	 Testing Lab., Inc.	
SR No. 101-10, Ling 8, Shan-Tong Li, Chung-Li City, Taoyuan, Taiwan	TEST REPORT	Reference No.:C05070702 Report No.:FCCC05070702
FCC ID: I4L-MS6833B		
Page:1 of 64		
Date: July 22, 2005		

Product Name:	Wireless LAN Card
Model No.:	MS-6833B
Applicant:	MICRO-STAR INT'L CO., LTD.
	No. 69, Li-De St, Jung-He City, Taipei Hsien, Taiwan
Date of Receipt:	July 07, 2005
Finished date of Test:	July 21, 2005
Applicable Standards:	47 CFR Part 15, Subpart C
	47 CFR Part 15, Subpart B
	ANSI C63.4:2003

We, Spectrum Research \& Testing Laboratory Inc., hereby certify that one sample of the above was tested in our laboratory with positive results according to the above-mentioned standards. The records in the report are an accurate account of the results. Details of the results are given in the subsequent pages of this report.

Checked By
 , Date:
$7 / 22 / 2005$

Approved By :

(Johnson Ho, Director) , Date:

Spectrum Research \& Testing Lab., Inc. No. 101-10, Ling 8, Shan-Tong Li, Chung-Li City, Taoyuan, Taiwan	TEST REPORT	Reference No.:C05070702
		Report No.: FCCC05070702
		FCC ID: 14L-MS6833B
		Page:2 of 64
		Date: July 22, 2005

Table of Contents

1. DOCUMENT POLICY AND TEST STATEMENT 4
1.1 DOCUMENT POLICY 4
1.2 TEST STATEMENT 4
1.3 EUT MODIFICATION 4
2. DESCRIPTION OF EUT AND TEST MODE 5
2.1 GENERAL DESCRIPTION OF EUT 5
2.2 DESCRIPTION OF EUT INTERNAL DEVICE 5
2.3 DESCRIPTION OF TEST MODE 6
2.4 DESCRIPTION OF SUPPORT UNIT 6
3. DESCRIPTION OF APPLIED STANDARDS 7
4. TECHNICAL CHARACTERISTICS TEST 8
4.1 CONDUCTED EMISSION TEST 8
4.1.1 LIMIT 8
4.1.2 TEST EQUIPMENT 8
4.1.3 TEST SETUP 9
4.1.4 TEST PROCEDURE 9
4.1.5 EUT OPERATING CONDITION 9
4.1.6 TEST RESULT 10
4.2 RADIATED EMISSION TEST 16
4.2.1 LIMIT 16
4.2.2 TEST EQUIPMENT 17
4.2.3 TEST SET-UP 18
4.2.4 TEST PROCEDURE 19
4.2.5 EUT OPERATING CONDITION 19
4.2.6 TEST RESULT 20
4.3 6DBC BANDWIDTH TEST 27
4.3.1 LIMIT 27
4.3.2 TEST EQUIPMENT 27
4.3.3 TEST SET-UP 27
4.3.4 TEST PROCEDURE 27
4.3.5 EUT OPERATING CONDITION 27
4.3.6 TEST RESULT 28
4.4 PEAK POWER TEST 34
4.4.1 LIMIT 34
4.4.2 TEST EQUIPMENT 34
4.4.3 TEST SET-UP 35
4.4.4 TEST PROCEDURE 35
4.4.5 EUT OPERATING CONDITION 35
4.4.6 TEST RESULT 36
4.5 BAND EDGE TEST 40
4.5.1 LIMIT 40
4.5.2 TEST EQUIPMENT 40
4.5.3 TEST SET-UP 41
4.5.4 TEST PROCEDURE 42
4.5.5 EUT OPERATING CONDITION 42

 Testing Lab., Inc.		Reference No.:C05070702 SR. No. 101-10, Ling 8, Shan-Tong Li, Chung-Li City, Taoyuan, Taiwan
Report No.:FCCC05070702		

4.5.6 TEST RESULT 43
4.6 POWER DENSITY TEST 49
4.6.1 LIMIT 49
4.6.2 TEST EQUIPMENT 49
4.6.3 TEST SET-UP 49
4.6.4 TEST PROCEDURE 49
4.6.5 EUT OPERATING CONDITION 49
4.6.6 TEST RESULT 50
4.7 RF POWER EXPOSURE EVALUATION TEST 56
4.7.1 LIMIT 56
4.7.2 TEST EQUIPMENT 57
4.7.3 TEST SET-UP 57
4.7.4 TEST PROCEDURE 58
4.7.5 EUT OPERATING CONDITION 58
4.7.6 RESULT 59
5. ANTENNA APPLICATION 60
5.1 ANTENNA REQUIREMENT 60
5.2 RESULT 60
6. PHOTOS OF TESTING 61
7. TERMS OF ABRIVATION 64

1. DOCUMENT POLICY AND TEST STATEMENT

1.1 DOCUMENT POLICY

- The report shall not be reproduced except in full, without the written approval of SRT Lab, Inc.
- The report must not be used by the applicant to claim that the product is endorsed by NVLAP, TÜV, NEMKO and SRT.
- The NVLAP logo applies only to the applicable standards specified in this report.

1.2 TEST STATEMENT

- The test results in the report apply only to the unit tested by SRT Lab.
- There was no deviation from the requirements of test standards during the test.
- AC power source, $120 \mathrm{Vac} / 60 \mathrm{~Hz}$, was used during the test.

1.3 EUT MODIFICATION

- No modification in SRT Lab.

Spectrum Research \& Testing Lab., Inc. No. 101-10, Ling 8, Shan-Tong Li, Chung-Li City, Taoyuan, Taiwan	TEST REPORT	Reference No.:C05070702 Report No.:FCCC05070702 FCC ID: I4L-MS6833B Page:5 of 64 Date: July 22, 2005

2. DESCRIPTION OF EUT AND TEST MODE
2.1 GENERAL DESCRIPTION OF EUT

PRODUCT	Wireless LAN Card
MODEL NO.	MS-6833B
POWER SUPPLY	DC $3.3 \mathrm{~V}, 410 \mathrm{~mA}$
FREQUENCY BAND	$2.4 \sim 2.4835 \mathrm{GHz}$
NUMBER OF CHANNEL	14
CHANNEL SPACING	20 MHz
RATED RF OUTPUT POWER	$\mathrm{EIRP} \leq 20 \mathrm{dBm}$
I.F. \& L.O.	$\mathrm{I} . \mathrm{F} .: 374 \mathrm{MHz} ; \mathrm{L.O} .: 2730-2900 \mathrm{MHz}$
MODULATION TYPE	CCK, DQPSK, DBPSK, OFDM
BIT RATE OF TRANSMISSION	1 Mbps
DUTY CYCLE	10%
MODE OF OPERATION	duplex
BIT RATE/SPEED OF TRANSMISSION	$11 \mathrm{~B}: 1,2,5.5,11 \mathrm{Mbps} ;$
11G: $6,9,12,18,24,36,48,54 \mathrm{Mbps}$	
ANTENNA TYPE	Dipole

NOTE :

For more detailed information, please refer to the EUT's specification or user's manual provided by manufacturer.

2.2 DESCRIPTION OF EUT INTERNAL DEVICE

DEVICE	BRAND / MAKER	MODEL	FCC ID/DOC	REMARK

	TEST REPORT	Reference No.:C05070702 Report No.:FCCC05070702 FCC ID: I4L-MS6833B Page: 6 of 64 Date: July 22, 2005

2.3 DESCRIPTION OF TEST MODE

11 channels are provided by EUT. The 3 channels of lower, medium and higher were chosen for test.
There are test modes for each test configuration as below:

Mode		Modulation Type	Channel	Frequency (MHz)
1	IEEE 802.11g	OFDM	CH 1	2412
2			CH6	2437
3			CH11	2462
4	IEEE 802.11b	CCK	CH1	2412
5			CH6	2437
6			CH11	2462

NOTE :

1. Below 1 GHz , the channel 1,6 and 11 were pre-tested in chamber. The channel 11, worst case one, was chosen for conducted and radiated emission test.
2. Above 1 GHz , the channel 1,6 and 11 were tested individually

2.4 DESCRIPTION OF SUPPORT UNIT

The EUT was configured by the requirement of ANSI C63.4:2003. All interface ports were connected to the appropriate support units via specific cables. The support units and cables are listed below.

NO	DEVICE	BRAND	MODEL	FCC ID// DOC	CABLE
1	NOTEBOOK	DELL	PP01L	DOC	2.0 m unshielded power cord
2	PRINTER	EPSON	STYLUS C20SX	DOC	1.5 m unshielded power cord 1.5 m shielded data cord
3	MODEM	ACEEX	DM-1414	DOC	1.5 m unshielded power cord 1.5 m shielded data cord
4	WIRELESS HUB	SOHOWARE	NCP600	IOU0650S02	1.5 m unshielded power cord 1.5 m shielded data cord

NOTE : For the actual test configuration, please refer to the photos of testing.

3. DESCRIPTION OF APPLIED STANDARDS

The EUT is a kind of wireless product. According to the specifications provided by the applicant, it must comply with the requirements of the following standards:

47 CFR Part 15, Subpart C
47 CFR Part 15, Subpart B
ANSI C63.4: 2003
Public DA00-705 (March 2000)
All tests have been performed and recorded as the above standards.

Spectrum Research \& Testing Lab., Inc.
No. 101-10, Ling 8, Shan-Tong Li, Chung-Li City, Taoyuan, Taiwan

Reference No.:C05070702
Report No.:FCCC05070702
FCC ID: I4L-MS6833B
Page: 8 of 64
Date: July 22, 2005
4. TECHNICAL CHARACTERISTICS TEST
4.1 CONDUCTED EMISSION TEST
4.1.1 LIMIT

Frequency (MHz)	Class A (dB $\mu \mathrm{V})$		Class B (dB $\mu \mathrm{V})$	
	Quasi-peak	Average	Quasi-peak	Average
$0.15-0.5$	79	66	$66-56$	$56-46$
$0.50-5.0$	73	60	56	46
$5.0-30.0$	73	60	60	50

NOTE :

1. The lower limit shall apply at the transition frequencies.
2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz .

4.1.2 TEST EQUIPMENT

The following test equipment was used for the test:

EQUIPMENT/ FACILITIES	SPECIFICATIONS	MANUFACTURER	MODEL\#/ SERIAL\#	DUE DATE OF CAL. \& CAL. CENTER
EMI TEST RECEIVER	9 kHz TO 30 MHz	 SCHWARZ	ESHS30/ $826003 / 008$	AUG. 2005 ETC
LISN (for EUT)	$50 \mu \mathrm{H}, 50$ ohm	FCC	FCC-LISN-50-25-2 $/ 01017$	NOV. 2005 ETC
LISN (for Peripheral)	$50 \mu \mathrm{H}, 50$ ohm	FCC	FCC-LISN-50-25-2 $/ 01018$	NOV. 2005 ETC
50 ohm TERMINATOR	50 ohm	HP	$11593 \mathrm{~A} /$ 2	OCT. 2005 ETC
COAXIAL CABLE	3 m	SUNCITY	J400/ $3 M$	JUL. 2006 SRT
ISOLATION TRANSFORMER	N/A	AFC-11015/ F102040016	N/A	
FILTER	2 LINE, 30A	FIL.COIL	FC-943/ 771	N/A
GROUND PLANE	$2.3 M ~(H) x$ $2.4 M ~(W) ~$	SRT	N/A	N/A
GROUND PLANE	$2.4 M ~(H) x$ $2.4 M ~(W) ~$	SRT	N/A	N/A

NOTE: The calibration interval of the above test equipment is one year and the calibrations are traceable to NML/ROC and NIST/USA.

	TEST REPORT	Reference No.: C05070702 Report No.:FCCC05070702 FCC ID: I4L-MS6833B Page: 9 of 64 Date: July 22, 2005

4.1.3 TEST SETUP

NOTE :

1. The EUT was put on a wooden table with 0.8 m heights above ground plane, and 0.4 m away from reference ground plane (> $2 m \times 2 m$).
2. For the actual test configuration, please refer to the photos of testing.
3. The serial no. of the LISN connected to EUT is 01017.
4. The serial no. of the LISN connected to support units is 01018.

4.1.4 TEST PROCEDURE

The EUT was tested according to the requirement of ANSI C63.4:2003 and CISPR22:2003. The frequency spectrum from 0.15 MHz to 30 MHz was investigated. The LISN used was 50 ohm $/ 50 \mu \mathrm{H}$ as specified. All readings were quasi-peak and average values with 10 kHz resolution bandwidth of the test receiver. The EUT system was operated in all typical methods by users. Both lines of the power mains of EUT were measured and the cables connected to EUT and support units were moved to find the maximum emission levels for each frequency.
First, find the margin or higher points at least 6 points by software, then use manual to find the maximum data. The procedure is referred on the test procedure of SRT LAB.

4.1.5 EUT OPERATING CONDITION

1. Under Windows XP ran "EMI TEST" program and PC sent "H" pattern or accessed the following peripherals directly or via EUT:

- Color Monitor
- RS232
- Printer
- FDD
- HDD

Reference No.: C05070702
Report No.:FCCC05070702
FCC ID: I4L-MS6833B
Page:10 of 64
Date: July 22, 2005

4.1.6 TEST RESULT

Temperature:
Frequency Range:
Receiver Detector:
Tested By:

$26^{\circ} \mathrm{C}$
$0.15-30 \mathrm{MHz}$
Q.P. and AV.
Hugo Yeh

Humidity:	50 \%RH
Tested Mode:	IEEE 802.11g
Modulation Type:	OFDM
Tested Channel:	CH1: 2412 MHz
Tested Date:	July 21, 2005

Power Line Measured : Line

Freq. (MHz)	Correct. Factor (dB)	Reading Value$(\mathrm{dB} \mu \mathrm{~V})$		Emission Level$(\mathrm{dB} \mu \mathrm{~V})$		Limit$(\mathrm{dB} \mu \mathrm{~V})$		Margin (dB)	
		Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
0.174	0.20	45.3	36.1	45.5	36.3	64.8	54.8	-19.3	-18.5
3.516	0.20	22.6	14.3	22.8	14.5	56.0	46.0	-33.2	-31.5
4.091	0.20	26.6	15.9	26.8	16.1	56.0	46.0	-29.2	-29.9
7.781	0.20	19.9	14.0	20.1	14.2	60.0	50.0	-39.9	-35.8
14.764	0.20	20.0	14.4	20.2	14.6	60.0	50.0	-39.8	-35.4
17.173	0.20	22.9	17.4	23.1	17.6	60.0	50.0	-36.9	-32.4

Power Line Measured : Neutral

Freq. (MHz)	Correct. Factor (dB)	Reading Value ($\mathrm{dB} \mu \mathrm{V}$)		Emission Level ($\mathrm{dB} \mu \mathrm{V}$)		Limit ($\mathrm{dB} \mu \mathrm{V}$)		Margin (dB)	
		Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
0.177	0.20	44.0	34.5	44.2	34.7	64.6	54.6	-20.4	-19.9
3.853	0.20	23.6	16.1	23.8	16.3	56.0	46.0	-32.2	-29.7
3.922	0.20	23.1	17.0	23.3	17.2	56.0	46.0	-32.7	-28.8
11.171	0.20	22.1	17.1	22.3	17.3	60.0	50.0	-37.7	-32.7
14.094	0.20	22.8	8.2	23.0	8.4	60.0	50.0	-37.0	-41.6
17.747	0.20	25.3	19.4	25.5	19.6	60.0	50.0	-34.5	-30.4

NOTE :

1. Measurement uncertainty is $+/-1.32 \mathrm{~dB}$
2. Emission level $=$ Reading valus + Correction factor
3. Correction Factor $=$ Cable loss + Insertion loss of LISN
4. Margin value $=$ Emission level - Limit
5. The emission of other frequencies were very low against the limit.
6. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.

 Testing Lab., Inc.		Reference No.:C05070702 Report No.:FCCC05070702
So. 101-10, Ling 8, Shan-Tong Li, Chung-Li City, Taoyuan, Taiwan	TEST REPORT	FCC ID: I4L-MS6833B Page:11 of 64

Temperature:	
Frequency Range:	
Receiver Detector:	
Tested By:	$0.15-30 \mathrm{MHz}$

Humidity:	50 \%RH
Tested Mode:	IEEE 802.11g
Modulation Type:	OFDM
Tested Channel:	CH6: 2437 MHz
Tested Date:	July 21, 2005

Power Line Measured: Line

Freq. (MHz)	Correct. Factor (dB)	Reading Value ($\mathrm{dB} \mu \mathrm{V}$)		Emission Level$(\mathrm{dB} \mu \mathrm{~V})$		Limit$(\mathrm{dB} \mu \mathrm{~V})$		Margin (dB)	
		Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
0.174	0.20	44.2	35.1	44.4	35.3	64.8	54.8	-20.4	-19.5
3.913	0.20	27.3	16.2	27.5	16.4	56.0	46.0	-28.5	-29.6
3.972	0.20	26.4	18.5	26.6	18.7	56.0	46.0	-29.4	-27.4
5.000	0.20	15.2	6.6	15.4	6.8	56.0	46.0	-40.6	-39.2
5.122	0.20	21.8	12.4	22.0	12.6	60.0	50.0	-38.0	-37.4
25.681	0.21	23.7	18.0	23.9	18.2	60.0	50.0	-36.1	-31.8

Power Line Measured : Neutral

Freq. $(\mathbf{M H z})$	Correct. Factor $(\mathbf{d B})$	Reading Value $(\mathbf{d B} \mu \mathbf{V})$		Emission Level $(\mathbf{d B} \mu \mathbf{V})$		Limit $(\mathbf{d B} \mu \mathbf{V})$		Margin $(\mathbf{d B})$	
		Q.P.	$\mathbf{A V}$.	Q.P.	$\mathbf{A V}$.	Q.P.	AV.	Q.P.	AV.
0.174	0.20	47.6	38.4	47.8	38.6	64.8	54.8	-17.0	-16.2
3.744	0.20	25.5	15.7	25.7	15.9	56.0	46.0	-30.3	-30.1
3.853	0.20	24.2	19.1	24.4	19.3	56.0	46.0	-31.6	-26.7
12.369	0.20	20.3	14.4	20.5	14.6	60.0	50.0	-39.5	-35.4
12.785	0.20	19.2	12.4	19.4	12.6	60.0	50.0	-40.6	-37.4
18.014	0.20	25.8	20.3	26.0	20.5	60.0	50.0	-34.0	-29.5

NOTE :

1. Measurement uncertainty is $+/-1.32 \mathrm{~dB}$
2. Emission level $=$ Reading valus + Correction factor
3. Correction Factor $=$ Cable loss + Insertion loss of LISN
4. Margin value $=$ Emission level - Limit
5. The emission of other frequencies were very low against the limit.
6. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.

 Testing Lab., Inc.		Reference No.:C05070702 Report No.:FCCC05070702
So. 101-10, Ling 8, Shan-Tong Li, Chung-Li City, Taoyuan, Taiwan	TEST REPORT	FCC ID: I4L-MS6833B Page:12 of 64

Temperature:	$26^{\circ} \mathrm{C}$
Frequency Range:	$0.15-30 \mathrm{MHz}$
Receiver Detector:	Q.P. and AV.
Tested By:	Hugo Yeh

Humidity:	50 \%RH
Tested Mode:	IEEE 802.11g
Modulation Type:	OFDM
Tested Channel:	CH11: 2462 MHz
Tested Date:	July 21, 2005

Power Line Measured: Line

Freq. $(\mathbf{M H z})$	Correct. Factor $(\mathbf{d B})$	Reading Value $(\mathbf{d B} \mu \mathbf{V})$		Emission Level $(\mathbf{d B} \mu \mathbf{V})$		Limit $(\mathbf{d B} \mu \mathbf{V})$		Margin $(\mathbf{d B})$	
	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
0.174	0.20	46.0	35.9	46.2	36.1	64.8	54.8	-18.6	-18.7
3.744	0.20	22.7	10.5	22.9	10.7	56.0	46.0	-33.1	-35.3
4.259	0.20	18.5	9.0	18.7	9.2	56.0	46.0	-37.3	-36.8
10.420	0.20	17.9	11.9	18.1	12.1	60.0	50.0	-41.9	-37.9
14.917	0.20	18.2	12.8	18.4	13.0	60.0	50.0	-41.6	-37.0
24.625	0.20	22.5	16.6	22.7	16.8	60.0	50.0	-37.3	-33.2

Power Line Measured : Neutral

Freq. $(\mathbf{M H z})$	Correct. Factor $(\mathbf{d B})$	Reading Value $(\mathbf{d B} \mu \mathbf{V})$		Emission Level $(\mathbf{d B} \mu \mathbf{V})$		Limit $(\mathbf{d B} \mu \mathbf{V})$		Margin $(\mathbf{d B})$	
		Q.P.	$\mathbf{A V}$.	Q.P.	$\mathbf{A V}$.	Q.P.	AV.	Q.P.	AV.
0.174	0.20	48.4	39.5	48.6	39.7	64.8	54.8	-16.2	-15.1
3.517	0.20	24.1	16.7	24.3	16.9	56.0	46.0	-31.7	-29.1
4.091	0.20	26.8	17.2	27.0	17.4	56.0	46.0	-29.0	-28.6
10.654	0.20	20.6	15.3	20.8	15.5	60.0	50.0	-39.2	-34.5
11.009	0.20	22.5	17.1	22.7	17.3	60.0	50.0	-37.3	-32.7
20.412	0.20	21.7	16.0	21.9	16.2	60.0	50.0	-38.1	-33.8

NOTE :

1. Measurement uncertainty is $+/-1.32 \mathrm{~dB}$
2. Emission level $=$ Reading valus + Correction factor
3. Correction Factor $=$ Cable loss + Insertion loss of LISN
4. Margin value $=$ Emission level - Limit
5. The emission of other frequencies were very low against the limit.
6. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.

Spectrum Research \& Testing Lab., Inc. No. 101-10, Ling 8, Shan-Tong Li, Chung-Li City, Taoyuan, Taiwan		Reference No.:C05070702
		Report No.:FCCC05070702
	TEST REPORT	FCC ID: I4L-MS6833B
		Page:13 of 64
		Date: July 22, 2005

Temperature:	$26^{\circ} \mathrm{C}$
Frequency Range:	$0.15-30 \mathrm{MHz}$
Receiver Detector:	Q.P. and AV.
Tested By:	Hugo Yeh

Humidity:	50 \%RH
Tested Mode:	IEEE 802.11b
Modulation Type:	CCK
Tested Channel:	CH1: 2412MHz
Tested Date:	July 21, 2005

Power Line Measured: Line

Freq. (MHz)	Correct. Factor (dB)	Reading Value ($\mathrm{dB} \mu \mathrm{V}$)		Emission Level$(\mathrm{dB} \mu \mathbf{V})$		Limit ($\mathrm{dB} \mu \mathrm{V}$)		Margin (dB)	
		Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
0.471	0.20	30.9	10.6	31.1	10.8	56.5	46.5	-25.4	-35.7
1.358	0.20	17.9	6.5	18.1	6.7	56.0	46.0	-37.9	-39.3
4.101	0.20	25.7	17.7	25.9	17.9	56.0	46.0	-30.1	-28.1
5.223	0.20	21.3	12.8	21.5	13.0	60.0	50.0	-38.5	-37.0
5.335	0.20	23.0	12.3	23.2	12.5	60.0	50.0	-36.8	-37.5
25.506	0.21	21.8	16.5	22.0	16.7	60.0	50.0	-38.0	-33.3

Power Line Measured : Neutral

Freq. $(\mathbf{M H z})$	Correct. Factor $(\mathbf{d B})$	Reading Value $(\mathbf{d B} \mu \mathbf{V})$		Emission Level $(\mathbf{d B} \mu \mathbf{V})$		Limit $(\mathbf{d B} \mu \mathrm{V})$		Margin $(\mathbf{d B})$	
		Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
0.429	0.20	40.1	24.6	40.3	24.8	57.3	47.3	-17.0	-22.5
1.269	0.20	31.5	22.2	31.7	22.4	56.0	46.0	-24.3	-23.6
4.111	0.20	26.6	17.9	26.8	18.1	56.0	46.0	-29.2	-27.9
5.406	0.20	22.8	14.8	23.0	15.0	60.0	50.0	-37.0	-35.0
8.816	0.20	22.4	16.5	22.6	16.7	60.0	50.0	-37.4	-33.3
28.274	0.26	26.4	20.5	26.7	20.8	60.0	50.0	-33.3	-29.2

NOTE :

1. Measurement uncertainty is $+/-1.32 \mathrm{~dB}$
2. Emission level $=$ Reading valus + Correction factor
3. Correction Factor = Cable loss + Insertion loss of LISN
4. Margin value = Emission level - Limit
5. The emission of other frequencies were very low against the limit.
6. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.

 Testing Lab., Inc.		Reference No.:C05070702 Report No.:FCCC05070702
So. 101-10, Ling 8, Shan-Tong Li, Chung-Li City, Taoyuan, Taiwan	TEST REPORT	FCC ID: I4L-MS6833B Page:14 of 64

Temperature:	
Frequency Range:	
Receiver Detector:	
Tested By:	$0.15-30 \mathrm{MHz}$

Humidity:	50% RH
Tested Mode:	IEEE 802.11 b
Modulation Type:	CCK
Tested Channel:	CH6: 2437 MHz
Tested Date:	July 21,2005

Power Line Measured: Line

Freq. (MHz)	Correct. Factor (dB)	Reading Value ($\mathrm{dB} \mu \mathrm{V}$)		Emission Level$(\mathrm{dB} \mu \mathrm{~V})$		Limit$(\mathrm{dB} \mu \mathrm{~V})$		Margin (dB)	
		Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
0.174	0.20	45.2	37.9	45.4	38.1	64.8	54.8	-19.4	-16.7
2.249	0.20	27.8	24.6	28.0	24.8	56.0	46.0	-28.0	-21.2
4.210	0.20	23.6	15.6	23.8	15.8	56.0	46.0	-32.2	-30.2
7.375	0.20	21.8	15.6	22.0	15.8	60.0	50.0	-38.0	-34.2
10.258	0.20	23.3	17.7	23.5	17.9	60.0	50.0	-36.5	-32.1
17.634	0.20	24.9	18.7	25.1	18.9	60.0	50.0	-34.9	-31.1

Power Line Measured : Neutral

Freq. $(\mathbf{M H z})$	Correct. Factor $(\mathbf{d B})$	Reading Value $(\mathbf{d B} \mu \mathbf{V})$	Emission Level $(\mathbf{d B} \mu \mathbf{V})$		Limit $(\mathbf{d B} \mu \mathbf{V})$		Margin $(\mathbf{d B})$		
	Q.P.	$\mathbf{A V}$.	Q.P.	$\mathbf{A V}$.	Q.P.	AV.	Q.P.	AV.	
0.174	0.20	47.8	37.4	48.0	37.6	64.8	54.8	-16.8	-17.2
4.031	0.20	31.7	25.2	31.9	25.4	56.0	46.0	-24.1	-20.6
4.319	0.20	30.7	24.2	30.9	24.4	56.0	46.0	-25.1	-21.6
10.024	0.20	27.3	27.4	27.5	27.6	60.0	50.0	-32.5	-22.5
10.887	0.20	27.0	23.5	27.2	23.7	60.0	50.0	-32.8	-26.4
17.675	0.20	26.2	20.4	26.4	20.6	60.0	50.0	-33.6	-29.4

NOTE :

1. Measurement uncertainty is $+/-1.32 \mathrm{~dB}$
2. Emission level $=$ Reading valus + Correction factor
3. Correction Factor $=$ Cable loss + Insertion loss of LISN
4. Margin value $=$ Emission level - Limit
5. The emission of other frequencies were very low against the limit.
6. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.

 Testing Lab., Inc.		Reference No.:C05070702 Report No.:FCCC05070702
So. 101-10, Ling 8, Shan-Tong Li, Chung-Li City, Taoyuan, Taiwan	TEST REPORT	FCC ID: I4L-MS6833B Page:15 of 64

Temperature:	$26^{\circ} \mathrm{C}$
Frequency Range:	$0.15-30 \mathrm{MHz}$
Receiver Detector:	Q.P. and AV.
Tested By:	Hugo Yeh

Humidity:	50 \%RH
Tested Mode:	IEEE 802.11b
Modulation Type:	CCK
Tested Channel:	CH11: 2462 MHz
Tested Date:	July 21, 2005

Power Line Measured: Line

Freq. (MHz)	Correct. Factor (dB)	Reading Value ($\mathrm{dB} \mu \mathrm{V}$)		Emission Level ($\mathrm{dB} \mu \mathrm{V}$)		Limit ($\mathrm{dB} \mu \mathrm{V}$)		Margin (dB)	
		Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
0.174	0.20	46.7	36.2	46.9	36.4	64.8	54.8	-17.9	-18.4
4.150	0.20	33.1	24.4	33.3	24.6	56.0	46.0	-22.7	-21.4
4.437	0.20	31.0	22.6	31.2	22.8	56.0	46.0	-24.8	-23.2
5.244	0.20	27.9	22.2	28.1	22.4	60.0	50.0	-31.9	-27.6
6.918	0.20	27.9	22.3	28.1	22.5	60.0	50.0	-31.9	-27.5
23.590	0.20	23.4	18.1	23.6	18.3	60.0	50.0	-36.4	-31.7

Power Line Measured : Neutral

Freq. (MHz)	Correct. Factor (dB)	Reading Value ($\mathrm{dB} \mu \mathrm{V}$)		Emission Level$(\mathrm{dB} \mu \mathrm{~V})$		Limit$(\mathrm{dB} \mu \mathrm{~V})$		Margin (dB)	
		Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
0.174	0.20	48.4	40.6	48.6	40.8	64.8	54.8	-16.2	-14.0
1.210	0.20	29.6	24.9	29.8	25.1	56.0	46.0	-26.2	-21.0
1.844	0.20	29.0	25.1	29.2	25.3	56.0	46.0	-26.8	-20.7
5.070	0.20	26.8	21.8	27.0	22.0	60.0	50.0	-33.0	-28.0
12.968	0.20	22.2	16.2	22.4	16.4	60.0	50.0	-37.6	-33.6
17.696	0.20	27.1	21.8	27.3	22.0	60.0	50.0	-32.7	-28.0

NOTE :

1. Measurement uncertainty is $+/-1.32 \mathrm{~dB}$
2. Emission level $=$ Reading valus + Correction factor
3. Correction Factor $=$ Cable loss + Insertion loss of LISN
4. Margin value $=$ Emission level - Limit
5. The emission of other frequencies were very low against the limit.
6. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.

4.2 RADIATED EMISSION TEST

4.2.1 LIMIT

FCC Part15, Subpart C Section 15.209 limit of radiated emission for frequency below 1000 MHz . The emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

FREQUENCY (MHz)	DISTANCE (m)	FIELD STRENGTH $(\mathbf{d B} \mu \mathbf{V} / \mathbf{m})$
$30-88$	3	40.0
$88-216$	3	43.5
$216-960$	3	46.0
Above 960	3	54.0

NOTE :

1. In the emission tables above, the tighter limit applies at the band edges.
2. Distance refers to the distance between measuring instrument, antemma, and the closest point of any part of the device or system.

FCC Part 15, Section15.35(b) limit of radiated emission for frequency above 1000 MHz

FREQUENCY (MHz)	Class A (dBuV/m) (at 3m)		Class B (dBuV/m) (at 3m)	
	PEAK	AVERAGE	PEAK	AVERAGE
Above 1000	80.0	60.0	74.0	54.0

Reference No.:C05070702
Report No.:FCCC05070702
FCC ID: I4L-MS6833B
Page:17 of 64
Date: July 22, 2005

4.2.2 TEST EQUIPMENT

The following test equipment was used during the radiated emission test:

EQUIPMENT/ FACILITIES	SPECIFICATIONS	MANUFACTURER	MODEL\#/ SERIAL\#	DUE DATE OF CAL. \& CAL. CENTER
EMI TEST RECEIVER	$\begin{aligned} & 9 \mathrm{kHz} \text { TO } \\ & 2750 \mathrm{MHz} \end{aligned}$	ROHDE \& SCHWARZ	$\begin{aligned} & \text { ESCS30/ } \\ & 830245 / 012 \end{aligned}$	$\begin{aligned} & \text { OCT. } 2005 \\ & \text { ETC } \end{aligned}$
BI-LOG ANTENNA	$\begin{aligned} & 25 \mathrm{MHz} \text { TO } \\ & 2 \mathrm{GHz} \\ & \hline \end{aligned}$	EMCO	$\begin{aligned} & 3142 / \\ & 9701-1124 \end{aligned}$	FEB. 2006 SRT
SPECTRUM ANALYZER	$\begin{aligned} & 9 \mathrm{KHz} \mathrm{TO} \\ & 26.5 \mathrm{GHz} \end{aligned}$	HP	$\begin{aligned} & \hline \text { 8593E/ } \\ & \text { 3710A03220 } \end{aligned}$	MAY 2006 ETC
PRE-AMPLIFIER	$\begin{aligned} & 1 \mathrm{GHz} \mathrm{TO} \\ & 26.5 \mathrm{GHz} \end{aligned}$	HP	8449B/ 3008A01019	NOV. 2005 ETC
HORN ANTENNA	$\begin{aligned} & 1 \mathrm{GHz} \mathrm{TO} \\ & 18 \mathrm{GHz} \end{aligned}$	EMCO	$\begin{aligned} & \hline 3115 / \\ & 9602-4681 \end{aligned}$	$\begin{aligned} & \text { DEC. } 2005 \\ & \text { ETC } \end{aligned}$
OATS	$3-10 \mathrm{M}$ MEASUREMENT	SRT	SRT-1	APR. 2006 SRT
COAXIAL CABLE	25M	SUNCITY	$\begin{aligned} & \hline \mathrm{J} 400 / \\ & 25 \mathrm{M} \\ & \hline \end{aligned}$	APR. 2006 SRT
FILTER	2 LINE, 30A	FIL.COIL	$\begin{aligned} & \text { FC-943/ } \\ & 869 \end{aligned}$	N/A
FREQUENCY CONVERTER	N/A	APC	$\begin{aligned} & \text { AFC-2KBB/ } \\ & \text { F100030031 } \end{aligned}$	AUG. 2005 SRT

NOTE:

1. The calibration interval of the above test equipment is one year and the calibrations are traceable to NML/ROC and NIST/USA.
2. The Open Area Test Site (SRT-1) is registered by FCC with No. 90957 and VCCI with No. R-1081.
3. The Open Area Test Site (SRT-2) is registered by FCC with No. 98458 and VCCI with No. R-1168.

4.2.3 TEST SET-UP

NOTE :

1. The EUT system was put on a wooden table with 0.8 m heights above a ground plane.
2. For the actual test configuration, please refer to the photos of testing.

Spectrum Research \& Testing Lab., Inc. SR/ 101-10, Ling 8, No. 10n-Tong Li, Chung-Li Shan City, Taoyuan, Taiwan	TEST REPORT	Reference No.:C05070702 Report No.:FCCC05070702 FCC ID: I4L-MS6833B Page:19 of 64 Date: July 22, 2005

4.2.4 TEST PROCEDURE

The EUT was tested according to the requirement of ANSI C63.4:2003 and CISPR 22:2003. The measurements were made at an open area test site with 10 meter measurement distance under 1 GHz and with 3 m distance above 1 GHz . The frequency spectrum measured started from 30 MHz . Under 1 GHz , all readings were quasi-peak values with 120 kHz resolution bandwidth of the test receiver. Above 1 GHz , the measurements were made at an open area test site with 3 meter measurement distance and all readings were peak or average values with 1 MHz resolution bandwidth of the test receiver. The EUT system was operated in all typical methods by users. The cables connected to EUT and support units were moved to find the maximum emission levels for each frequency.
First, find the margin or higher points at least 6 points by software, then use manual to find the maximum data. The procedure is referred on the test procedure of SRT LAB.

4.2.5 EUT OPERATING CONDITION

Same as section 4.1.5 of this report.

Spectrum Research \& Testing Lab., Inc. No. 101-10, Ling 8, Shan-Tong Li, Chung-Li City, Taoyuan, Taiwan	TEST REPORT	Reference No.:C05070702 Report No.:FCCC05070702 FCC ID: I4L-MS6833B Page:20 of 64 Date: July 22, 2005

4.2.6 TEST RESULT

Temperature:	$22^{\circ} \mathrm{C}$	Humidity:	55 \%RH
Frequency Range:	$30-1000 \mathrm{MHz}$	Measured Distance:	3m
Receiver Detector:	Q.P.	Tested Mode:	RX
Tested By:	Hugo Yeh	Tested Date:	July 21, 2005

Antenna Polarization:Horizontal

Frequency $(\mathbf{M H z})$	Cable Loss (dB)	Antenna Factor $(\mathrm{dB} / \mathbf{m})$	Reading Data $(\mathrm{dB} \mu \mathrm{V})$	Emission Level $(\mathrm{dB} \mu \mathrm{V} / \mathbf{m})$	Limit $(\mathrm{dB} \mu \mathrm{V} / \mathbf{m})$	Margin (dB)	$\mathrm{AZ}\left({ }^{\circ}\right)$	EL(m)
131.8140	1.20	7.39	17.3	25.9	43.5	-17.6	82.7	1.27
301.5717	1.94	14.23	13.5	29.7	46.0	-16.3	12.4	1.43
398.8068	2.28	15.80	12.6	30.7	46.0	-15.3	175.1	1.84
450.9920	2.51	16.70	10.1	29.3	46.0	-16.7	152.4	1.72
702.1600	3.08	21.64	7.4	32.1	46.0	-13.9	248.6	1.46
901.2416	3.75	24.01	8.1	35.9	46.0	-10.1	75.5	1.51

Antenna Polarization:Vertical

Frequency (MHz)	Cable Loss (dB)		Reading Data (dB $\mu \mathrm{V}$)	Emission Level ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)	Limit ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)	Margin (dB)	AZ $\left({ }^{\circ}\right)$	EL(m)
134.3200	1.21	7.36	17.3	25.9	43.5	-17.6	81.3	1.00
298.6740	1.93	14.10	16.7	32.7	46.0	-13.3	57.6	1.12
401.3120	2.29	15.82	16.8	34.9	46.0	-11.1	347.6	1.00
600.4629	2.88	20.70	9.1	32.7	46.0	-13.3	52.7	1.20
702.3248	3.08	21.64	11.4	36.1	46.0	-9.9	167.8	1.27
900.0019	3.74	24.00	8.2	35.9	46.0	-10.1	92.4	1.52

NOTE :

1. Measurement uncertainty is $+/-2 \mathrm{~dB}$.
2. "*": Measurement does not apply for this frequency.
3. Emissiom Level $=$ Reading Value + Ant. Factor + Cable Loss.
4. The field strength of other emission frequencies were very low against the limit.

 Testing Lab., Inc.		Reference No.:C05070702 Report No.:FCCC05070702
So. 101-10, Ling 8, Shan-Tong Li, Chung-Li City, Taoyuan, Taiwan	TEST REPORT	FCC ID: I4L-MS6833B Page:21 of 64

Temperature:	$22^{\circ} \mathrm{C}$
Frequency Range:	$1-25 \mathrm{GHz}$
Receiver Detector:	PK. or AV.
Tested By:	Hugo Yeh
Tested Date:	July 21, 2005

Humidity:	55% RH
Measured Distance:	3 m
Tested Mode: Tested Channel: TEEE 802.11 g Modulation Type:\quad CH $1: 2412 \mathrm{MHz}$	

Antenna Polarization : Horizontal

Frequency(MHz)	Correct Factor (dB)	Ant. Factor (dB/m)	Reading Data ($\mathrm{dB} \mu \mathrm{V}$)		Emission Level ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)		Limit ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)		Margin (dB)		$\underset{\left({ }^{\circ}\right)}{A Z}$	$\begin{aligned} & \mathrm{EL} \\ & (\mathrm{~m}) \end{aligned}$
			PK.	AV.	PK.	AV.	PK.	AV.	PK.	AV.		
2412.00(F)	-32.18	28.02	95.8	60.4	91.6	56.2	N/A	N/A	N/A	N/A	182.1	1.00
2400.00	-32.16	28.00	68.7	45.2	64.5	41.0	74.0	54.0	-9.5	-13.0	191.4	1.00
2397.50	-32.17	27.99	69.8	46.2	65.6	42.0	74.0	54.0	-8.4	-12.0	167.3	1.00
2429.31	-32.21	28.06	70.5	47.4	66.3	43.2	74.0	54.0	-7.7	-10.8	189.9	1.00
4824.00	-30.41	33.66	47.9		51.1		74.0	54.0	-22.9		87.7	1.31
7236.00	-28.98	36.29	46.5	*	53.8	*	74.0	54.0	-20.2	*	342.1	1.10

Antenna Polarization : Vertical

$\begin{array}{\|l} \text { Frequency } \\ (\mathrm{MHz}) \end{array}$	Correct Factor (dB)	Ant. Factor (dB/m)	Reading Data ($\mathrm{dB} \mu \mathrm{V}$)		Emission Level ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)		Limit ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)		Margin (dB)		$\underset{\left({ }^{\circ}\right)}{A Z}$	$\begin{aligned} & \mathrm{EL} \\ & (\mathrm{~m}) \end{aligned}$
			PK.	AV.	PK.	AV.	PK.	AV.	PK.	AV.		
2412.00(F)	-32.18	28.56	95.3	58.4	91.7	54.8	N/A	N/A	N/A	N/A	145.6	1.27
2400.00	-32.16	28.00	68.2	45.7	64.0	41.5	74.0	54.0	-10.0	-12.5	162.3	1.58
2397.50	-32.17	27.99	65.9	42.8	61.7	38.6	74.0	54.0	-12.3	-15.4	146.1	1.62
2430.10	-32.21	28.06	67.2	43.5	63.1	39.4	74.0	54.0	-10.9	-14.6	158.9	1.28
4824.00	-30.41	33.66	46.8	*	50.0	*	74.0	54.0	-24.0	*	57.3	1.52
7236.00	-28.98	36.29	45.2	*	52.5	*	74.0	54.0	-21.5	*	160.8	1.13

NOTE :

1. Measurement uncertainty is $+/-2 \mathrm{~dB}$.
2. "*": The Peak reading value also meets average limit and measurement with the average detector is unnecessary.
3. Emissiom Level = Reading Value + Ant. Factor + Correct Factor (incl.:Cable Loss and Pre-Amplifier Gain)
4. The field strength of other emission frequencies were very low against the limit.
5. (F):The field stregth of fundamental frequency.

Spectrum Research \& Testing Lab., Inc. No. 101-10, Ling 8 , Shan-Tong Li, Chung-Li City, Taoyuan, Taiwan	TEST REPORT	Reference No.:C05070702 Report No.:FCCC05070702 FCC ID: I4L-MS6833B Page:22 of 64 Date: July 22, 2005

Temperature:	$22^{\circ} \mathrm{C}$
Frequency Range:	$1-25 \mathrm{GHz}$
Receiver Detector:	PK. or AV.
Tested By:	Hugo Yeh
Tested Date:	July 21, 2005

Humidity:	55 \%RH
Measured Distance:	3 m
Tested Mode:	IEEE 802.11g
Tested Channel:	CH $6: 2437 \mathrm{MHz}$
Modulation Type:	OFDM

Antenna Polarization : Horizontal

Frequency (MHz)	Correct Factor (dB)	Ant. Factor (dB/m)	ReadingData ($\mathrm{dB} \mu \mathrm{V}$)		Emission Level ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)		Limit ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)		Margin (dB)		$\begin{aligned} & A Z \\ & \left({ }^{\prime}\right) \end{aligned}$	$\begin{aligned} & \mathrm{EL} \\ & (\mathrm{~m}) \end{aligned}$
			PK.	AV.	PK.	AV.	PK.	AV.	PK.	AV.		
2437.00(F)	-32.22	28.07	94.4	57.5	90.3	53.4	N/A	N/A	N/A	N/A	182.7	1.05
2415.73	-32.18	28.03	71.2	50.1	67.1	45.9	74.0	54.0	-6.9	-8.1	195.2	1.00
2457.64	-32.23	28.11	67.2	45.6	63.1	41.5	74.0	54.0	-10.9	-12.5	194.6	1.00
2483.50	-32.19	28.17	52.4	44.7	48.4	40.7	74.0	54.0	-25.6	-13.3	124.3	1.14
4874.00	-30.28	33.70	49.8		53.2		74.0	54.0	-20.8		162.8	1.21
7311.00	-29.07	36.35	48.7	*	56.0	*	74.0	54.0	-18.0	*	247.6	1.17

Antenna Polarization : Vertical

$\begin{array}{\|l} \text { Frequency } \\ (\mathrm{MHz}) \end{array}$	Correct Factor (dB)	Ant. Factor (dB/m)	Reading Data ($\mathrm{dB} \mu \mathrm{V}$)		Emission Level ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)		Limit ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)		Margin (dB)		$\underset{\left({ }^{\circ}\right)}{A Z}$	$\begin{aligned} & \mathrm{EL} \\ & (\mathrm{~m}) \end{aligned}$
			PK.	AV.	PK.	AV.	PK.	AV.	PK.	AV.		
2437.00(F)	-32.22	28.61	94.3	55.3	90.7	51.7	N/A	N/A	N/A	N/A	176.1	1.71
2415.86	-32.18	28.03	68.4	45.2	64.2	41.0	74.0	54.0	-9.8	-13.0	181.3	1.70
2457.34	-32.23	28.11	65.8	44.4	61.7	40.3	74.0	54.0	-12.3	-13.7	178.6	1.67
2483.50	-32.19	28.17	54.2	43.5	50.1	39.4	74.0	54.0	-23.9	-14.6	184.2	1.72
4874.00	-30.28	33.70	49.1	*	52.5	*	74.0	54.0	-21.5	*	52.4	1.34
7311.00	-29.07	36.35	48.5	*	55.8	*	74.0	54.0	-18.2	*	341.8	1.10

NOTE :

1. Measurement uncertainty is $+/-2 \mathrm{~dB}$.
2. "*": The Peak reading value also meets average limit and measurement with the average detector is unnecessary.
3. Emissiom Level = Reading Value + Ant. Factor + Correct Factor (incl.:Cable Loss and Pre-Amplifier Gain)
4. The field strength of other emission frequencies were very low against the limit.
5. (F):The field stregth of fundamental frequency.

Spectrum Research \& Testing Lab,. Inc. SR So. $101-10$, Ling, No. Shan--Tong Li, Chung-Li City, Taoyuan, Taiwan	TEST REPORT	Reference No.: C05070702 Report No.:FCCC05070702 FCC ID: I4L-MS6833B Page:23 of 64 Date: July 22, 2005

Temperature:	$22^{\circ} \mathrm{C}$	Humidity:	55 \%RH
Frequency Range:	$1-25 \mathrm{GHz}$	Measured Distance:	3 m
Receiver Detector:	PK. or AV.	Tested Mode:	IEEE 802.11g
Tested By:	Hugo Yeh	Tested Channel:	CH 11: 2462 MHz
Tested Date:	July 21, 2005	Modulation Type:	OFDM

Antenna Polarization : Horizontal

Frequency (MHz)	Correct Factor (dB)	Ant. Factor (dB/m)	Reading Data ($\mathrm{dB} \mu \mathrm{V}$)		Emission Level ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)		Limit ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)		Margin (dB)		$\underset{\left({ }^{\circ}\right)}{A Z}$	$\begin{aligned} & \text { EL } \\ & (\mathrm{m}) \end{aligned}$
			PK.	AV.	PK.	AV.	PK.	AV.	PK.	AV.		
2462.00(F)	-32.22	28.12	93.4	60.1	89.3	56.0	N/A	N/A	N/A	N/A	182.4	1.00
2474.50	-32.20	28.15	68.2	47.0	64.1	42.9	74.0	54.0	-9.9	-11.1	180.7	1.00
2483.50	-32.19	28.17	62.9	44.6	58.9	40.6	74.0	54.0	-15.1	-13.4	176.8	1.05
2448.25	-32.24	28.10	69.6	46.8	65.4	42.6	74.0	54.0	-8.6	-11.4	245.8	1.00
4924.00	-30.23	33.74	47.8		51.3		74.0	54.0	-22.7	*	163.9	1.07
7386.00	-28.94	36.41	46.3	*	53.8	*	74.0	54.0	-20.2	*	28.7	1.00

Antenna Polarization : Vertical

$\begin{array}{\|l} \text { Frequency } \\ (\mathrm{MHz}) \end{array}$	Correct Factor (dB)	Ant. Factor (dB/m)	Reading Data ($\mathrm{dB} \mu \mathrm{V}$)		Emission Level ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)		Limit ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)		Margin (dB)		$\underset{\left({ }^{\circ}\right)}{A Z}$	$\begin{aligned} & \text { EL } \\ & (\mathrm{m}) \end{aligned}$
			PK.	AV.	PK.	AV.	PK.	AV.	PK.	AV.		
2462.00(F)	-32.22	28.69	93.9	56.7	90.4	53.2	N/A	N/A	N/A	N/A	162.8	1.67
2474.00	-32.20	28.15	66.9	46.3	62.8	42.3	74.0	54.0	-11.2	-11.7	163.4	1.68
2483.50	-32.19	28.17	58.5	44.4	54.4	40.3	74.0	54.0	-19.6	-13.7	167.1	1.60
2450.20	-32.24	28.10	72.4	47.7	68.3	43.6	74.0	54.0	-5.7	-10.4	175.6	1.59
4924.00	-30.23	33.74	47.5	*	51.0	*	74.0	54.0	-23.0	*	114.2	1.42
7386.00	-28.94	36.41	46.1	*	53.6	*	74.0	54.0	-20.4	*	24.3	1.37

NOTE :

1. Measurement uncertainty is $+/-2 \mathrm{~dB}$.
2. "*": The Peak reading value also meets average limit and measurement with the average detector is unnecessary.
3. Emissiom Level = Reading Value + Ant. Factor + Correct Factor (incl.:Cable Loss and Pre-Amplifier Gain)
4. The field strength of other emission frequencies were very low against the limit.
5. (F):The field stregth of fundamental frequency.

	TEST REPORT	Reference No.: C05070702 Report No.:FCCC05070702 FCC ID: I4L-MS6833B Page:24 of 64 Date: July 22, 2005

Temperature:	$22^{\circ} \mathrm{C}$	Humidity:	55 \%RH
Frequency Range:	$1-25 \mathrm{GHz}$	Measured Distance:	3 m
Receiver Detector:	PK. or AV.	Tested Mode:	IEEE 802.11b
Tested By:	Hugo Yeh	Tested Channel:	CH 1: 2412MHz
Tested Date:	July 25, 2005	Modulation Type:	CCK

Antenna Polarization : Horizontal

$\begin{array}{\|l} \text { Frequency } \\ (\mathrm{MHz}) \end{array}$	Correct Factor (dB)	Ant. Factor (dB/m)	Reading Data ($\mathrm{dB} \mu \mathrm{V}$)		Emission Level ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)		Limit ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)		Margin (dB)		$\underset{\left({ }^{\circ}\right)}{A Z}$	$\begin{aligned} & E L \\ & (m) \end{aligned}$
			PK.	AV.	PK.	AV.	PK.	AV.	PK.	AV.		
2412.00(F)	-32.18	28.02	101.2	83.2	97.0	79.0	N/A	N/A	N/A	N/A	168.6	1.00
2400.00	-32.16	28.00	60.5	47.9	56.3	43.8	74.0	54.0	-17.7	-10.3	173.4	1.05
2402.25	-32.16	28.00	68.5	54.0	64.3	49.8	74.0	54.0	-9.7	-4.2	164.9	1.00
2421.63	-32.19	28.04	69.8	49.5	65.6	45.3	74.0	54.0	-8.4	-8.7	96.4	1.00
4824.00	-30.41	33.66	47.4	*	50.6		74.0	54.0	-23.4		103.5	1.24
7236.00	-28.98	36.29	46.1	*	53.4	*	74.0	54.0	-20.6	*	246.8	1.30

Antenna Polarization : Vertical

$\underset{(\mathrm{MHz})}{\mathrm{Frequency}}$ (MHz)	Correct Factor (dB)	Ant. Factor (dB/m)	Reading Data ($\mathrm{dB} \mu \mathrm{V}$)		Emission Level ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)		$\underset{(\mathrm{dB} \mu \mathrm{~V} / \mathrm{m})}{\mathrm{Limit}}$		Margin (dB)		$\underset{\left({ }^{\circ}\right)}{A Z}$	$\begin{aligned} & \mathrm{EL} \\ & (\mathrm{~m}) \end{aligned}$
			PK.	AV.	PK.	AV.	PK.	AV.	PK.	AV.		
2412.00(F)	-32.18	28.56	98.3	82.1	94.7	78.5	N/A	N/A	N/A	N/A	179.9	2.19
2400.00	-32.16	28.00	57.9	46.1	53.7	41.9	74.0	54.0	-20.3	-12.1	182.4	1.84
2403.13	-32.16	28.01	68.2	50.9	64.1	46.7	74.0	54.0	-9.9	-7.3	182.3	1.83
2422.00	-32.20	28.04	67.5	50.3	63.3	46.1	74.0	54.0	-10.7	-7.9	180.9	1.89
4824.00	-30.41	33.66	48.6	*	51.8	*	74.0	54.0	-22.2	*	154.7	1.14
7236.00	-28.98	36.29	44.1	*	51.4	*	74.0	54.0	-22.6	*	341.6	1.11

NOTE :

1. Measurement uncertainty is $+/-2 \mathrm{~dB}$.
2. "*": The Peak reading value also meets average limit and measurement with the average detector is unnecessary.
3. Emissiom Level = Reading Value + Ant. Factor + Correct Factor (incl.:Cable Loss and Pre-Amplifier Gain)
4. The field strength of other emission frequencies were very low against the limit.
5. (F):The field stregth of fundamental frequency.

	TEST REPORT	Reference No.: C05070702 Report No.:FCCC05070702 FCC ID: I4L-MS6833B Page:25 of 64 Date: July 22, 2005

Temperature:	$22^{\circ} \mathrm{C}$
Frequency Range:	$\frac{1-25 \mathrm{GHz}}{\text { Receiver Detector: }}$
Tested By:	PK. or AV.
Tested Date:	Jugo Yeh

Humidity:	55 \%RH
Measured Distance:	3m
Tested Mode:	IEEE 802.11b
Tested Channel:	CH 6: 2437MHz
Modulation Type:	CCK

Antenna Polarization : Horizontal

Frequency (MHz)	Correct Factor (dB)	Ant. Factor (dB/m)	Reading Data ($\mathrm{dB} \mu \mathrm{V}$)		Emission Level ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)		Limit ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)		Margin (dB)		$\begin{aligned} & A Z \\ & \left({ }^{\prime}\right) \end{aligned}$	$\begin{aligned} & \mathrm{EL} \\ & (\mathrm{~m}) \end{aligned}$
			PK.	AV.	PK.	AV.	PK.	AV.	PK.	AV.		
2437.00(F)	-32.22	28.07	97.4	79.1	93.3	74.9	N/A	N/A	N/A	N/A	191.3	1.00
2427.51	-32.20	28.05	58.9	50.8	54.7	46.6	74.0	54.0	-19.3	-7.4	180.6	1.00
2425.38	-32.20	28.05	60.9	44.2	56.8	40.1	74.0	54.0	-17.2	-13.9	186.4	1.14
2447.63	-32.24	28.09	63.7	45.9	59.6	41.7	74.0	54.0	-14.4	-12.3	185.3	1.00
4874.00	-30.28	33.70	49.6		53.0		74.0	54.0	-21.0		13.8	1.34
7311.00	-29.07	36.35	48.4	*	55.7	*	74.0	54.0	-18.3	*	42.9	1.02

Antenna Polarization : Vertical

$\begin{aligned} & \text { Frequency } \\ & (\mathrm{MHz}) \end{aligned}$	Correct Factor (dB)	Ant. Factor (dB/m)	Reading Data ($\mathrm{dB} \mu \mathrm{V}$)		Emission Level ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)		Limit ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)		Margin (dB)		$\underset{\left({ }^{\circ}\right)}{A Z}$	$\begin{aligned} & \mathrm{EL} \\ & (\mathrm{~m}) \end{aligned}$
			PK.	AV.	PK.	AV.	PK.	AV.	PK.	AV.		
2437.00(F)	-32.22	28.61	96.2	80.5	92.6	76.9	N/A	N/A	N/A	N/A	271.3	1.57
2427.49	-32.20	28.05	65.0	50.4	60.9	46.3	74.0	54.0	-13.1	-7.7	82.3	1.62
2425.00	-32.20	28.05	56.8	45.7	52.6	41.5	74.0	54.0	-21.4	-12.5	76.1	1.51
2446.25	-32.23	28.09	63.9	51.0	59.7	46.9	74.0	54.0	-14.3	-7.1	86.7	1.53
4874.00	-30.28	33.70	47.6	*	51.0	*	74.0	54.0	-23.0	*	112.4	1.34
7311.00	-29.07	36.35	45.1	*	52.4	*	74.0	54.0	-21.6	*	270.6	1.84

NOTE :

1. Measurement uncertainty is $+/-2 \mathrm{~dB}$.
2. "*": The Peak reading value also meets average limit and measurement with the average detector is unnecessary.
3. Emissiom Level = Reading Value + Ant. Factor + Correct Factor (incl.:Cable Loss and Pre-Amplifier Gain)
4. The field strength of other emission frequencies were very low against the limit.
5. (F):The field stregth of fundamental frequency.

Spectrum Research \& Testing Lab,. Inc. SR So. $101-10$, Ling, No. Shan--Tong Li, Chung-Li City, Taoyuan, Taiwan	TEST REPORT	Reference No.: C05070702 Report No.:FCCC05070702 FCC ID: I4L-MS6833B Page:26 of 64 Date: July 22, 2005

Temperature:	$22^{\circ} \mathrm{C}$	Humidity:	55 \%RH
Frequency Range:	$1-25 \mathrm{GHz}$	Measured Distance:	3 m
Receiver Detector:	PK. or AV.	Tested Mode:	IEEE 802.11b
Tested By:	Hugo Yeh	Tested Channel:	CH 11: 2462 MHz
Tested Date:	July 25, 2005	Modulation Type:	CCK

Antenna Polarization : Horizontal

Frequency (MHz)	Correct Factor (dB)	Ant. Factor (dB/m)	ReadingData ($\mathrm{dB} \mu \mathrm{V}$)		Emission Level ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)		Limit ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)		Margin (dB)		$\begin{aligned} & A Z \\ & \left({ }^{\prime}\right) \end{aligned}$	$\begin{aligned} & \mathrm{EL} \\ & (\mathrm{~m}) \end{aligned}$
			PK.	AV.	PK.	AV.	PK.	AV.	PK.	AV.		
2462.00(F)	-32.22	28.12	96.4	76.4	92.3	72.3	N/A	N/A	N/A	N/A	23.7	1.00
2472.25	-32.20	28.14	65.7	51.0	61.6	46.9	74.0	54.0	-12.4	-7.1	329.7	1.00
2452.25	-32.24	28.10	63.7	51.1	59.5	47.0	74.0	54.0	-14.5	-7.0	334.1	1.01
2483.50	-32.19	28.17	53.6	43.3	49.6	39.3	74.0	54.0	-24.4	-14.7	304.5	1.50
4924.00	-30.23	33.74	47.6		51.1		74.0	54.0	-22.9		158.4	1.08
7386.00	-28.94	36.41	46.1	*	53.6	*	74.0	54.0	-20.4	*	238.1	1.15

Antenna Polarization : Vertical

$\begin{aligned} & \text { Frequency } \\ & (\mathrm{MHz}) \end{aligned}$	Correct Factor (dB)	Ant. Factor (dB/m)	ReadingData ($\mathrm{dB} \mu \mathrm{V}$)		Emission Level ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)		$\underset{(\mathrm{dB} \mu \mathrm{~V} / \mathrm{m})}{\mathrm{Limit}}$		Margin (dB)		$\underset{\left({ }^{\circ}\right)}{A Z}$	$\begin{aligned} & \mathrm{EL} \\ & (\mathrm{~m}) \end{aligned}$
			PK.	AV.	PK.	AV.	PK.	AV.	PK.	AV.		
2462.00(F)	-32.22	28.69	95.3	76.9	91.8	73.4	N/A	N/A	N/A	N/A	349.1	1.15
2471.88	-32.21	28.14	64.6	50.7	60.5	46.7	74.0	54.0	-13.5	-7.3	337.1	1.03
2483.50	-32.19	28.17	52.4	43.2	48.4	39.2	74.0	54.0	-25.6	-14.8	329.7	1.05
2452.88	-32.24	28.10	63.8	50.4	59.7	46.3	74.0	54.0	-14.3	-7.7	328.6	1.08
4924.00	-30.23	33.74	48.6	*	52.1	*	74.0	54.0	-21.9	*	279.1	1.02
7386.00	-28.94	36.41	47.2		54.7	*	74.0	54.0	-19.3	*	167.1	1.11

NOTE :

1. Measurement uncertainty is $+/-2 \mathrm{~dB}$.
2. "*": The Peak reading value also meets average limit and measurement with the average detector is unnecessary.
3. Emissiom Level = Reading Value + Ant. Factor + Correct Factor (incl.:Cable Loss and Pre-Amplifier Gain)
4. The field strength of other emission frequencies were very low against the limit.
5. (F):The field stregth of fundamental frequency.

 Testing Lab., Inc. SR/ No. 101-10, Ling 8, Shan-Tong Li, Chung-Li City, Taoyuan, Taiwan	TEST REPORT	Reference No.:C05070702 Report No.:FCCC05070702
FCC ID: I4L-MS6833B		
Page:27 of 64		
Pate: July 22, 2005		

4.3 6dBc BANDWIDTH TEST

4.3.1 LIMIT

FCC Part15, Subpart C Section 15.247(2). The minimum 6 dB bandwidth shall be at least 500 kHz .

4.3.2 TEST EQUIPMENT

The following test equipment was used during the test:

EQUIPMENT/ FACILITIES	SPECIFICATIONS	MANUFACTURER	MODEL\#/ SERIAL\#	 CAL. CENTER
SPECTRUM	$9 \mathrm{kHz-7GHz}$	 SCHWARZ	FSP7/ $839511 / 010$	APR. 2006 R\&S

NOTE: The calibration interval of the above test equipment is one year and the calibrations are traceable to NML/ROC and NIST/USA.

4.3.3 TEST SET-UP

The EUT was connected to a spectrum through a 50Ω RF cable.

4.3.4 TEST PROCEDURE

The EUT was operating in the transmitter mode and could control its channels. The test result was printed by the hard copy function of the spectrum.

4.3.5 EUT OPERATING CONDITION

Same as section 4.1.5 of this report.

Spectrum Research \& Testing Lab., Inc. No. 101-10, Ling 8, Shan-Tong Li, Chung-Li City, Taoyuan, Taiwan	TEST REPORT	Reference No.:C05070702 Report No.:FCCC05070702 FCC ID: I4L-MS6833B Page:28 of 64 Date: July 22, 2005

4.3.6 TEST RESULT

Temperature:	$23^{\circ} \mathrm{C}$
Spectrum Detector:	PK.
Tested By:	Hugo Yeh
Tested Date:	July 12, 2005

Humidity:	60% RH
	IEEE 802.11 g
Modulation Type:	OFDM

CHANNEL NUMBER	CHANNEL FREQUENCY $(\mathbf{M H z})$	6dB DOWN BW $(\mathbf{M H z})$
1	2412	16.62
6	2437	16.56
11	2462	16.56

CH 1 :

Spectrum Research \& Testing Lab., Inc.
No. 101-10, Ling 8 ,
Shan-Tong Li, Chung-Li City, Taoyuan, Taiwan

Reference No.:C05070702
Report No.:FCCC05070702
FCC ID: I4L-MS6833B
Page:29 of 64
Date: July 22, 2005

CH 6:

| |
 Testing Lab., Inc.
 SR_
 No. 101-10, Ling 8,
 Shan-Tong Li, Chung-Li
 City, Taoyuan, Taiwan | TEST REPORT |
| :--- | :--- | :--- |$|$| Reference No.:C05070702 |
| :--- |
| Report No.:FCCC05070702 |
| FCC ID: I4L-MS6833B |

CH 11:

Spectrum Research \& Testing Lab., Inc.
No. 101-10, Ling 8,
Shan-Tong Li, Chung-Li City, Taoyuan, Taiwan

Reference No.:C05070702
Report No.:FCCC05070702
FCC ID: I4L-MS6833B
Page:31 of 64
Date: July 22, 2005

Temperature:	$23^{\circ} \mathrm{C}$
Spectrum Detector:	PK.
Tested By:	Hugo Yeh
Tested Date:	July 12, 2005

Humidity:	60% RH
Tested Mode: Modulation Type: IEEE 802.11b CCK	

CHANNEL NUMBER	CHANNEL FREQUENCY $(\mathbf{M H z})$	6dB DOWN BW $(\mathbf{M H z)}$
1	2412	11.36
6	2437	11.36
11	2462	11.24

CH 1 :

|
 Testing Lab., Inc.
 SR. 101-10, Ling 8,
 Shan-Tong, Li, Chung-Li
 Sity, Taoyuan, Taiwan | TEST REPORT |
| :--- | :--- | :--- |

Reference No.:C05070702
Report No.:FCCC05070702
FCC ID: I4L-MS6833B
Page:32 of 64
Date: July 22, 2005

CH 6:

Spectrum Research \& Testing Lab., Inc.
No. 101-10, Ling 8,
Shan-Tong Li, Chung-Li City, Taoyuan, Taiwan

Reference No.:C05070702
Report No.:FCCC05070702
FCC ID: I4L-MS6833B
Page: 33 of 64
Date: July 22, 2005

CH 11:

Spectrum Research \& Testing Lab., Inc. No. 101-10, Ling 8, Shan-Tong Li, Chung-Li City, Taoyuan, Taiwan	TEST REPORT	Reference No.:C05070702
		Report No.:FCCC05070702
		FCC ID: I4L-MS6833B
		Page:34 of 64
		Date: July 22, 2005

4.4 PEAK POWER TEST

4.4.1 LIMIT

FCC Part15, Subpart C Section 15.247

FREQUENCY RANGE(MHz)	LIMIT(W)
$902-928$	$1(30 \mathrm{dBm})$
$2400-2483.5$	$1(30 \mathrm{dBm})$
$5725-5850$	$1(30 \mathrm{dBm})$

4.4.2 TEST EQUIPMENT

The following test equipment was used during the test:

EQUIPMENT/ FACILITIES	SPECIFICATIONS	MANUFACTURER	MODEL\#/ SERIAL\#	 CAL. CENTER
SPECTRUM	$9 \mathrm{kHz-7GHz}$	 SCHWARZ	FSP7/ $839511 / 010$	APR. 2006 R\&S
POWER METER	N/A	BOONTON	$4232 A /$ 29001	MAY 2006 ETC
POWER SENSOR	DC-8GHz 50Ω	BOONTON	51011 EMC/ 31181	NOV. 2005 ETC

[^0]
4.4.3 TEST SET-UP

The EUT was connected to a spectrum through a 50Ω RF cable.

4.4.4 TEST PROCEDURE

The EUT was operating in transmitter mode and could control its channel.
Printed out the test result from the spectrum by hard copy function.
Recorded the read value of the power meter.

4.4.5 EUT OPERATING CONDITION

Same as section 4.1.5 of this report.

Spectrum Research \& Testing Lab., Inc. No. 101-10, Ling 8, Shan-Tong Li, Chung-Li City, Taoyuan, Taiwan	TEST REPORT	Reference No.:C05070702
		Report No.: FCCC05070702
		FCC ID: 14L-MS6833B
		Page:36 of 64
		Date: July 22, 2005

4.4.6 TEST RESULT

Temperature:	$23^{\circ} \mathrm{C}$	Humidity:	60\%RH
Spectrum Detector:	PK.	Tested Mode:	IEEE 802.11g
Tested By:	Hugo Yeh	Modulation Type:	OFDM
Tested Date:	July 12, 2005		

CHANNEL NUMBER	CHANNEL FREQUENCY $(\mathbf{M H z})$	PEAK POWER OUTPUT $(\mathbf{d B m})$
1	2412	12.25
6	2437	13.14
11	2462	12.11

CH 1:

Spectrum Research \& Testing Lab., Inc.
No. 101-10, Ling 8,
Shan-Tong Li, Chung-Li City, Taoyuan, Taiwan

Reference No.:C05070702
Report No.:FCCC05070702
FCC ID: I4L-MS6833B
Page:37 of 64
Date: July 22, 2005

CH 6:

CH 11:

Spectrum Research \& Testing Lab., Inc. No. 101-10, Ling 8, Shan-Tong Li, Chung-Li City, Taoyuan, Taiwan	TEST REPORT	Reference No.:C05070702
		Report No.:FCCC05070702
		FCC ID: I4L-MS6833B
		Page:38 of 64
		Date: July 22, 2005

CH 1:

Reference No.:C05070702
Report No.:FCCC05070702
FCC ID: I4L-MS6833B
Page:39 of 64
Date: July 22, 2005

CH 6:

CH 11:

Spectrum Research \& Testing Lab,, Inc. SRJ. No. 101-10, Ling 8, Nhan-Tong Li, Chung-Li City, Taoyuan, Taiwan	TEST REPORT	Reference No.:C05070702 Report No.:FCCC05070702 FCC ID: I4L-MS6833B Page:40 of 64 Date: July 22, 2005

4.5 BAND EDGE TEST

4.5.1 LIMIT

FCC Part15, Subpart C Section 15.247. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

OPERATING FREQUENCY RANGE (MHz)	SPURIOUS EMISSION FREQUENCY (MHz)	LIMIT	
		Peak power ration to emission(dBc)	Emission level(dBuV/m)
$902-928$	<902	>20	NA
	>928	>20	NA
	$960-1240$	NA	54
$2400-2483.5$	<2400	>20	NA
	$>2483.5-2500$	NA	54
$5725-5850$	$<5350-5460$	NA	54
	<5725	>20	NA
	>5850	>20	NA

4.5.2 TEST EQUIPMENT

The following test equipment was used during the test:

EQUIPMENT/ FACILITIES	SPECIFICATIONS	MANUFACTURER	MODEL\#/ SERIAL\#	 CAL. CENTER
SPECTRUM	$9 \mathrm{kHz-7GHz}$	 SCHWARZ	FSP7/ $839511 / 010$	APR. 2006 R\&S
SPECTRUM	$9 \mathrm{KHz-26.5GHz}$	HP	$8953 E /$ $3710 A 03220$	MAY 2006 ETC
PRE-AMPLIFIER	$1 \mathrm{GHz-26.5GHz}$ Gain:30dB(typ.)	HP	$8449 B /$ $3008 A 01019$	NOV. 2005 ETC
HORN ANTENNA	1 GHz to 18GHz	EMCO	$3115 /$ $9602-4681$	DEC. 2005 ETC
OATS	$3-10 \mathrm{M}$ measurement	SRT	SRT-1	APR. 2006 SRT

NOTE: The calibration interval of the above test equipment is one year and the calibrations are traceable to NML/ROC and NIST/USA.

4.5.3 TEST SET-UP

FOR RF CONDUCTED TEST (dBc)

The EUT was connected to a spectrum through a 50Ω RF cable.

FOR RADIATED EMISSION TEST

NOTE :

1. The EUT system was put on a wooden table with 0.8 m heights above a ground plane.
2. For the actual test configuration, please refer to the photos of testing.

 Testing Lab., Inc. SR		
So. 101-10, Ling 8, Shan-Tong Li, Chung-Li Sity, Taoyuan, Taiwan	TEST REPORT	Reference No.:C05070702 Report No.:FCCC05070702

4.5.4 TEST PROCEDURE

1. The EUT was operating in transmitter mode and could be controlled its channel. Printed out the test result from the spectrum by hard copy function.
2. The EUT was tested according to the requirement of ANSI C63.4 and CISPR 22. The measurements were made at an open area test site with 10 meter measurement distance under 1 GHz and with 3 m distance above 1 GHz . The frequency spectrum measured started from 30 MHz . Under 1 GHz . All readings were quasi-peak values with 120 kHz resolution bandwidth of the test receiver. Above 1 GHz , the measurements were made at an open area test site with 3 meter measurement distance and all readings were peak and average values with 1 MHz resolution bandwidth of the test receiver. The EUT system was operated in all typical methods by users. The cables connected to EUT and support units were moved to find the maximum emission levels for each frequency.

4.5.5 EUT OPERATING CONDITION

Same as section 4.1.5 of this report.

Spectrum Research \&Testing Lab., Inc.SRT,So. $101-10$, Ling 8, No. Shan-Tong Li, Chung-Li City, Taoyuan, Taiwan	TEST REPORT	Reference No.:C05070702 Report No.:FCCC05070702 FCC ID: I4L-MS6833B Page:43 of 64 Date: July 22, 2005

4.5.6 TEST RESULT

Temperature:	$23^{\circ} \mathrm{C}$	Humidity:	60\%RH
Spectrum Detector:	PK. \& AV.	Tested Mode:	IEEE 802.11g
Tested By:	Hugo Yeh	Modulation Type:	OFDM
Tested Date:	July 12, 2005		

1.Conducted test

Frequency $(\mathbf{M H z})$	PEAK POWER OUTPUT $(\mathbf{d B m})$	Emission read Value(dBm)	Result of Band edge $(\mathbf{d B c})$	Band edge LIMIT $(\mathbf{d B c})$
<2400	-2.45	-48.33	45.88	$>20 \mathrm{dBc}$
>2483.5	-2.30	-44.59	42.29	$>20 \mathrm{dBc}$

2.Radiated emission test

Frequency $(\mathbf{M H z})$	Antenna polarization $(\mathbf{H} / \mathbf{V})$	Reading $(\mathbf{d B u V})$		Emission $(\mathbf{d B u V} / \mathbf{m})$		Band edge Limit $(\mathbf{d B u V} / \mathbf{m})$	
		PK	AV	PK	AV	PK	AV
<2400	V	69.8	46.2	65.6	42.0	74.0	54.0
>2483.5	V	68.2	47.0	64.1	42.9	74.0	54.0

SR ${ }_{\text {- }}^{\text {d }}$.	Spectrum Research \& Testing Lab., Inc. No. 101-10, Ling 8, Shan-Tong Li, Chung-Li City, Taoyuan, Taiwan	TEST REPORT	Reference No.:C05070702
			Report No.:FCCC05070702
			FCC ID: I4L-MS6833B
			Page:44 of 64
			Date: July 22, 2005

<2400MHz

Spectrum Research \& Testing Lab., Inc. SRJ. 101-10, Ling 8, No. Shan-Tong Li, Chung-Li City, Taoyuan, Taiwan	TEST REPOR	Reference No.:C05070702 Report No.:FCCC05070702 FCC ID: I4L-MS6833B Page:45 of 64 Date: July 22, 2005

>2483.5MHz

Spectrum Research \& Testing Lab., Inc. No. 101-10, Ling 8, Shan-Tong Li, Chung-Li City, Taoyuan, Taiwan	TEST REPORT	Reference No.:C05070702
		Report No.:FCCC05070702
		FCC ID: I4L-MS6833B
		Page:46 of 64
		Date: July 22, 2005

Temperature:	$23^{\circ} \mathrm{C}$
Spectrum Detector:	PK. \& AV.
Tested By:	Shin Chou
	May 04, 2005

Humidity:
Tested Mode:
Modulation Type:

60\%RH
IEEE 802.11b
CCK
1.Conducted test

Frequency $(\mathbf{M H z})$	PEAK POWER OUTPUT $(\mathbf{d B m})$	Emission read Value(dBm)	Result of Band edge $(\mathbf{d B c})$	Band edge LIMIT (dBc)
<2400	3.05	-54.18	57.23	$>20 \mathrm{dBc}$
>2483.5	2.54	-49.53	52.07	$>20 \mathrm{dBc}$

2.Radiated emission test

Frequency $\mathbf{(M H z)}$	Antenna polarization (H / V)	Reading $(\mathbf{d B u V})$		Emission $(\mathbf{d B u V} / \mathbf{m})$		Band edge Limit $(\mathbf{d B u V} / \mathbf{m})$	
	PK	AV	PK	AV	PK	AV	
<2400	V	68.5	54.0	64.3	49.8	74.0	54.0
>2483.5	H	65.7	51.0	61.6	46.9	74.0	54.0

Spectrum Research \& Testing Lab., Inc.
No. 101-10, Ling 8,
Shan-Tong Li, Chung-Li City, Taoyuan, Taiwan

Reference No.:C05070702
Report No.:FCCC05070702
FCC ID: I4L-MS6833B
Page:47 of 64
Date: July 22, 2005
<2400MHz

Spectrum Research \& Testing Lab., Inc.
No. 101-10, Ling 8,
Shan-Tong Li, Chung-Li City, Taoyuan, Taiwan

Reference No.:C05070702
Report No.:FCCC05070702
FCC ID: I4L-MS6833B
Page:48 of 64
Date: July 22, 2005

$>2483.5 \mathrm{MHz}$

4.6 POWER DENSITY TEST

4.6.1 LIMIT

FCC Part15, Subpart C Section 15.247

FREQUENCY RANGE (MHz)	Limit(dBm/kHz)
$9002-928$	
$2400-2483.5$	$8 \mathrm{dBm} / 3 \mathrm{kHz}$
$5725-5850$	

4.6.2 TEST EQUIPMENT

The following test equipment was used during the radiated emission test:

EQUIPMENT/ FACILITIES	SPECIFICATIONS	MANUFACTURER	MODEL\#/ SERIAL\#	 CAL. CENTER
SPECTRUM	$9 \mathrm{kHz-7GHz}$	 SCHWARZ	FSP7/ $839511 / 010$	APR. 2006 R\&S

NOTE: The calibration interval of the above test equipment is one year and the calibrations are traceable to NML/ROC and NIST/USA.

4.6.3 TEST SET-UP

The EUT was connected to a spectrum through a 50Ω RF cable.

4.6.4 TEST PROCEDURE

The EUT was operating in transmitter mode and could be controlled its channel.
Printed out the test result from the spectrum by hard copy function.

4.6.5 EUT OPERATING CONDITION

Same as section 4.1.5 of this report.

Spectrum Research \&Testing Lab., Inc.SR/No. $101-10$, Ling 8, Shan-Tong Li, Chung-Li City, Taoyuan, Taiwan	TEST REPORT	Reference No.: C05070702 Report No.:FCCC05070702 FCC ID: I4L-MS6833B Page:50 of 64 Date: July 22, 2005

4.6.6 TEST RESULT

Temperature:	$23^{\circ} \mathrm{C}$
Spectrum Detector:	PK.
Tested By: Hugo Yeh Tested Date: July 12, 2005 	

Humidity:	60% RH
Tested Mode:	IEEE 802.11 g
Modulation Type:	OFDM

CHANNEL NUMBER	CHANNEL FREQUENCY $(\mathbf{M H z})$	RF POWER LEVEL IN 3KHz BW $(\mathbf{d B m} / 3 k H z)$	MAXIMUM LIMIT $(\mathrm{dBm} / \mathbf{3 k H z})$
1	2412	-14.81	8
6	2437	-13.69	8
11	2462	-14.34	8

CH 1 :

Reference No.:C05070702
Report No.:FCCC05070702
FCC ID: I4L-MS6833B
Page:51 of 64
Date: July 22, 2005

CH 6:

Spectrum Research \& Testing Lab., Inc.
No. 101-10, Ling 8,
Shan-Tong Li, Chung-Li City, Taoyuan, Taiwan

Reference No.:C05070702
Report No.:FCCC05070702
FCC ID: I4L-MS6833B
Page:52 of 64
Date: July 22, 2005

CH 11:

Spectrum Research \& Testing Lab., Inc. No. 101-10, Ling 8, Shan-Tong Li, Chung-Li City, Taoyuan, Taiwan		Reference No.:C05070702
		Report No.:FCCC05070702
	TEST REPORT	FCC ID: I4L-MS6833B
		Page:53 of 64
		Date: July 22, 2005

Temperature:	$23^{\circ} \mathrm{C}$
Spectrum Detector:	PK.
Tested By:	Hugo Yeh
	July 12, 2005

Humidity:	60% RH
Tested Mode:	IEEE 802.11b
Modulation Type:	CCK

CHANNEL NUMBER	CHANNEL FREQUENCY $(\mathbf{M H z})$	RF POWER LEVEL IN 3KHz BW $(\mathbf{d B m} / 3 k H z)$	MAXIMUM LIMIT $(\mathbf{d B m} / 3 k H z)$
1	2412	-4.92	8
6	2437	-4.10	8
11	2462	-4.86	8

CH 1:

Reference No.:C05070702
Report No.:FCCC05070702
FCC ID: I4L-MS6833B
Page:54 of 64
Date: July 22, 2005

CH 6:

Reference No.:C05070702
Report No.:FCCC05070702
FCC ID: I4L-MS6833B
Page:55 of 64
Date: July 22, 2005

CH 11:

 Testing Lab., Inc.	Reference No.:C05070702	
SR/		
So. 101-10, Ling 8, Shan-Tong Li, Chung-Li City, Taoyuan, Taiwan	TEST REPORT	Report No.:FCCC05070702 ReC ID: I4L-MS6833B

4.7 RF POWER EXPOSURE EVALUATION TEST

4.7.1 LIMIT

According to the requirement of IEEE C95.1 and FCC OET Bulletin 65 .
Limits for Occupational/Controlled Exposure

Frequency Range $(\mathbf{M H z})$	Electric Field Strength(E) $(\mathbf{V} / \mathbf{m})$	Magnetic Field Strength(H) $(\mathbf{A} / \mathbf{m})$	Power density (\mathbf{S}) $\left(\mathbf{m W} / \mathbf{c m}^{2}\right)$	Averaging Time $\|\mathrm{E}\|^{2},\|\mathbf{H}\|^{2}$ or S $($ minutes $)$
$0.3-3.0$	614	1.63	$(100)^{*}$	6
$3.0-30$	$1842 / \mathrm{f}$	$4.89 / \mathrm{f}$	$\left(900 / \mathrm{f}^{2}\right)^{*}$	6
$30-300$	61.4	0.163	1.0	6
$300-1500$	--	--	$\mathrm{f} / 300$	6
$1500-100,000$	--	5	6	

Limits for General Population/Uncontrolled Exposure

Frequency Range $(\mathbf{M H z})$	Electric Field Strength(E) $(\mathbf{V} / \mathbf{m})$	Magnetic Field Strength(H) $(\mathbf{A} / \mathbf{m})$	Power density (\mathbf{S}) $\left(\mathbf{m W} / \mathbf{c m}^{2}\right)$	Averaging Time $\|\mathrm{E}\|^{2},\|\mathrm{H}\|^{2}$ or S $(\mathbf{m i n u t e s})$
$0.3-1.34$	614	1.63	$(100)^{*}$	30
$1.34-30$	$824 / \mathrm{f}$	$2.19 / \mathrm{f}$	$\left(180 / \mathrm{f}^{2}\right)^{*}$	30
$30-300$	27.5	0.073	0.2	30
$300-1500$	--	--	$\mathrm{f} / 1500$	30
$1500-100,000$	--	--	1.0	30

$\mathrm{f}=$ frequency in MHz *Plane-wave equivalent power density
NOTE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.
NOTE 2: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure.

Spectrum Research \& Testing Lab., Inc. No. 101-10, Ling 8, Shan-Tong Li, Chung-Li City, Taoyuan, Taiwan	TEST REPORT	Reference No.:C05070702
		Report No.:FCCC05070702
		FCC ID: I4L-MS6833B
		Page:57 of 64
		Date: July 22, 2005

4.7.2 TEST EQUIPMENT

The following test equipment was used during the test:

EQUIPMENT/ FACILITIES	SPECIFICATIONS	MANUFACTURER	MODEL\#/ SERIAL\#	 CAL. CENTER
POWER METER	N/A	BOONTON	$4232 A /$ 29001	MAY 2006 ETC
POWER SENSOR	DC-8GHz 50Ω	BOONTON	51011 EMC/ 31181	NOV. 2005 ETC

NOTE: The calibration interval of the above test equipment is one year and the calibrations are traceable to NML/ROC and NIST/USA.

4.7.3 TEST SET-UP

The EUT was connected to a spectrum through a 50Ω RF cable.

	TEST REPORT	Reference No.:C05070702 Report No.:FCCC05070702 FCC ID: I4L-MS6833B Page:58 of 64 Date: July 22, 2005

4.7.4 TEST PROCEDURE

1. The EUT was operating in transmitter mode and could be controlled its channel. The power meter read power value.
2. The EUT uses an sleeve dipole antenna and the antenna gain is 2 dBi declared by manufacturer.
3. As discussed in OET Bulletin 65, calculations can be made to predict RF field strength and power density levels around typical RF sources. For example, in the case of a non-directional antenna, a prediction for power density in the far-field of the antenna can be made by use of the general Equations (1) or (2) below [for conversion to electric or magnetic field strength see Equation (3) above]. These equations are generally accurate in the far-field of an antenna but will over-predict power density in the near field, where it could be used for making a" worst case" or conservative prediction.

$$
\begin{align*}
& \mathrm{S}=\mathrm{PG} / 4 \pi \mathrm{R}^{2} \tag{Eq.1}\\
& \mathrm{~S}=\mathrm{EIRP} / 4 \pi \mathrm{R}^{2} \tag{Eq.2}\\
& \mathrm{~S}=\mathrm{E}^{2} / 3770=37.7 \mathrm{H}^{2} \tag{Eq.3}
\end{align*}
$$

where: $S=$ power density $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$
$E=$ electric field strength $(\mathrm{V} / \mathrm{m})$
$H=$ magnetic field strength (A / m)
$S=$ power density (in appropriate units, e.g. $\mathrm{mW} / \mathrm{cm}^{2}$)
$P=$ power input to the antenna (in appropriate units, e.g., mW)
$\mathrm{G}=$ power gain of the antenna in the direction of interest relative to an isotropic radiator (dBi)
$\mathrm{R}=$ distance to the center of radiation of the antenna (appropriate units, e.g., cm)
where: EIRP = equivalent (or effective) isotropically radiated power.

4.7.5 EUT OPERATING CONDITION

Same as section 4.1.5 of this report.

4.7.6 RESULT

Temperature:	$23^{\circ} \mathrm{C}$
Spectrum Detector:	PK.
Tested By:	Hugo Yeh

Humidity:	60% RH
Tested Mode:	IEEE 802.11 g
Modulation Type:	OFDM

$\left.\begin{array}{|c|c|c|c|c|}\hline \text { CHANNEL } & \begin{array}{c}\text { CHANNEL } \\ \text { FUMBER }\end{array} & \begin{array}{c}\text { RF Output } \\ \text { (MHz) }\end{array} & \begin{array}{c}\text { Result } \\ \text { (mW) } \\ (\mathrm{mW})\end{array} & \begin{array}{c}\text { when nearby } \\ \text { person } \\ (\mathrm{cm})\end{array}\end{array} \begin{array}{c}\text { Limit } \\ \text { when nearby } \\ \text { person } \\ (\mathrm{cm})\end{array}\right]$

Temperature:	$23^{\circ} \mathrm{C}$	Humidity:	60\%RH
Spectrum Detector:	PK.	Tested Mode:	IEEE 802.11b
Tested By:	Hugo Yeh	Modulation Type:	CCK

CHANNEL NUMBER	CHANNEL FREQUENCY (MHz)	RF Output Power (mW)	Result calculated when nearby person (cm)	Limit when nearby person (cm)
1	2412	48.42	1.963	20
6	2437	45.19	1.896	20
11	2462	46.03	1.914	20

NOTE : The EUT uses a dipole antenna and the antenna gain is 0.5 dBi (1.12 numeric)

5. Antenna application

5.1 Antenna requirement

The EUT's antenna is met the requirement of FCC part15C section15.203 and 15.204.

FCC part15C section15.247 requirement:
Systems operating in the $2400-2483.5 \mathrm{MHz}$ band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi .

5.2 Result

The EUT's antenna used an external dipole antenna. The type of connector is coaxial connector. The antenna's gain is 2 dBi and meets the requirement.
6. PHOTOS OF TESTING

- Conducted test

- Radiated test (RX)

- Radiated test (TX)

	TEST REPORT	Reference No.:C05070702 Report No.:FCCC05070702 FCC ID: I4L-MS6833B Page:64 of 64 Date: July 22, 2005

7. TERMS OF ABRIVATION

AV.	Average detection
AZ $\left({ }^{\circ}\right)$	Turn table azimuth
Correct.	Correction
EL(m)	Antenna height (meter)
EUT	Equipment Under Test
Horiz.	Horizontal direction
LISN	Line Impedance Stabilization Network
NSA	Normalized Site Attenuation
Q.P.	Quasi-peak detection
SRT Lab	Spectrum Research \& Testing Laboratory, Inc.
Vert.	Vertical direction

[^0]: NOTE: The calibration interval of the above test equipment is one year and the calibrations are traceable to NML/ROC and NIST/USA.

