

Variant FCC Test Report

Report No.: RF191021C06A

FCC ID: 14L-LAVIELVAX200

Test Model: LN20006A

Received Date: Jan. 06, 2020

Test Date: Jan. 10, 2020

Issued Date: Feb. 03, 2020

Applicant: Micro-Star International Co., Ltd.

Address: No. 69, Lide St., Zhonghe Dist., 235 New Taipei City Taiwan

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Lin Kou Laboratories

Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan

Test Location: B2F., No.215, Sec. 3, Beixin Rd., Xindian Dist., New Taipei City 231, Taiwan

FCC Registration /

427177 / TW0011

Designation Number:

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Report No.: RF191021C06A Page No. 1 / 17 Report Format Version: 6.1.1 Reference No.: 200106C26

Table of Contents

Re	eleas	e Control Record	3
1	Cer	tificate of Conformity	4
2	Sur	nmary of Test Results	5
		Measurement Uncertainty	
3	Ger	neral Information	6
	3.2	General Description of EUT	7 8 9
		General Description of Applied Standards and references	9
4	Tes	t Types and Results	10
	4.1	Radiated Emission and Bandedge Measurement 4.1.1 Limits of Radiated Emission and Bandedge Measurement 4.1.2 Test Instruments 4.1.3 Test Procedures 4.1.4 Deviation from Test Standard 4.1.5 Test Set Up 4.1.6 EUT Operating Conditions 4.1.7 Test Results	10 .11 .12 .12 .13 .13
5	Pic	tures of Test Arrangements	16
A	pen	dix – Information of the Testing Laboratories	17

Release Control Record

Issue No.	Description	Date Issued
RF191021C06A	Original Release	Feb. 03, 2020

Page No. 3 / 17 Report Format Version: 6.1.1

Report No.: RF191021C06A Reference No.: 200106C26

1 Certificate of Conformity

Product: Notebook PC

Brand: NEC

Test Model: LN20006A

Sample Status: Mass product

Applicant: Micro-Star International Co., Ltd.

Test Date: Jan. 10, 2020

Standards: 47 CFR FCC Part 15, Subpart C (Section 15.247)

ANSI C63.10:2013

This report is issued as a supplementary report to BV CPS report no.: RF191021C06. This report shall be used by combining with its original report.

Prepared by : , Date: Feb. 03, 2020

Rona Chen / Specialist

Approved by : , **Date:** Feb. 03, 2020

Dylan Chiou / Senior Project Engineer

Report No.: RF191021C06A Reference No.: 200106C26 Page No. 4 / 17

2 Summary of Test Results

	47 CFR FCC Part 15, Subpart C (Section 15.247)						
FCC Clause	Test Item	Result	Remarks				
15.207	AC Power Conducted Emission	N/A	Refer to Note 2				
15.247(a)(1) (iii)	Number of Hopping Frequency Used	N/A	Refer to Note 2				
15.247(a)(1) (iii)	Dwell Time on Each Channel	N/A	Refer to Note 2				
15.247(a)(1)	Hopping Channel Separation Spectrum Bandwidth of a Frequency Hopping Sequence Spread Spectrum System	N/A	Refer to Note 2				
15.247(a)(1)	Maximum Peak Output Power	N/A	Refer to Note 2				
	Occupied Bandwidth Measurement	N/A	Refer to Note 2				
15.205 & 209	Radiated Emissions	Pass	Meet the requirement of limit. Minimum passing margin is -3.14 dB at 251.67 MHz.				
15.247(d) Band Edge Measurement		N/A	Refer to Note 2				
15.247(d)	Antenna Port Emission	N/A	Refer to Note 2				
15.203	Antenna Requirement	N/A	Refer to Note 2				

Note:

- 1. N/A: Not Applicable
- 2. Only Radiated Emissions below 1GHz test was performed for this addendum. Refer to original report for other test data.
- 3. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)	
	9 kHz ~ 30 MHz	3.04 dB	
Radiated Emissions up to 1 GHz	30 MHz ~ 200 MHz	2.0153 dB	
	200 MHz ~ 1000 MHz	2.0224 dB	

2.2 Modification Record

There were no modifications required for compliance.

Report No.: RF191021C06A Page No. 5 / 17 Report Format Version: 6.1.1

3 General Information

3.1 General Description of EUT

Product	Notebook PC
Brand	NEC
Test Model	LN20006A
Status of EUT	Mass product
Dawer Comply Dating	20.0 / 15.0 / 9.0 / 5.0 Vdc (Adapter)
Power Supply Rating	15.36 Vdc (Li-ion battery)
Modulation Type	GFSK, π/4-DQPSK, 8DPSK
Transfer Rate	1/2/3 Mbps
Operating Frequency	2402 ~ 2480 MHz
Number of Channel	79
Antenna Type	PIFA antenna with -0.15 dBi gain
Antenna Connector	i-pex(MHF)
Accessory Device	Refer to Note as below
Data Cable Supplied	Refer to Note as below

Note:

 This report is issued as a supplementary report to BV CPS report no.: RF191021C06. The difference compared with original report is revising the design of vents on bottom plate of EUT. Therefore, only Radiated Emissions below 1GHz test was verified on the worst case of original report.

2. The EUT contains following accessory devices.

Product	Brand	Model	Description
Adapter	NEC	A19-095P1A	I/P: 100-240 Vac, 50-60 Hz, 1.6 A O/P: 20 Vdc, 4.75 A / 15 Vdc, 3 A / 9 Vdc, 3 A / 5 Vdc, 3 A
Battery	NEC	PC-VP-WP151	15.36 Vdc, 5235 mAh, Min.4711 mAh (72Wh)
WLAN Module	Intel	AX200NGW	

3. The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or User's Manual.

Report No.: RF191021C06A Page No. 6 / 17 Report Format Version: 6.1.1

Description of Test Modes 3.2

79 channels are provided to this EUT:

Channel	Freq. (MHz)						
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

Page No. 7 / 17 Report Format Version: 6.1.1

Report No.: RF191021C06A Reference No.: 200106C26

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT Configure	Applicable To	Description
Mode	RE<1G	Description
-	√	-

Where **RE<1G:** Radiated Emission below 1 GHz

Note: "-"means no effect.

Radiated Emission Test (Below 1 GHz):

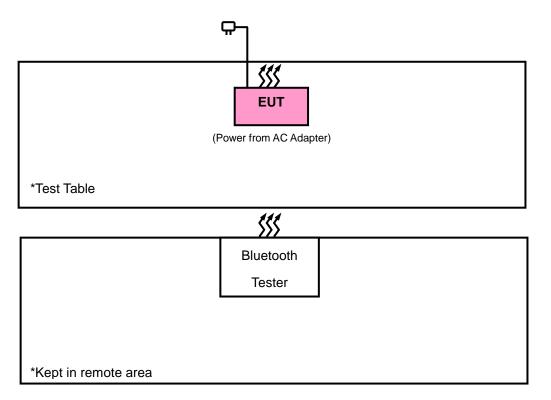
Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Packet Type
-	0 to 78	78	FHSS	8DPSK	DH5

Test Condition:

Applicable To	Environmental Conditions	Input Power	Tested by
RE<1G	25 deg. C, 65 % RH	120 Vac, 60 Hz	Karl Lee


Report No.: RF191021C06A Page No. 8 / 17 Report Format Version: 6.1.1

3.3 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units.

3.3.1 Configuration of System under Test

3.4 General Description of Applied Standards and references

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards and references:

Test standard:

FCC Part 15, Subpart C (15.247)

ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

References Test Guidance:

KDB 558074 D01 15.247 Meas Guidance v05r02

All test items have been performed as a reference to the above KDB test guidance.

Report No.: RF191021C06A Reference No.: 200106C26

A Page No. 9 / 17

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20 dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F (kHz)	300
0.490 ~ 1.705	24000/F (kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Note:

- a. The lower limit shall apply at the transition frequencies.
- b. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.
- c. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

Report No.: RF191021C06A Page No. 10 / 17 Report Format Version: 6.1.1

4.1.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Date of Calibration	Due Date of Calibration
Test Receiver Agilent Technologies	N9038A	MY52260177	Aug. 26, 2019	Aug. 25, 2020
Spectrum Analyzer ROHDE & SCHWARZ	FSU43	101261	Apr. 15, 2019	Apr. 14, 2020
BILOG Antenna SCHWARZBECK	VULB 9168	9168-616	Nov. 22, 2019	Nov. 21, 2020
Fixed Attenuator Mini-Circuits	MDCS18N-10	MDCS18N-10-01	Apr. 15, 2019	Apr. 14, 2020
Bluetooth Tester	CBT	100980	Jul. 14, 2019	Jul. 13, 2020
Loop Antenna	EM-6879	269	Sep. 16, 2019	Sep. 15, 2020
Preamplifier Agilent	310N	187226	Jun. 18, 2019	Jun. 17, 2020
Preamplifier Agilent	83017A	MY39501357	Jun. 18, 2019	Jun. 17, 2020
RF signal cable ETS-LINDGREN	5D-FB	Cable-CH1-01(RFC -SMS-100-SMS-12 0+RFC-SMS-100-S MS-400)	Jun. 18, 2019	Jun. 17, 2020
RF signal cable ETS-LINDGREN	8D-FB	Cable-CH1-02(RFC -SMS-100-SMS-24)	Jun. 18, 2019	Jun. 17, 2020
Boresight Antenna Fixture	FBA-01	FBA-SIP01	NA	NA
Software BV ADT	E3 8.130425b	NA	NA	NA
Antenna Tower MF	NA	NA	NA	NA
Turn Table MF	NA	NA	NA	NA
Antenna Tower &Turn Table Controller MF	MF-7802	NA	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in HsinTien Chamber 1.

Report No.: RF191021C06A Reference No.: 200106C26

Page No. 11 / 17

4.1.3 Test Procedures

For Radiated Emission below 30 MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

Note:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9 kHz at frequency below 30 MHz.

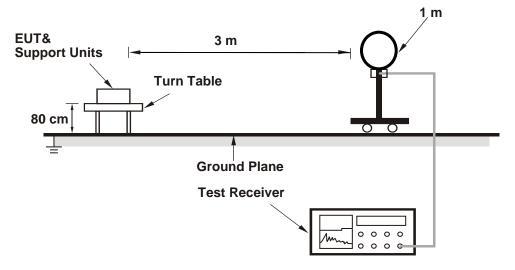
For Radiated Emission above 30 MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30 MHz ~ 1 GHz) / 1.5 meters (for above 1 GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detected function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

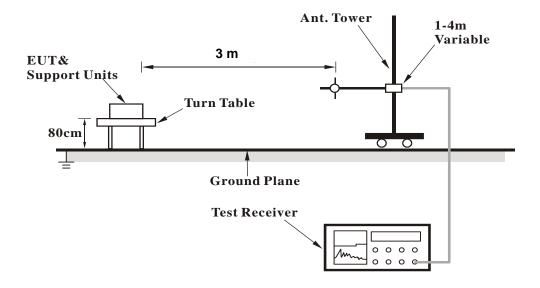
Note:

- The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection (QP) or Peak detection (PK) at frequency below 1 GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1 GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98 %) or 10 Hz (Duty cycle ≥ 98 %) for Average detection (AV) at frequency above 1 GHz. (RBW = 1 MHz, VBW = 1 kHz)
- 4. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 Deviation from Test Standard


No deviation.

Report No.: RF191021C06A Page No. 12 / 17 Report Format Version: 6.1.1



4.1.5 Test Set Up

<Radiated Emission below 30 MHz>

<Radiated Emission 30 MHz to 1 GHz>

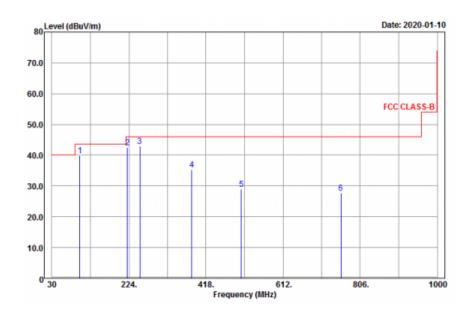
For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

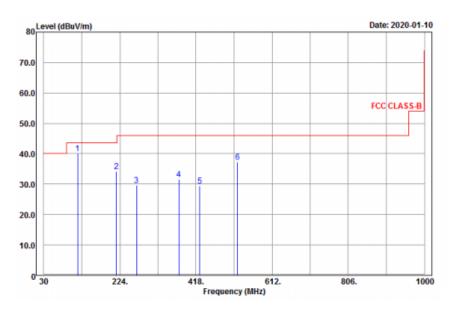
Set the EUT under transmission condition continuously at specific channel frequency.

Report No.: RF191021C06A Reference No.: 200106C26 Page No. 13 / 17

4.1.7 Test Results


9 kHz ~ 30 MHz Data:

The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report.


30 MHz ~ 1 GHz Worst-Case Data:

EUT Test Condition		Measurement Detail			
Channel	Channel 78	Frequency Range	30 MHz ~ 1 GHz		
Input Power	120 Vac, 60 Hz	Detector Function	Peak (PK) Quasi-peak (QP)		
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Karl Lee		

Horizontal

Vertical

Report No.: RF191021C06A Reference No.: 200106C26 Page No. 14 / 17

Antenna Polarity & Test Distance: Horizontal at 3 m										
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark		
100.2	39.94	57.14	-17.2	43.5	-3.56	121	100	Peak		
219.81	42.61	60.46	-17.85	46	-3.39	134	174	Peak		
251.67	42.86	59.67	-16.81	46	-3.14	105	123	Peak		
381.9	35.34	49.54	-14.2	46	-10.66	105	287	Peak		
507.2	29	41.22	-12.22	46	-17	156	6	Peak		
757.8	27.69	36.01	-8.32	46	-18.31	157	174	Peak		
Antenna Polarity & Test Distance: Vertical at 3 m										
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark		
116.13	40.07	58.59	-18.52	43.5	-3.43	110	24	Peak		
215.22	34.28	52.27	-17.99	43.5	-9.22	158	252	Peak		
266.79	29.59	46.16	-16.57	46	-16.41	166	189	Peak		
374.2	31.72	46.06	-14.34	46	-14.28	187	314	Peak		
427.4	29.41	42.94	-13.53	46	-16.59	105	25	Peak		
524	37.27	49.28	-12.01	46	-8.73	165	287	Peak		

Remarks:

- 1. Emission Level = Read Level + Factor Margin value = Emission level – Limit value
- 2. The emission levels of other frequencies were very low against the limit.

Page No. 15 / 17 Report Format Version: 6.1.1

Report No.: RF191021C06A Reference No.: 200106C26

5 Pictures of Test Arrangements						
Please refer to the attached file (Test Setup Photo).						

Report No.: RF191021C06A Page No. 16 / 17
Reference No.: 200106C26

Appendix - Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab

Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565

Tel: 886-2-26052180 Fax: 886-2-26051924

Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com
Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---

Report No.: RF191021C06A Page No. 17 / 17 Report Format Version: 6.1.1