

FCC RADIO TEST REPORT

Applicant	: Micro-Star Int'l Co.,Ltd.
Address	No.69, Lide St., Zhonghe Dist. New Taipei City 235 Taiwan
Equipment	: WiFi USB Adapter
Model No.	: GUAXE54
Trade Name	: msi
FCC ID	: I4L-GUAXE54

I HEREBY CERTIFY THAT :

The sample was received on Jun. 16, 2023 and the testing was completed on Jul. 07, 2023 at Cerpass Technology Corp. The test result refers exclusively to the test presented test model / sample. Without written approval of Cerpass Technology Corp., the test report shall not be reproduced except in full.

Approved by:

Kevin Liang / Supervisor

Laboratory Accreditation:

Cerpass Technology Corporation Test Laboratory

CERPASS TECHNOLOGY CORP.

CONTENTS

1.	Sum	mary of Test Procedure and Test Results	.4
	1.1.	Applicable Standards	.4
2.	Test	Configuration of Equipment under Test	.5
	2.1.	Feature of Equipment	.5
	2.2.	Description of Test System	.6
	2.3.	General Information of Test	.7
	2.4.	Measurement Uncertainty	.7
3.	Test	Equipment and Ancillaries Used for Tests	.8
4.	Ante	nna Requirements	.9
	4.1.	Antenna Construction and Directional Gain	.9
5.	Dyna	amic Frequency Selection 1	0
	5.1.	Working Modes and Required Test Items	10
	5.2.	Test Limits and Radar Signal Parameters	11
	5.3.	Test Setup	14
	5.4.	DFS Detection Threshold	15
	5.5.	Channel Loading	17
	5.6.	In-Service Monitoring	18
	5.7.	Non-Occupancy Period	20
	5.8.	EUT Setup Photos	22

History of this test report

Report No.	Issued Date	Description
23060172-TRFCC03	Sep. 11, 2023	Original

1. Summary of Test Procedure and Test Results

1.1. Applicable Standards

ANSI C63.10:2013

FCC Rules and Regulations Part 15 Subpart E §15.407

KDB 789033

KDB 905462

FCC Rule	Description of Test	Result
15.407	Dynamic Frequency Selection	PASS

*The lab has reduced the uncertainty risk factor from test equipment, environment and staff technicians which according to the standard on contract. Therefore, the test result will only be determined by standard requirement, measurement uncertainty evaluation is not considered.

CERPASS TECHNOLOGY CORP.	Issued date	: Sep. 11, 2023
T-FD-501-0 Ver 1.5	Page No.	: 4 of 22
	FCC ID.	: I4L-GUAXE54

2. Test Configuration of Equipment under Test

2.1. Feature of Equipment

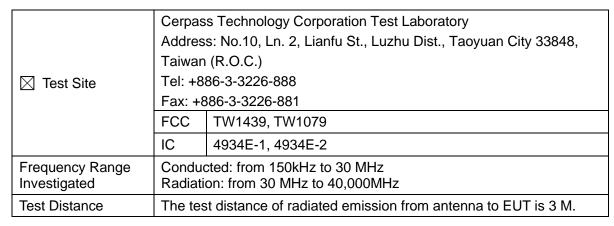
	2.4GHz:802.11b/g/n(Turbo QAM)/ax: 2400-2483.5MHz
	5GHz:802.11a/n/ac/ax: 5150-5250MHz, 5250-5350MHz,
Operation Frequency Range	5470-5725MHz, 5725-5850MHz
	6GHz:802.11ax: 6105MHz~6425MHz, 6425MHz~6525MHz
	6525MHz~6875MHz, 6875MHz~7125MHz
	2.4GHz:802.11b/g/n(Turbo QAM)/ax: 2412MHz-2462MHz
Center Frequency Range	5GHz :802.11a/n/ac/ax: 5180-5240MHz, 5260-5320MHz, 5500-5700MHz, 5745-5825MHz
Center riequency Range	6GHz: 802.11ax: 6115MHz~6415MHz, 6435MHz~6515MHz
	6535MHz~6855MHz,6875MHz~7115MHz
	2.4GHz:
	802.11b: CCK, DQPSK, DBPSK
	802.11g/n: BPSK, QPSK, 16QAM, 64QAM, 256QAM(Turbo QAM)
	802.11ax: BPSK, QPSK, 16QAM, 64QAM, 256QAM, 1024QAM
Modulation Type	5GHz:
	802.11a/n: BPSK, QPSK, 16QAM, 64QAM
	802.11ac: BPSK, QPSK, 16QAM, 64QAM, 256QAM
	802.11ax: BPSK, QPSK, 16QAM, 64QAM, 256QAM, 1024QAM 6GHz:
	802.11ax: BPSK, QPSK, 16QAM, 64QAM, 256QAM, 1024QAM
Modulation Technology	DSSS, OFDM, OFDMA
modulation roomlology	2.4GHz:
	802.11b: 1, 2, 5.5, 11Mbps
	802.11g: 6, 9, 12, 18, 24, 36, 48, 54Mbps
	802.11n: MCS0 – MCS15, HT20/40
	MCS0 – MCS9, VHT20/40(Turbo QAM)
	802.11ax: MCS0 – MCS11, HE20/40
Data Rate	5GHz:
	802.11a: 6, 9, 12, 18, 24, 36, 48, 54Mbps
	802.11n: MCS0 – MCS15, HT20/40
	802.11ac: MCS0 – MCS9, VHT20/40/80/160
	802.11ax: MCS0 – MCS11,HE20/40/80/160
	6GHz: 802.11ax: MCS0 – MCS11, HE20/40/80/160
Antenna Type	PCB Antenna
Antenna Type	2400-2490MHz: ANT A: 1.40 dBi, ANT B: 1.70 dBi
	5150-5200MHz: ANT A: 1.40 dBi, ANT B: 1.70 dBi
	5300-5400MHz: ANT A: 2.90 dBi, ANT B: 2.80 dBi
	5500-5700MHz: ANT A: 2.40 dBi, ANT B: 2.10 dBi
Antenna Gain	5700-5850MHz: ANT A: 1.20 dBi, ANT B: 1.50 dBi
	6100~6400MHz: ANT A: 3.30 dBi, ANT B: 3.20 dBi
	6400~6500MHz: ANT A: 3.30 dBi, ANT B: 3.30 dBi
	6500~6800MHz: ANT A: 3.90 dBi, ANT B: 3.40 dBi
	6900~7125MHz: ANT A: 4.00 dBi, ANT B: 3.50 dBi
USB cradle	Brand: msi, Model: GUAXE54C
Firmware Number	5001.19.105.0
Serial Number	B2350205852

Note:

1. WLAN 2.4G 802.11n Support TurboQAM.

2. EUT support TPC Function.

3. EUT support Client Mode without radar detection.


4. For more details, please refer to the User's manual of the EUT.

2.2. Description of Test System

DFS					
Equipment	Brand	Model	Length/Type	Power cord/Length/Type	
Notebook	Lenovo	S2292L	N/A	Adapter / 1.8m / NS	
Notebook	Lenovo	S2292L	N/A	Adapter / 1.8m / NS	
RJ45 Cable	TE CONNECTIVITY	CAT5E	1.2m / NS	N/A	
AP	NETGEAR	RAX80	N/A	Adapter / 1.5m / NS	

CERPASS TECHNOLOGY CORP.

2.3. General Information of Test

Test Item	Test Site	Test period	Environmental Conditions	Tested By
DFS	RFDFS01-NK	2023/07/07	26.4°C / 41%	Dian Chen

2.4. Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Item	Uncertainty
Channel Move Time	±5.6%
Channel Closing Transmission Time	±7.4%
Threshold	±2.5dB

CERPASS TECHNOLOGY CORP.	Issued date	: Sep. 11, 2023
T-FD-501-0 Ver 1.5	Page No.	: 7 of 22
	FCC ID.	: I4L-GUAXE54

3. Test Equipment and Ancillaries Used for Tests

Test Item	DFS				
Test Site	RFDFS01-NK				
Instrument	Manufacturer	Model No	Serial No	Calibration Date	Valid Date
CAX Signal Analyzer	KEYSIGHT	N9000B	MY57100291	2022/10/26	2023/10/25
MXG-B RF Vector Signal Generator + Frequency Extender	KEYSIGHT	N5182B+ N5182BX07	MY53051383+ MY59362519	2023/02/22	2024/02/21
N7607C Signal Studio	KEYSIGHT	v1.5.5.0	NA	NA	NA
InServiceMonitorUtility	Theda	v10.0.0.0	NA	NA	NA

CERPASS TECHNOLOGY CORP.	Issued date	: Sep. 11, 2023
T-FD-501-0 Ver 1.5	Page No.	: 8 of 22
	FCC ID.	: I4L-GUAXE54

4. Antenna Requirements

4.1. Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.407 (a), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

4.2. Antenna Construction and Directional Gain

Antenna Type	PCB Antenna
Antenna Gain	5300-5400MHz: ANT A: 2.90 dBi, ANT B: 2.80 dBi 5500-5700MHz: ANT A: 2.40 dBi, ANT B: 2.10 dBi

CERPASS TECHNOLOGY CORP.	Issued date	: Sep. 11, 2023
T-FD-501-0 Ver 1.5	Page No.	: 9 of 22
	FCC ID.	: I4L-GUAXE54

5. Dynamic Frequency Selection

5.1. Working Modes and Required Test Items

The manufacturer shall state whether the UUT is capable of operating as a Master and/or a Client. If the UUT is capable of operating in more than one operating mode then each operating mode shall be tested separately. See tables 6 and 7 for the applicability of DFS requirements for each of the operational modes.

		Operational Mode	
Requirement	Master	Client without radar	Client with radar
	waster	detection	detection
Non-Occupancy Period	V	Not required	V
DFS Detection Threshold	V	Not required	V
Channel Availability Check Time	V	Not required	Not required
U-NII Detection Bandwidth	V	Not required	V

Table 6: Applicability of DFS Requirements Prior to Use a Channel

Table 7. Applicability of DI 3 Requirements during Normal Operation					
	Operational Mode				
Requirement	Master or Client with radar	Client without radar			
	detection	detection			
DFS Detection Threshold	V	Not required			
Channel Closing Transmission Time	V	V			
Channel Move Time	V	V			
U-NII Detection Bandwidth	V	Not required			

Table 7: Applicability of DES Requirements during Normal Operation

Additional requirements for devices with multiple bandwidth modes	Master or Client with radar detection	Client without radar detection			
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required			
Channel Move Time and Channel Closing Transmission Time	Test using widest BW mode available	Test using the widest BW mode available for the link			
All other tests Any single BW mode Not required					
Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz					

channels and the channel center frequency.

5.2. Test Limits and Radar Signal Parameters

Detection Threshold Values

Table 8: DFS Detection Thresholds for Master Devices and Client Devices with Radar Detection

Maximum Transmit Power	Value (See Notes 1, 2, and 3)	
EIRP ≥ 200 milliwatt	-64 dBm	
EIRP < 200 milliwatt and	-62 dBm	
power spectral density < 10 dBm/MHz		
EIRP < 200 milliwatt that do not meet the	-64 dBm	
power spectral density requirement	-04 dDill	

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna. Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response. Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

Parameter	Value		
Non-occupancy period	Minimum 30 minutes		
Channel Availability Check Time	60 seconds		
Channel Move Time	10 seconds		
	See Note 1.		
	200 milliseconds + an aggregate of 60		
Channel Closing Transmission Time	milliseconds over remaining 10 second period.		
	See Notes 1 and 2.		
U-NII Detection Bandwidth	Minimum 100% of the U-NII 99% transmission		
U-INIT Detection Bandwidth	power bandwidth. See Note 3		
Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with			

Table 9: DFS Response Requirement Values

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst. Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to acilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions. Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

CERPASS TECHNOLOGY CORP.	Issued date	: Sep. 11, 2023
T-FD-501-0 Ver 1.5	Page No.	: 11 of 22
	FCC ID.	: I4L-GUAXE54

Parameters of DFS Test Signals

Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

Radar Type	Pulse Width (µsec)	n PRI Number (µsec) of Pulses		Minimum Percentage of Successful Detection	Minimum Number of Trials		
0	1	1428	18	See Note 1	See Note 1		
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066µ sec, with a minimum increment of 1µ sec, excluding PRI values selected in Test A	Roundup $\begin{cases} \left(\frac{1}{360}\right) \\ \left(\frac{19 \cdot 10^{6}}{ PRI_{i} _{cec}}\right) \end{cases}$	60%	30		
2	1-5	150-230	23-29	60%	30		
3	6-10	200-500	16-18	60%	30		
4	11-20	200-500	12-16	60%	30		
	Aggregate (Radar Types 1-4) 80% 120						
Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.							

Table 10: Short Pulse Radar Test Waveforms

CERPASS TECHNOLOGY CORP.	Issued date	: Sep. 11, 2023
T-FD-501-0 Ver 1.5	Page No.	: 12 of 22
	FCC ID.	: I4L-GUAXE54

CERPASS TECHNOLOGY CORP.

Table TT. Long Fulse Radar Test Wavelonn							
Radar	Pulse	Chirp	PRI	Number	Number	Minimum Percentage	Minimum
	Width	Width		of Pulses	of	of Successful	Number
Туре	(µsec)	(MHz)	(µsec)	Per Burst	Bursts	Detection	of Trials
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

Three subsets of trials will be performed with a minimum of ten trials per subset. The subset of trials differ in where the Long Pulse Type 5 Signal is tuned in frequency.

a) the Channel center frequency

b) tuned frequencies such that 90% of the Long Pulse Type 5 frequency modulation is within the low edge of the UUT Occupied Bandwidth

c) tuned frequencies such that 90% of the Long Pulse Type 5 frequency modulation is within the high edge of the UUT Occupied Bandwidth

It include 10 trails for every subset, the formula as below,

For subset case 1: the center frequency of the signal generator will remain fixed at the center of the UUT Channel.

For subset case 2: to retain 90% frequency overlap between the radar signal and the UUT Occupied Bandwidth, the center frequency of the signal generator will vary for each of the ten trials in subset case 2. The center frequency of the signal generator for each trial is calculated by:

FL+(0.4*Chirp Width [in MHz])

For subset case 3: to retain 90% frequency overlap between the radar signal and the UUT Occupied Bandwidth, the center frequency of the signal generator will vary for each of the ten trials in subset case 3. The center frequency of the signal generator for each trial is calculated by:

FL-(0.4*Chirp Width [in MHz])

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Number of Trials
6	1	333	9	0.333	300	70%	30

Table 12: Frequency Hopping Radar Test Waveform

5.3. Test Setup

Setup for Client with injection at the Master

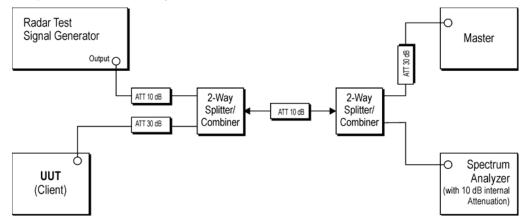


Figure 2: Example Conducted Setup where UUT is a Client and Radar Test Waveforms are injected into the Master

CERPASS TECHNOLOGY CORP.	Issued date : Sep. 11, 2023
T-FD-501-0 Ver 1.5	Page No. : 14 of 22
	FCC ID. : I4L-GUAXE54

5.4. DFS Detection Threshold

DFS Detection Threshold is the level used by the DFS mechanism to detect radar interference.

5.4.1. Test Limit

Limits Clause 4.7.2.1.2

DFS Detection Thresholds for Master Devices and Client Devices with Radar Detection

MAXIMUM TRANSMIT POWER	VALUE (SEE Note 1 and 2)	
≥ 200 milliwatt	-64 dBm	
EIRP < 200 milliwatt and power spectral density < 10 dBm/MHz	-62 dBm	
EIRP < 200 milliwatt that do not meet the power spectral density requirement	-64 dBm	

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna. Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response. Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911

	Band: 5300-5400MHz
	802.11a: 16.40dBm
	802.11ax HE20: 16.43dBm
	802.11ax HE40: 16.41dBm
	802.11ax HE80: 16.00dBm
Max. output power	
	Band: 5500-5700MHz
	802.11a: 16.55dBm
	802.11ax HE20: 16.49dBm
	802.11ax HE40: 16.88dBm
	802.11ax HE80: 16.68dBm
Antonno goin (Max)	5300-5400MHz: ANT A: 2.90 dBi, ANT B: 2.80 dBi
Antenna gain (Max)	5500-5700MHz: ANT A: 2.40 dBi, ANT B: 2.10 dBi

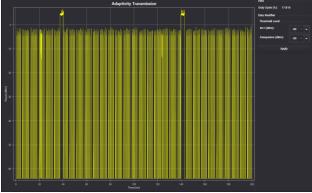
5.4.2. Test Result of DFS Detection Threshold

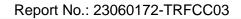
EIRP > 200 milliwatt , was used to set the -64dBm threshold level during calibration of the test setup.

Ζ

Modulation Standard: 802.11a , 5500MHz

Spectrum Analyzer 1						🛟 Freq	uency 🔹 👬
RL Coupling: AC Align: Auto	Input Z: 50 Ω Corrections: Off Freq Ref: Int (S)	#Atten: 0 dB	PNO: Fast Gate: Off IF Gain: High Sig Track: Off	Avg Type: Log-Power Trig: Video	123456 WWWWWW NNNNNN	5.55555566666	
1 Spectrum Scale/Div 10 dB Log		f Lvi Offset -10.0 f Level -30.00 di			18.55 ms 4.03 dBm	Span 0.00000000 Hz Swept Span Zero Span	
						Full Span	
-50.0						Start Freq 5.500000000 GI	Чz
-70.0	والمتغادية والمتعاد	int and a state of the state of	ويعاونه والمراجع والمراجع	dite a statistic site site in a statistic	TRIG LVL	Stop Freq 5.500000000 Gi	Hz
-80.0						AUTO TUN	<u>.</u>
-90.0						CF Step 3.000000 MHz	
-110 Hills - the half of the	na si tang	h hinterikala k	ada ita na ita	ion bits a simila	desk felter skal	Auto Man	
-120		la la di bi			1.1.1.1	Freq Offset 0 Hz	
Center 5.50000000 GHz Res BW 3.0 MHz	<u>'</u>	#Video BW 3.0 N	ſHz	Sweep 101.3 m	Span 0 Hz ns (40001 pts)	X Axis Scale Log Lin	
t ? C 1 ?	Jul 07, 2023 11:19:56 AM				+	Signal Track (Span Zoom)	




5.5. Channel Loading

A link is established between the AP. Use N7607C Signal Studio ver. v1.5.5.0 & InServiceMonitorUtility ver. v10.0.0.0 Software to simulate data transfer is streamed to generate WLAN traffic.

Timing plots are required with calculations demonstrating a minimum channel loading of approximately 17% or greater. For example, channel loading can be estimated by setting the spectrum analyzer for zero span and approximate the Time On/ (Time On + Off Time). This can be done with any appropriate channel BW and modulation type

Modulation Type:802.11ax HE160 Time On/ (Time On + Off Time) =17.81%

5.6. In-Service Monitoring

The In-Service Monitoring is defined as the process by which an RLAN monitors the Operating Channel for the presence of radar signals.

Additional requirements for devices with multiple bandwidth modes	Master or Client with radar detection	Client without radar detection	
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required	
Channel Move Time and Channel Closing Transmission Time	Test using widest BW mode available	Test using the widest BW mode available for the link	
All other	Any single BW mode	Not required	
Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.			

5.6.1. Test Limit

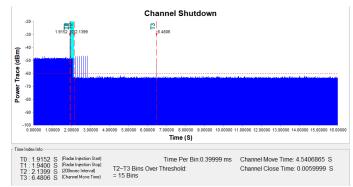
Parameter	Value			
Channel Move Time	< 10 s (See Note 1)			
	< 200 ms+ an aggregate of 60 milliseconds			
Channel Closing Transmission Time	over remaining 10 second period.			
	(See Notes 1 and Notes 2.)			
Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed				
with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.				
Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the				
beginning of the Channel Move Time plus any additional intermittent control signals required to				
facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10				
second period. The aggregate duration of control signals will not count quiet periods in between				
transmissions.				

Limits Clause 4.7.2.2.2

The In-Service Monitoring shall be used to continuously monitor an Operating Channel.

The In-Service-Monitoring shall start immediately after the RLAN has started

transmissions on an Operating Channel.



5.6.2. Test Result of In-Service Monitoring

	Value	Limit
Channel Move Time	4.5406865	<10 s
Channel Closing Transmission Time	5.9999	< 60 ms

Modulation Type:802.11ax HE160, ch114@5570MHz

5.7. Non-Occupancy Period

The Channel Shutdown is defined as the process initiated by the RLAN device immediately after a radar signal has been detected on an Operating Channel.

The master device shall instruct all associated slave devices to stop transmitting on this channel, which they shall do within the Channel Move Time.

Slave devices with a Radar Interference Detection function, shall stop their own transmissions within the Channel Move Time.

The aggregate duration of all transmissions of the RLAN device on this channel during the Channel Move Time shall be limited to the Channel Closing Transmission Time. The aggregate duration of all transmissions shall not include quiet periods in between transmissions.

5.7.1. Test Limit

Radar Test Signal	Master (min)	Client (min)	
0	> 30	> 30	

5.7.2. Test Result of Non-Occupancy Period

Modulation Type:802.11ax HE160, ch114@5570MHz

