.13	QP	
4 5		768.170 864.200							
6		925.310	36.75	-2.74	34.01	46.00	-11.99	OP	

Date of Issue: JAN. 09, 2014 Report No: F13121306

Note:


- 1. Emission level = Reading level + Correction factor
- 2. Correction factor: Antenna factor, Cable loss, Pre-Amp, etc.
- 3. All emissions as described above were determining by rotating the EUT through three orthogonal axes to maximizing the emissions if the EUT belongs to hand-held or body-worn devices.
- 4. Measurements from 9 kHz to 150 kHz, Peak detector setting: 100 Hz RBW
- 5. Measurements from 150 kHz to 30MHz, Peak detector setting: 10 kHz RBW
- 6. Measurements from 30 MHz to 1000 MHz, Peak detector setting: 100 kHz RBW
- 7. Measurements from 9 kHz to 150 kHz, CISPR Quasi-Peak detector: 200 Hz RBW
- 8. Measurements from 150 kHz to 30MHz, CISPR Quasi-Peak detector: 9 kHz RBW
- Measurements from 30 MHz to 1000 MHz, CISPR Quasi-Peak detector: 120 kHzRBW
- 10. Peak detector measurement data will represent the worst case results.

Date of Issue: JAN. 09, 2014 Report No: F13121306

7. SECTION 15.207 REQUIREMENTS (POWERLINE CONDUCTED EMISSIONS)

7.1 TEST SETUP

7.2 LIMIT

Eroguenov renge	CLASS B			
Frequency range (MHz)	QP	Average		
(IVITZ)	dB(uV)	dB(uV)		
0.15-0.5	66 - 56 dBuV	56 - 46 dBuV		
0.5-5.0	56 dBuV	46 dBuV		
5.0-30.0	60 dBuV	50 dBuV		

Remark: In the above table, the tighter limit applies at the band edges.

7.3 TEST PROCEDURE

The EUT and simulators are connected to the main power through a line impedance stabilization network (LISN). It provides a 50 ohm / 50 μH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50 ohm / 50 μH coupling impedance with 50 ohm termination. (Please refer to the block diagram of the test setup and photograph.)

Both sides of AC line are checked for the maximum conducted emission interference. In order to find the maximum emissions, the relating positions of equipment and all of the interference cables must be changed according to EN 55022 regulations: The measurement procedure on conducted emission interference.

The resolution bandwidth of the field strength meter is set at 9 KHz.

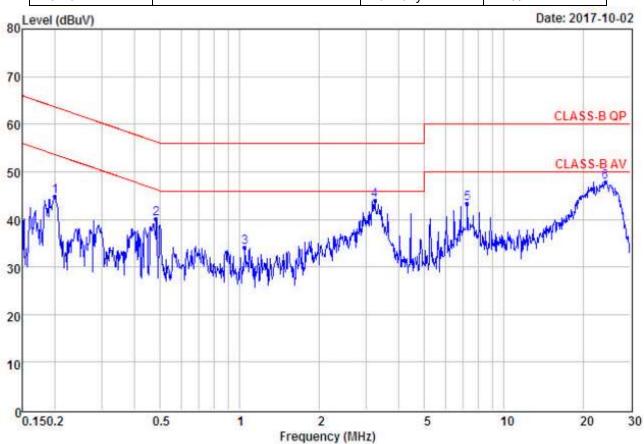
Date of Issue: JAN. 09, 2014 Report No: F13121306

7.4 TEST SPECIFICATION

According to PART15.207

7.5 RESULT: PASSED

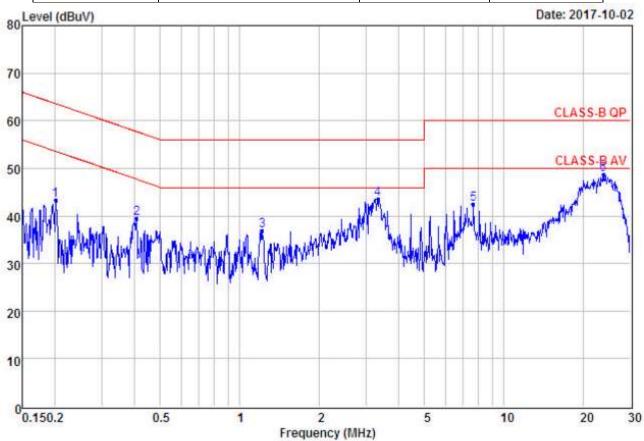
EMI Receiver/Spectrum Analyzer Configuration (for the frequencies tested)


Frequency Range:	150KHz30MHz
Detector Function:	Quasi-Peak / Average Mode
Resolution Bandwidth:	9KHz

7.6 TEST DATA:

Date of Issue: JAN. 09, 2014 Report No: F13121306

Power	:	DC 5V	Pol/Phase :	LINE
Test Mode 1	:	TX 2440 MHz	Temperature :	25.1 °C
Memo	:		Humidity :	42 %



Remarks:		: Factor=Insertion loss+Cable loss								
	Freq	Read		Factor	0ver	Limit	Remark			
	ricq	reter	reter	ractor	LIMIC	LINC	W.C.Malk			
_	MHz	dBuV	dBuV	dB	dB	dBu∀	-			
1	0.20	34.63	44.74	10.11	-18.88	63.62	Peak			
1 2 3	0.48	30.03	40.17	10.14	-16.15	56.32	Peak			
3	1.04	24.00	34.17	10.17	-21.83	56.00	Peak			
4 @	3.24	33.71	43.98	10.27	-12.02	56.00	Peak			
5	7.25	32.97	43.36	10.39	-16.64	60.00	Peak			
6	24 14	37.16	47.93	10.77	-12.07	60.00	Peak			

Date of Issue: JAN. 09, 2014 Report No: F13121306

Power	:	DC 5V	Pol/Phase :	NEUTRAL
Test Mode 1		TX 2440MHz	Temperature :	25.1 °C
Memo	:		Humidity :	42 %

Remarks:		: Fact	or=Inse	rtion los	ss+Cabl	e loss	
	Freq	Read		Factor	0ver	Limit	Remark
<u> </u>	MHz	dBu₹	dBu₹	dB	dB	dBu₹	

1	0.20	33.05	43.24	10.19 -20.34	63.58 Peak
2	0.41	29.34	39.57	10.23 -18.16	57.73 Peak
3	1.22	26.53	36.81	10.28 -19.19	56.00 Peak
4	3.33	33.07	43.47	10.40 -12.53	56.00 Peak
5	7.65	31.97	42.51	10.54 -17.49	60.00 Peak
6 @	23.76	37.87	48.61	10.74 -11.39	60.00 Peak