FCC Test Report

Product Name	Dongle
Model No.	GH50WD
FCC ID	I4L-GH50WD

Applicant	MICRO-STAR INT'L Co., LTD.
Address	No.69, Lide St., Zhonghe Dist., New Taipei City 235, Taiwan (R.O.C.)

Date of Receipt	Jan. 08, 2022
Issued Date	Mar. 28, 2022
Report No.	2210233R-RFUSOTHV06-B
Report Version	V1.0
Report Version V1.0	

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standard through the

calibration report of the equipment and evaluated measurement uncertainty herein.

This report must not be used to claim product endorsement by TAF or any agency of the government.

The test report shall not be reproduced without the written approval of DEKRA Testing and Certification Co., Ltd. Measurement uncertainties evaluated for each testing system and associated connections are given here to provide the system information for reference. Compliance determinations do not take into account measurement uncertainties for each testing system, but are based on the results of the compliance measurement.

Test Report

Issued Date: Mar. 28, 2022 Report No.: 2210233R-RFUSOTHV06-B

Product Name	Dongle		
Applicant	MICRO-STAR INT'L Co., LTD.		
Address	No.69, Lide St., Zhonghe Dist., New Taipei City 235, Taiwan (R.O.C.)		
Manufacturer	GUANGDONG SOMIC TECHNOLOGY CO., LTD. DONGGUAN		
	BRANCH		
Model No.	GH50WD		
FCC ID	I4L-GH50WD		
EUT Rated Voltage	DC 5V (Power by USB)		
EUT Test Voltage	DC 5V (Power by USB)		
Trade Name	msi		
Applicable Standard FCC CFR Title 47 Part 15 Subpart C			
	ANSI C63.4: 2014, ANSI C63.10: 2013		
Test Result Complied			
Documented By	Gente Chang		
	(Senior Project Specialist / Genie Chang)		
Tested By	Bill Lin		
	(Senior Engineer / Bill Lin)		
Approved By	Jack Her		
	(Senior Engineer / Jack Hsu)		

TABLE OF CONTENTS

	Description	Page	
1.	GENERAL INFORMATION	5	
1.1.	EUT Description	5	
1.2.	Tested System Datails		
1.3.	Configuration of Test System	7	
1.4.	EUT Exercise Software	7	
1.5.	Test Facility	8	
1.6.	List of Test Equipment	9	
1.7.	Uncertainty	10	
2.	Conducted Emission	11	
2.1.	Test Setup	11	
2.2.	Limits		
2.3.	Test Procedure		
2.4.	Test Result of Conducted Emission		
3.	Radiated Emission	14	
3.1.	Test Setup	14	
3.2.	Limits		
3.3.	Test Procedure		
3.4.	Test Result of Radiated Emission	17	
4.	Band Edge	25	
4.1.	Test Setup		
4.2.	Limits	25	
4.3.	Test Procedure		
4.4.	Test Result of Band Edge		
5.	Duty Cycle	31	
5.1.	Test Setup		
5.2.	Test Result of Duty Cycle		
6.	EMI Reduction Method During Compliance Testing		

Appendix 1: EUT Test Photographs

Appendix 2: Product Photos: Please refer to the file: 2210233R-Product Photos-Dongle

Revision History

Report No.	Version	Description	Issued Date
2210233R-RFUSOTHV06-B	V1.0	Initial issue of report.	2022-03-28

1. GENERAL INFORMATION

1.1. EUT Description

Product Name	Dongle	
Trade Name	msi	
Model No.	GH50WD	
FCC ID	I4L-GH50WD	
Frequency Range	2403.35 – 2477.35MHz	
Channel Number	38CH	
Type of Modulation	GFSK	
Antenna Type	Chip Antenna	
Audio Cable	MFR: msi, M/N: GM50W Audio cable	
	Non-shielded, 1.37m	
USB Cable	MFR: msi, M/N: GM50W USB cable	
Non-shielded, 1.32m		
Antenna Gain	Refer to the table "Antenna List"	
Channel Control	Auto	

Antenna List

No.	Manufacturer	Part No.	Antenna Type	Peak Gain
1	YAGEO	ANT3216LL00R2400A	Chip Antenna	5.05dBi for 2.4GHz

Note: The antenna of EUT is conform to FCC 15.203

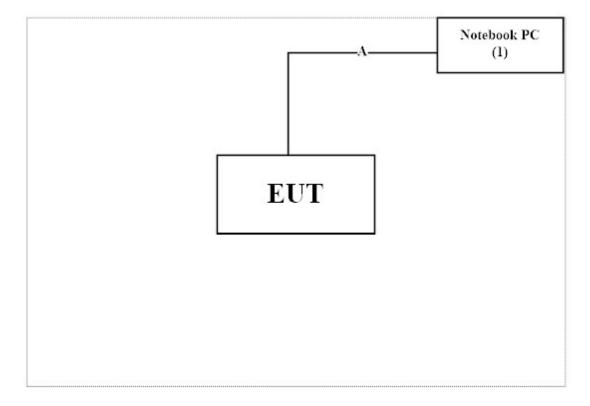
Center Frequency of Each Channel:

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel 01	: 2.40335GHz	Channel 02	: 2.40535GHz	Channel 03	: 2.40735GHz	Channel 04	: 2.40935GHz
Channel 05	: 2.41135GHz	Channel 06	: 2.41335GHz	Channel 07	: 2.41535GHz	Channel 08	: 2.41735GHz
Channel 09	: 2.41935GHz	Channel 10	: 2.42135GHz	Channel 11	: 2.42335GHz	Channel 12	: 2.42535GHz
Channel 13	: 2.42735GHz	Channel 14	: 2.42935GHz	Channel 15	: 2.43135GHz	Channel 16	: 2.43335GHz
Channel 17	: 2.43535GHz	Channel 18	: 2.43735GHz	Channel 19	: 2.43935GHz	Channel 20	: 2.44135GHz
Channel 21	: 2.44335GHz	Channel 22	: 2.44535GHz	Channel 23	: 2.44735GHz	Channel 24	: 2.44935GHz
Channel 25	: 2.45135GHz	Channel 26	: 2.45335GHz	Channel 27	: 2.45535GHz	Channel 28	: 2.45735GHz
Channel 29	: 2.45935GHz	Channel 30	: 2.46135GHz	Channel 31	: 2.46335GHz	Channel 32	: 2.46535GHz
Channel 33	: 2.46735GHz	Channel 34	: 2.46935GHz	Channel 35	: 2.47135GHz	Channel 36	: 2.47335GHz
Channel 37	: 2.47535GHz	Channel 38	: 2.47735GHz				

Note:

- 1. The EUT is a Dongle with a built-in 2.4GHz wireless transceiver.
- 2. Regarding to the operation frequency, the lowest, middle and highest frequency are selected to perform the test.
- 3. These tests are conducted on a sample of the equipment for the purpose of demonstrating compliance of transmitter with Part 15 Subpart C Paragraph 15.249 for spread spectrum devices.
- 4. The radiation measurements are performed in X, Y, Z axis positioning. Only the worst case is shown in the report.

Test Mode	Mode 1: Transmit
Test Mode	Mode 2: Normal mode


1.2. Tested System Datails

The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:

P	roduct	Manufacturer	Model No.	Serial No.	Power Cord
1	Notebook PC	DELL	Latitude E5440	FS9TK32	N/A

	Signal Cable Type	Signal cable Description
А	USB Cable	Shielded, 1.8m

1.3. Configuration of Test System

1.4. EUT Exercise Software

- (1) Setup the EUT as shown in Section 1.3.
- (2) Execute "VMIdebug V1.1.6.56" program on the Notebook PC.
- (3) Configure the test mode and the test channel
- (4) Start the continuous transmit.
- (5) Verify that the EUT works properly.

1.5. Test Facility

Ambient conditions in the laboratory:

Performed Item	Items	Required	Actual
	Temperature (°C)	10~40 °C	22.1°C
Conducted Emission	Humidity (%RH)	10~90 %	67.7%
	Temperature (°C)	10~40 °C	22.7°C
Radiated Emission	Humidity (%RH)	10~90 %	55.3%

USA	:	FCC Registration Number: TW0033
Canada	:	CAB Identifier Number: TW3023 / Company Number: 26930

Site Description	:	Accredited by TAF Accredited Number: 3023
Test Laboratory	:	DEKRA Testing and Certification Co., Ltd
Address	:	No. 5-22, Ruishukeng Linkou District, New Taipei City,
		24451, Taiwan
Performed Location	:	No. 26, Huaya 1st Rd., Guishan Dist., Taoyuan City
		333411, Taiwan, R.O.C.
Phone number	:	+886-3-275-7255
Fax number	:	+866-3-327-8031
Email address	:	<u>info.tw@dekra.com</u>
Website	:	http://www.dekra.com.tw

1.6. List of Test Equipment

For Conduction measurements /SH1

	Equipment	Manufacturer	Model No.	Serial No.	Cal. Data	Due. Data
Х	EMI Test Receiver	R&S	ESR7	101601	2021.06.19	2022.06.18
Х	Two-Line V-Network	R&S	ENV216	101306	2021.04.08	2022.04.07
Х	Two-Line V-Network	R&S	ENV216	101307	2021.05.04	2022.05.03
Х	Coaxial Cable	SUHNER	RG400_BNC	RF001	2021.05.24	2022.05.23

Note:

2. The test instruments marked with "X" are used to measure the final test results.

3. Test Software version : DEKRA Testing System V2.0

]	For	Radiated	measuremen	ts /966-3

	Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due. Date
Х	Loop Antenna	AMETEK	HLA6121	56736	2021.04.14	2022.04.13
Х	Bi-Log Antenna	SCHWARZBECK	VULB9168	9168-675	2021.08.10	2022.08.10
Х	Horn Antenna	ETS-Lindgren	3117	00227700	2021.11.09	2022.11.08
	Horn Antenna	Com-Power	AH-840	101100	2021.10.04	2022.10.03
Х	Pre-Amplifier	SGH	0301	20211007-7	2022.02.22	2023.02.21
Х	Pre-Amplifier	EMCI	EMC051835SE	980313	2021.11.24	2022.11.23
Х	Pre-Amplifier	EMCI	EMC05820SE	980310	2021.07.07	2022.07.06
	Pre-Amplifier	EMCI	EMC184045SE	980369		
	Coaxial Cable	EMCI	EMC102-KM-KM-600	1160314	2021.04.27	2022.04.26
	Coaxial Cable	EMCI	ЕМС102-КМ-КМ-7000	170242		
Х	Filter	MICRO	BRM50702	G251	2021.09.16	2022.09.15
	Filter	MICRO	BRM50716	G188	2021.09.16	2022.09.15
Х	EMI Test Receiver	R&S	ESR	102793	2021.12.15	2022.12.14
Х	Spectrum Analyzer	R&S	FSV3044	101113	2022.01.25	2023.02.24
	Coaxial Cable	SGH	HA800	GD20110222-3		
	Coaxial Cable	SGH	SGH18	20110223-1		
Х	Coaxial Cable	SGH	SGH18	2021005-3	2022.01.05	2023.01.04
	Coaxial Cable	SGH	SGH18	2021001-18		

Note:

1. All equipments are calibrated every one year.

2. The test instruments marked with "X" are used to measure the final test results.

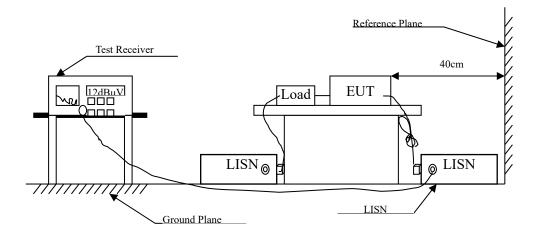
3. Test Software version : AUDIX e3 V9

^{1.} All equipments are calibrated every one year.

1.7. Uncertainty

Uncertainties have been calculated according to the DEKRA internal document, and is described in each test chapter of this report.

The reported expanded uncertainties are based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.


Measurement uncertainties evaluated for each testing system and associated connections are given here to provide the system information for reference. Compliance determinations do not take into account measurement uncertainties for each testing system, but are based on the results of the compliance measurement.

Test item	Uncer	Uncertainty	
Conducted Emission	±3.42 dB		
Radiated Emission	Under 1GHz	Above 1GHz	
Kadlated Emission	±4.06 dB	±3.73 dB	
Dand Edge	Under 1GHz	Above 1GHz	
Band Edge	±4.06 dB	±3.73 dB	
Duty Cycle	±2.3	1 ms	

2. Conducted Emission

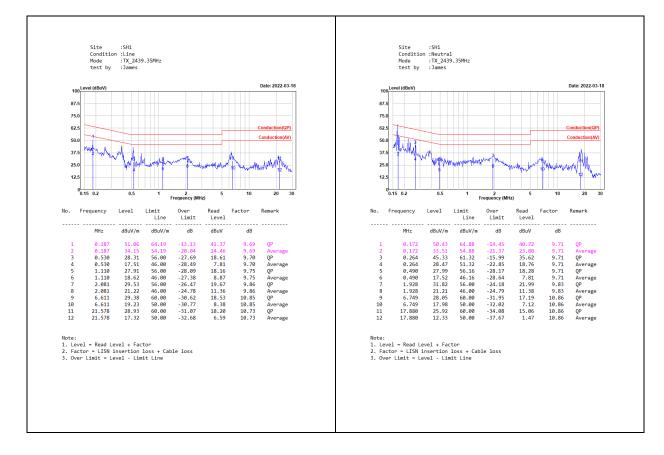
2.1. Test Setup

2.2. Limits

FCC Part 15 Subpart C Paragraph 15.207 (dBµV) Limit				
Frequency	Limits			
MHz	QP	AV		
0.15 - 0.50	66-56	56-46		
0.50-5.0	56	46		
5.0 - 30	60	50		

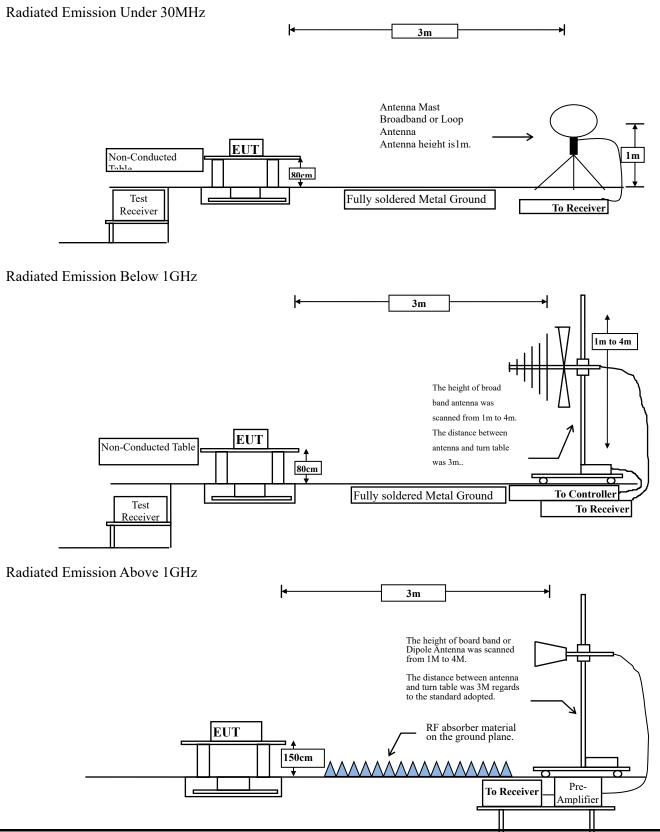
Remarks: In the above table, the tighter limit applies at the band edges.

2.3. Test Procedure


The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm /50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs.)

Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement.

Conducted emissions were invested over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.


2.4. Test Result of Conducted Emission

3. Radiated Emission

3.1. Test Setup

3.2. Limits

FCC Part 15 Subpart C Paragraph 15.249 Limits						
Frequency	Field Strength	of Fundamental	Field Strength of Harmonics			
MHz	(mV/m @3m)	$(dB\mu V/m)$	(uV/m @3m)	$(dB\mu V/m)$		
		@3m)		@3m)		
902-928	50	94	500	54		
2400-2483.5	50	94	500	54		
5725-5875	50	94	500	54		
24000-24250	250	108	2500	68		

> Fundamental and Harmonics Emission Limits

Remarks : 1. RF Voltage $(dB\mu V / m) = 20 \log RF$ Voltage (uV/m)

2. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

General Radiated Emission Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15	FCC Part 15 Subpart C Paragraph 15.209(a) Limits				
Frequency MHz	Field strength	Measurement distance			
IVITIZ	(microvolts/meter)	(meter)			
0.009-0.490	2400/F(kHz)	300			
0.490-1.705	24000/F(kHz)	30			
1.705-30	30	30			
30-88	100	3			
88-216	150	3			
216-960	200	3			
Above 960	500	3			

Remarks: E field strength $(dB\mu V /m) = 20 \log E$ field strength (uV/m)

3.3. Test Procedure

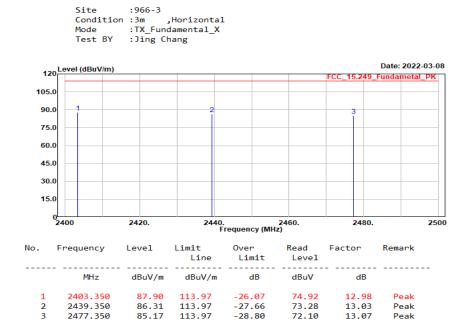
The EUT was setup according to ANSI C63.10, 2013 and tested compliance to FCC 47CFR 15.249 requirements.

Measuring the frequency range below 1GHz, the EUT is placed on a turn table which is 0.8 meter above ground, when measuring the frequency range above 1GHz, the EUT is placed on a turn table which is 1.5 meter above ground.

The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned between 1 meter and 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10: 2013 on radiated measurement.

The resolution bandwidth below 30MHz setting on the field strength meter is 9kHz and 30MHz~1GHz is 120kHz and above 1GHz is 1MHz.


Radiated emission measurements below 30MHz are made using Loop Antenna and 30MHz~1GHz are made using broadband Bilog antenna and above 1GHz are made using Horn Antennas.

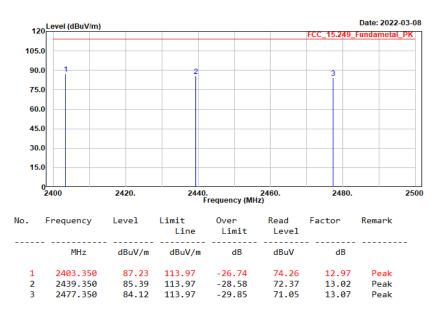
The measurement is divided into the Preliminary Measurement and the Final Measurement. The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna.

The measurement frequency range form 9kHz - 10th Harmonic of fundamental was investigated.

3.4. **Test Result of Radiated Emission**

Note:

Level = Read Level + Factor
 Factor = Antenna Factor + Cable Loss - Preamp Factor
 Over Limit = Level - Limit Line

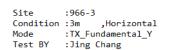

Frequency (MHz)	Peak Measurement (dBµV/m)	Duty Cycle Factor (dB)	Average Measurement (dBµV/m)	Margin (dB)	Average Limit (dBµV/m)
2403.350	87.900	-33.343	54.557	-39.413	94.000
2439.350	86.310	-33.343	52.967	-41.003	94.000
2477.350	85.170	-33.343	51.827	-42.143	94.000

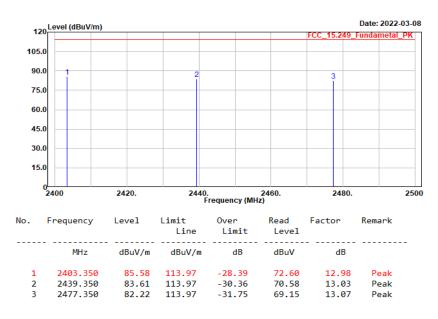
Note:

1. AVG Measurement=Peak Measurement + Duty Cycle Correct Factor

Site :966-3 Condition :3m ,Vertical Mode :TX_Fundamental_X Test BY :Jing Chang

Note:


Level = Read Level + Factor
 Factor = Antenna Factor + Cable Loss - Preamp Factor
 Over Limit = Level - Limit Line

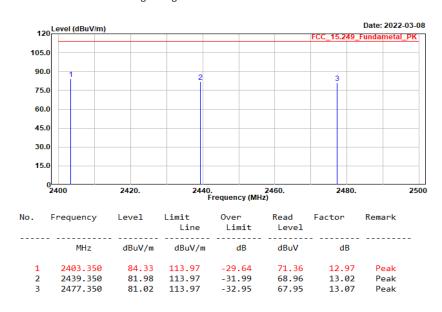

Frequency (MHz)	Peak Measurement (dBµV/m)	Duty Cycle Factor (dB)	Average Measurement (dBµV/m)	Margin (dB)	Average Limit (dBµV/m)
2403.350	87.230	-33.343	53.887	-40.083	94.000
2439.350	85.390	-33.343	52.047	-41.923	94.000
2477.350	84.120	-33.343	50.777	-43.193	94.000

Note:

1. AVG Measurement=Peak Measurement + Duty Cycle Correct Factor

Note:

Level = Read Level + Factor
 Factor = Antenna Factor + Cable Loss - Preamp Factor
 Over Limit = Level - Limit Line


Frequency (MHz)	Peak Measurement (dBµV/m)	Duty Cycle Factor (dB)	Average Measurement (dBµV/m)	Margin (dB)	Average Limit (dBµV/m)
2403.350	85.580	-33.343	52.237	-41.733	94.000
2439.350	83.610	-33.343	50.267	-43.703	94.000
2477.350	82.220	-33.343	48.877	-45.093	94.000

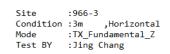
Note:

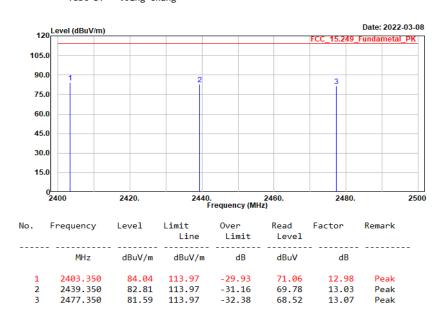
1. AVG Measurement=Peak Measurement + Duty Cycle Correct Factor

Site :966-3 n :3m ,Vertical :TX_Fundamental_Y :Jing Chang Condition :3m Mode Test BY

Note:

Level = Read Level + Factor
 Factor = Antenna Factor + Cable Loss - Preamp Factor


3. Over Limit = Level - Limit Line


Frequency (MHz)	Peak Measurement (dBµV/m)	Duty Cycle Factor (dB)	Average Measurement (dBµV/m)	Margin (dB)	Average Limit (dBµV/m)
2403.350	84.330	-33.343	50.987	-42.983	94.000
2439.350	81.980	-33.343	48.637	-45.333	94.000
2477.350	81.020	-33.343	47.677	-46.293	94.000

Note:

1. AVG Measurement=Peak Measurement + Duty Cycle Correct Factor

Note:

Level = Read Level + Factor
 Factor = Antenna Factor + Cable Loss - Preamp Factor

3. Over Limit = Level - Limit Line


Frequency (MHz)	Peak Measurement (dBµV/m)	Duty Cycle Factor (dB)	Average Measurement (dBµV/m)	Margin (dB)	Average Limit (dBµV/m)
2403.350	84.040	-33.343	50.697	-43.273	94.000
2439.350	82.810	-33.343	49.467	-44.503	94.000
2477.350	81.590	-33.343	48.247	-45.723	94.000

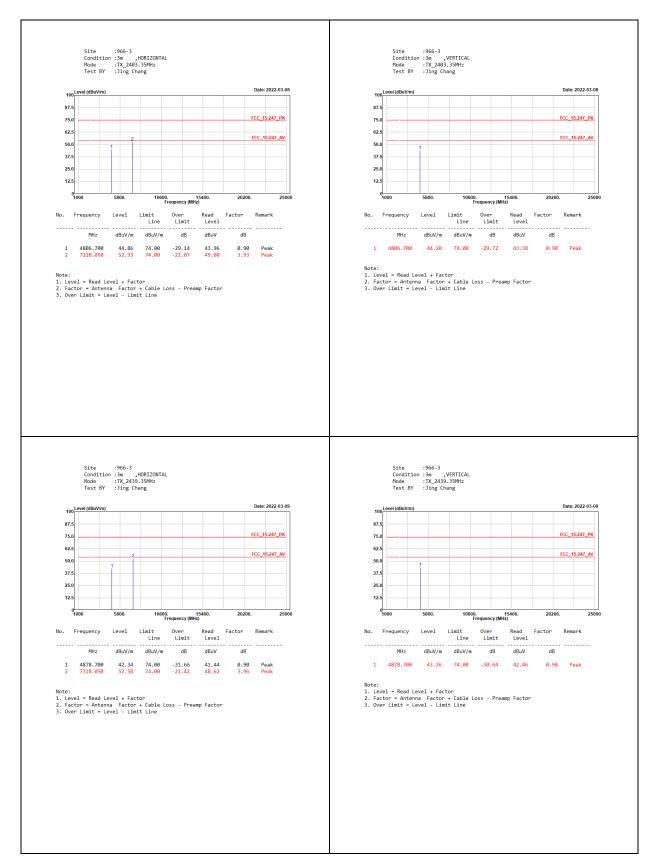
Note:

1. AVG Measurement=Peak Measurement + Duty Cycle Correct Factor

Site :966-3 Condition :3m ,Vertical Mode :TX_Fundamental_Z Test BY :Jing Chang

Note:

Level = Read Level + Factor
 Factor = Antenna Factor + Cable Loss - Preamp Factor
 Over Limit = Level - Limit Line

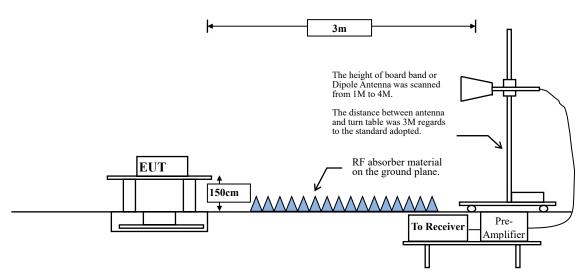

Frequency (MHz)	Peak Measurement (dBµV/m)	Duty Cycle Factor (dB)	Average Measurement (dBµV/m)	Margin (dB)	Average Limit (dBµV/m)
2403.350	83.290	-33.343	49.947	-44.023	94.000
2439.350	80.370	-33.343	47.027	-46.943	94.000
2477.350	79.830	-33.343	46.487	-47.483	94.000

Note:

1. AVG Measurement=Peak Measurement + Duty Cycle Correct Factor


Report No.: 2210233R-RFUSOTHV06-B

Report No.: 2210233R-RFUSOTHV06-B



4. Band Edge

4.1. Test Setup

RF Radiated Measurement:

4.2. Limits

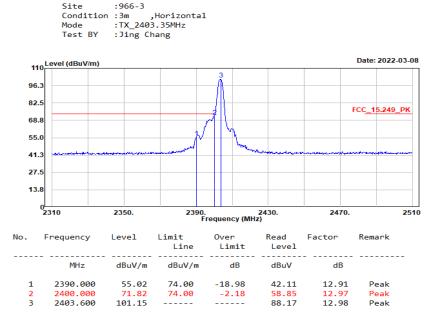
Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15 Subpart C Paragraph 15.209(a) Limits				
Frequency MHz	Field strength	Measurement distance		
	(microvolts/meter)	(meter)		
0.009-0.490	2400/F(kHz)	300		
0.490-1.705	24000/F(kHz)	30		
1.705-30	30	30		
30-88	100	3		
88-216	150	3		
216-960	200	3		
Above 960	500	3		

Remarks: E field strength $(dB\mu V /m) = 20 \log E$ field strength (uV/m)

4.3. Test Procedure

The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.


The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

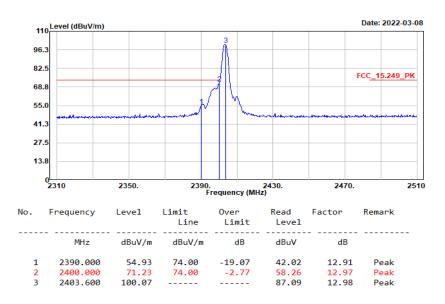
Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.10: 2013 on radiated measurement.

The bandwidth setting below 1GHz and above 1GHz on the field strength meter is 120 kHz and 1MHz, respectively.

4.4. **Test Result of Band Edge**

Note:

Level = Read Level + Factor
 Factor = Antenna Factor + Cable Loss - Preamp Factor
 Over Limit = Level - Limit Line

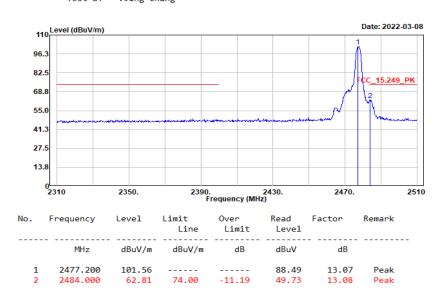

Frequency (MHz)	Peak Measurement (dBµV/m)	Duty Cycle Factor (dB)	Average Measurement (dBµV/m)	Margin (dB)	Average Limit (dBµV/m)	Result
2390.000	55.020	-33.343	21.677	-32.323	54.000	Pass
2400.000	71.820	-33.343	38.477	-15.523	54.000	Pass
2403.600	101.150	-33.343	67.807			Pass

Note:

Average Measurement=Peak Measurement + Duty Cycle Factor 1.

Note:

Level = Read Level + Factor
 Factor = Antenna Factor + Cable Loss - Preamp Factor
 Over Limit = Level - Limit Line

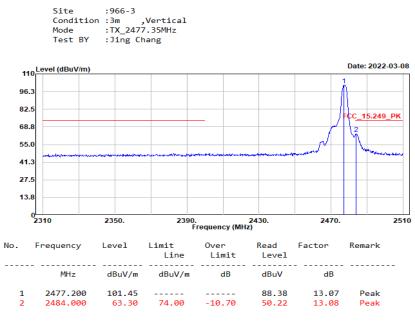

Frequency (MHz)	Peak Measurement (dBµV/m)	Duty Cycle Factor (dB)	Average Measurement (dBµV/m)	Margin (dB)	Average Limit (dBµV/m)	Result
2390.000	54.930	-33.343	21.587	-32.413	54.000	Pass
2400.000	71.230	-33.343	37.887	-16.113	54.000	Pass
2403.600	100.070	-33.343	66.727			Pass

Note:

1. Average Measurement=Peak Measurement + Duty Cycle Factor

:966-3 Site Condition :3m ,Horizontal Mode :TX_2477.35MHz Test BY :Jing Chang

Note:


Level = Read Level + Factor
 Factor = Antenna Factor + Cable Loss - Preamp Factor
 Over Limit = Level - Limit Line

Frequency (MHz)	Peak Measurement (dBµV/m)	Duty Cycle Factor (dB)	Average Measurement (dBµV/m)	Margin (dB)	Average Limit (dBµV/m)	Result
2477.200	101.560	-33.343	68.217			Pass
2484.000	62.810	-33.343	29.467	-24.533	54.000	Pass

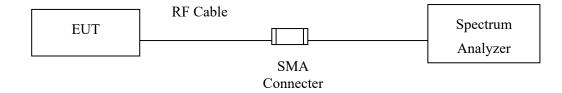
Note:

1. Average Measurement=Peak Measurement + Duty Cycle Factor

Note:

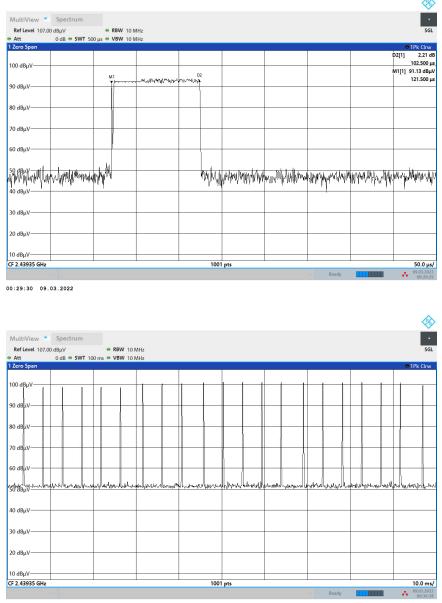
- Level = Read Level + Factor
 Factor = Antenna Factor + Cable Loss Preamp Factor
 Over Limit = Level Limit Line

Frequency (MHz)	Peak Measurement (dBµV/m)	Duty Cycle Factor (dB)	Average Measurement (dBµV/m)	Margin (dB)	Average Limit (dBµV/m)	Result
2477.200	101.450	-33.343	68.107			Pass
2484.000	63.300	-33.343	29.957	-24.043	54.000	Pass


Note:

- Average Measurement=Peak Measurement + Duty Cycle Factor 1.
- The Duty Cycle is refer to section 5. 2.

5. Duty Cycle


5.1. Test Setup

5.2. Test Result of Duty Cycle

Product	:	Dongle
Test Item	:	Duty Cycle Data
Test Mode	:	Mode 2: Normal mode

00:36:38 09.03.2022

 Time on of 100ms= 102us*22= 2.244ms

 Duty Cycle=2.244ms / 100ms= 0.02244

 Duty Cycle correction factor= 20 LOG 0.02244= -32.98 dB

 Duty Cycle correction factor
 -32.98 dB

6. EMI Reduction Method During Compliance Testing

No modification was made during testing.