

Appendix F - FCC 3G SAR Measurement Procedures

Conducted Output Power:

The PBA is fulfilled. The EUT was tested according to the requirements of the FCC 3G procedures and the TS 34.121. The EUT's WCDMA and HSPA function is Release 6 version supporting HSDPA Category 8, and HSUPA Category 5. A detailed analysis of the output power for all WCDMA, HSPDA, and HSPA (HSUPA&HSDPA) modes is provided in the tables below. According to the FCC 3G procedures, handsets with both HSDPA and HSUPA should be tested according to Release 6 HSPA test procedures, and the EUT does not support VOIP function over the HSPA function. Device was tested according to procedure KDB941225 - section Release 6 HSPA are less than ¹/₄ dB higher than the basic 12.2 kbps RMC configurations in WCDMA or maximum SAR value (0.035W/kg) in WCDMA mode is less than 75% of SAR limit.

WCDMA SAR Test mode - Conducted Power									
		Ce	ell band (85	50)	PCS band (1900)				
Mada	Satur	CH4132	CH4182	CH4233	CH9262	CH9400	CH9538		
widue	Setup	826.4	836.4	846.6	1852.4	1880.0	1907.6		
		(MHz)	(MHz)	(MHz)	(MHz)	(MHz)	(MHz)		
R99- WCDMA	RMC 12.2Kbps	21.90	21.92	21.53	22.50	22.35	22.19		
D5 HCDDA	HSDPA - subtest 1	22.51	22.53	22.13	22.90	22.80	22.26		
	HSDPA - subtest 2	21.94	22.13	21.72	22.61	22.43	22.31		
K3-HSDI A	HSDPA - subtest 3	21.80	22.01	21.56	22.40	22.19	22.07		
	HSDPA - subtest 4	22.02	22.20	21.76	22.67	22.47	22.05		
R6- HSPA (HSUPA&HSDPA)	HSUPA - subtest 1	21.85	21.88	21.48	22.25	22.02	21.93		
	HSUPA - subtest 2	19.92	19.98	19.59	20.44	20.24	19.91		
	HSUPA - subtest 3	21.02	21.14	20.68	21.40	21.21	20.98		
	HSUPA - subtest 4	20.01	20.16	19.74	20.80	20.60	20.49		
	HSUPA - subtest 5	21.76	21.71	21.43	22.23	22.11	21.91		

WCDMA Setup Configuration:

- The EUT was connected to Base Station referred to the drawing of Setup Configuration. a.
- The RF path losses were compensated into the measurements. b.
- A call was established between EUT and Base Station with following setting c.
 - Data rates: Varied from RMC 12.2Kbps. i.
 - ii. RMC Test Loop=Loop Mode 1
 - iii. Power Ctrl Mode= All Up bits.
- The transmitted maximum output power was recorded. d.

HSDPA Setup Configuration:

- The EUT was connected to Base Station referred to the drawing of Setup Configuration. a.
- The RF path losses were compensated into the measurements. b.
- A call was established between EUT and Base Station with following setting: C.
 - Set Gain Factors(β c,and β d) and parameters were set according to each i.
 - Specific sub-test in the following table, C10.1.4, quoted from the TS 34.121. ii.
 - Set RMC12.2Kbps + HSDPA mode. iii
 - Set Cell Power = -86 dBmiv.
 - Set HS-DSCH Configuration Type to FRC (H-set 1, QPSK) V.
 - Select HSDPA Uplink Parameters. vi.
 - Set DeltaACK, DeltaNACK and DeltaCOI =8. vii.
 - viii. Set Ack-Nack Repetition Factor to 3
 - Set CQI Feedback Cycle (k) to 4 ms ix.
 - Set COI Repetition Factor to 2. х.
 - Power Ctrl Mode= All Up bits. xi
- d.

The transmitted maximum output power was recorded. Table C.10.1.4: β values for transmitter characteristics tests with HS-DPCCH

			(5F)		(Note1, Note 2)	(Note 3)	(Note 3)
1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15 (Note 4)	15/15 (Note 4)	64	12/15 (Note 4)	24/15	1.0	0.0
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5
(discontinuity with β_{hs} = 2	in clause 5. 4/15 * β_c .	3-DF CCH le 13.1AA, Δ _{ACK}	$_{c}$ and $\Delta_{NACK} = 30/1$	5 with $\beta_{hs} = 1$	30/15 * β_c , and	аз с d _{ΔCQI} = 24/15
Note 3: 0	CM = 1 for β DPCCH the I support HSD	₀/β _d =12/15, MPR is base)PA in releas	β _{hs} /β _c =24/15 ed on the rela se 6 and later	. For all other com ative CM difference r releases.	binations of [e. This is appl	DPDCH, DPCCI licable for only U	H and HS- JEs that
Note 4: 1	For subtest 2 achieved by = 15/15.	2 the β₀/β₀ ra setting the s	itio of 12/15 f signalled gain	for the TFC during Infactors for the ref	the measure erence TFC (ment period (TF [TF1, TF1) to β₀	⁻¹ , TF0) is = 11/15 and β

HSPA (HSUPA & HSPDA) Setup Configuration:

- a. The EUT was connected to Base Station referred to the drawing of Setup Configuration.
- b. The RF path losses were compensated into the measurements.
- c. A call was established between EUT and Base Station with following setting * :
 - i. Call Configs = 5.2B, 5.9B, 5.10B, and 5.13.2B with QPSK
 - ii. Set the Gain Factors (β c,and β d) and parameters (AG Index) were set according to each specific sub-test in the following table, C11.1.3, quoted from the TS 34.121.
 - iii. Set Cell Power = -86 dBm
 - iv. Set Channel Type = 12.2k + HSPA
 - v. Set UE Target Power
 - vi. Power Ctrl Mode= Alternating bits.
 - vii. Set and observe the E-TFCI
 - viii. Confirm that E-TFCI is equal to the target E-TFCI of 75 for sub-test 1, and other subtests' E-TFCI.
- d. The transmitted maximum output power was recorded.

Sub- test	βα	βd	β₀ (SF)	β₀/β⋴	βнs (Note1)	β _{ec}	β _{ed} (Note 5) (Note 6)	β _{ed} (SF)	β _{ed} (Codes)	CM (dB) (Note 2)	MPR (dB) (Note 2)	AG Index (Note 6)	E- TFCI
1	11/15 (Note 3)	15/15 (Note 3)	64	11/15 (Note 3)	22/15	209/2 25	1309/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed} 1: 47/15 β _{ed} 2: 47/15	4 4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 (Note 4)	15/15 (Note 4)	64	15/15 (Note 4)	30/15	24/15	134/15	4	1	1.0	0.0	21	81
Note 1 Note 2 Note 3	 ∴ ∆_{ACK}, A ∴ CM = and E B: For su setting 	Δ _{NACK} and 1 for β ₀ /β -DPCCH ibtest 1 ti g the sign	d Δ _{CQ} = a =12/ ⁻ the MF he β _o /β halled g	= 30/15 w 15, βh₅/β₀ PR is bas d ratio of ain facto	with $\beta_{hs} = 24/15$. F ed on the 11/15 for rs for the 15/15 for the 1	= 30/15 * For all ot e relative r the TFC e reference r the TFC	β_c . her combination CM difference during the m ce TFC (TF1, T during the m	ons of e. easure TF1) to	DPDCH, [ement peri $\beta_{\beta_{c}} = 10/1$	DPCCH, iod (TF1 15 and β	HS-DP0 , TF0) is d = 15/15	CCH, E-D achieved)PDCF I by
Note 4. For sublest 5 the p _d /p _d ratio of 15/15 for the FFC during the measurement period (1F1, 1F0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 14/15$ and $\beta_d = 15/15$. Note 5: In case of testing by UE using E-DPDCH Physical Layer category 1, Sub-test 3 is omitted according to TS25.306 Table 5.1g.													
Note 5	TS25.	306 Tabl	e 5.1g.										

Setup Configuration Note: For details settings in the Agilent 8960 test equipment, please refer to the user guide

"HSUPA Measurement Guide with 8960 V7.5.0 Release 7 (2007-06) Ver.: v.02.18"

			Ca	all Se	tup Sc	reen						
Call Control	Active Cell Operating Mode								0	all Parms		
		Cel	1 Pouer									
Channel (UARFCN) Info	UE Information										-86.00	
	INSI:										dBm/3.84 MHz	
		or flace.								Cha	annel Type	
Cell	FOH	ci uluss.									2.2k + HSPA	
		UE	Expecte	ed Open	LOOP T	ransmit	Pouer					
	Init	ial DROCH T			-11.70) dBm				Pac	nino Seruice	
Generator	Initial NPCCH TX Power: -0.56 dBm									F	R Test linde	
Info				-						ŀ		
	Uplink Parameters							Value				
Uplink	PRACH Preambles							64	1		HSPA	
Parameters 🗸	PRACH	Ramping Cy	cles(M	iax)				2			Parameters	
	Available Subchannels (Bit Nask)							0000000)01			
IIE Bon	Uplink	DPCH Scrar	nbling C	:ode			0			34.121 Preset Call Configs		
Neas	Uplink	DPCH Bc/Bc	d Contro	01			llanual					
	Manual	Uplink DPC			11							
Close	Manual Uplink DPCH Bd							15			Chappel	
lienu	Naximum Uplink Transmit Pouer Level							21 dBm		ຟ	(UARFCN) Parms	
	Active Cell						Sys Type: UTRA FDD			1		
			Idle			Ì				1		
2 of 4				IntRef	Offset						1 of 3	

Example for HSPA Subtest 1, and other subtests following table, C11.1.3 (Gain Factors ($\beta c = 11$ and $\beta d = 15$))

Example: AG – Index = 20 for HSPA subtest 1

	Call Setup Screen	
Screen Ctrl	Recorded E-TFCI Information	E-TFCI Record
		E-TFCI Rec Count
Channel (UARECN) Info	E-TFCI Recording State	15
	Idle	
HSPA Information	Recorded E-TFCI Values	Start Recording E-TFCI Values
E-TFCI Recording Information	1: 75 11: 75 21: $31:$ $41:$ 2: 75 12: 75 22: $32:$ $42:$ 3: 75 13: 75 23: $33:$ $42:$ 3: 75 13: 75 23: $33:$ $42:$ 3: 75 13: 75 23: $33:$ $42:$ 4: 75 14: 75 24: $34:$ $43:$ 5: 75 15: 75 25: $35:$ $45:$ 6: 75 16: 26: $36:$ $47:$ 75 17: 27: $38:$ $48:$ 9: 75 18: 29:	Send Step Up TPC Bit Pattern Send Step Doun TPC Bit Pattern
Beturn	15/15	Beturn
notarii		
	Background Active Cell Sys Type: UTRA FDD Connected	

Example: Confirm that E-TFCI is equal to the target E-TFCI of 75 for sub-test 1

Reference:

- 941225 D01 SAR test for 3G devices v02, SAR Measurement Procedures for 3G Devices CDMA 2000/Ev-Do/WCDMA/HSDPA/HSPA Oct. 2007 Laboratory Division Office of Engineering and Technology Federal Communications Commission
- [2.] TS 34.121 Universal Mobile Telecommunications System (UMTS); Terminal Conformance Specification, Radio Transmission and Reception (FDD)
- [3.] HSUPA Measurement Guide with 8960 V7.5.0 Release 7 (2007-06) Ver.: v.02.18