FCC TEST REPORT

for

47 CFR, Part 15, Subpart C

- Equipment : Wireless 802.11b Residential Gateway
- Model No. : MS-6811, RG11B
- FCC ID. : I4L-MS6811
- Filing Type : Certification
- Applicant : Micro-Star Int'l Co., Ltd. No. 69, Li-De St., Jung-He City, Taipei Hsien, Taiwan
- The test result refers exclusively to the test presented test model / sample.
- Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.
- Certificate or Test Report must not be used by the applicant to claim the product in this test report endorsement by NVLAP or any agency of U.S. government.

SPORTON International Inc.

6F, No.106, Sec. 1, Hsin Tai Wu Rd., Hsi Chih, Taipei Hsien, Taiwan, R.O.C.

Table of Contents

Η	listory of this test report	ii
С	ERTIFICATE OF COMPLIANCE	1
1.	General Description of Equipment under Test 1.1. Applicant. 1.2. Manufacturer 1.3. Basic Description of Equipment under Test 1.4. Feature of Equipment under Test	2 2 2
2.	Test Configuration of Equipment under Test 2.1. Test Manner 2.2. Description of Test System 2.3. Connection Diagram of Test System	4 4
3.	. Test Software	7
4.	General Information of Test. 4.1. Test Voltage 4.2. Standard for Methods of Measurement. 4.3. Test in Compliance with 4.4. Frequency Range Investigated 4.5. Test Distance	8 8 8 8
5.	Seport of Measurements and Examinations 5.1. List of Measurements and Examinations 5.2. 6dB Bandwidth 5.3. Peak Output Power 5.4. Power Spectral Density 5.5. Test of Conducted Emission 5.6. Test of Radiated Emission 5.7. Band Edges Measurement 5.8. Antenna Requirements 5.9. RF Exposure	
6.	EMI Suppression Component List	40
7.	Antenna Factor & Cable Loss	41
8.	. List of Measuring Equipments Used	42
9.	. Uncertainty of Test Site	43

History of this test report

Original Report Issue Date: Aug. 20, 2003

No additional attachment.

Additional attachment were issued as following record:

Attachment No.	Issue Date	Description

Certificate No. : F371710

CERTIFICATE OF COMPLIANCE

for

47 CFR, Part 15, Subpart C

- Equipment : Wireless 802.11b Residential Gateway
- Model No. : MS-6811, RG11B
- FCC ID. : I4L-MS6811
- Filing Type : Certification
- Applicant : Micro-Star Int'l Co., Ltd. No. 69, Li-De St., Jung-He City, Taipei Hsien, Taiwan

I HEREBY CERTIFY THAT :

The measurements shown in this test report were made in accordance with the procedures given in **ANSI C63.4 - 2001** and the equipment under test was *passed* all test items required in FCC Part 15 subpart C, relative to the equipment under test. Testing was carried out on Aug. 18, 2003 at **SPORTON International Inc.** LAB.

Use Chan Aug. 20, 2003

Alex Chen Manager

SPORTON International Inc.

6F, No.106, Sec. 1, Hsin Tai Wu Rd., Hsi Chih, Taipei Hsien, Taiwan, R.O.C.

SPORTON International Inc. TEL : 886-2-2696-2468 FAX : 886-2-2696-2255
 FCC ID.
 :
 I4L-MS6811

 Page No.
 :
 1 of 43

 Issued Date
 :
 Aug. 20, 2003

FCC TEST REPORT

1. General Description of Equipment under Test

1.1. Applicant

Micro-Star Int'l Co., Ltd. No. 69, Li-De St., Jung-He City, Taipei Hsien, Taiwan

1.2. Manufacturer

- 1. Micro-Star Int'l Co., Ltd.
 - No. 488, Ban-Nan Rd., Jung-He City, Taipei Hsien, Taiwan
- 2. MSI COMPUTER (SHENZHEN) Co., Ltd. Longma Information Technology Industrial Park, Shiyan, Tangtou Village, Shenzhen

1.3. Basic Description of Equipment under Test

: Wireless 802.11b Residential Gateway
: MS-6811, RG11B
: I4L-MS6811
: MSI
: Non-Shielded, 1m
: Shielded, 1.2m
: Linear
: Wall-Mount, 2pin
: Non-Shielded, 1.8m

1.4. Feature of Equipment under Test

	Product Feature & Specification				
1.	Host/Radio Interface	PCMCIA PC card PRISM2.5			
2.	Type of Modulation	DSSS (BDPSK, QDPSK, CCK)			
3.	Number of Channels	11			
4.	Frequency Band	2.4 ~ 2.4835GHz ISM bandwidth			
5.	Carrier Frequency of each channel	2412, 2417,, 2472, 2484			
6.	Bandwidth of each channel	22MHz			
7.	Maximum Output Power to Antenna	15.17dBm			
8.	IF & L.O. frequency	2038MHz			
9.	Type of Antenna Connector (Ex: SMA,TNC, MCX, MMCX, UFCetc)	ММСХ			
10.	Antenna Type / Class and Gain	Dipole, Omni, 1.74dBi Maximum			
11.	Function Type	Transceiver			
12.	Power Rating (DC/AC, Voltage)	3.3VDC +/- 5%			
13.	Basic function of product	WLAN			
14.	Adapter	DVE / DV-1280-3 Input: 120VAC, 60Hz, 16W Output: 12VDC, 1A			

2. Test Configuration of Equipment under Test

2.1. Test Manner

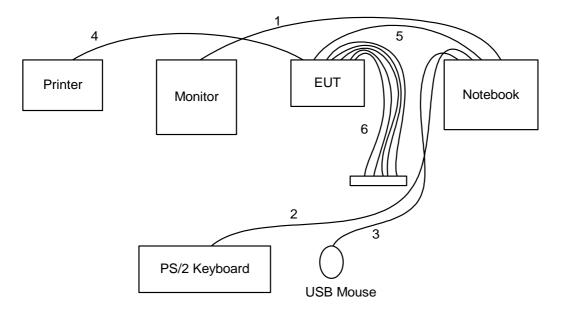
- a. The EUT has been associated with personal computer and peripherals pursuant to ANSI C63.4-2001 and configuration operated in a manner, which tended to maximize its emission characteristics in a typical application.
- b. The complete test system included COMPAQ Notebook, VIEWSONIC Monitor, COMPAQ PS/2 Keyboard, LOGITECH USB Mouse, EPSON Printer and EUT for EMI test.
- c. The following modes were pretested:
 - Mode 1. CH01 (2412MHz) Mode 2. CH06 (2437MHz)
 - Mode 3. CH11 (2462MHz)
- b. Frequency range investigated: conduction 150 KHz to 30 MHz, radiation 30 MHz to 25000MHz.

2.2. Description of Test System

Support Unit 1. -- Monitor (VIEWSONIC)

···· (- /
FCC ID	: N/A
Model No.	: VCDTS21553-3P
Power Supply Type	: Switching
Power Cord	: Non-Shielded
Serial No.	: SP0051
Data Cable	: Shielded, 1.7m
Remark	: This support device was tested to compy with FCC standards and
	authorized under a declaration of conformity

Support Unit 2 PS/2 Keyboard (COMPAQ)					
FCC ID	: N/A				
Model No.	: 6511-VA				
Serial No.	: SP0054				
Data Cable	: Shielded, 1.5m				
Remark	: This support device was tested to comply with FCC standards and				
	authorized under a declaration of conformity.				


Support Unit 3. – USB Mouse (LOGITECH)						
FCC ID	: N/A					
Model No.	: M-BE58					
Serial No.	: SP0041					
Data Cable	: Shielded, 1.7m					
Remark	: This support device was tested to comply with FCC standards and authorized under a declaration of conformity.					

Support Unit 4 Printer (EPSON)	
FCC ID	: N/A
Model No.	: STYLUS COLOR S680
Power Supply Type	: Linear
Power Cord	: Non-Shielded
Serial No.	: SP0048
Data Cable	: Shielded, 1.35m
Remark	: This support device was tested to comply with FCC standards and
	authorized under a declaration of conformity.

Support Unit 5. – Notebook (COMPAQ)

FCC ID	: N/A
Model No.	: PRESARIO 1500
Power Supply Type	: Switching
Power Cord	: Non-Shielded
Serial No.	: SP0036
Remark	: This support device was tested to comply with FCC standards and authorized under a declaration of conformity.

2.3. Connection Diagram of Test System

- 1. The I/O cable is connected from Notebook to the support unit 1.
- 2. The I/O cable is connected from Notebook to the support unit 2.
- 3. The I/O cable is connected from Notebook to the support unit 3.
- 4. The USB cable is connected from EUT to the support unit 4.
- 5. The TP cable is connected from Notebook to the EUT.
- 6. These are loop-back TP Cables.

3. Test Software

An executive program, EMCTEST.EXE under WIN XP, which generates a complete line of continuously repeating "H " pattern was used as the test software.

The program was executed as follows:

- a. Turn on the power of all equipment.
- b. The PC reads the test program from the hard disk drive and runs it.
- c. The PC sends "H" messages to the monitor, and the monitor displays "H" patterns on the screen.
- d. The PC sends "H " messages to the printer, then the printer prints them on the paper.
- e. The PC sends "H" messages to the internal Hard Disk, and the Hard Disk reads and writes the message.
- f. Repeat the steps from c to e.

At the same time, "Explorer.exe" was executed to keep transmitting signals at fixed frequency.

4. General Information of Test

Test Site Location	:	No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park,
		Kwei-Shan Hsiag, Tao Yuan Hsien, Taiwan, R.O.C.
		TEL : 886-3-327-3456
		FAX : 886-3-318-0055
Test Site No	:	CO01-HY, 03CH03-HY

4.1. Test Voltage

110V/60Hz

4.2. Standard for Methods of Measurement

ANSI C63.4-2001 for conducted power line test and radiated emission test, FCC 97-114 for test of 6dB Bandwidth FCC 97-114 for test of Maximum Peak Output Power FCC 97-114 for test of 100kHz Bandwidth of Frequency Band Edges FCC 97-114 for test of Power Spectral Density

4.3. Test in Compliance with

FCC Part 15, Subpart C 15.247

4.4. Frequency Range Investigated

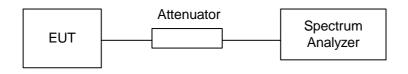
- a. Conduction: from 150 KHz to 30 MHz
- b. Radiation: from 30 MHz to 25000MHz

4.5. Test Distance

The test distance of radiated emission from antenna to EUT is 3 M.

5. Report of Measurements and Examinations

5.1. List of Measurements and Examinations

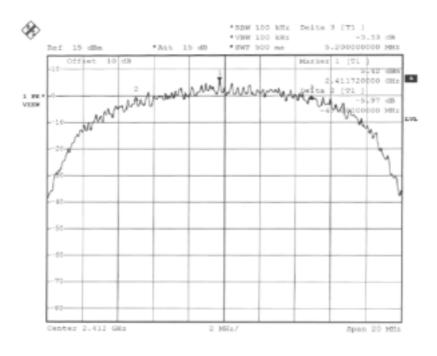

FCC Rule	Description of Test	Result	
<u>15.247(a)(2)</u>	6dB Bandwidth	Pass	
<u>15.247(b)</u>	15.247(b) Maximum Peak Output Power		
<u>15.247(d)</u>	15.247(d) Power Spectral Density 15.207 Conducted Emission		
15.207			
15.209	Radiated Emission	Pass	
<u>15.247(c)</u>	100kHz Bandwidth of Frequency Band Edges	Pass	
<u>15.203</u>	Antenna Requirement	Pass	
1.1307			
1.1310	RF Exposure Compliance	Pass	
2.1091			
2.1093			

5.2. 6dB Bandwidth

5.2.1. Measuring Instruments :

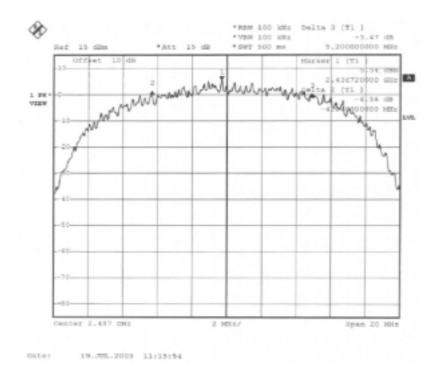
As described in chapter 7 of this test report.

- 5.2.2. Test Procedure :
 - 1. The transmitter output was connected to the spectrum analyzer through an attenuator.
 - 2. Set RBW of spectrum analyzer to 100KHz and VBW to 100KHz.
 - 3. The 6 dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6 dB.
- 5.2.3. Test Setup Layout :



5.2.4. Test Result : The spectrum analyzer plots are attached as below

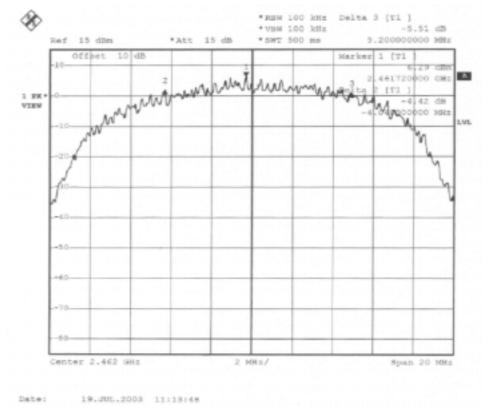
- Temperature : 26°C
- Relative Humidity : 65 %


Channel	Frequency	6dB Emission bandwidth	Limits	Plot
	(MHz)	(MHz)	(MHz)	Ref. No.
1	2412	9.92	0.5	1
6	2437	9.24	0.5	2
11	2462	9.24	0.5	3

Plot1(Channel 1):

Date: 19.JUL.2003 11:04:24

Plot2(Channel 6) :


SPORTON International Inc. TEL : 886-2-2696-2468 FAX : 886-2-2696-2255

 FCC ID.
 :
 I4L-MS6811

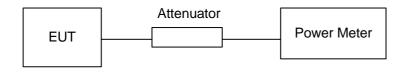
 Page No.
 :
 11 of 43

 Issued Date
 :
 Aug. 20, 2003

Plot3(Channel 11) :

Comments: 6dB Emission bandwidth>500kHz

5.3. Peak Output Power


5.3.1. Measuring Instruments :

As described in chapter 7 of this test report.

5.3.2. Test Procedure :

The antenna port (RF output) of the EUT was connected to the input (RF input) of a power meter. Power was read directly from the meter and cable loss connection was added to the reading to obtain power at the EUT antenna terminal. The EUT Output Power was set to maximum to produce the worse case test result.

5.3.3. Test Setup Layout :

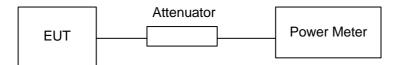
5.3.4. Test Result : See spectrum analyzer plots below

- Temperature: 26°C
- Relative Humidity: 65 %
- Antenna Gain: 1.74 dBi

Channel	Frequency (MHz)	Output Power (dBm)	Output Power (mW)	Limits (Watt/dBm)
1	2412	14.24	26.54605562	1W/30 dBm
6	2437	14.42	27.66941645	1W/30 dBm
11	2462	15.17	32.88516309	1W/30 dBm

Comments : Maximum Peak Output Power < 30dBm (1Watt)

5.4. Power Spectral Density

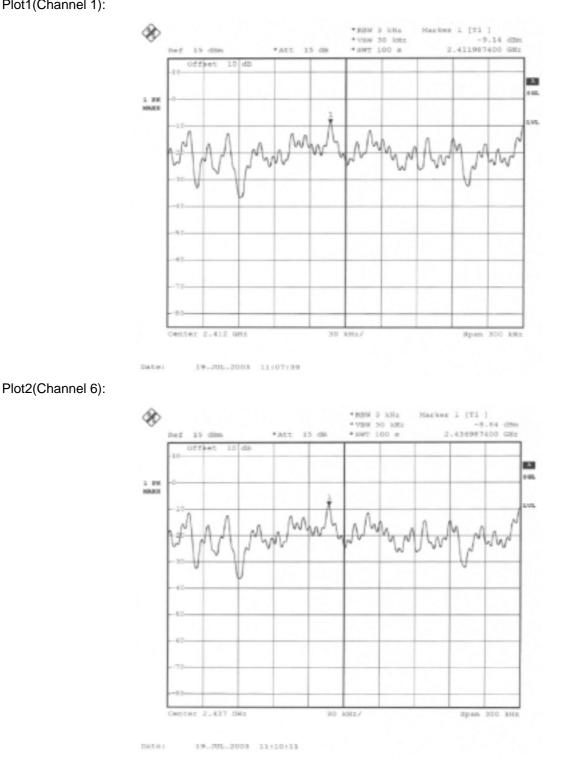

5.4.1. Measuring Instruments :

As described in chapter 7 of this test report.

5.4.2. Test Procedure :

- 1. The transmitter output was connected to spectrum analyzer through an attenuator.
- 2. The spectrum analyzer's resolution bandwidth were set at 3KHz RBW and 30KHz VBW as that of the fundamental frequency. Set the sweep time=span/3KHz.
- 3. The power spectral density was measured and recorded.
- 4. The Sweep time is allowed to be longer than span/3KHz for a full response of the mixer in the spectrum analyzer.

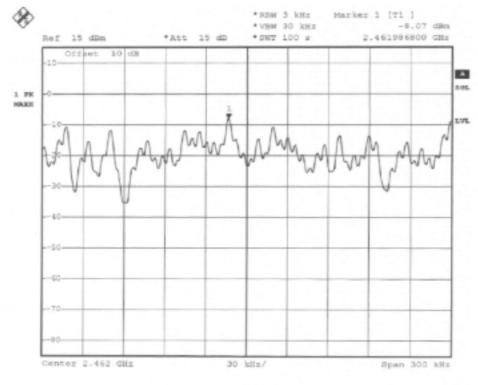
5.4.3. Test Setup Layout :



5.4.4. Test Result : See spectrum analyzer plots below

- Temperature: 26°C
- Relative Humidity: 65 %

Channe	Frequency	Power Spectral Density	Limits	Plot
	(MHz)	(dBm)	(dBm)	Ref. No.
1	2412	-9.14	8	1
6	2437	-8.84	8	2
11	2462	-8.07	8	3


Plot1(Channel 1):

SPORTON International Inc. TEL: 886-2-2696-2468 FAX : 886-2-2696-2255

FCC ID. : I4L-MS6811 : 15 of 43 Page No. Issued Date : Aug. 20, 2003

Plot3(Channel 11):

Date: 19.JUL.2003 11:12:30

5.5. Test of Conducted Emission

Conducted Emissions were measured from 150 KHz to 30 MHz with a bandwidth of 9 KHz and return leads of the EUT according to the methods defined in ANSI C63.4-2001 Section 3.1. The EUT was placed on a nonmetallic stand in a shielded room 0.8 meters above the ground plane. The interface cables and equipment positioning were varied within limits of reasonable applications to determine the position produced maximum conducted emissions.

5.5.1. Major Measuring Instruments :

Test Receiver	(R&S ESCS 30)
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

5.5.2. Test Procedures :

- a. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- b. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- c. All the support units are connect to the other LISN.
- d. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- e. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- f. Both sides of AC line were checked for maximum conducted interference.
- g. The frequency range from 150 KHz to 30 MHz was searched.
- h. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

5.5.3. Test Result of Conducted Emission :

- Test Mode: Mode 1
- Frequency Range of Test: from 150KHz to 30 MHz
- 6dB Bandwidth: 9KHz
- Temperature: 27°C
- Relative Humidity: 55 %

The test was passed at the minimum margin that marked by a frame in the following data

Site		01-HY						
	tion : CNS		CISPR-B	2003 2	001/008	LINE		
EUT		teway						
Power		0V/60Hz						
Model		-6811						
Memo	: TX	CH01						
			0ver	Limit		Probe		
	Freq	Level	Linit	Line	Level	Factor	Loss	Remark
-	2013	dBuV	dB	dBuV	dBuV	dB	dB	
			_				_	
1	0.161		-34.07					Average
2			-18.46					-
3			-17.94					
4			-36.01					Average
5			-18.35					-
6						0.10		Average
7			-17.23					-
8			-33.92					Average
9								Average
10						0.10		
11						0.10		-
12	0.601	11.97	-34.03	46.00	11.78	0.10	0.09	Average
EUT	: Gat	ALC: NOT BOT						
Power Model Memo		0V/60Hz 6811						
Node1	: 110 : MS-	0V/60Hz 6811	Over	Limit	Read	Probe	Cable	
Node1	: 110 : MS- : TX	0V/60Hz 6811 CH01	Over Limit		Read Level			Demark
Mode1	: 110 : MS- : TX	0V/60Hz 6811 CH01						Penark
Nodel Nemo	: 110 : MS- : TX Freq MHz 0.169	0V/60Hz 6811 CH01 Level dBuV 47.29	Limit dB -17.72	Line dBuV 65.01	dBuV 47.15	Bactor dB 0.10	Loss 1 dB 0.04 (Q.P
Nodel Nemo - 1 2	: 110 : MS- : TX Freq MHz 0.169 0.169	0V/60Hz 6811 CH01 Level dBuV 47.29 19.03	Limit dB -17.72 -35.98	Line dBuV 65.01 55.01	47.15 18.89	Bactor dB 0.10 0.10	4B 0.04 0.04)P Lverage
Nodel Nemo	: 110 : MS- : TX Freq 0.169 0.169 0.260	0V/60Hz 6811 CH01 Level dBuV 47.29 19.03 43.26	Limit dB -17.72 -35.98 -18.17	Line dBuV 65.01 55.01 61.43	47.15 18.89 43.09	Bactor dB 0.10 0.10 0.10	4B 0.04 (0.04) 0.07 (2P Average 2P
Nodel Nemo - 1 2 3 4	: 110 : MS- : TX Freq 0.169 0.260 0.260	0V/60Hz 6811 CH01 Level dBuV 47.29 19.03 43.26 15.32	Limit dB -17.72 -35.98 -18.17 -36.11	Line dBuV 65.01 55.01 61.43 51.43	47.15 43.09 15.15	Bactor dB 0.10 0.10 0.10 0.10 0.10	Loss 1 dB 0.04 (0.04) 0.07 (0.07))P kverage)P kverage
Nodel Nemo - 1 2 3 4 5	: 110 : MS- : TX Freq 0.169 0.260 0.260 0.408	0V/60Hz 6811 CH01 Level 47.29 19.03 43.26 15.32 41.22	-17.72 -35.98 -18.17 -36.11 -16.47	Line dBuV 65.01 55.01 61.43 51.43 57.69	47.15 18.89 43.09 15.15 41.00	Bactor dB 0.10 0.10 0.10 0.10 0.10 0.10	Loss 1 dB 0.04 (0.04 (0.07 (0.07 (0.07 (0.12 (2P Average 2P Average 2P
Nodel Nemo 1 2 3 4 5 6	: 110 : M3- : TX Freq 0.169 0.169 0.260 0.260 0.408 0.408	07/60Hz 6811 CH01 dBuV 47.29 19.03 43.26 15.32 41.22 15.51	Limit dB -17.72 -35.98 -18.17 -36.11 -16.47 -32.18	Line dBuV 65.01 55.01 61.43 51.43 57.69 47.69	47.15 18.89 43.09 15.15 41.00 15.29	Bactor dB 0.10 0.10 0.10 0.10 0.10 0.10	dB 0.04 (0.04) 0.07 (0.07) 0.12 (0.12)	2P Lverage 2P Lverage 2P
Nodel Nemo 1 2 3 4 5 6 7	: 110 : M3- : TX Freq 0.169 0.169 0.260 0.260 0.408 0.408 0.408	W/60Hz 6811 CH01 Level 47.29 19.03 43.26 15.32 41.22 15.51 40.61	Limit dB -17.72 -35.98 -18.17 -36.11 -16.47 -32.18 -16.01	Line dBuV 65.01 55.01 61.43 51.43 57.69 47.69 56.62	Level dBuV 47.15 18.89 43.09 15.15 41.00 15.29 40.40	Factor dB 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.1	dB 0.04 (0.04 (0.07 (0.07 (0.07 (0.12 (0.12 (0.11 (QP kverage QP kverage QP kverage QP
Nodel Nemo - 1 2 3 4 5 6 7 8	: 110 : M3- : TX Freq 0.169 0.169 0.260 0.260 0.260 0.408 0.408 0.408 0.408	W/60Hz 6811 CH01 dBuV 47.29 19.03 43.26 15.32 41.22 15.51 40.61 15.26	Limit dB -17.72 -35.98 -18.17 -36.11 -16.47 -32.18 -16.01 -31.36	Line dBuV 65.01 55.01 61.43 51.43 57.69 47.69 56.62 46.62	Level dBuV 47.15 18.89 43.09 15.15 41.00 15.29 40.40 15.05	Factor dB 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.1	dB 0.04 (0.04 (0.07 (0.07 (0.07 (0.12 (0.12 (0.11 (0.11 (2P Iverage 2P Iverage 2P Iverage 2P
Nodel Nemo - 1 2 3 4 5 6 7 8 9	: 110 : MS- : TX Freq 0.169 0.169 0.260 0.260 0.260 0.408 0.408 0.464 0.464 0.579	VV/60Hz 6811 CH01 Level 47.29 19.03 43.26 15.32 41.22 15.51 40.61 15.26 39.37	Limit dB -17.72 -35.98 -18.17 -36.11 -16.47 -32.18 -16.01 -31.36 -16.63	Line dBuV 65.01 61.43 51.43 57.69 47.69 56.62 46.62 56.00	Level dBuV 47.15 18.89 43.09 15.15 41.00 15.29 40.40 15.05 39.17	Factor dB 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.1	Loss 1 dB 0.04 (0.07 (0.07 (0.12 (0.12 (0.11 (0.11 (0.10 (2P Rverage 2P Rverage 2P Rverage 2P
Nodel Nemo 1 2 3 4 5 6 7 8 9 10	: 110 : MS- : TX Freq 0.169 0.260 0.260 0.260 0.408 0.408 0.408 0.464 0.579 0.579	VV/60Hz 6811 CH01 Level 47.29 19.03 43.26 15.32 41.22 15.51 40.61 15.26 39.37 12.54	Limit -17.72 -35.98 -18.17 -36.11 -16.47 -32.18 -16.01 -31.36 -16.63 -33.46	Line dBuV 65.01 55.01 61.43 51.43 57.69 47.69 56.62 46.62 56.00 46.00	Level dBuV 47.15 18.89 43.09 15.15 41.00 15.29 40.40 15.05 39.17 12.34	Factor dB 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.1	Loss 1 dB 0.04 (0.07 (0.07 (0.12 (0.12 (0.11 (0.11 (0.10 (0)	2P kverage 2P kverage 2P kverage 2P kverage
Nodel Nemo - 1 2 3 4 5 6 7 7 8 9 10 11	: 110 : MS- : TX Freq 0.169 0.260 0.260 0.260 0.260 0.408 0.408 0.408 0.464 0.464 0.579 0.579 0.579	VV/60Hz 6811 CH01 Level 47.29 19.03 43.26 15.32 41.22 15.51 15.51 15.61 15.62 39.37 12.54 37.96	Limit dB -17.72 -35.98 -18.17 -36.11 -16.47 -32.18 -16.01 -31.36 -16.63 -33.46 -18.04	Line dBuV 65.01 55.01 61.43 51.43 57.69 47.69 56.62 56.00 46.62 56.00 46.00 56.00	Level dBuV 47.15 18.89 43.09 15.15 41.00 15.29 40.40 15.05 15.01 12.34 37.77	Factor dB 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.1	Loss 1 dB 0.04 (0.07 (0.07 (0.12 (0.12 (0.11 (0.11 (0.10 (0.10 (0.10 (0.10 (0.10 (2P kverage 2P kverage 2P kverage 2P kverage 2P
Nodel Neao 1 2 3 4 5 6 7 8 9 10	: 110 : MS- : TX Freq 0.169 0.260 0.260 0.260 0.408 0.408 0.408 0.464 0.579 0.579	VV/60Hz 6811 CH01 Level 47.29 19.03 43.26 15.32 41.22 15.51 15.51 15.61 15.62 39.37 12.54 37.96	Limit -17.72 -35.98 -18.17 -36.11 -16.47 -32.18 -16.01 -31.36 -16.63 -33.46	Line dBuV 65.01 55.01 61.43 51.43 57.69 47.69 56.62 56.00 46.62 56.00 46.00 56.00	Level dBuV 47.15 18.89 43.09 15.15 41.00 15.29 40.40 15.05 39.17 12.34	Factor dB 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.1	Loss 1 dB 0.04 (0.07 (0.07 (0.12 (0.12 (0.11 (0.11 (0.10 (0.10 (0.10 (0.10 (0.10 (2P kverage 2P kverage 2P kverage 2P kverage
Nodel Nemo 1 2 3 4 5 6 7 8 9 10 11 12	: 110 : MS- : TX Freq 0.169 0.260 0.260 0.260 0.260 0.408 0.408 0.408 0.464 0.464 0.579 0.579 0.579	W/60Hz 6811 CH01 Level 47.29 19.03 43.26 15.32 41.22 15.51 15.26 39.37 12.54 37.96 12.11 7.00 2.54 37.96 12.11	Limit dB -17.72 -35.98 -18.17 -36.11 -16.47 -32.18 -16.01 -31.36 -16.63 -33.46 -18.04	Line dBuV 65.01 55.01 61.43 51.43 57.69 47.69 56.62 56.00 46.62 56.00 46.00 56.00	Level dBuV 47.15 18.89 43.09 15.15 41.00 15.29 40.40 15.05 15.01 12.34 37.77	Factor dB 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.1	Loss 1 dB 0.04 (0.07 (0.07 (0.12 (0.12 (0.11 (0.11 (0.10 (0.10 (0.10 (0.10 (0.10 (2P kverage 2P kverage 2P kverage 2P kverage 2P

SPORTON International Inc.

TEL : 886-2-2696-2468 FAX : 886-2-2696-2255

- Test Mode: Mode 2
- Frequency Range of Test: from 150KHz to 30 MHz
- 6dB Bandwidth: 9KHz
- Temperature: 27°C
- Relative Humidity: 55 %

The test was passed at the minimum margin that marked by a frame in the following data

Site Condi EUT Power Nodel Nemo	tion : CN : Ga : 110 : MS	01-HY S/VCCI/ teway 0V/60Hz -6811 CH06		2003 20	001/008	LINE		
			0ver	Limit	Read	Probe	Cable	
	Freq	Level	Limit	Line	Level	Factor	Loss	Benark
	19(z	dBuV	d10	Vullb	dBuV		dD	
	naz	anda	<u>an</u>	CTRATA.	differitiv.	CLU I	au	
1	0.164	47.17	-18.09	65.26	47.03	0.10	0.04	QP
2	0.164	21.03	-34.23	\$5.26	20.09	0.10		Average
3	0.181		-35.49	54.44	18.81	0.10		Average
4	0.181	47.17	-17.27	64.44	47.03	0.10	0.04	-
5	0.435		-32.49	47.16	14.46	0.10		Average
6	0.435	40.74	-16.4Z		40.53	0.10	0.11	
2	0.549		-16.44	56.00	39.36	0.10	0.10	
0	0.549		-33.40			0.10		Average
9	0.661		-18.8Z	56.00	36.99	0.10	0.09	
10	0.661		-35.18	46.00	10.63	0.10		Average
Site Condi EUT Power Model Memo	tion : CN : Ga : 110 : MS	01-HY S/VCCI/ teway 0V/60Hz -6811 CH06						
			0ver	Limit	Read	Probe	Cable	
	Freq	Level	Linit	Line	Level	Factor	Loss	Remark
	19(z	dBuV	Œb	dBuV	dBuV	d10	dD	
1	0.157	46.99	-18.63	65.62	46.85	0.10	0.04	QP
2	0.157	21.24	-34.38	55.62	21.10	0.10	0.04	Äverage
3	0.203	46.07	-17.42	63.49	45.93	0.10	0.04	QP
4	0.203	17.92	-35.57	53.49	17.78	0.10	0.04	Average
5	0.400	41.22	-1.6.47	\$7.69	41.00	0.10	0.12	QP
6	0.408	15.56	-3Z.13	47.69	15.34	0.10	0.12	Average
7	0.464	40.61	-16.01	56.62	40.40	0.10	0.11	QP
0	0.464	15.26	-31.36	46.62	15.05	0.10	0.11	Average
9	0.579	12.48	-33.52	46.00	12.28	0.10	0.10	Average
10	0.579	39.33	-16.67	56.00	39.13	0.10	0.10	QP
11		44.44	-10.17	56.00	36.64	0.10	0.09	0.0
12	0.679	30.03	-19.17	36.00	30.04	0.10	0.02	44

Test Engineer:

John Huang

SPORTON International Inc. TEL : 886-2-2696-2468 FAX : 886-2-2696-2255

FCC TEST REPORT

- Test Mode: Mode 3
- Frequency Range of Test: from 150KHz to 30 MHz
- 6dB Bandwidth: 9KHz
- Temperature: 27°C
- Relative Humidity: 55 %

The test was passed at the minimum margin that marked by a frame in the following data

Site	: COC							
	on : CN2		ISPR-B	2003 20	01/008	LINE		
EUT	: Gat							
Power		V/60Hz						
Model	: MS-							
Meno	: TX	CH11						
			0ver			Probe		
	Freq	Level	Limit	Line	Level	Factor	Loss	Denark
_	Marz	d≣uV	dill	d∎u⊽	dBuV	đđ	dD	
1	0.158	46.97	-18.62	65.59	46.83	0.10	0.04	QP
2	0.150	21.14	-34.45	55.59	21.00	0.10	0.04	Average
3	0.188	46.92	-17.20	64.12	46.78	0.10	0.04	QP
4	0.188	18.73	-35.39	54.12	18.59	0.10	0.04	Average
5				\$7.16			0.11	
6				47.16				Average
7						0.10		
0						0.10		
9						0.10		-
10								<u>àver age</u>
11						0.10		
12	0.627	11.56	-34.44	46.00	11.37	0.10	0.09	<i>kverage</i>
te	: 000							
			CISPR-B	2003 20	01/008	NEUTRAL		
л	: Gat	-						
wer		₩/60Hz						
del	: MS-							
100	: TX	CH11						
				Limit		Probe		
	Fred	Level	Linit	Line	Level	Factor	Loss	Remark
_	MHz	dBuV	dB	dBu⊽	dBuV	æ	dB	
1	0.161	47.24	-18.19	65.43	47.10	0.10	0.04	Q.P
2	0.161	21.34	-34.09	55.43	21.20	0.10	0.04	<i>kverage</i>
3	0.179	47.42	-17.11	64.53	47.28	0.10	0.04	QP
4	0.179	19.72	-34.81	54.53	19.58	0.10	0.04	Average
5	0.417	41.17	-16.34	57.51	40.95	0.10	0.12	QP
6	0.417	15.73	-31.70	47.51	15.51	0.10	0.12	Average
7	0.486	13.78	-32.46	46.24	13.57	0.10	0.11	Average
8	0.486		-15.81		40.22			-
9	0.585		-16.83		38.97			
10				46.00				Average
11				56.00			0.08	-
12	0.686	10.59	-35.41	46.00	10.41	0.10	0.08	kverage
		1	hin					

Test Engineer:

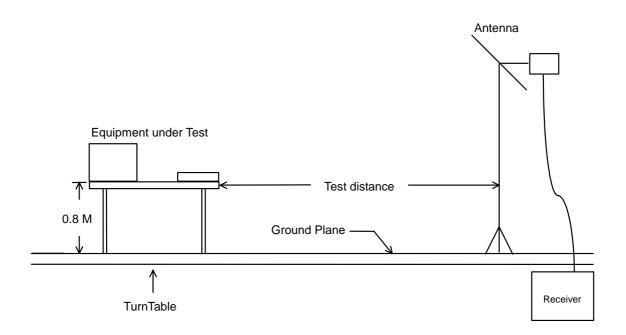
John Huang

<0

SPORTON International Inc. TEL : 886-2-2696-2468 FAX : 886-2-2696-2255

5.6. Test of Radiated Emission

Radiated emissions from 30 MHz to 25 GHz were measured according to the methods defines in ANSI C63.4-2001. The EUT was placed on a nonmetallic stand, 0.8 meter above the ground plane, as shown in section 5.6.3. The interface cables and equipment positions were varied within limits of reasonable applications to determine the positions producing maximum radiated emissions


5.6.1. Major Measuring Instruments

Amplifier	(HP 8447D)
RF Gain	30 dB
Signal Input	100 KHz to 1.3 GHz
Amplifier	(MITEQ AFS44)
RF Gain	40 dB
Signal Input	100 MHz to 26.5 GHz
 Spectrum analyzer 	(R&S FSEK30)
Attenuation	10 dB
Start Frequency	1 GHz
Stop Frequency	25 GHz
Resolution Bandwidth	1 MHz
Video Bandwidth	1 MHz
Signal Input	20 Hz to 40 GHz
Test Receiver	(SCHAFFNER SCR3501)
Resolution Bandwidth	120 KHz
Frequency Band	9 K – 1 GHz
Quasi-Peak Detector	ON for Quasi-Peak Mode
	OFF for Peak Mode

5.6.2. Test Procedures

- 1. The EUT was placed on a rotatable table top 0.8 meter above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
- 3. The table was rotated 360 degrees to determine the position of the highest radiation.
- 4. The antenna is a broadband antenna and its height is varied between one meter and four meters above ground to find the maximum value of the field strength both horizontal polarization and vertical polarization of the antenna are set to make the measurement.
- 5. For each suspected emission the EUT was arranged to its worst case and then tune the antenna tower (from 1 M to 4 M) and turn table (from 0 degree to 360 degrees) to find the maximum reading.
- 6. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function and specified bandwidth with Maximum Hold Mode.
- 7. If the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method and reported.
- 8. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

5.6.3. Typical Test Setup Layout of Radiated Emission

SPORTON International Inc. TEL : 886-2-2696-2468 FAX : 886-2-2696-2255 5.6.4. Test Result of Radiated Emission

- Test Mode: Mode 1
- Test Distance: 3 M
- Temperature: 26 °C
- Relative Humidity: 65 %
- Emission level (dBuV/m) = 20 log Emission level (uV/m)
- Corrected Reading: Antenna (Probe) Factor + Cable Loss + Read Level Preamp Factor = Level

The test was passed at the minimum margin that marked by the frame in the following test record

Spurious Emission

Site Condition EUT Power MODEL NEMO	: 3m : Ga : 11 : MS : TX : F3	CH03-HY 03CH03- teway 0V/60Hz -6811 CH01 24 71710 Level		RIZONTAI Limit Line	Read	Probe Factor		Preamp	Descarb	Ant Pos	Table Pos
		dluV/m		dlluV/n	dBuV		dli	dill			
			_			_	_	_		CL	deg
	0.100		-3.51	43.50	57.02	7.28	2.29	26.60			
2 27	4.890	44.76	-1.24	46.00	57.03	11.60	2.73	26.60	QP	100	105
3 ! 29	1.900	42.66	-3.34	46.00	55.02	11.43	2.01	26.60	Peak		

Site Conditio EUT Power MODEL NEMO	n : 3 : G : 1 : M	: 03CH03-HY : 3m 03CH03-MAT HORIZONTAL : Gateway : 110V/60Hz : M5-6811 : TX CH01 2412MHz										
HE-HU			412PPIZ									
		371710										
	-		0ver	Limit		Probe				Ant	Table	
	Fre	1 Level	Limit	Line	renet	Factor	Loss	Factor	Regera	Pos	Pos	
_	191	z dDuV/m	dB	dBuV/n	dBuV	dill	dD	đĐ		Chi	deg	
1 4	24.60	43.69	-2.31	46.00	52.50	14.98	3.53	27.32	QP			
2 ! 5	98.90	0 44.14	-1.86	46.00	50.64	17.20	4.22	28.00	QP			
3 ! 9	00.60	0 44.16	-1.84	46.00	47.13	19.42	5.41	27.80	QP			

Site Condition EUT Power MODEL MEMO	: 3m : Gm : 11 : MS : TX	CH03-HY 03CH03- teway 0V/60Hz -6811 CH01 24 71710		RTICAL							
			0ver	Limit	Read	Probe	Cable	Preamp		Ånt	Table
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Renark	Pos	Pos
)5(z	dDuV/m	40	dBuV/n	dBuV		dD	dB		Ch	deg
1 3	31.890	36.26	-3.74	40.00	48.05	14.29	1.02	27.10	QP		
2 ! 20	00.100	39.91	-3.59	43.50	56.94	7.20	2.29	26.60	Peak		
3 ! 2'	74.890	43.83	-2.17	46.00	56.10	11.60	Z.73	26.60	QP		

Site Condition EUT Power MODEL MEMO	: 3m : Ga : 11 : MS : TX	: 03CH03-HY : 3m 03CH03-NAT VERTICAL : Gateway : 110V/60Hz : M5-6011 : TX CH01 2412MHz : F371710										
		Level	Over Limit	Limit Line		Probe Factor		Preamp Factor	Reaark	Ant Pos	Table Pos	
	Matz	dBuV/m	dill	dBuV/n	dDuV	dB	dD	dB		ca	deg	
1 46	6.600	39.16	-6.84	46.00	47.49	15.56	3.64	27.53	Peak			
2 ! 59	8.900	43.62	-2.30	46.00	50.12	17.20	4.22	28.00	QP			
3 ! 90	0.600	43.45	-2.55	46.00	46.42	19.42	5.41	27.80	QP			

FCC TEST REPORT

Site Condi EUT Power MODEL MEMO	tion : 3m : Ga : 11 : MS : TX : F3	CH03-HY HOFN-A teway 0V/60Hz -6811 CH01 2 71710 Level	NT-6741 412MHz Over	HORIZON Limit Line	Read	Probe Factor		Preamp Factor	Benark	ânt Pos	Table Pos
	Ma	dBuV/m	dD	dBuV/n	dBuV	(III)	dD	dD		Ch	deg
1 2 3 4 5 6 7 8 11 12	1100.000 1100.000 1158.000 1158.000 1198.000 2038.000 2038.000 2038.000 2788.000	36.01 47.42 42.05 43.68 37.67 51.13 44.55 51.93	-30.51 -17.99 -26.58 -11.95 -30.32 -16.33 -22.87 -9.45 -22.07 -10.23	74.00 54.00 74.00 54.00 74.00 54.00 54.00 54.00	42.02 34.54 45.73 40.36 41.03 35.82 45.02 30.44 42.95 34.79	24.36 24.50 24.50 24.60 24.60 27.49 27.49 27.49 27.34	4.09 4.18 4.18 4.24 4.24 5.73 5.73 6.06 6.86	26.99 26.99 26.99 26.99 27.11 27.11 27.22	Average Peak Average Peak Average Peak Average		
1	3982.000	56.75	-17.25	74.00	42.24	32.59	9.32	27.40	-		
2 ! Site Condi EUT Power MODEL NEMO	tion : 3m : Ga : 110 : MS : TX	сноз-ну	NT-6741	54.00 VERTICA		32.59 Probe	9.32		<i>kverage</i>	Ånt	Table
	Freq	Level				Factor		Factor	Remark	Pos	Pos
	MHz	dBuV/m	dB	dBuV/n	dBuV	dB	dB	dB		CB	deg
2	1000.000		-13.96	54.00	38.99	24.10	3.92	26.97	Average		
3	1492.000		-23.42	74.00	47.59	25.33	4.69	27.03			
4	1492.000		-8.72	54.00	42.29	25.33	4.69		Average		
5	1788.000		-25.48	74.00	43.77	26.54	5.28	27.07			
7	1788.000 2036.000		-15.54 -20.55	54.00 74.00	33.71 47.35	26.54 27.48	5.20 5.73		Åverage Dock		
	2036.000		-5.87		42.03	27.48	5.73		Jverage		
11	2788.000	53.03	-20.97	74.00	44.05	29.34	6.86	27.22	Peak		
12 !	2788.000	48.02	-5.90	\$4.00	39.04	29.34	6.86	27.22	Average		
1 2 !	3982.000 3982.000	57.07 50.62	-16.93 -3.38	74.00 54.00	42.56 36.11	32.59 32.59	9.32 9.32	27.40 27.40	Peak Average		

➢ For 5GHz ∼ 25GHz

Remark: Frequency from 5000MHz to 25000MHz, the emission emitted by the EUT is too low to be measured

SPORTON International Inc.
TEL : 886-2-2696-2468
FAX : 886-2-2696-2255

Frequency		Antenna	Cable	Reading	Lim	its	Emission	Level	Margin	Detect
	Polarity	Factor	Loss							
(MHz)		(dB/m)	(dB)	(dBuV)	(dBuV/m)	(uV/m)	(dBuV/m)	(uV/m)	(dB)	Mode
2414.000	Н	28.25	6.23	67.39	-	-	101.87	124022.36		Peak
2414.000	н	28.25	6.23	58.95	-	-	93.43	46935.34		A.V.
2414.000	V	28.25	6.23	73.33	-	-	107.81	245753.66		Peak
2414.000	V	28.25	6.23	64.59	-	-	99.07	89846.26		A.V.
4824.000	V/H						-			Peak, A.V.
7236.000	V/H						-			Peak, A.V.
9648.000	V/H						-			Peak,
										A.V. Peak,
12060.000	V/H						-			A.V.
14472.000	V/H						-			Peak, A.V.
16884.000	V/H						-			Peak, A.V.
										A.v. Peak,
19296.000	V/H						-			A.V.
21708.000	V/H						-			Peak,
_1700.000	v/i i									A.V.
24120.000	V/H						-			Peak, A.V.

■ Field strength of fundamental and harmonics

Remark: The emission emitted by the EUT is too low to be measured except the emission listed above

Test Engineer : GAEVE

Steve Chen

- Test Mode: Mode 2
- Test Distance: 3 M
- Temperature: 26 °C
- Relative Humidity: 65 %
- Emission level (dBuV/m) = 20 log Emission level (uV/m)
- Corrected Reading: Antenna (Probe) Factor + Cable Loss + Read Level Preamp Factor = Level

The test was passed at the minimum margin that marked by the frame in the following test record

∎ Sp	ourious E	mission									
Site Condit EUT Power MODEL MEMO	ion : 3m : Ga : 11 : MS : TX	CH03-HY 03CH03- teway 0V/60Hz -6811 CH06 24 71710		RIZONTAI							
			0ver	Limit	Read	Probe	Cable	Preamp		Ant	Table
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pos
_	MHz	dBuV/m	dB	dBuV/m	dBuV	dB	dB	dB			deg
1 !	200.100	41.03	-2.47	43.50	58.06	7.28	2.29	26.60	QP		
2 !	274.890	41.88	-4.12	46.00	54.15	11.60	2.73	26.60	QP		
3 !	286.500	43.17	-2.83	46.00	55.50	11.48	2.79	26.60	QP		

Site Condition EUT Power NODEL NEMO	n : 3m : Ga : 11 : MS : TX	CH03-HY 03CH03- teway 0V/60Hz -6811 CH06 24 71710		RIZONTAL	i.						
			Over	Limit	Read	Probe	Cable	Preamp		Ånt	Table
	Fred	Level	Linit	Line	Level	Factor	Loss	Factor	Reaark	Pos	Pos
	MHz	dBuV/m	dB	dBuV/n	dBuV	dB	dB	đB		CHE	deg
1 : 4/	66.600	41.44	-4.56	46.00	49.77	15.56	3.64	27.53	QP		
2 1 5	98.900	43.48	-2.52	46.00	49.98	17.28	4.22	28.00	QP		
3 ! 7:	99.800	44.20	-1.80	46.00	40.35	18.79	5.06	28.00	QP	100	100
4 ! 9	00.600	44.13	-1.87	46.00	47.10	19.42	5.41	27.80	QP		

Site Conditi EUT Power MODEL MEMO	on : 3m : Ge : 11 : MS : TX	CH03-HY 03CH03- teway 0V/60Hz -6811 CH06 2- 71710		RTICAL							
		Level	Over Linit	Limit Line		Probe Factor		Preamp Factor	Remark	Ant Pos	Table Pos
_	MHz	dBu∛/m	œ	dBuV/n	dBuV	@	dB	dB		съ	deg
1. 1	30.540	35.78	-4.22	40.00	46.93	14.93	1.02	27.10	Peak		
	101.820		-4.15	43.50	55.24	9.41	1.69				
3 1	200.100	41.43	-2.07	43.50	58.46	7.28	2.29	26.60	QP		

Site Condition EUT Power NODEL NEMO	: 3m : Ga : 11 : MS : TX : F3	CH03-HY 03CH03- teway 0V/60Hz -6811 CH06 24 71710 Level		RTICAL Limit Line		Probe Factor		Preamp Factor	Reaark	Ånt Pos	Table Pos
	19(2	dBuV/m	đ	dBuV/n	d⊞uV	đ	đ	ഷ		CB	deg
1 59	8.900	43.36	-2.64	46.00	49.86	17.28	4.22	28.00	QP		
2 ! 00	0.500	42.69	-3.31	46.00	46.04	18.79	5.06	28.00	Peak		
3 ! 90	0.600	42.39	-3.61	46.00	45.36	19.42	5.41	27.80	QP		

Site Condi EUT Power MODEL MEMO	Condition : 3m HORN-ANT-6741 HORIZONTAL EUT : Gateway Power : 110V/60Hz MODEL : MS-6811 MEMO : TX CHO6 2437MHz : F371710										
			0ver	Limit	Read	Probe		Preamp		Ant	Table
	Fred	Level	Linit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pos
	MHa	dBuV/m	dB	dBuV/n	dBuV	dB	dB	dB		cas	deg
			-	(1)(1)/H	0.00	-		- CE			card
1	1158.000	47.81	-26.19	74.00	46.12	24.50	4.18	26.99	Peak		
2	1158.000	33.94	-20.06	54.00	32.25	24.50	4.18	26.99	Average		
3	1388.000	46.50	-27.42	74.00	44.01	25.06	4.53	27.02	Peak		
4	1388.000	35.84	-18.16	54.00	33.27	25.06	4.53	27.02	Average		
5	1492.000	47.20	-26.80	74.00	44.21	25.33	4.69	27.03	Peak		
6	1492.000	35.63	-10.37	54.00	32.64	25.33	4.69	27.03	Average		
7	1598.000	46.88	-27.12	74.00	43.27	25.76	4.90	27.05	Peak		
8	1598.000	38.13	-15.87	54.00	34.52	25.76	4.90	27.05	Average		
9	2062.000	51.39	-22.61	74.00	45.21	27.53	5.76	27.11	Peak		
10	2062.000	40.17	-13.83	54.00	33.99	27.53	5.76	27.11	Average		
1	3980.000	56.05	-17.15	74.00	42.34	32.59	9.32	27.40	Peak		
Z !	3980.000	50.42	-3.58	54.00	35.91	32.59	9.32	27.40	Average		

Site Condi: EUT Power NODEL NEMO	tion : 3m : Ga : 110 : MS : TX	CH03-HY HOFN-A teway 0V/60Hz -6811 CH06 2 71710		VERTICA	L						
			0ver	Limit	Read	Probe	Cable	Preamp		Ånt	Table
	Freq	Level	Linit	Line	Level	Factor	Loss	Factor	Reaark	Pos	Pos
-	15(z	dBu∛/n	dill	dBuV/n	dBuV	dD	dD	đ		Ch	deg
1	1000.000	45.79	-28.21	74.00	44.74	24.10	3.92	26.97	Peak		
4	1198.000	34.50	-19.50	54.00	32.65	24.60	4.24	26.99	Average		
5	1500.000	50.62	-23.30	74.00	47.59	25.36	4.70	27.03	Peak		
6	1500.000	37.24	-16.76	54.00	34.21	25.36	4.70		Average		
7	2062.000		-19.42	74.00	48.40	27.53	5.76	27.11			
0	2062.000	40.73	-13.27	54.00	34.55	27.53	5.76	27.11	Average		
11	2012.000	51.59	-22.41	74.00	42.50	29.41	6.90	27.22	Peak		
12	2812.000	46.06	-7.94	54.00	36.97	29.41	6.90	27.22	Average		
1	3974.000	56.72	-17.28	74.00	42.25	32.57	9.30	27.40	Peak		
2 !	3974.000	50.45	-3.55	54.00	35.98	32.57	9.30	27.40	Average		

➢ For 5GHz ~ 25GHz

Remark: Frequency from 5000MHz to 25000MHz, the emission emitted by the EUT is too low to be measured

SPORTON International Inc. TEL : 886-2-2696-2468 FAX : 886-2-2696-2255
 FCC ID.
 :
 I4L-MS6811

 Page No.
 :
 29 of 43

 Issued Date
 :
 Aug. 20, 2003

Frequency		Antenna	Cable	Reading	Lim	its	Emission	Level	Margin	Detect
	Polarity	Factor	Loss							
(MHz)		(dB/m)	(dB)	(dBuV)	(dBuV/m)	(uV/m)	(dBuV/m)	(uV/m)	(dB)	Mode
2438.000	Н	28.30	6.26	66.80	-	-	101.36	116949.94		Peak
2438.000	н	28.30	6.26	58.62	-	-	93.18	45603.69		A.V.
2438.000	V	28.30	6.26	73.21	-	-	107.77	244624.53		Peak
2438.000	V	28.30	6.26	64.06	-	-	98.62	85310.01		A.V.
4874.000	V/H						-			Peak, A.V.
7311.000	V/H						-			Peak,
9748.000	V/H									A.V. Peak,
9740.000	V/II						-			A.V.
12185.000	V/H						-			Peak, A.V.
14622.000	V/H						-			Peak, A.V.
47050 000	17/11									Peak,
17059.000	V/H						-			A.V.
19496.000	V/H						-			Peak, A.V.
										Peak,
21933.000	V/H						-			A.V.
24370.000	V/H						-			Peak, A.V.

■ Field strength of fundamental and harmonics

Remark: The emission emitted by the EUT is too low to be measured except the emission listed above

Test Engineer : GAEVE

Steve Chen

- Test Mode: Mode 3
- Test Distance: 3 M
- Temperature: 26 °C
- Relative Humidity: 65 %
- Emission level (dBuV/m) = 20 log Emission level (uV/m)
- Corrected Reading: Antenna (Probe) Factor + Cable Loss + Read Level Preamp Factor = Level

The test was passed at the minimum margin that marked by the frame in the following test record

Spurious Emission

Site Condition EUT Power MODEL MEMO	n : 3m : Ga : 11 : MS : TX	: 03CH03-HY : 3m 03CH03-MAT HORIZONTAL : Gateway : 110V/60Hz : MS-6811 : TX CH11 2462MHz : F371710											
	Freq	Level	Over Limit	Limit Line		Frobe Factor		Preamp Factor	Remark	Ant Pos	Table Pos		
_	MHz	dBuV/m	dB	dBuV/h	dBuV	dB	dB	dB		Clk	deg		
1 ! 2	00.100	42.05	-1.45	43.50	59.08	7.28	2.29	26.60	QP				
	64.090	42.91	-3.09	46.00	55.13	11.70	Z.68	26.60	-				
	74.890 86.500		-2.99	46.00 46.00	55.28	11.60	2.73	26.60	-				
Z ! Z 3 ! 2	64.090 74.890	42.91 43.01	-3.09 -2.99	46.00 46.00	55.13 55.28	11.70 11.60	Z.68 2.73	26.60 26.60	QP QP				

Site	: 03	CH03-HY									
Condition	: 3a	03CH03	-MAT HOD	RIZONTAL							
EUT	: Go	teway									
Power	: 11	0V/60Hz									
MODEL	: MS	-6811									
MEMO	: TX	CH11 24	462MHz								
	: 73	71710									
			0ver	Limit	Read	Probe	Cable	Preamp		Ant	Table
	Freq	Level	Linit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB	dB	dB		Clin	deg
1 300	. 000	43.68	-2.32	46.00	56.07	11.36	2.05	26.60	QP		
Z ! 424	1.600	44.19	-1.81	46.00	53.00	14.98	3.53	27.32	QP		
3 599	.600	43.66	-2.34	46.00	50.15	17.28	4.23	28.00	QP		
4 ! 000	1.500	44.07	-1.13	46.00	49.02	18.79	5.06	28.00	QP	100	105
5 ! 900	1.600	43.90	-2.10	46.00	46.87	19.42	5.41	27.80	QP		

Site Condition EUT Power MODEL MEMO	: 3m : Ga : 11 : MS : TX : F3 Freq	CH03-HY 03CH03- teway 0V/60Hz -6811 CH11 24 71710 Level dBuV/m	002MHz Over Limit			Probe Factor dB		Dreamp Pactor dB		Ant Pos Ch	Table Pos deg
1 ! 3	1.890	35.38	-4.62	40.00	47.17	14.29	1.02	27.10	Peak		
2 10	1.820	39.78	-3.72	43.50	55.67	9.41	1.69	26.99	Peak		
3 ! 20	0.100	41.22	-2.20	43.50	50.25	7.20	2.29	26.60	QP		

Site Conditio EUT Power NODEL NEMO	n : 3m : Ga : 11 : MS : TX	CH03-HY 03CH03- teway 0V/60Hz -6811 CH11 24 71710		RTICAL							
	Freq	Level	Over Linit	Limit Line		Probe Factor		Preamp Factor	Reaark	Ant Pos	Table Pos
_	MHz	dBuV/m	dB	dBuV/n	dBuV	dB	dB	dB		cas	deg
1 ! 5	98.900	42.61	-3.39	46.00	49.11	17.28	4.22	28.00	QP		
2 ! 7	99.800	43.84	-2.16	46.00	47.99	18.79	5.06	28.00	QP		
3 ! 9	00.600	42.65	-3.35	46.00	45.62	19.42	5.41	27.00	QP		

Site Condi EUT Power MODEL MEMO	tion : 3m : Ga : 110 : MS : TX	CH03-HY HORN-A teway 0V/60Hz -6811 CH11 2 71710		HORIZON	TAL						
	Frag	Level	Over Limit	Limit Line	Read	Probe Factor		Preamp Factor	Penark	Ant Pos	Table Pos
											105
	MHz	dBu∛/n.	dB	dBuV/n	dBuV	dB	dB	ďB		cas	deg
1	1158.000		-26.88	74.00	45.43	24.50	4.18	26.99			
2	1158.000	32.77	-21.23	54.00	31.08	24.50	4.18		Average		
3	1198.000		-30.52	74.00	41.63	24.60	4.24	26.99			
4	1198.000		-19.97	54.00	32.18	24.60	4.24		Average		
5	1598.000		-27.32	74.00	43.07	25.76	4.90	27.05			
6	1598.000		-17.83	54.00	32.56	25.76	4.90		Average		
7	2086.000		-18.19	74.00	49.54	27.58	5.80	27.11			
8	2086.000	39.95	-14.05	54.00	33.68	27.58	5.80	27.11	Average		
11	2838.000	49.43	-24.57	74.00	40.21	29.50	6.95	27.23	Peak		
12	2030.000	44.63	-9.37	54.00	35.41	29.50	6.95	27.23	Average		
1	3956.000	57.02	-16.98	74.00	42.63	32.52	9.26	27.39	Peak		
_	3956.000	50.33	-3.67	54.00	35.94	32.52	9.26		Average		
Site Condi EUT Power MODEL MEMO	tion : 3m : Ga : 110 : MS : TX	CH03-HY HORN-A teway 0V/60Hz -6811 CH11 2 71710		VERTICA	L Read	Probe	Cable	Dreamp		Ànt	Table
	Freq	Level	Linit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pos
		dBuV/m	dB	dBuV/n	470 - 77	dB	dB				A
	Pitto	dBuv/m	015	dBuv/h	dBuV	0.5	dB	ďB		Ch	deg
1	1300.000	49.84	-24.16	74.00	47.60	24.85	4.40	27.01	Peak		
2	1300.000	37.25	-16.75	54.00	35.01	24.85	4.40	27.01	Average		
3	1398.000	50.15	-23.05	74.00	47.53	25.09	4.55	27.02	Peak		
4	1398.000	41.35	-12.65	54.00	38.73	25.09	4.55	27.OZ	Average		
5	1492.000	49.57	-24.43	74.00	46.58	25.33	4.69	27.03	Peak		
6	1492.000	40.52	-13.40	\$4.00	37.53	25.33	4.69	27.03	Average		
7	1748.000		-27.19	74.00	42.31	26.38	5.19		-		
8	1748.000		-14.85	54.00	34.65	26.38	5.19		Average		
9.1	2086.000		-1.93	\$4.00	45.00	27.50	5.80	27.11	Average		
10	2086.000		-20.19	74.00	47.54	27.58	5.80		-		
1	4014.000			74.00	42.90	32.59	9.34	27.41			
2 1	4014.000	50.26	-3.74	54.00	35.74	32.59	9.34	27.41	Average		

➢ For 5GHz ~ 25GHz

Remark: Frequency from 5000MHz to 25000MHz, the emission emitted by the EUT is too low to be measured

Frequency		Antenna	Cable	Reading	Lim	its	Emission	Level	Margin	Detect
	Polarity	Factor	Loss							
(MHz)		(dB/m)	(dB)	(dBuV)	(dBuV/m)	(uV/m)	(dBuV/m)	(uV/m)	(dB)	Mode
2462.000	Н	28.35	6.29	66.19	-	-	100.83	110027.18		Peak
2462.000	н	28.35	6.29	58.14	-	-	92.78	43551.19		A.V.
2462.000	V	28.35	6.29	74.07	-	-	108.71	272583.77		Peak
2462.000	V	28.35	6.29	65.80	-	-	100.44	105196.19		A.V.
4924.000	V/H						-			Peak, A.V.
7386.000	V/H						-			Peak,
	V/H									A.V. Peak,
9848.000	V/H						-			A.V.
12310.000	V/H						-			Peak, A.V.
14772.000	V/H									Peak,
14772.000	V/П						-			A.V.
17234.000	V/H						-			Peak, A.V.
										Peak,
19696.000	V/H						-			A.V.
22159 000										Peak,
22158.000	V/H						-			A.V.
24620.000	V/H						-			Peak, A.V.

■ Field strength of fundamental and harmonics

Remark: The emission emitted by the EUT is too low to be measured except the emission listed above

Test Engineer : GAEVE

Steve Chen

5.7. Band Edges Measurement

5.7.1. Measuring Instruments :

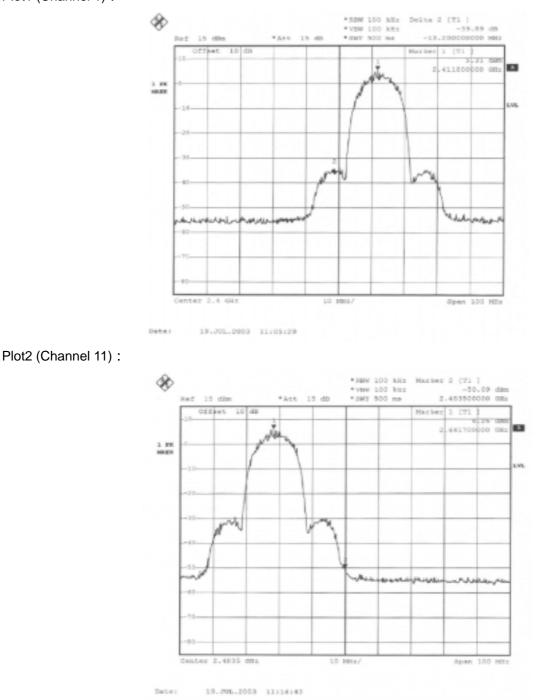
As described in chapter 7 of this test report.

- 5.7.2. Test Procedure :
 - 1. The transmitter output was connected to the spectrum analyzer via a low lose cable.
 - 2. Set both RBW and VBW of spectrum analyzer to 100KHz with convenient frequency span including 100 KHz bandwidth from band edge.
 - 3. The band edges was measured and recorded.

5.7.3. Test Result :

- Test Result in lower band (Channel 1) : PASS
- Test Result in higher band(Channel 11) : PASS

5.7.4. Note on Band edge Emission


The band edge emission plot on page 39. shows 56.35dB delta between carrier maximum power and local maximum emission in the restricted band (2.4835GHz).

	The emission of	The maximum			
Polarity	carrier power	field strength in	Limit	Margin	Result
	strength	restrict band			
	(dB µ V/m)	(dB µ V/m)	(dB µ V/m)	(dB)	
Н	100.83	44.48	74.00	-29.52	Peak
Н	92.78	36.43	54.00	-17.57	Average
V	108.71	52.36	74.00	-21.64	Peak
V	100.44	44.09	54.00	-9.91	Average

* The maximum field strength in restricted band is the emission of carrier power strength subtract to the delta between carrier maximum power and local maximum emission in the restricted band.

FCC TEST REPORT

The spectrum analyzer plots are attached as below : Plot1 (Channel 1) :

Comments: All emissions in any 100kHz bandwidth outside the band edge are attenuated more then 20dB from the carrier.

SPORTON International Inc. TEL : 886-2-2696-2468 FAX : 886-2-2696-2255
 FCC ID.
 :
 I4L-MS6811

 Page No.
 :
 36 of 43

 Issued Date
 :
 Aug. 20, 2003

5.8. Antenna Requirements

The EUT use a undetachable antenna via MMCX-reversed external connector. It is considered meet antenna requirement of FCC.

5.8.1. Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

5.8.2. Antenna Connected Construction

The maximum Gain antenna used in this product is dipole antenna. The antenna connector type is MMCX. The coaxial cable of the antenna is fixed to the antenna.

5.9. RF Exposure

FCC Rules and Regulations Part 1.1307,1.1310,2.1091,2.1093:

RF Exposure Compliance

5.9.1. Limit For Maximum Permissible Exposure (MPE)

Frequency Range	Electric Field Strength	Magnetic Field	Power Density (S)	Averaging Time				
(MHz)	(E) (V/m)	Strength (H) (A/m)	(mW/ cm2)	E 2, H 2 or S				
				(minutes)				
0.3-3.0	614	1.63	(100)*	6				
3.0-30	1842/f	4.89/f	(900/f)*	6				
30-300	61.4	0.163	1.0	6				
300-1500			F/300	6				
1500-100,000			5	6				

(A) Limits for Occupational / Controlled Exposure

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range	Electric Field Strength	Magnetic Field	Power Density (S)	Averaging Time
(MHz)	(E) (V/m)	Strength (H) (A/m)	(mW/cm2)	E 2, H 2 or S
				(minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

F=frequency in MHz

*Plane-wave equivalent power density

5.9.2. MPE Calculations

$$E (V/m) = \frac{\sqrt{30 \times P \times G}}{d} \quad \text{Power Density: } Pd (mW/cm2) = \frac{E^2}{3770}$$

E = Electric field (V/m)

P = Peak output power (mW)

G = Antenna numeric gain (numeric)

d = Separation distance (m)

Because the EUT is belong to General Population/ Uncontrolled Exposure. So the Limit of Power Density is 1.0 mW/cm2. We can change the formula to:

$$d = \sqrt{\frac{30 \times P \times G}{3770}}$$

Channel NO.	Antenna Gain (dBi)	Antenna Gain (numeric)	Peak Output Power (dBm)	Peak Output Power(W)	Calculated RF Exposure Separation Distance (m)	Minimum RF Exposure Separation Distance (m)
Channel 1	1.74	1.49	14.24	0.0265	0.0178	0.20
Channel 6	1.74	1.49	14.42	0.0277	0.0181	0.20
Channel 11	1.74	1.49	15.17	0.0329	0.0198	0.20

5.9.3. FCC Radiation Exposure Statement

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. In order to avoid the possibility of exceeding the FCC radio frequency exposure limits, human proximity to the antenna shall not be less than 20cm (8 inches) during normal operation. Proposed RF exposure safety information to include in User's Manual.

6. EMI Suppression Component List

No EMI suppression components.

FCC TEST REPORT

7. Antenna Factor & Cable Loss

Frequency (MHz)	Antenna Factor (dB)	Cable Loss (dB)	Frequency (MHz)	Antenna Factor (dB)	Cable Loss (dB)
30	15.35	1.01	1000	24.10	3.92
35	13.63	1.04	2000	27.40	5.66
40	11.11	1.09	3000	30.00	7.20
45	10.59	1.24	4000	32.60	9.36
50	6.47	1.43	5000	33.40	9.16
55	5.83	1.39	6000	34.20	10.70
60	5.18	1.59	7000	35.30	12.16
65	4.81	1.41	8000	36.90	13.12
70	4.43	1.43	9000	38.10	13.81
75	5.10	1.55	10000	39.00	14.83
80	5.91	1.56	11000	38.60	15.83
85	7.33	1.62	12000	39.50	17.11
90	8.74	1.41	13000	39.30	17.62
95	9.05	1.81	14000	41.60	18.37
100	9.36	1.68	15000	40.60	19.10
110	9.65	1.73	16000	37.20	19.72
120	9.97	1.79	17000	40.20	21.98
130	10.51	1.93	18000	48.90	21.22
140	10.32	2.06	19000	37.60	23.90
150	9.42	2.00	20000	37.30	24.07
160	8.09	2.12	21000	37.00	25.49
170	7.43	2.12	22000	38.00	24.92
180	7.60	2.12	23000	38.70	25.60
190	7.43	2.21	24000	38.60	25.70
200	7.26	2.29	25000	38.90	26.54
220	9.11	2.42	20000	00.00	20.04
240	10.88	2.54			
260	11.75	2.66			
280	11.55	2.76			
300	11.36	2.85			
320	12.03	3.10			
340	12.69	3.36			
360	13.33	3.49			
380	14.00	3.50			
400	14.63	3.51			
450	15.33	3.55			
500	16.03	3.81			
550	16.65	4.05			
600	17.29	4.23			
650	17.64	4.63			
700	18.00	4.74			
750	18.39	4.95			
800	18.79	5.06			
850	19.10	5.18			
900	19.42	5.40			
950	19.58	5.91			
1000	19.75	5.58			

FCC TEST REPORT

8. List of Measuring Equipments Used

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMC Receiver	R&S	ESCS 30	100174	9 KHz – 2.75 GHz	Dec. 12, 2002	Conduction (CO01-HY)
LISN	MessTec	NNB-2/16Z	2001-008	9 KHz – 30 MHz	Apr. 29, 2003	Conduction (CO01-HY)
LISN (Support Unit)	MessTec	NNB-2/16Z	2001-009	9 KHz – 30 MHz	Apr. 29, 2003	Conduction (CO01-HY)
EMI Filter	LINDGREN	LRE-2060	1004	< 450 Hz	N/A	Conduction (CO01-HY)
EMI Filter	LINDGREN	N6006	201052	0 ~ 60 Hz	N/A	Conduction (CO01-HY)
RF Cable-CON	Suhner Switzerland	RG223/U	CB029	9KHz~30MHz	Jan. 07, 2003	Conduction (CO01-HY)
50 ohm BNC type Terminal	NOBLE	50ohm	TM013	50 ohm	Apr. 24, 2003	Conduction (CO01-HY)
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	30MHz~1GHz 3m	Jun. 21, 2003	Radiation (03CH03-HY)
Spectrum analyzer	R&S	FSEK30	100189	20Hz~40GHz	Aug. 04, 2003	Radiation (03CH03-HY)
Receiver	SCHAFFNER	SCR 3501	417	9 KHz –1GHz	Feb. 20, 2003	Radiation (03CH03-HY)
Amplifier	HP	8447D	2944A09072	100KHz – 1.3GHz	Oct. 21, 2002	Radiation (03CH03-HY)
Bilog Antenna	SCHAFFNER	CBL6112B	2687	30MHz –2GHz	Dec. 21, 2002	Radiation (03CH03-HY)
RF Cable-R03m	Jye Bao	RG142	CB021	30MHz~1GHz	Jan. 02, 2003	Radiation (03CH03-HY)
Amplifier	MITEQ	NSP2650-NF	805858	100MHz~26.5GHz	Jul. 10, 2003	Radiation (03CH03-HY)
Horn Antenna	COM-POWER	AH-118	10094	1GHz – 18GHz	Apr. 10, 2003	Radiation (03CH03-HY)
Turn Table	HD	DS 420	420/650/00	0 ~ 360 degree	N/A	Radiation (03CH03-HY)
Antenna Mast	HD	MA 240	240/560/00	1 m - 4 m	N/A	Radiation (03CH03-HY)
Horn Antenna	Schwarzbeck	BBHA9170	BBHA9170154	15GHz~40GHz	Jun. 02, 2003	Radiation (03CH03-HY)
RF Cable-HIGH	Jye Bao	RG142	CB030-HIGH	1GHz~29.5GHz	Mar. 14, 2003	Radiation (03CH03-HY)
Power meter	R&S	NRVS	100444	DC~40GHz	May 28, 2003	Conducted
Power sensor	R&S	NRV-Z55	100049	DC~40GHz	May 28, 2003	Conducted
Power Sensor	R&S	NRV-Z32	100057	30MHz-6GHz	May 28, 2003	Conducted
AC power source	HPC	HPA-500W	HPA-9100024	AC 0~300V	May 27, 2003	Conducted
Temp. and Humidity Chamber	KSON	THS-C3L	612	N/A	Oct. 02, 2002	Conducted

Calibration Interval of instruments listed above is one year.

9. Uncertainty of Test Site

Uncertainty of Radiated Emission Measurement

Contribution	Probability Distribution	3m	10m
Antenna factor calibration	normal(k=2)	±1	±1
cable loss calibration	normal(k=2)	±0.3	±0.3
RCV/SPA specification	rectangular	±2	±2
Antenna Directivity	rectangular	±3	±0.5
Antenna Factor V.S. Height	rectangular	±2	±2
Antenna Factor Interpolation for Frequency	rectangular	±0.25	±0.25
site imperfection	rectangular	±2	±2
Mismatch Receiver VSWR Γ1=0.09			
Antenna VSWR Γ2=0.67 Uncertainty=20log(1-Γ1*Γ2)	U-shaped	±0.54	±0.54
combined standard uncertainty Ue(y)	normal	±2.7	±2.2
Measuring uncertainty for a level of confidence of 95% U=2Ue(y)	normal (k=2)	±5.4	±4.4

U= { $(1/2)^2+(0.3/2)^2+(2^2+0.5^2+2^2+0.25^2+2^2)/3+(0.54)^2/2$ }=2.2 for 10m test distance

U= ${(1/2)^2+(0.3/2)^2+(2^2+3^2+2^2+0.25^2+2^2)/3+(0.54)^2/2}=2.7$ for 3m test distance

Uncertainty of Conducted Emission Measurement

Contribution	Probability Distribution	150KHz – 30MHz
Cable and I/P attenuator calibration	normal(k=2)	±0.3
RCV/SPA specification	rectangular	±2
LISN coupling specification	rectangular	±1.5
Transducer factor frequency interpolation	rectangular	±0.2
Mismatch		
Receiver VSWR Г1=0.09		
LISN VSWR Γ2=0.33	U-shaped	0.2
Uncertainty=20log(1-Γ1*Γ2)		
combined standard uncertainty Ue(y)	normal	±1.66
Measuring uncertainty for a level of confidence of 95% U=2Ue(y)	normal (k=2)	±3.32

 $U = \{(0.3/2)^2 + (2^2 + 1.5^2 + 0.2^2)/3 + (0.2)^2/2\} = 1.66$