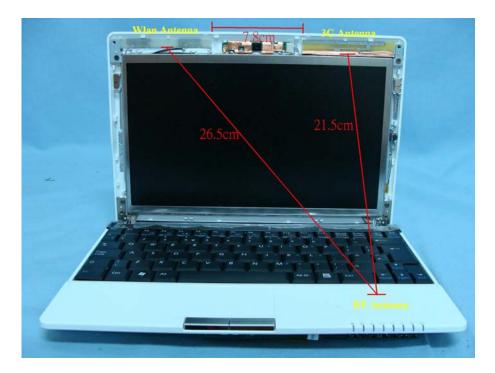


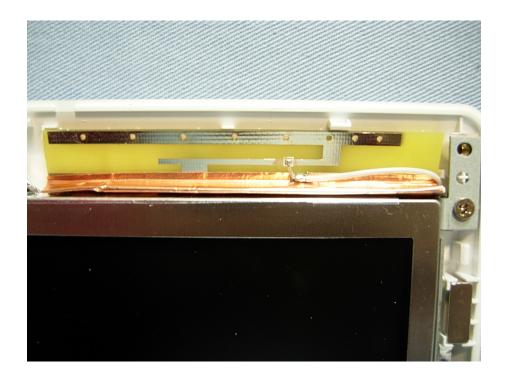
Appendix C. Test Setup Photographs & EUT Photographs Test Setup Photographs

Body-worn

Note: The positions used in the measurements were according to IEEE 1528-2003.



Test EUT Photographs



Appendix D. Probe Calibration Data

Miniature Isotropic RF Probe M/N: ALS-E-020 S/N: 265

835 MHz Head Calibration 835 MHz Body Calibration

NCL CALIBRATION LABORATORIES

Calibration File No.: CP-871

Client: QUIETEK

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the **NCL CALIBRATION LABORATORIES** by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

Equipment: Miniature Isotropic RF Probe 835 MHz

Manufacturer: APREL Laboratories Model No.: ALS-E-020 Serial No.: 265

HEAD Calibration

Calibration Procedure: SSI/DRB-TP-D01-032-E020-V2 Project No: QTKB-ALS-E20-CAL-5335

> Calibrated: 9th May 2008 Released on: 9th May 2008

	ate is Incomplete Unle	ss Accompanied with the Calibration Results Summary
Released By:		
-	51 SPECTRUM WAY NEPEAN, ONTARIO CANADA K2R 1E6	Division of APREL Lab. TEL: (613) 820-4988 FAX: (613) 820-4161

Introduction

This Calibration Report reproduces the results of the calibration performed in line with the SSI/DRB-TP-D01-032-E020-V2 E-Field Probe Calibration Procedure. The results contained within this report are for APREL E-Field Probe E-020 265.

References

SSI/DRB-TP-D01-032-E020-V2 E-Field Probe Calibration Procedure

IEEE 1528 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head Due to Wireless Communications Devices: Experimental Techniques"

SSI-TP-011 Tissue Calibration Procedure

IEC 62209 "Human exposure to radio frequency fields from hand-held and Headmounted wireless communication devices – Human models, instrumentation, and procedures –Part 1 & 2: Procedure to determine the Specific Absorption Rate (SAR) for hand-held devices used in close proximity of the ear (frequency range of 300 MHz to 3 GHz)"

IEEE 1309 Draft Standard for Calibration of Electromagnetic Field Sensors and Probes, Excluding Antennas, from 9kHz to 40GHz

Conditions

Probe 265 is a re-calibration.

Ambient Temperature of the Laboratory: $22 \ ^{\circ}C \ +/- \ 0.5^{\circ}C$ Temperature of the Tissue: $21 \ ^{\circ}C \ +/- \ 0.5^{\circ}C$

We the undersigned attest that to the best of our knowledge the calibration of this probe has been accurately conducted and that all information contained within/this report has been reviewed for accuracy.

Stuart Nicol

Jesse Hones

Calibration Results Summary

Probe Type:	E-Field Probe E-020	
Serial Number:	265	
Frequency:	835 MHz	
Sensor Offset:	1.56 mm	
Sensor Length:	2.5 mm	
Tip Enclosure:	Ertalyte*	
Tip Diameter:	<5 mm	
Tip Length:	60 mm	
Total Length:	290 mm	

*Resistive to recommended tissue recipes per IEEE-1528

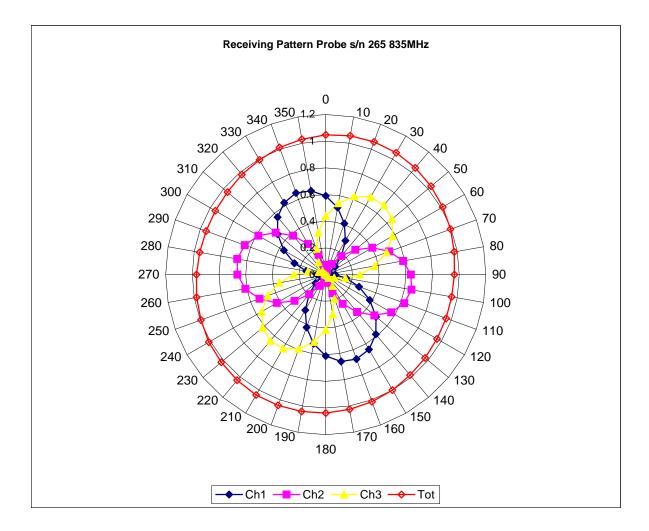
Sensitivity in Air

Channel X: Channel Y:	1.2 μV/(V/m) ² 1.2 μV/(V/m) ²
Channel Z:	$1.2 \mu V/(V/m)^2$
Diode Compression Point:	95 mV

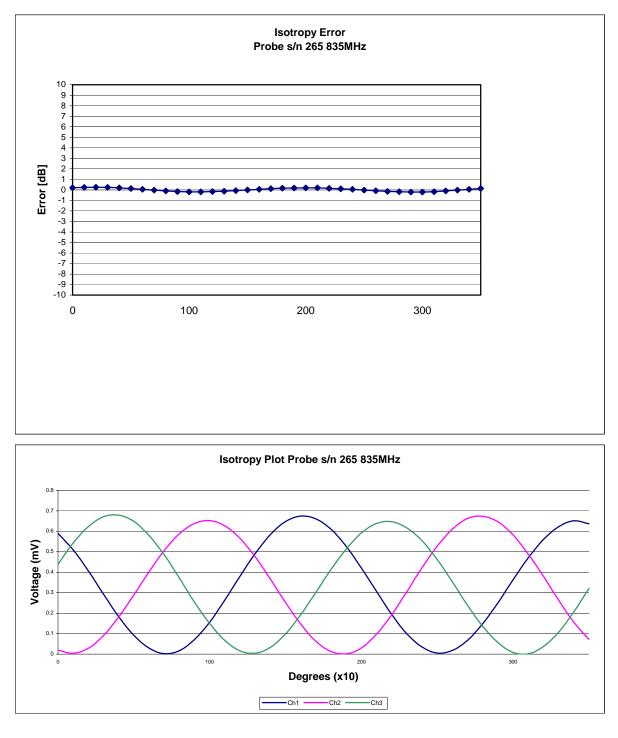
Frequency:		835 MHz	
Epsilon:	41.5 (+/-5%)	Sigma:	0.90 S/m (+/-5%)
ConvF			
Channel X:	6.2		
Channel Y:	6.2		

Channel Z: 6.2

Tissue sensitivity values were calculated using the load impedance of the APREL Laboratories Daq-Paq.


Boundary Effect:

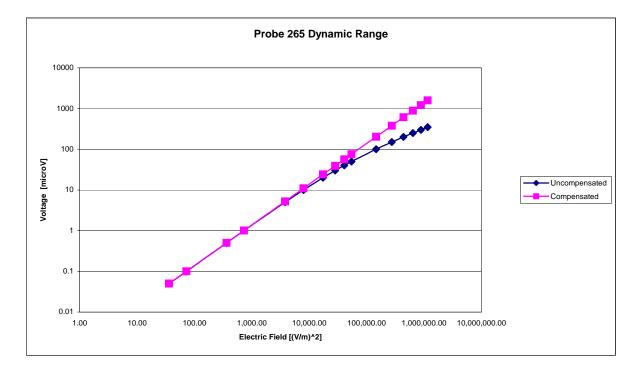
Uncertainty resulting from the boundary effect is less than 2% for the distance between the tip of the probe and the tissue boundary, when less than 2.44mm.


Spatial Resolution:

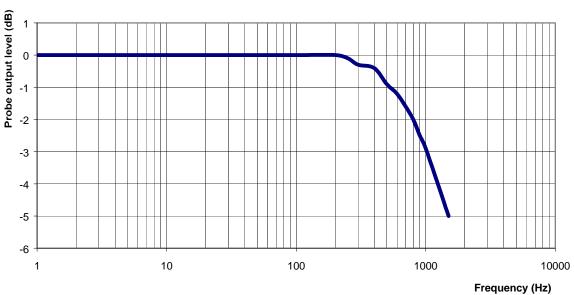
The measured probe tip diameter is 5 mm (+/- 0.01 mm) and therefore meets the requirements of SSI/DRB-TP-D01-032 for spatial resolution.

Receiving Pattern 835 MHz (Air)

Isotropy Error 835 MHz (Air)



Isotropicity Tissue:


0.10 dB

NCL Calibration Laboratories Division of APREL Laboratories.

Dynamic Range

Video Bandwidth

Probe Frequency Characteristics

Video Bandwidth at 500 Hz	1 dB
Video Bandwidth at 1000 Hz	3 dB

Conversion Factor Uncertainty Assessment

Frequency:		835MHz	
Epsilon:	41.5 (+/-5%)	Sigma:	0.90 S/m (+/-5%)
ConvF			
Channel X:	6.2	7%(K=2)	
Channel Y:	6.2	7%(K=2)	
Channel Z:	6.2	7%(K=2)	

To minimize the uncertainty calculation all tissue sensitivity values were calculated using a load impedance of 5 M Ω .

Boundary Effect:

For a distance of 2.4mm the evaluated uncertainty (increase in the probe sensitivity) is less than 2%.

Test Equipment

The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List May 2008.

NCL CALIBRATION LABORATORIES

Calibration File No.: CP-872

Client: QUIETEK

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the **NCL CALIBRATION LABORATORIES** by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

Equipment: Miniature Isotropic RF Probe 835 MHz

Manufacturer: APREL Laboratories Model No.: ALS-E-020 Serial No.: 265

BODY Calibration

Calibration Procedure: SSI/DRB-TP-D01-032-E020-V2 Project No: QTKB-ALS-E20-CAL-5335

> Calibrated: 9th May 2008 Released on: 9th May 2008

This Calibration Certificate is Incomplete Unless A	companied with the Calibration Results Summary		
NCL CALIBRATION LABORATORIES 51 SPECTRUM WAY Division of APREL Lab. NEPEAN, ONTARIO TEL: (613) 820-4988			

FAX: (613) 820-4161

CANADA K2R 1E6

Introduction

This Calibration Report reproduces the results of the calibration performed in line with the SSI/DRB-TP-D01-032-E020-V2 E-Field Probe Calibration Procedure. The results contained within this report are for APREL E-Field Probe E-020 265.

References

SSI/DRB-TP-D01-032-E020-V2 E-Field Probe Calibration Procedure

IEEE 1528 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head Due to Wireless Communications Devices: Experimental Techniques"

SSI-TP-011 Tissue Calibration Procedure

IEC 62209 "Human exposure to radio frequency fields from hand-held and Headmounted wireless communication devices – Human models, instrumentation, and procedures –Part 1 & 2: Procedure to determine the Specific Absorption Rate (SAR) for hand-held devices used in close proximity of the ear (frequency range of 300 MHz to 3 GHz)"

IEEE 1309 Draft Standard for Calibration of Electromagnetic Field Sensors and Probes, Excluding Antennas, from 9kHz to 40GHz

Conditions

Probe 265 is a re-calibration.

Ambient Temperature of the Laboratory: $22 \ ^{\circ}C \ +/- \ 0.5^{\circ}C$ Temperature of the Tissue: $21 \ ^{\circ}C \ +/- \ 0.5^{\circ}C$

We the undersigned attest that to the best of our knowledge the calibration of this probe has been accurately conducted and that all information contained within/this report has been reviewed for accuracy.

Stuart Nicol

Jesse Hones

Calibration Results Summary

Probe Type:	E-Field Probe E-020	
Serial Number:	265	
Frequency:	835 MHz	
Sensor Offset:	1.56 mm	
Sensor Length:	2.5 mm	
Tip Enclosure:	Ertalyte*	
Tip Diameter:	<5 mm	
Tip Length:	60 mm	
Total Length:	290 mm	

*Resistive to recommended tissue recipes per IEEE-1528

Sensitivity in Air

Channel X:	1.2 μV/(V/m) ²
Channel Y:	1.2 μV/(V/m) ²
Channel Z:	1.2 μV/(V/m) ²
Diode Compression Point:	95 mV

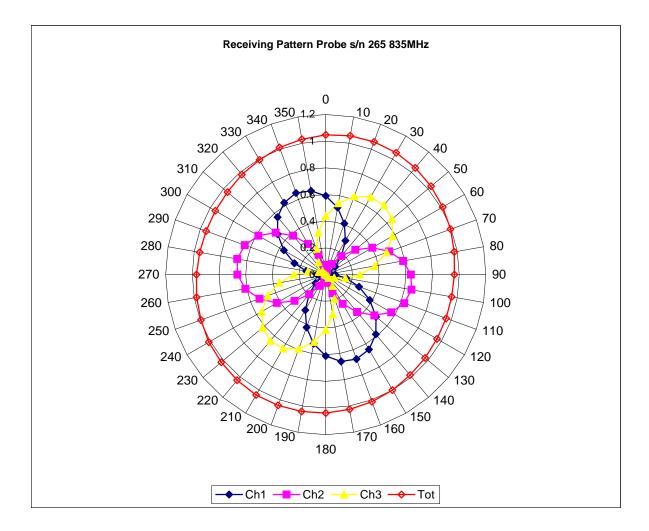
Sensitivity in Body Tissue

6.6

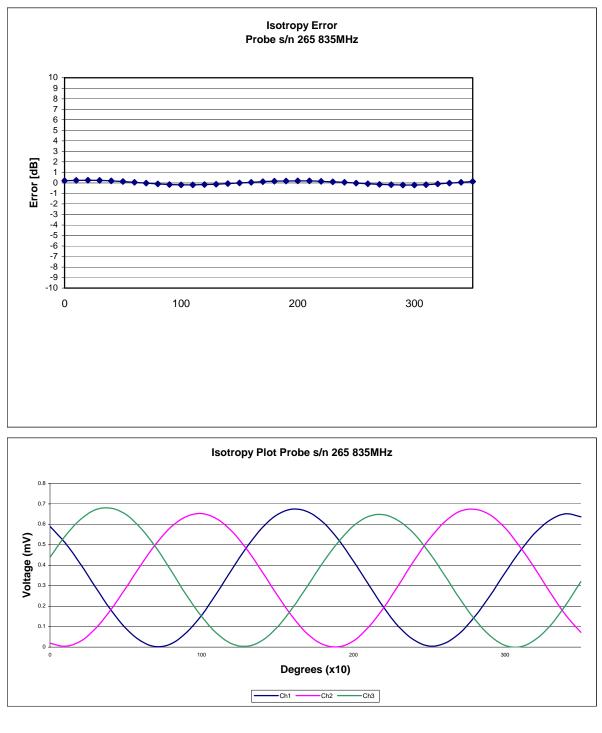
Frequency:		835 MHz	
Epsilon:	55.2 (+/-5%)	Sigma:	0.97 S/m (+/-5%)
ConvF			
Channel X:	6.6		
Channel Y:	6.6		

Tissue sensitivity values were calculated using the load impedance of the APREL Laboratories Daq-Paq.

Boundary Effect:


Channel Z:

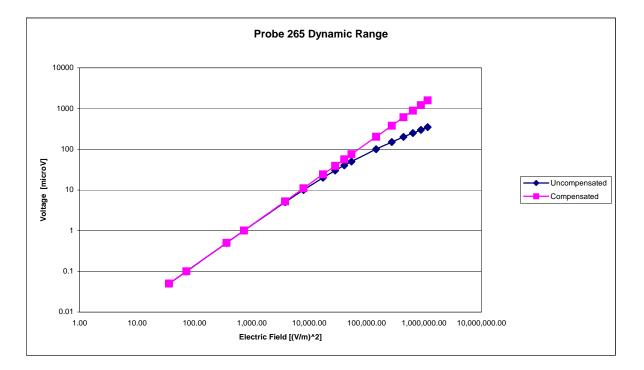
Uncertainty resulting from the boundary effect is less than 2% for the distance between the tip of the probe and the tissue boundary, when less than 2.44mm.


Spatial Resolution:

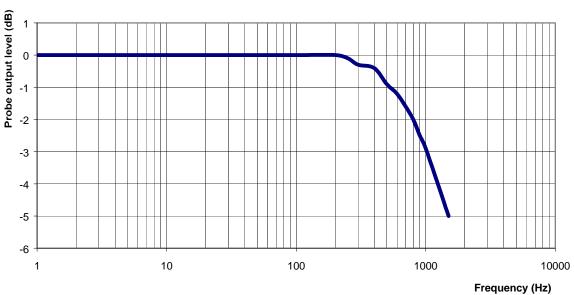
The measured probe tip diameter is 5 mm (+/- 0.01 mm) and therefore meets the requirements of SSI/DRB-TP-D01-032 for spatial resolution.

Receiving Pattern 835 MHz (Air)

Isotropy Error 835 MHz (Air)



Isotropicity in Tissue:


0.10 dB

NCL Calibration Laboratories Division of APREL Laboratories.

Dynamic Range

Video Bandwidth

Probe Frequency Characteristics

Video Bandwidth at 500 Hz1 dBVideo Bandwidth at 1000 Hz3 dB

Conversion Factor Uncertainty Assessment

Frequency:		835MHz	
Epsilon:	55.2 (+/-5%)	Sigma:	0.97 S/m (+/-5%)
ConvF			
Channel X:	6.6	7%(K=2)	
Channel Y:	6.6	7%(K=2)	
Channel Z:	6.6	7%(K=2)	

To minimize the uncertainty calculation all tissue sensitivity values were calculated using a load impedance of 5 M Ω .

Boundary Effect:

For a distance of 2.4mm the evaluated uncertainty (increase in the probe sensitivity) is less than 2%.

Test Equipment

The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List May 2008.

Appendix D. Probe Calibration

Miniature Isotropic RF Probe M/N: ALS-E-020 S/N: 264

1900MHz Head Calibration 1900MHz Body Calibration

NCL CALIBRATION LABORATORIES

Calibration File No.: CP-877

Client: QUIETEK

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the **NCL CALIBRATION LABORATORIES** by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

Equipment: Miniature Isotropic RF Probe 1900 MHz

Manufacturer: APREL Laboratories Model No.: ALS-E-020 Serial No.: 265

HEAD Calibration

Calibration Procedure: SSI/DRB-TP-D01-032-E020-V2 Project No: QTKB-ALS-E20-CAL-5335

> Calibrated: 9th May 2008 Released on: 9th May 2008

This Calibration Certificate is Incomplete Unless Accompanied with the Calibration Results Summary Released By: <u>
NCLCALIBRATION LABORATORIES</u> 51 SPECTRUM WAY Division of APREL Lab.

TEL: (613) 820-4988

FAX: (613) 820-4161

NEPEAN, ONTARIO

CANADA K2R 1E6

Introduction

This Calibration Report reproduces the results of the calibration performed in line with the SSI/DRB-TP-D01-032-E020-V2 E-Field Probe Calibration Procedure. The results contained within this report are for APREL E-Field Probe E-020 265.

References

SSI/DRB-TP-D01-032-E020-V2 E-Field Probe Calibration Procedure

IEEE 1528 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head Due to Wireless Communications Devices: Experimental Techniques"

SSI-TP-011 Tissue Calibration Procedure

IEC 62209 "Human exposure to radio frequency fields from hand-held and Headmounted wireless communication devices – Human models, instrumentation, and procedures –Part 1 & 2: Procedure to determine the Specific Absorption Rate (SAR) for hand-held devices used in close proximity of the ear (frequency range of 300 MHz to 3 GHz)"

IEEE 1309 Draft Standard for Calibration of Electromagnetic Field Sensors and Probes, Excluding Antennas, from 9kHz to 40GHz

Conditions

Probe 265 is a re-calibration.

Ambient Temperature of the Laboratory:	22 °C +/- 0.5°C
Temperature of the Tissue:	21 °C +/- 0.5°C

We the undersigned attest that to the best of our knowledge the calibration of this probe has been accurately conducted and that all information contained within/this report has been reviewed for accuracy.

Stuart Nicol

Jesse Hones

Page 2 of 10 This page has been reviewed for content and attested to on Page 2 of this document.

Calibration Results Summary

Probe Type:	E-Field Probe E-020	
Serial Number:	265	
Frequency:	1900 MHz	
Sensor Offset:	1.56 mm	
Sensor Length:	2.5 mm	
Tip Enclosure:	Ertalyte*	
Tip Diameter:	<5 mm	
Tip Length:	60 mm	
Total Length:	290 mm	

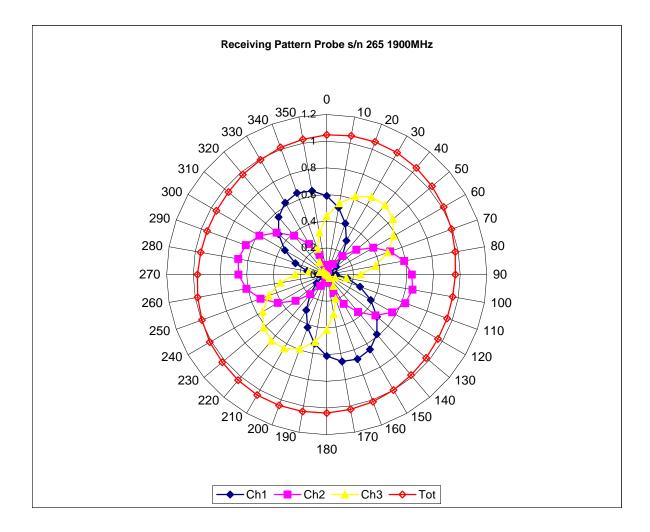
*Resistive to recommended tissue recipes per IEEE-1528

Sensitivity in Air

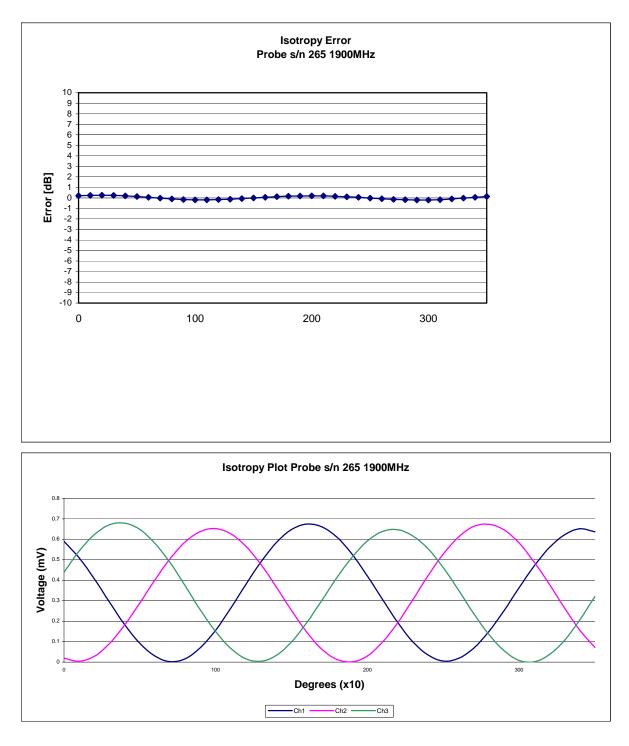
Channel X: Channel Y:	1.2 μV/(V/m) ² 1.2 μV/(V/m) ²
Channel Z:	$1.2 \mu V/(V/m)^2$
Diode Compression Point:	95 mV

Frequency	:	1900 MHz	
Epsilon:	40.0 (+/-5%)	Sigma:	1.40 S/m (+/-5%)
ConvF			
Channel X:	4.51		
Channel Y:	4.51		
Channel Z:	4.51		

Tissue sensitivity values were calculated using the load impedance of the APREL Laboratories Daq-Paq.

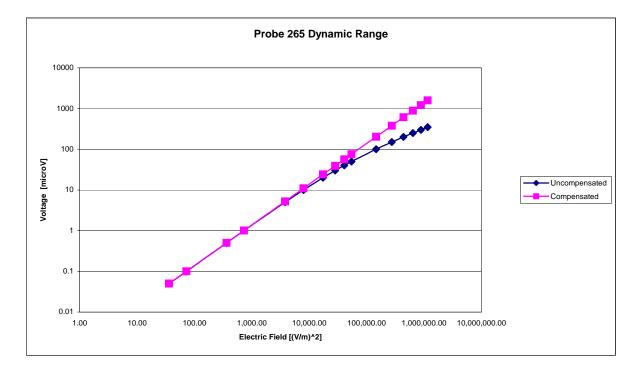

Boundary Effect:

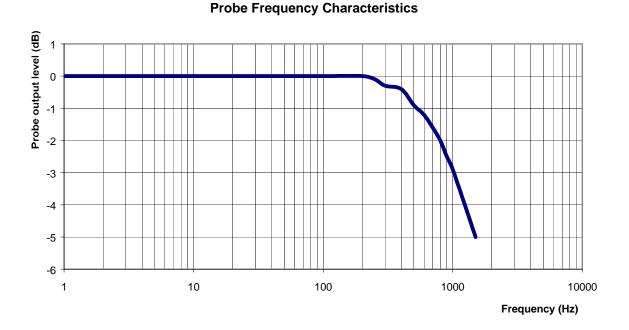
Uncertainty resulting from the boundary effect is less than 2% for the distance between the tip of the probe and the tissue boundary, when less than 2.44mm.


Spatial Resolution:

The measured probe tip diameter is 5 mm (+/- 0.01 mm) and therefore meets the requirements of SSI/DRB-TP-D01-032 for spatial resolution.

Receiving Pattern 1900 MHz (Air)


Isotropicity in Tissue:


NCL Calibration Laboratories

Division of APREL Laboratories.

Dynamic Range

Video Bandwidth

Video Bandwidth at 500 Hz1 dBVideo Bandwidth at 1000 Hz3 dB

Conversion Factor Uncertainty Assessment

Frequency:		1900MHz	
Epsilon:	40.0 (+/-5%)	Sigma:	1.40 S/m (+/-5%)
ConvF			
Channel X:	4.51	7%(K=2)	
Channel Y:	4.51	7%(K=2)	
Channel Z:	4.51	7%(K=2)	

To minimize the uncertainty calculation all tissue sensitivity values were calculated using a load impedance of 5 M Ω .

Boundary Effect:

For a distance of 2.4mm the evaluated uncertainty (increase in the probe sensitivity) is less than 2%.

Test Equipment

The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List May 2008.

NCL CALIBRATION LABORATORIES

Calibration File No.: CP-878

Client: QUIETEK

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the **NCL CALIBRATION LABORATORIES** by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

Equipment: Miniature Isotropic RF Probe 1900 MHz

Manufacturer: APREL Laboratories Model No.: ALS-E-020 Serial No.: 265

BODY Calibration

Calibration Procedure: SSI/DRB-TP-D01-032-E020-V2 Project No: QTKB-ALS-E20-CAL-5335

> Calibrated: 9th May 2008 Released on: 9th May 2008

This Calibration Certificate is Incomplete Unless Accompanied with the Calibration Results Summary Released By: <u>
NCLCALIBRATION LABORATORIES</u> 51 SPECTRUM WAY Division of APREL Lab.

51 SPECTRUM WAY NEPEAN, ONTARIO CANADA K2R 1E6 Division of APREL Lab. TEL: (613) 820-4988 FAX: (613) 820-4161

Introduction

This Calibration Report reproduces the results of the calibration performed in line with the SSI/DRB-TP-D01-032-E020-V2 E-Field Probe Calibration Procedure. The results contained within this report are for APREL E-Field Probe E-020 265.

References

SSI/DRB-TP-D01-032-E020-V2 E-Field Probe Calibration Procedure

IEEE 1528 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head Due to Wireless Communications Devices: Experimental Techniques"

SSI-TP-011 Tissue Calibration Procedure

IEC 62209 "Human exposure to radio frequency fields from hand-held and Headmounted wireless communication devices – Human models, instrumentation, and procedures –Part 1 & 2: Procedure to determine the Specific Absorption Rate (SAR) for hand-held devices used in close proximity of the ear (frequency range of 300 MHz to 3 GHz)"

IEEE 1309 Draft Standard for Calibration of Electromagnetic Field Sensors and Probes, Excluding Antennas, from 9kHz to 40GHz

Conditions

Probe 265 is a re-calibration.

Ambient Temperature of the Laboratory: $22 \ ^{\circ}C \ +/- \ 0.5^{\circ}C$ Temperature of the Tissue: $21 \ ^{\circ}C \ +/- \ 0.5^{\circ}C$

We the undersigned attest that to the best of our knowledge the calibration of this probe has been accurately conducted and that all information contained within/this report has been reviewed for accuracy.

Stuart Nicol

Jesse Hones

Calibration Results Summary

Probe Type:	E-Field Probe E-020
Serial Number:	265
Frequency:	1900 MHz
Sensor Offset:	1.56 mm
Sensor Length:	2.5 mm
Tip Enclosure:	Ertalyte*
Tip Diameter:	<5 mm
Tip Length:	60 mm
Total Length:	290 mm

*Resistive to recommended tissue recipes per IEEE-1528

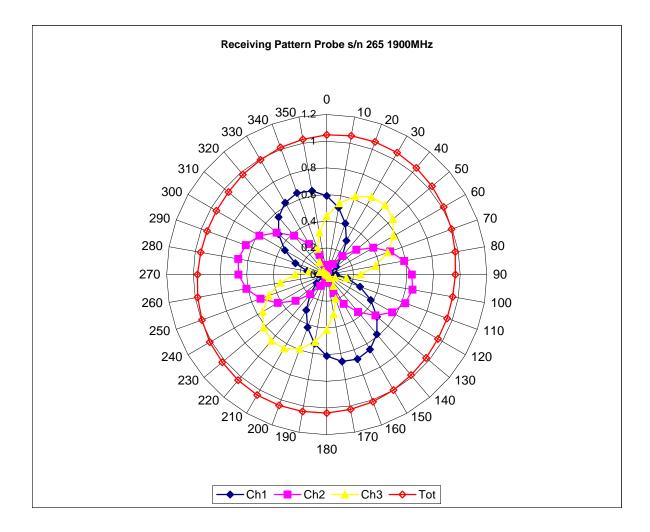
Sensitivity in Air

Channel X: Channel Y:	1.2 μV/(V/m) ² 1.2 μV/(V/m) ²
Channel Z:	$1.2 \mu V/(V/m)^2$
Diode Compression Point:	95 mV

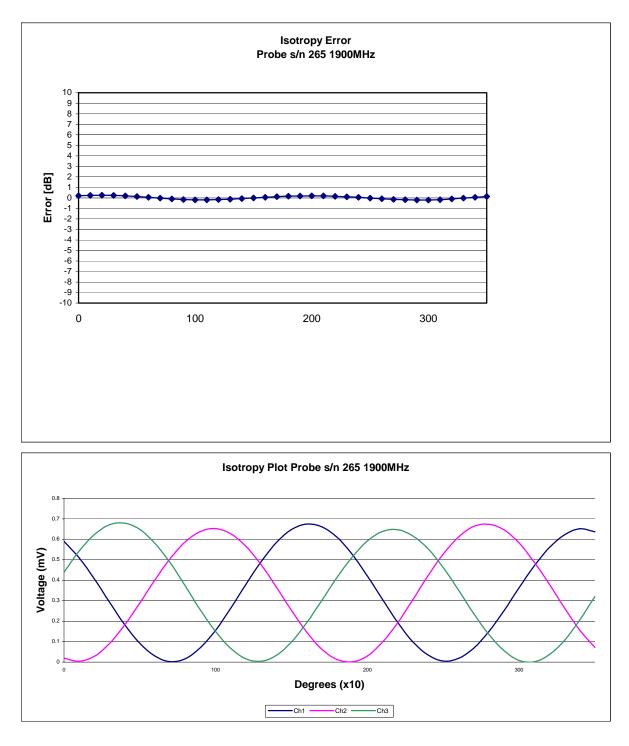
Frequency	:	1900 MHz	
Epsilon:	53.3 (+/-5%)	Sigma:	1.52 S/m (+/-5%)
ConvF			
Channel X:	5.1		
Channel Y:	5.1		

Channel Z: 5.1

Tissue sensitivity values were calculated using the load impedance of the APREL Laboratories Daq-Paq.

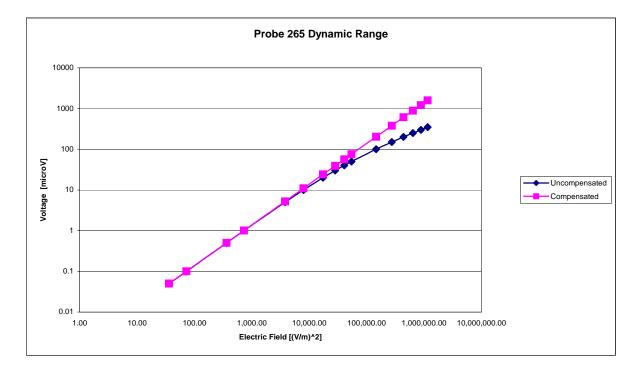

Boundary Effect:

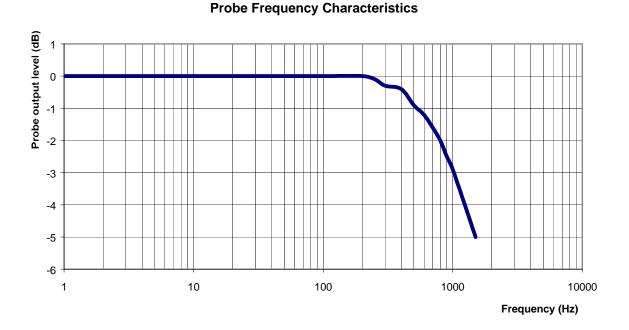
Uncertainty resulting from the boundary effect is less than 2% for the distance between the tip of the probe and the tissue boundary, when less than 2.44mm.


Spatial Resolution:

The measured probe tip diameter is 5 mm (+/- 0.01 mm) and therefore meets the requirements of SSI/DRB-TP-D01-032 for spatial resolution.

Receiving Pattern 1900 MHz (Air)


Isotropicity in Tissue:


NCL Calibration Laboratories

Division of APREL Laboratories.

Dynamic Range

Video Bandwidth

Video Bandwidth at 500 Hz1 dBVideo Bandwidth at 1000 Hz3 dB

Conversion Factor Uncertainty Assessment

Frequency:		1900MHz	
Epsilon:	53.3 (+/-5%)	Sigma:	1.52 S/m (+/-5%)
ConvF			
Channel X:	5.1	7%(K=2)	
Channel Y:	5.1	7%(K=2)	
Channel Z:	5.1	7%(K=2)	

To minimize the uncertainty calculation all tissue sensitivity values were calculated using a load impedance of 5 M Ω .

Boundary Effect:

For a distance of 2.4mm the evaluated uncertainty (increase in the probe sensitivity) is less than 2%.

Test Equipment

The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List May 2008.

QuieTek

Appendix E. Dipole Calibration

Validation Dipole 835 MHz M/N: ALS-D-835-S-2 S/N: QTK-316

Validation Dipole 1900 MHz M/N: ALS-D-1900-S-2 S/N: QTK-318

NCL CALIBRATION LABORATORIES

Calibration File No: DC-887

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the **NCL CALIBRATION LABORATORIES** by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

Quietek Validation Dipole

Manufacturer: APREL Laboratories Part number: ALS-D-835-S-2 Frequency: 835 MHz Serial No: QTK-315

Customer: Quietek

Project Number: QTKB-Dipole-CAL-5336

Calibrated: 9th May 2008 Released on: 9th May 2008

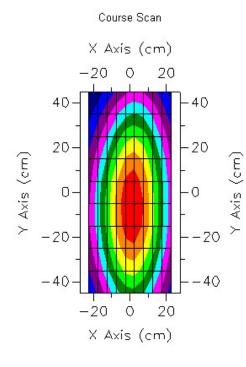
This Calibration Certific Released By:	cate is Incomplete Unless	Accompanied with the Calibration Results Summary
	NCL CALIBRA 51 SPECTRUM WAY	TION LABORATORIES Division of APREL Lab.

51 SPECTRUM WAY NEPEAN, ONTARIO CANADA K2R 1E6 Division of APREL Lab. TEL: (613) 820-4988 FAX: (613) 820-4162

Calibration Results Summary

The following results relate the Calibrat ed Dipole and should be used as a quick reference for the user.

Mechanical Dimensions


Length:	165.0 mm
Height:	90.0 mm

Electrical Specification

SWR:	1.04 U
Return Loss:	-32.9 dB
Impedance:	51.1 Ω

System Validation Results

Frequency	1 Gram	10 Gram	Peak
835 MHz	9.33W/Kg	6.42W/Kg	15.0W/Kg

Conditions

Dipole 315 is a recalibration.

Ambient Temperature of the	Laboratory: 22	°C +/- 0.5°C
Temperature of the Tissue:	21	°C +/- 0.5°C

References

SSI-TP-018-ALSAS Dipole Calibration Procedure

SSI-TP-016 Tissue Calibration Procedure

IEEE 15 28 "Recommended Practice for De termining the Pe ak Spatia I-Average Specific Absorption Rate (SAR) in the Human Body Due t o Wireles s Communications Devices: Experimental Techniques"

IEC 62209 "Human exposure to radio frequency fields from hand-held and bodymounted wireless communication devices – Human models, instrumentation, and procedures –Part 1 & Part 2: Procedure to determine the specific absorption rate (SAR) for mobile wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)

We the undersigned attest that to the best of our knowledge the calibration of this device has been accurately conducted and that all information contained within this report has been reviewed for accuracy.

Stuart Nicol

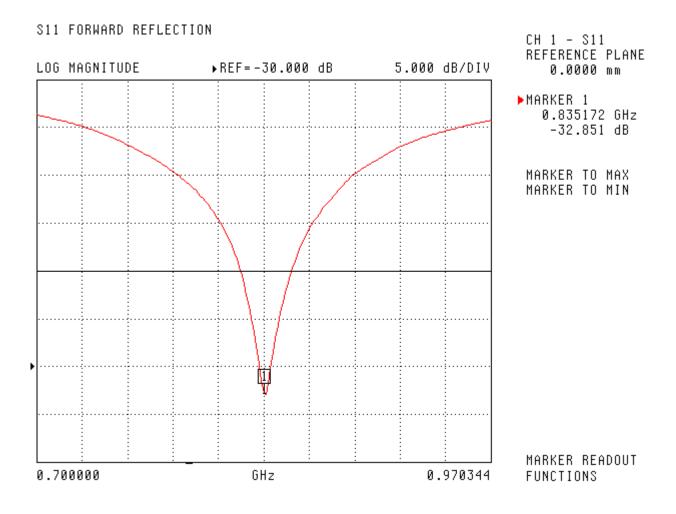
C. Teodorian

Dipole Calibration Results

Mechanical Verification

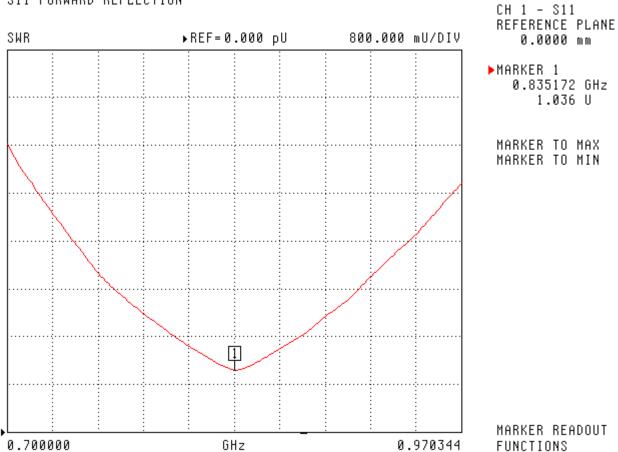
IEEE Length	IEEE Height	Measured Length	Measured Height
161.0 mm	89.8 mm	165.0 mm	90.0 mm

Tissue Validation


Head Tissue 835 MHz	Measured
Dielectric constant, ε _r	42.54
Conductivity, σ [S/m]	0.91

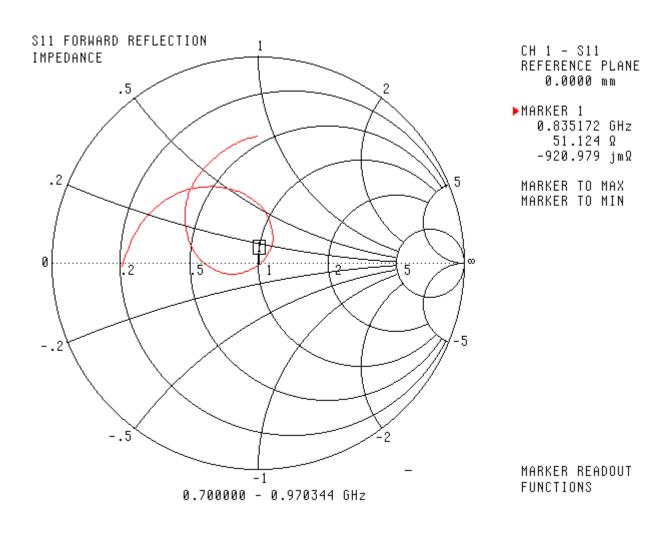
Electrical Calibration

Test Result	
S11 R/L	-32.9 dB
SWR 1.04	U
Impedance	51.1 Ω

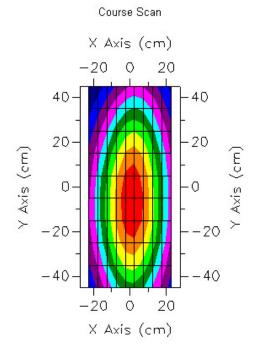

The Following Graphs are the results as displayed on the Vector Network Analyzer.

S11 Parameter Return Loss

This page has been reviewed for content and attested to by signature within this document.


SWR

S11 FORWARD REFLECTION


6

Smith Chart Dipole Impedance

System Validation Results Using the Electrically Calibrated Dipole

Head Tissue Frequency	1 Gram	10 Gram	Peak Above Feed Point
835 MHz	9.33W/Kg	6.42W/Kg	15.0W/Kg

9.52 8.69 7.86
7.98
1.00
7.03
6.20
5.37
4.55
3.72
2.89
2.06
1.23

Test Equipment

The test equipment used dur ing Probe Calibration, manufacturer, model number and, current calibration status are list ed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List May 2008.

NCL CALIBRATION LABORATORIES

Calibration File No: DC-890

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the **NCL CALIBRATION LABORATORIES** by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

Quietek Validation Dipole

Manufacturer: APREL Laboratories Part number: ALS-D-1900-S-2 Frequency: 1.9 GHz Serial No: QTK-318

Customer: Quietek

Project Number: QTKB-Dipole-CAL-5336

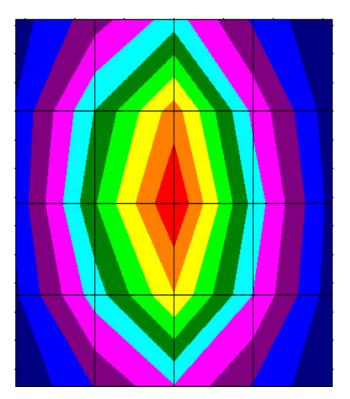
Calibrated: 9th May 2008 Released on: 9th May 2008

This Calibration Certific	ate is Incomplete Unles	s Accompanied with the Calibration Results Summary
Released By:		1 ANY
L	NGL CALIBRA	ATION LABORATORIES
_	51 SPECTRUM WAY NEPEAN, ONTARIO CANADA K2R 1E6	Division of APREL Lab. TEL: (613) 820-4988 FAX: (613) 820-4161

Calibration Results Summary

The following results relate the Calibrat ed Dipole and should be used as a quick reference for the user.

Mechanical Dimensions


Length:	70.0 mm
Height:	39.5 mm

Electrical Specification

SWR:	1.1 U
Return Loss:	-25.8 dB
Impedance:	47.8 Ω

System Validation Results

Frequency	1 Gram	10 Gram	Peak
1.9 GHz	36.0W/Kg	20.78W/Kg	67.7W/Kg

Conditions

Dipole 318 is a recalibration.

Ambient Temperature of the Laboratory: 22		°C +/- 0.5°C
Temperature of the Tissue:	21	°C +/- 0.5°C

References

SSI-TP-018-ALSAS Dipole Calibration Procedure SSI-TP-016 Tissue Calibration Procedure IEEE 15 28 "Recommended Practice for De termining the Pe ak Spatia I-Average Specific Absorption Rate (SAR) in the Human Body Due t o Wireles s Communications Devices: Experimental Techniques"

IEC 62209 "Human exposure to radio frequency fields from hand-held and bodymounted wireless communication devices – Human models, instrumentation, and procedures –Part 1 & Part 2: Procedure to determine the specific absorption rate (SAR) for mobile wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)

We the undersigned attest that to the best of our knowledge the calibration of this device has been accurately conducted and that all information contained within this report has been reviewed for accuracy.

Stuart Nicol

C. Teodorian

20 °C +/- 0.5°C

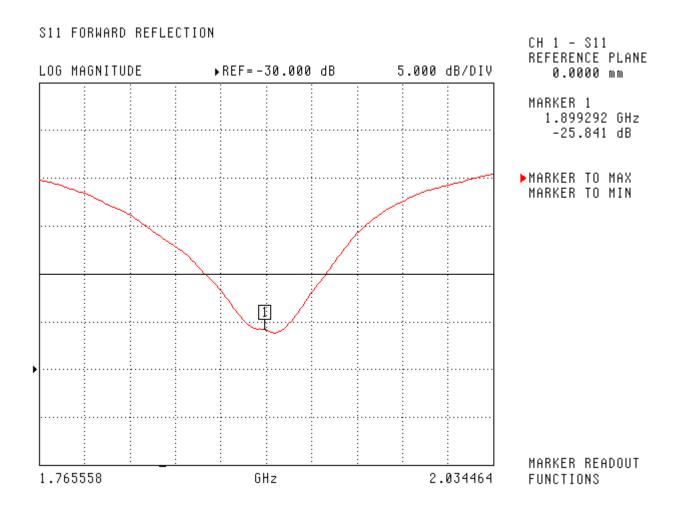
NCL Calibration Laboratories Division of APREL Laboratories.

Dipole Calibration Results

Mechanical Verification

IEEE Length	IEEE Height	Measured Length	Measured Height
68.0 mm	39.5 mm	70.0 mm	39.5 mm

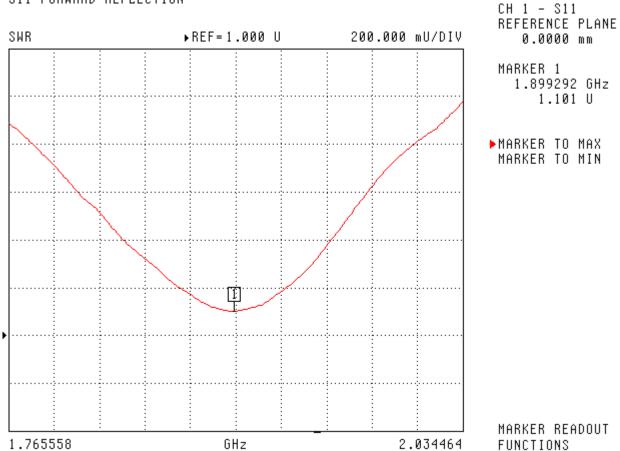
Tissue Validation


Head Tissue 1900 MHz	Measured
Dielectric constant, ε _r	39.9
Conductivity, σ [S/m]	1.42

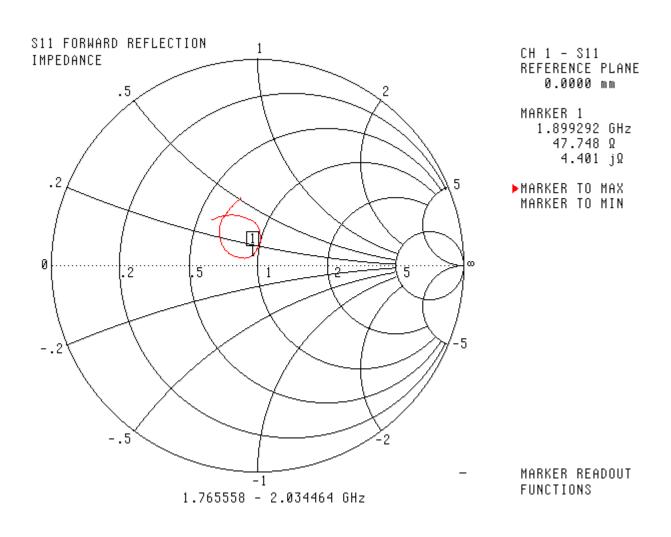
Electrical Calibration

Test Result	
S11 R/L	-25.8 dB
SWR 1.1	U
Impedance	47.8 Ω

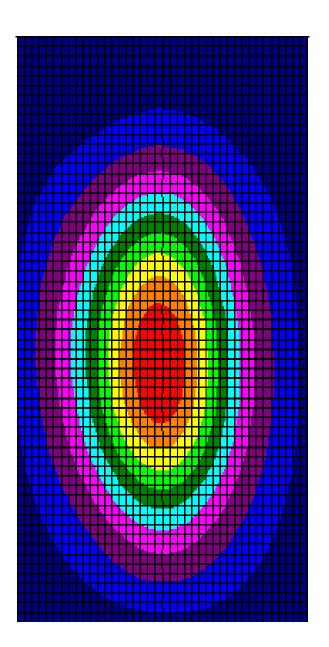
The Following Graphs are the results as displayed on the Vector Network Analyzer.


S11 Parameter Return Loss

NCL Calibration Laboratories


Division of APREL Laboratories.

SWR


S11 FORWARD REFLECTION

Smith Chart Dipole Impedance

System Validation Results Using the Electrically Calibrated Dipole

Frequency	1 Gram	10 Gram	Peak Above Feed Point
1.9 GHz	36.0W/Kg	20.78W/Kg	67.7W/Kg

Test Equipment

The test equipment used dur ing Probe Calibration, manufacturer, model number and, current calibration status are list ed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List May 2008.