

FCC OET BULLETIN 65 SUPPLEMENT C Class II Permissive Change IC RSS-102 ISSUE 4

SAR EVALUATION REPORT

For

WLAN 802.11b/g/n 1T1R+BT2.1 EDR COMBO SLIM MODULE (Tested inside of Toshiba Netbook: TOSHIBA AC100, TOSHIBA Dynabook AZ)

MODEL: MS-3871

FCC ID: I4L-MS3871 ID: 3715A-MS3871

REPORT NUMBER: 10U13331-1A

ISSUE DATE: July 31, 2010

Prepared for

Micro Star International Co Ltd No. 69, Li-De Street, Jung-He City Taipei Hsien, Taiwan

Prepared by

COMPLIANCE CERTIFICATION SERVICES 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000

FAX: (510) 771-1000

Revision History

Rev.	Issue Date	Revisions	Revised By
	July 30, 2010	Initial Issue	M. Heckrotte
Α	July 31, 2010	Updated normal operation description in section 5	Devin Chang

TABLE OF CONTENTS

1.	Α	TTESTATION OF TEST RESULTS	4
2.	TE	EST METHODOLOGY	5
3.		ACILITIES AND ACCREDITATION	
4.	C	ALIBRATION AND UNCERTAINTY	5
4	1.1.	MEASURING INSTRUMENT CALIBRATION	5
4	.2.	MEASUREMENT UNCERTAINTY	6
5.	E	QUIPMENT UNDER TEST	7
6.	S	YSTEM SPECIFICATIONS	8
7.	C	OMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS	9
8.	TI	SSUE DIELECTRIC PARAMETERS CHECK	10
8	3.1.	TISSUE PARAMETERS CHECK RESULTS FOR 2450 MHZ	11
9.	S	YSTEM VERIFICATION	12
9	.1.	SYSTEM CHECK RESULTS FOR D2450V2	12
10.		OUTPUT POWER VERIFICATION	15
11.		SUMMARY OF SAR TEST RESULTS	16
12.		SAR TEST PLOTS	17
13.		ATTACHMENTS	18
14.		ATENNA TO USER SEPARATION DISTANCES	19
15.		TEST SETUP PHOTOS	20
16		HOST DEVICE PHOTO	21

1. ATTESTATION OF TEST RESULTS

Micro Star International Co	Micro Star International Co Ltd					
No. 69, Li-De Street, Jung-l	Io. 69, Li-De Street, Jung-He City					
Taipei Hsien, Taiwan						
WLAN 802.11b/g/n 1T1R+E	BT2.1 EDR COMBO SLIM MODU	LE				
(Tested inside of Toshiba no AZ.)	(Tested inside of Toshiba netbook TOSHIBA AC100, TOSHIBA Dynabook AZ.)					
MS-3871						
Portable						
General Population/Unconf	rolled Exposure					
July 30, 2010						
Freq. Range [MHz]	The Highest 1g SAR mW/g)	Limit (mW/g)				
2412-2462	1.6					
Applicable Standards Test Results						
Applicable Standards						
FCC OET Bulletin 65 Supplement C 01-01 IC RSS 102 Issue 4						
	No. 69, Li-De Street, Jung-F Taipei Hsien, Taiwan WLAN 802.11b/g/n 1T1R+E (Tested inside of Toshiba no AZ.) MS-3871 Portable General Population/Uncont July 30, 2010 Freq. Range [MHz] 2412-2462 Applicable Standards	WLAN 802.11b/g/n 1T1R+BT2.1 EDR COMBO SLIM MODU (Tested inside of Toshiba netbook TOSHIBA AC100, TOSHII AZ.) MS-3871 Portable General Population/Uncontrolled Exposure July 30, 2010 Freq. Range [MHz] The Highest 1g SAR mW/g) 2412-2462 0.015 Applicable Standards				

Compliance Certification Services, Inc. (CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government (NIST Handbook 150, Annex A). This report is written to support regulatory compliance of the applicable standards stated above.

Approved & Released For CCS By: Tested By:

MICHAEL HECKROTTE DEVIN CHANG
DIRECTOR OF ENGINEERING EMC ENGINEER

COMPLIANCE CERTIFICATION SERVICES COMPLIANCE CERTIFICATION SERVICES

MH

2. TEST METHODOLOGY

FCC OET Bulletin 65 Supplement C 01-01 and the following specific FCC test procedures:

- KDB 248227 SAR measurement procedures for 802.11a/b/g transmitters
- KDB 447498 D01 Mobile Portable RF Exposure v04, suppl. to KDB 616217 D03

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

		T /54 1 1	0 : 11	Cal. Due date			
Name of Equipment	Manufacturer	Type/Model	Serial No.	MM	DD	Year	
Robot - Six Axes	Stäubli	RX90BL	N/A		N/A		
Robot Remote Control	Stäubli	CS7MB	3403-91535			N/A	
DASY4 Measurement Server	SPEAG	SEUMS001BA	1041			N/A	
Probe Alignment Unit	SPEAG	LB (V2)	261			N/A	
SAM Phantom (SAM1)	SPEAG	QD000P40CA	1185			N/A	
SAM Phantom (SAM2)	SPEAG	QD000P40CA	1050			N/A	
Oval Flat Phantom (ELI 4.0)	SPEAG	QD OVA001 B	1003			N/A	
Electronic Probe kit	HP	85070C	N/A	N/A		N/A	
S-Parameter Network Analyzer	Agilent	8753ES-6	MY40001647	11	22	2010	
Signal Generator	Agilent	8753ES-6	MY40001647	11	22	2010	
E-Field Probe	SPEAG	EX3DV3	3531	2	23	2011	
System Validation Dipole	SPEAG	D2450V2	706	4	18	2013	
ESG Vector Signal Generator	Agilent	E4438C	US44271090	9	17	2010	
Power Meter	Giga-tronics	8651A	8651404	3	13	2012	
Power Sensor	Giga-tronics	80701A	1834588	3 13 2012		2012	
Amplifier	Mini-Circuits	ZVE-8G	90606	N/A		N/A	
Amplifier	Mini-Circuits	ZHL-42W	D072701-5	N/A		N/A	
Simulating Liquid	SPAEG	M2450	N/A	Withir	ո 24 h	rs of first test	

Note: Per KDB 450824 D02 requirements for dipole calibration, CCS has adopted three years calibration intervals. On annual basis, each measurement dipole has been evaluated and is in compliance with the following criteria:

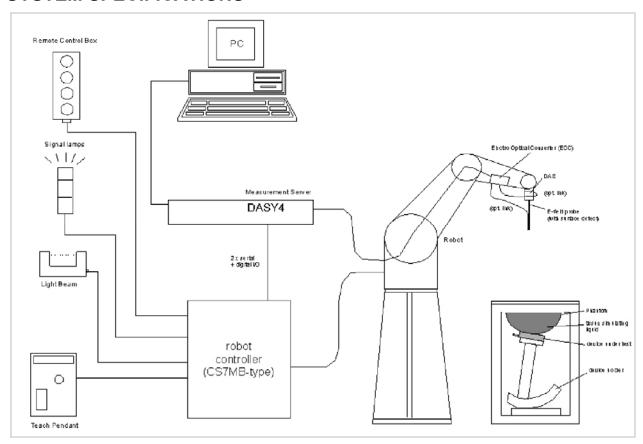
- 1. There is no physical damage on the dipole
- 2. System validation with specific dipole is within 10% of calibrated value.
- 3. Return-loss is within 20% of calibrated measurement (test data on file in CCS)
- 4. Impedance is within 5Ω of calibrated measurement (test data on file in CCS)

4.2. MEASUREMENT UNCERTAINTY

Measurement uncertainty for 300 MHz to 3 GHz averaged over 1 gram

error, %	Probe Distribution	Divisor	Sensitivity	U (Xi), %			
5.50	Normal	1	1	5.50			
1.15	Rectangular	1.732	0.7071	0.47			
2.30	Rectangular	1.732	0.7071	0.94			
0.90	Rectangular	1.732	1	0.52			
3.45	Rectangular	1.732	1	1.99			
1.00	Rectangular	1.732	1	0.58			
0.30	Normal	1	1	0.30			
		1.732	1	0.46			
		1.732	1	1.50			
3.00	Rectangular	1.732	1	1.73			
		1.732	1	1.73			
		1.732	1	0.23			
2.90	Rectangular	1.732	1	1.67			
1.00	Rectangular	1.732	1	0.58			
2.90	Normal	1	1	2.90			
3.60	Normal	1	1	3.60			
5.00	Rectangular	1.732	1	2.89			
		1.732	1	2.31			
5.00	Rectangular	1.732	0.64	1.85			
-0.69	Normal	1	0.64	-0.44			
	Rectangular	1.732	0.6	1.73			
0.63	Normal	1	0.6	0.38			
Combined Standard Uncertainty Uc(y) = 9.46							
				%			
age Facto	or = 2, > 95 % Confi	dence =	1.50	dB			
	5.50 1.15 2.30 0.90 3.45 1.00 0.30 0.80 2.60 3.00 0.40 2.90 1.00 2.90 3.60 5.00 4.00 5.00 0.63	5.50 Normal 1.15 Rectangular 2.30 Rectangular 0.90 Rectangular 1.00 Rectangular 0.30 Normal 0.80 Rectangular 2.60 Rectangular 3.00 Rectangular 3.00 Rectangular 3.00 Rectangular 2.90 Rectangular 1.00 Rectangular 1.00 Rectangular 4.00 Rectangular 5.00 Rectangular 4.00 Rectangular 5.00 Rectangular 5.00 Rectangular 6.69 Normal 5.00 Rectangular 6.69 Normal 6.00 Rectangular	5.50 Normal 1 1.15 Rectangular 1.732 2.30 Rectangular 1.732 0.90 Rectangular 1.732 3.45 Rectangular 1.732 1.00 Rectangular 1.732 0.30 Normal 1 0.80 Rectangular 1.732 2.60 Rectangular 1.732 3.00 Rectangular 1.732 0.40 Rectangular 1.732 2.90 Rectangular 1.732 2.90 Normal 1 3.60 Normal 1 5.00 Rectangular 1.732 4.00 Rectangular 1.732 4.00 Rectangular 1.732 5.00 Rectangular 1.732 5.00 Rectangular 1.732 5.00 Rectangular 1.732 69 Normal 1 5.00 Rectangular 1.732 60 Norm	5.50 Normal 1 1 1.15 Rectangular 1.732 0.7071 2.30 Rectangular 1.732 0.7071 0.90 Rectangular 1.732 1 3.45 Rectangular 1.732 1 1.00 Rectangular 1.732 1 0.30 Normal 1 1 0.80 Rectangular 1.732 1 2.60 Rectangular 1.732 1 3.00 Rectangular 1.732 1 3.00 Rectangular 1.732 1 0.40 Rectangular 1.732 1 1.00 Rectangular 1.732 1 2.90 Rectangular 1.732 1 2.90 Normal 1 1 3.60 Normal 1 1 4.00 Rectangular 1.732 1 4.00 Rectangular 1.732 1 5.00 Rectangular			

Measurement uncertainty for 300 MHz to 3 GHz averaged over 10 gram


Measurement uncertainty for 300 MHz to 3 GHz averaged over 10 gram					
Component	error, %	Probe Distribution	Divisor	Sensitivity	U (Xi), %
Measurement System					
Probe Calibration (k=1) @ 2450 MHz	5.50	Normal	1	1	5.50
Axial Isotropy	1.15	Rectangular	1.732	0.7071	0.47
Hemispherical Isotropy	2.30	Rectangular	1.732	0.7071	0.94
Boundary Effect		Rectangular	1.732	1	0.52
Probe Linearity	3.45	Rectangular	1.732	1	1.99
System Detection Limits	1.00	Rectangular	1.732	1	0.58
Readout Electronics	0.30	Normal	1	1	0.30
Response Time	0.80	Rectangular	1.732	1	0.46
Integration Time	2.60	Rectangular	1.732	1	1.50
RF Ambient Conditions - Noise	3.00	Rectangular	1.732	1	1.73
RF Ambient Conditions - Reflections		Rectangular	1.732	1	1.73
Probe Positioner Mechanical Tolerance	0.40	Rectangular	1.732	1	0.23
Probe Positioning with respect to Phantom		Rectangular	1.732	1	1.67
Extrapolation, Interpolation and Integration	1.00	Rectangular	1.732	1	0.58
Test Sample Related					
Test Sample Positioning	2.90		1	1	2.90
Device Holder Uncertainty	3.60	Normal	1	1	3.60
Output Power Variation - SAR Drift	5.00	Rectangular	1.732	1	2.89
Phantom and Tissue Parameters					
Phantom Uncertainty (shape and thickness)	4.00	Rectangular	1.732	1	2.31
Liquid Conductivity - deviation from target	5.00	Rectangular	1.732	0.43	1.24
Liquid Conductivity - measurement	-0.69	Normal	1	0.43	-0.30
Liquid Permittivity - deviation from target	5.00	Rectangular	1.732	0.49	1.41
Liquid Permittivity - measurement uncertainty	0.63	Normal	1	0.49	0.31
		bined Standard Un		Uc(y), % =	9.30
Expanded Uncertainty U, Cover				18.59	%
Expanded Uncertainty U, Cover	rage Factor	= 2, > 95 % Confid	dence =	1.48	dB
·					

REPORT NO: 10U13331-1A DATE: July 31, 2010 IC: 3715A-MS3871 FCC ID: I4L-MS3871

5. EQUIPMENT UNDER TEST

WLAN 802.11b/g/n 1T1R+BT2.1 EDR COMBO SLIM MODULE (Tested inside of Toshiba netbook TOSHIBA AC100, TOSHIBA Dynabook AZ)						
Normal operation: Laptop mode (display open at 90° to the keyboard),						
Antenna tested:	ManufacturedPart numberMSI915-3871-003					
Antenna-to-user separation distances:	See section 12 for details					
Antenna-to-antenna separation distances:	WiFi and BT 59 mm from WiFi-to-Bluetooth antenna					
Simultaneous transmission:	WiFi can transmit simultaneously with Bluetooth Bluetooth - FCC ID: I4L-MS3871					
Assessment for SAR evaluation for Simultaneous transmission:	WiFi and BT KDB 447498 - The Bluetooth's output power is ≤ 60/f(GHz) mW, which stand-alone SAR evaluation is not required. Thus, simultaneous transmission SAR evaluation is not required for WiFi and Bluetooth antenna pair.					

6. SYSTEM SPECIFICATIONS

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY4 software.
- Remote controls with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validate the proper functioning of the system.

DATE: July 31, 2010

IC: 3715A-MS3871

7. COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients	Frequency (MHz)									
(% by weight)	45	50	83	35	9	15	19	00	24	50
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

Salt: 99+% Pure Sodium Chloride Sugar: 98+% Pure Sucrose Water: De-ionized, 16 M Ω + resistivity HEC: Hydroxyethyl Cellulose DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

8. TISSUE DIELECTRIC PARAMETERS CHECK

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values. For frequencies in 300 MHz to 2 GHz, the measured conductivity and relative permittivity should be within \pm 5% of the target values. For frequencies in the range of 2–3 GHz and above the measured conductivity should be within \pm 5% of the target values. The measured relative permittivity tolerance can be relaxed to no more than \pm 10%.

Reference Values of Tissue Dielectric Parameters for Body (for 300 – 3000 MHz and 5800 MHz)
The body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in IEEE Standard 1528.

Target Frequency (MHz)	Body (Supplement C 01-01)				
raiget Frequency (Miriz)	٤ _٢	σ (S/m)			
300	58.20	0.92			
450	56.70	0.94			
835	55.20	0.97			
900	55.00	1.05			
915	55.00	1.06			
1450	54.00	1.30			
1610	53.80	1.40			
1800 – 2000	53.30	1.52			
2450	52.70	1.95			
3000	52.00	2.73			
5800	48.20	6.00			

⁽ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

8.1. TISSUE PARAMETERS CHECK RESULTS FOR 2450 MHZ

Simulating Liquid Dielectric Parameter Check Result @ Body 2450 MHz $\,$

Room Ambient Temperature = 24°C; Relative humidity = 38% Measured by: Devin Chang

f (MHz)		Liquid	Parameters	Measured	Target	Delta (%)	Limit (%)
2450	e'	53.03	Relative Permittivity (ε_r):	53.032	52.7	0.63	? 5
2450	e"	14.21	Conductivity (σ):	1.937	1.95	-0.69	? 5

Liquid Check

Ambient temperature: 24 deg. C; Liquid temperature: 23 deg. C

July 30, 2010 11:42 AM

July 30, 2010 11.42 A	IVI	
Frequency	e'	e"
2400000000	53.12801	13.96142
2405000000	53.11591	14.03482
2410000000	53.10131	14.10002
2415000000	53.09771	14.14352
2420000000	53.08381	14.16972
2425000000	53.07921	14.18792
2430000000	53.08491	14.18122
2435000000	53.06911	14.18732
2440000000	53.06471	14.20182
2445000000	53.03571	14.22952
2450000000	53.03181	14.20862
	00.00.0	
2455000000	52.96281	14.18522
		14.18522 14.15712
2455000000	52.96281	14.15712 14.11992
2455000000 2460000000	52.96281 52.92671	14.15712
2455000000 2460000000 2465000000	52.96281 52.92671 52.86291	14.15712 14.11992
2455000000 2460000000 2465000000 2470000000	52.96281 52.92671 52.86291 52.84751	14.15712 14.11992 14.07232
2455000000 2460000000 2465000000 2470000000 2475000000	52.96281 52.92671 52.86291 52.84751 52.83241	14.15712 14.11992 14.07232 14.04812
2455000000 2460000000 2465000000 2470000000 2475000000 2480000000	52.96281 52.92671 52.86291 52.84751 52.83241 52.84021	14.15712 14.11992 14.07232 14.04812 14.05522
2455000000 2460000000 2465000000 2470000000 2475000000 2480000000 2485000000	52.96281 52.92671 52.86291 52.84751 52.83241 52.84021 52.83341	14.15712 14.11992 14.07232 14.04812 14.05522 14.07432
2455000000 2460000000 2465000000 2470000000 2475000000 2485000000 2490000000	52.96281 52.92671 52.86291 52.84751 52.83241 52.84021 52.83341 52.83581	14.15712 14.11992 14.07232 14.04812 14.05522 14.07432 14.13162

The conductivity (σ) can be given as:

 $\sigma = \omega \varepsilon_0 e'' = 2 \pi f \varepsilon_0 e''$

where $\mathbf{f} = target f * 10^6$

 $\varepsilon_0 = 8.854 * 10^{-12}$

9. SYSTEM VERIFICATION

The system performance check is performed prior to any usage of the system in order to verify SAR system accuracy. The system performance check verifies that the system operates within its specifications of $\pm 10\%$.

System Performance Check Measurement Conditions

- The measurements were performed in the flat section of the SAM twin phantom filled with Body simulating liquid of the following parameters.
- The DASY4 system with an Isotropic E-Field Probe EX3DV3-SN: 3531 was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the
 center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the
 long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and
 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole. For 5 GHz band - The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (2.4 GHz) fine cube was chosen for cube integration and Special 8x8x10 (5 GHz) fine cube was chosen for cube integration
- Distance between probe sensors and phantom surface was set to 3 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input powers (forward power) were 100 mW.
- The results are normalized to 1 W input power.

Reference SAR Values for HEAD & BODY-tissue from calibration certificate of SPEAG.

System	Cal. certificate #	Cal.	SAR Avg (mW/g)			
validation dipole	Cai. Certificate #	due date	Tissue:	Head	Body	
D2450V2	D2450V2-706 Apr10	04/18/13	SAR _{1g} :	51.6	52.4	
D2450V2	D2450V2-700_Apri10		SAR _{10g} :	24.4	24.5	

9.1. SYSTEM CHECK RESULTS FOR D2450V2

Ambient Temperature = 24°C: Relative humidity = 38% Measured by: Devin Chang

	Ambient Temperature – 24 O, Relative number – 3070				Measured by. Deviit Orlang		
va	System	Date Tested	Measured (Normalized to 1 W)		Target	Delta (%)	Tolerance
	validation dipole		Tissue:	Body	raiget	Della (%)	(%)
	D2450V2	07/30/10	SAR _{1g} :	54.8	52.4	4.58	±10
	D2450V2		SAR _{10q} :	25.4	24.5	3.67	

SYSTEM CHECK PLOT

Date/Time: 7/30/2010 1:54:04 PM

Test Laboratory: Compliance Certification Services

System Performance Check - D2450V2

DUT: Dipole; Type: D2450V2; Serial: 706

Communication System: System Check Signal - CW; Frequency: 2450 MHz; Duty Cycle: 1:1

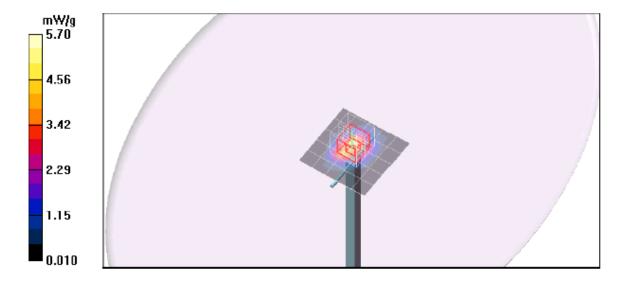
Medium parameters used: f = 2450 MHz; $\sigma = 1.94 \text{ mho/m}$; $\epsilon_r = 53$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV3 SN3531; ConvF(7.58, 7.58, 7.58); Calibrated: 2/23/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn500; Calibrated: 9/15/2009
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


d=10mm, Pin=100mW/Area Scan (6x6x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 5.70 mW/g

d=10mm, Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

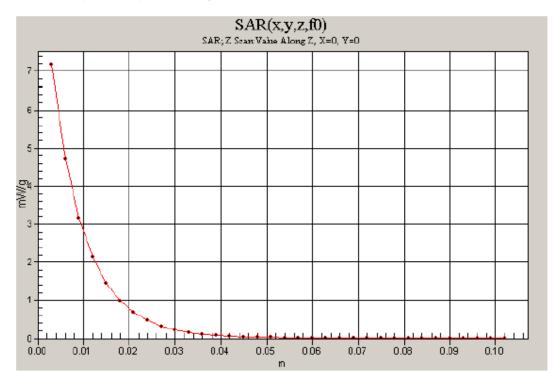
Reference Value = 61.2 V/m; Power Drift = -0.138 dB

Peak SAR (extrapolated) = 11.3 W/kg

SAR(1 g) = 5.48 mW/g; SAR(10 g) = 2.54 mW/g Maximum value of SAR (measured) = 7.25 mW/g

SYSTEM CHECK – Z Plot

Date/Time: 7/30/2010 2:09:55 PM


Test Laboratory: Compliance Certification Services

System Performance Check - D2450V2

DUT: Dipole; Type: D2450V2; Serial: 706

Communication System: System Check Signal - CW; Frequency: 2450 MHz; Duty Cycle: 1:1

d=10mm, Pin=100mW/Z Scan (1x1x34): Measurement grid: dx=20mm, dy=20mm, dz=3mm Maximum value of SAR (measured) = 7.17 mW/g

10. OUTPUT POWER VERIFICATION

Results

Mode	Channel	Freq. (MHz)	Average Output Power (dBm)
	1	2412	14.3
802.11b	6	2437	14.4
	11	2462	14.4
	1	2412	13.1
802.11g	6	2437	13.6
	11	2462	13.3
	1	2412	12.8
802.11n HT20	6	2437	12.9
	11	2462	12.4
	3	2422	12.2
802.11n HT40	6	2437	12.8
	9	2452	12.5

Note: KDB 248227 - SAR is not required for 802.11g channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11b channels.

11. SUMMARY OF SAR TEST RESULTS

Laptop - Lap-held (with the display open at 90° to the keyboard)

Mode	Channel	f (MHz)	Results (mW/g)		
Mode			1g-SAR	10g-SAR	
	1	2412			
802.11b	6	2437	0.015	0.013	
	11	2462			

Note: KDB 248227 - SAR is not required for 802.11g/HT20/HT40 channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11b channels.

12. SAR TEST PLOTS

Date/Time: 7/30/2010 5:58:17 PM

Test Laboratory: Compliance Certification Services

Laptop Mode_Lap-hepd

DUT: Toshiba; Type: NA; Serial: NA

Communication System: 802.11bg; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.92 \text{ mho/m}$; $\epsilon_{c} = 53.1$; $\rho = 1000 \text{ kg/m}^{3}$

Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

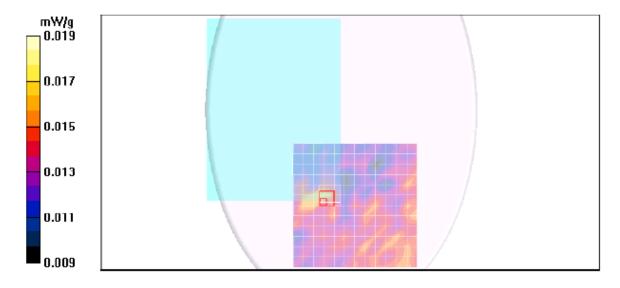
- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV3 SN3531; ConvF(7.58, 7.58, 7.58); Calibrated: 2/23/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn500; Calibrated: 9/15/2009
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

802.11b M-ch Mian Ant/Area Scan (13x13x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.017 mW/g

802.11b M-ch Mian Ant/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm

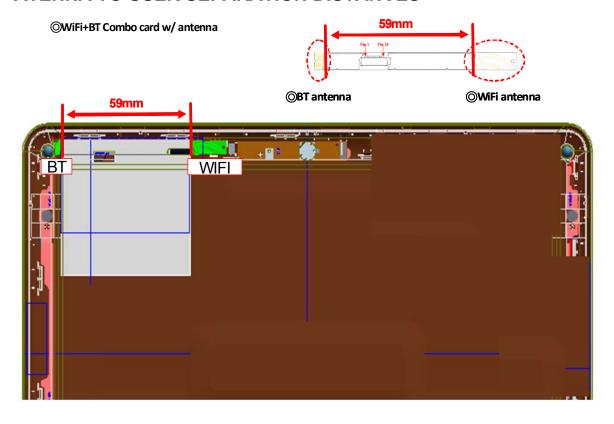

Reference Value = 2.52 V/m; Power Drift = -0.194 dB

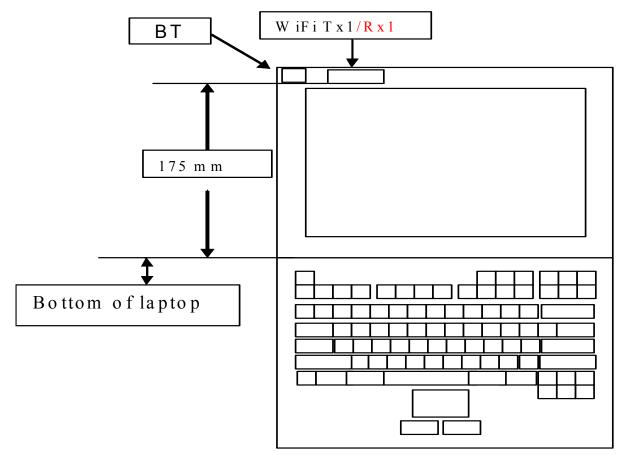
Peak SAR (extrapolated) = 0.028 W/kg

SAR(1 g) = 0.015 mW/g; SAR(10 g) = 0.013 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.018 mW/g




REPORT NO: 10U13331-1A DATE: July 31, 2010 IC: 3715A-MS3871 FCC ID: I4L-MS3871

13. **ATTACHMENTS**

No.	Contents	No. of page (s)
1	Certificate of E-Field Probe - EX3DV3 SN 3531	11
2	Certificate of System Validation Dipole - D2450 SN:706	9

14. ATENNA TO USER SEPARATION DISTANCES

