

FCC Radio Test Report

FCC ID: I4L-8ZA4

This report concerns: Original Grant

Project No. : 2206E025

Equipment: Wireless Keyboard

Brand Name : msi Test Model : 8ZA4 Series Model : N/A

Applicant: Micro-Star Int'l Co.,Ltd.

Address : No.69, Lide St., Zhonghe Dist., New Taipei City 235, Taiwan

Manufacturer : Dong Guan You Hong Plastic & Electric Co.,Ltd

Address : Zhen Hua Road, Tie Lu Keng Village, Qi Shi Town, Dong Guan city

Factory : Dong Guan You Hong Plastic & Electric Co.,Ltd

Address : Zhen Hua Road, Tie Lu Keng Village, Qi Shi Town, Dong Guan city

Date of Receipt : Jun. 27, 2022

Date of Test : Jun. 28, 2022 ~ Jul. 07, 2022

Issued Date : Aug. 09, 2022

Report Version : R01

Test Sample : Engineering Sample No.: DG2022062788 for radiated & AC Power Line

Conducted Emissions, DG2022062789 for conducted.

Standard(s) : FCC CFR Title 47, Part 15, Subpart C

ANSI C63.10-2013

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

Prepared by: Evan Yang

Approved/by : Chay Cai

lac-MRA

BTL Inc.

No. 3 Jinshagang 1st Rd. Shixia, Dalang Town Dongguan City, Guangdong 523792 People's Republic of China.

Tel: +86-769-8318-3000 Web: www.newbtl.com Service mail: btl qa@newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, A2LA, or any agency of the U.S. Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

in determining the Pass/Fail results.

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective. Please note that the measurement uncertainty is provided for informational purpose only and are not use

Table of Contents	Page
REPORT ISSUED HISTORY	5
1 . SUMMARY OF TEST RESULTS	6
1.1 TEST FACILITY	7
1.2 MEASUREMENT UNCERTAINTY	7
1.3 TEST ENVIRONMENT CONDITIONS	8
2 . GENERAL INFORMATION	9
2.1 GENERAL DESCRIPTION OF EUT	9
2.2 DESCRIPTION OF TEST MODES	10
2.3 PARAMETERS OF TEST SOFTWARE	10
2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	11
2.5 SUPPORT UNITS	12
3 . AC POWER LINE CONDUCTED EMISSIONS	13
3.1 LIMIT	13
3.2 TEST PROCEDURE	13
3.3 DEVIATION FROM TEST STANDARD	13
3.4 TEST SETUP	14
3.5 EUT OPERATING CONDITIONS	14
3.6 TEST RESULTS	14
4 . RADIATED EMISSION TEST	15
4.1 LIMIT	15
4.2 TEST PROCEDURE	16
4.3 DEVIATION FROM TEST STANDARD	17
4.4 TEST SETUP	17
4.5 EUT OPERATING CONDITIONS	18
4.6 TEST RESULT - 9 KHZ TO 30 MHZ	18
4.7 TEST RESULT - 30 MHZ TO 1000 MHZ	18
4.8 TEST RESULT - ABOVE 1000 MHZ	18
5 . BANDWIDTH TEST	19
5.1 LIMIT	19
5.2 TEST PROCEDURE	19
5.3 DEVIATION FROM STANDARD	19
5.4 TEST SETUP	19
5.5 EUT OPERATION CONDITIONS	19

Table of Contents	Page
5.6 TEST RESULTS	19
6. MEASUREMENT INSTRUMENTS LIST	20
7 . EUT TEST PHOTO	22
APPENDIX A - AC POWER LINE CONDUCTED EMISSIONS	26
APPENDIX B - RADIATED EMISSION - 9 KHZ TO 30 MHZ	29
APPENDIX C - RADIATED EMISSION - 30 MHZ TO 1000 MHZ	34
APPENDIX D - RADIATED EMISSION - ABOVE 1000 MHZ	37
APPENDIX E - BANDWIDTH	50

REPORT ISSUED HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-1-2206E025	R00	Original Report.	Aug. 04, 2022	Invalid
BTL-FCCP-1-2206E025	R01	Revised report to address comments.	Aug. 09, 2022	Valid

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

FCC CFR Title 47, Part 15, Subpart C				
Standard(s) Section	Test Item	Test Result	Judgment	Remark
15.207(a)	AC Power Line Conducted Emissions	APPENDIX A	PASS	
15.209 15.249(a)	Radiated Emissions	APPENDIX B APPENDIX C APPENDIX D	PASS	
15.215(c)	Bandwidth	APPENDIX E	PASS	
15.203	Antenna Requirement		PASS	Note(2)

Note:

- (1) "N/A" denotes test is not applicable to this device.
- (2) The device what use a permanently attached antenna were considered sufficient to comply with the provisions of 15.203.

1.1 TEST FACILITY

The test facilities used to collect the test data in this report is at the location of No. 3 Jinshagang 1st Rd. Shixia, Dalang Town Dongguan City, Guangdong 523792 People's Republic of China.

BTL's Registration Number for FCC: 357015 BTL's Designation Number for FCC: CN1240

1.2 MEASUREMENT UNCERTAINTY

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2))

The BTL measurement uncertainty as below table:

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U,(dB)
DG-C02	CISPR	150kHz ~ 30MHz	2.60

B. Radiated emissions test:

Test Site	Method	Measurement Frequency Range	U,(dB)
DG-CB01	CISPR	9kHz ~ 30MHz	2.36

Test Site	Method	Measurement Frequency Range	Ant. H / V	U,(dB)
DG-CB03 (3m) CISPR	30MHz ~ 200MHz	V	4.36	
	30MHz ~ 200MHz	Н	3.32	
	200MHz ~ 1,000MHz	V	4.08	
		200MHz ~ 1,000MHz	Н	3.96

Test Site	Method	Measurement Frequency Range	U,(dB)
DG-CB03	TETT CISER	1GHz ~ 6GHz	3.80
(3m)		6GHz ~ 18GHz	4.82

Test Site	Method	Measurement Frequency Range	U,(dB)
DG-CB03	CICDD	18 ~ 26.5 GHz	3.62
(1m)	(1m) CISPR	26.5 ~ 40 GHz	4.00

C. Other Measurement:

Test Item	Uncertainty
Bandwidth	±3.8 %
Temperature	±0.08 °C
Humidity	±1.5%

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Temperature	Humidity	Test Voltage	Tested By
AC Power Line Conducted Emissions	25°C	55%	AC 120V/60Hz	Jeter Wang
Radiated Emissions-9 kHz to 30 MHz	24°C	59%	DC 5V	Albe Zhou
Radiated Emissions-30 MHz to 1000 MHz	25°C	50%	DC 5V	Chen Mo
Radiated Emissions-Above 1000 MHz	26°C	62%	DC 3.7V	Chen Mo
Bandwidth	24°C	58%	DC 3.7V	Nicole Chen

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	Wireless Keyboard
Brand Name	msi
Test Model	8ZA4
Series Model	N/A
Model Difference(s)	N/A
Power Source	1# Supplied from USB port. 2# Battery supplied. Model: DTP502035
Power Rating	1# DC 5V=== 0.5A 2# 3.7V 300mAh 1.11Wh
Operation Frequency	2403.85 ~ 2479.85MHz
Modulation Technology	GFSK
Bit Rate of Transmitter	2Mbps
Max. Field Strength	47.81 dBuV/m(AVG) 86.81 dBuV/m(Peak)
Max. Output Power	-47.49 dBm (0.00000002W) (AVG) -8.49 dBm (0.00014W) (Peak)

Note:

- 1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.
- 2. The Max. Field Strength of 95.30(dBuV/m) corresponds to a power of 0(dBm), so the Max. Output Power is Max.Field Strength-95.30.

3. Channel List:

Official Elect.						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
01	2403.85	07	2436.85	13	2463.85	
02	2407.85	80	2439.85	14	2466.85	
03	2414.85	09	2441.85	15	2473.85	
04	2419.85	10	2445.85	16	2479.85	
05	2422.85	11	2453.85			
06	2426.85	12	2459.85			

4. Table for Filed Antenna:

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
1	msi	IBM2.4GHz	PCB	N/A	2.75

Note: The antenna gain is provided by the manufacturer.

2.2 DESCRIPTION OF TEST MODES

The test system was pre-tested based on the consideration of all possible combinations of EUT operation mode.

Pretest Mode	Description
Mode 1	TX Mode Channel 01/09/16
Mode 2	TX Mode Channel 16

Following mode(s) was (were) found to be the worst case(s) and selected for the final test.

AC Power Line Conducted Emissions				
Final Test Mode	Description			
Mode 2	TX Mode Channel 16			

Radiated emissions test - Below 1GHz			
Final Test Mode	Description		
Mode 2	TX Mode Channel 16		

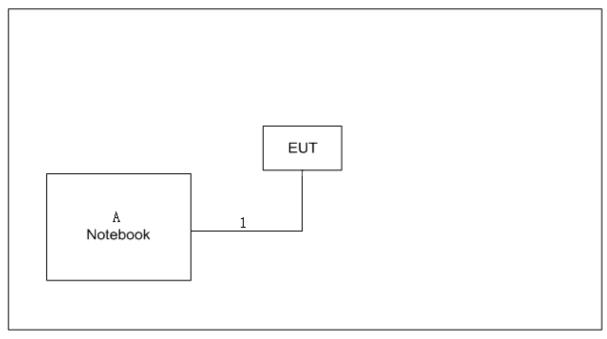
Radiated emissions test - Above 1GHz			
Final Test Mode	Description		
Mode 1	TX Mode Channel 01/09/16		

Bandwidth test			
Final Test Mode Description			
Mode 1	TX Mode Channel 01/09/16		

Note:

(1) For AC Power Line Conducted Emissions and Radiated Emission Below 1GHz test, the TX Mode Channel 16 was found to be the worst case and recorded.

2.3 PARAMETERS OF TEST SOFTWARE


During testing, channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level.

Test Software Version	N/A			
Frequency (MHz)	2403.85 2441.85 2479		2479.85	
2Mbps	N/A	N/A	N/A	

2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

AC Power Line Conducted Emissions and Radiated emissions test - Below 1GHz

Radiated emissions test - Above 1GHz

EUT

2.5 SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

AC Power Line Conducted Emissions and Radiated emissions test - Below 1GHz

Item	Equipment	Brand	Model No.	Series No.	Note	
	Notebook	Lenovo	V310-14ISK	LR07GZNB	AC Power Line Conducted Emissions	
Α	Notebook	Lenovo	G50-30	PF0BRC8R	Radiated emissions test - 9kHz to 30MHz	
	Notebook	Honor	14SER5 3500	N/A	Radiated emissions test - 30MHz to 1000MHz	

Item	Cable Type	Shielded Type	Ferrite Core	Length
1	USB Cable	NO	NO	1.0m

Radiated emissions test - Above 1GHz

Item	Equipment	Brand	Model No.	Series No.
-	-	-	-	-

Item	Cable Type	Shielded Type	Ferrite Core	Length
-	-	-	-	-

3. AC POWER LINE CONDUCTED EMISSIONS

3.1 LIMIT

Frequency of Emission (MHz)	Limit (dBμV)		
Frequency of Emission (MHz)	Quasi-peak	Average	
0.15 - 0.5	66 to 56*	56 to 46*	
0.5 - 5.0	56	46	
5.0 - 30.0	60	50	

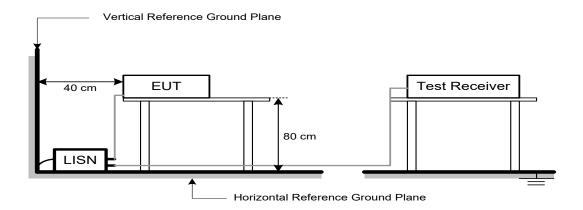
Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

3.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

The following table is the setting of the receiver:


Receiver Parameters	Setting
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

3.3 DEVIATION FROM TEST STANDARD

No deviation.

3.4 TEST SETUP

3.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical function (as a customer would normally use it), EUT was programmed to be in continuously transmitting data or hopping on mode.

3.6 TEST RESULTS

Please refer to the APPENDIX A.

Remark:

- (1) All readings are QP Mode value unless otherwise stated AVG in column of <code>『Note』</code>. If the QP Mode Measured value compliance with the QP Limits and lower than AVG Limits, the EUT shall be deemed to meet both QP & AVG Limits and then only QP Mode was measured, but AVG Mode didn't perform in this case, a "*" marked in AVG Mode column of Interference Voltage Measured.
- (2) Measuring frequency range from 150 kHz to 30 MHz.

4. RADIATED EMISSION TEST

4.1 LIMIT

LIMITS OF RADIATED EMISSION MEASUREMENT (9 kHz-1000 MHz)

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000 MHz)

Eraguanay (MHz)	(dBuV/m at 3 m)		
Frequency (MHz)	Peak	Average	
Above 1000	74	54	

LIMITS OF FIELD STRENGTH OF FUNDAMENTAL

Frequency (MHz)	(dBuV/m at 3 m)		
	Peak	Average	
2403.85 to 2479.85	114	94	

Note:

- (1) The limit for radiated test was performed according to FCC CFR Title 47, Part 15, Subpart C.
- (2) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in 15.209, whichever is the lesser attenuation.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

4.2 TEST PROCEDURE

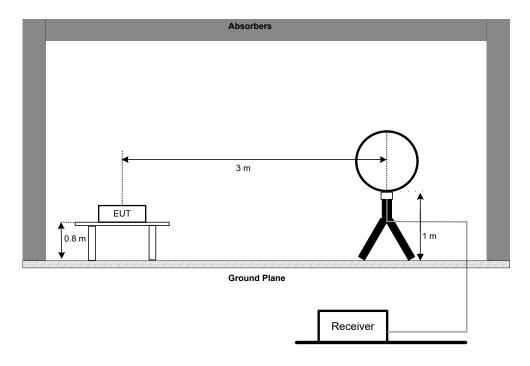
- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1 GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1 GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8m or 1.5m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1 GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1 GHz)
- i. For the actual test configuration, please refer to the related Item –EUT Test Photos.

The following table is the setting of the receiver:

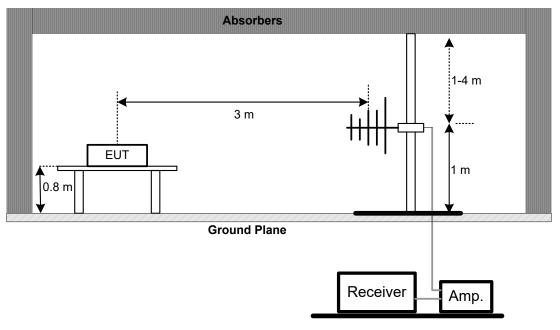
Spectrum Parameters	ers Setting	
Start ~ Stop Frequency	9 kHz~150 kHz for RBW 200 Hz	
Start ~ Stop Frequency	0.15 MHz~30 MHz for RBW 9 kHz	
Start ~ Stop Frequency	30 MHz~1000 MHz for RBW 100 kHz	

Spectrum Parameters	Setting
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW (Emission in restricted band)	1 MHz / 3 MHz for PK value 1 MHz / 1/T Hz for AVG value

Spectrum Parameters	Setting
Start ~ Stop Frequency	9 kHz~90 kHz for PK/AVG detector
Start ~ Stop Frequency 90 kHz~110 kHz for QP detector	
Start ~ Stop Frequency	110 kHz~490 kHz for PK/AVG detector
Start ~ Stop Frequency 490 kHz~30 MHz for QP detector	
Start ~ Stop Frequency 30 MHz~1000 MHz for QP detector	
Start ~ Stop Frequency	Above 1GHz for PK/AVG detector

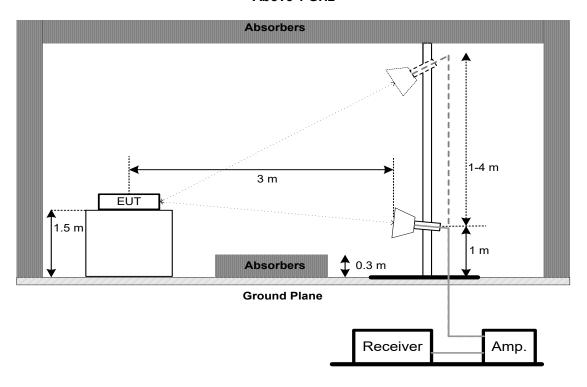


4.3 DEVIATION FROM TEST STANDARD


No deviation

4.4 TEST SETUP

9 kHz-30 MHz



30 MHz to 1 GHz

4.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

4.6 TEST RESULT - 9 kHz TO 30 MHz

Please refer to the APPENDIX B.

Remark:

- (1) Distance extrapolation factor = 40 log (specific distance / test distance) (dB).
- (2) Limit line = specific limits (dBuV) + distance extrapolation factor.

4.7 TEST RESULT - 30 MHz TO 1000 MHz

Please refer to the APPENDIX C.

4.8 TEST RESULT - ABOVE 1000 MHz

Please refer to the APPENDIX D.

Remark:

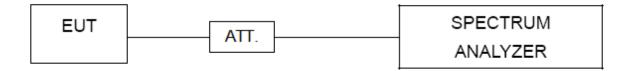
(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

5. BANDWIDTH TEST

5.1 LIMIT

Section	Test Item	Limit
15.215(c)	20 dB Bandwidth	-

5.2 TEST PROCEDURE


- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. The following table is the setting of the spectrum analyzer.

Spectrum Parameters	Setting
Span Frequency	Between 2 times and 5 times the BW
RBW	Range of 1% to 5% of the BW
VBW	Approximately 3 times RBW
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP

5.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

5.6 TEST RESULTS

Please refer to the APPENDIX E.

6. MEASUREMENT INSTRUMENTS LIST

	AC Power Line Conducted Emissions				
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	EMI Test Receiver	R&S	ESCI	100382	Jan. 22, 2023
2	LISN	EMCO	3816/2	52765	Jan. 23, 2023
3	TWO-LINE V-NETWORK	R&S	ENV216	101447	Jan. 23, 2023
4	50Ω Terminator	SHX	TF5-3	15041305	N/A
5	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A
6	Cable	N/A	RG223	12m	Mar. 08, 2023
7	643 Shield Room	ETS	6*4*3	N/A	N/A

	Radiated Emissions - 9 kHz to 30 MHz				
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	MXE EMI Receiver	Keysight	N9038A	MY56400091	Jan. 22, 2023
2*	Active Loop Antenna	R&S	HFH2-Z2	830749/020	Aug. 23, 2024
3	Cable	N/A	RG 213/U(9kHz~1GHz)	N/A	Jul. 09, 2022
4	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A
5	966 Chamber Room	ETS	9*6*6	N/A	Jul. 17, 2022

	Radiated Emissions - 30 MHz to 1 GHz					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	Antenna	Schwarzbeck	VULB9160	9160-3232	Mar. 03, 2023	
2	Amplifier	HP	8447D	2944A08742	Jan. 22, 2023	
3	Cable	emci	LMR-400	N/A	Nov. 30, 2022	
4	Controller	CT	SC100	N/A	N/A	
5	Controller	MF	MF-7802	MF780208416	N/A	
6	Receiver	Agilent	N9038A	MY52130039	Jan. 22, 2023	
7	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A	
8	966 Chamber Room	RM	9*6*6	N/A	Jul. 24, 2022	

	Radiated Emissions - Above 1 GHz						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until		
1	Double Ridged Horn Antenna	ARA	DRG-118A	16554	Apr. 18, 2023		
2	Broad-Band Horn Antenna	Schwarzbeck BBHA 9170 91		9170319	May 27, 2023		
3	Amplifier	Agilent	8449B	3008A02584	Jul. 10, 2022		
4	Controller	CT	SC100	N/A	N/A		
5	Controller	MF	MF-7802	MF780208416	N/A		
6	Receiver	Agilent	N9038A	MY52130039	Jan. 22, 2023		
7	EXA Spectrum Analyzer	Keysight	N9010A	MY56480488	Jan. 22, 2023		
8	Low Noise Amplifier	CONNPHY	CLN-18G40G-4330-K	619413	Jul. 16, 2022		
9	Cable	Talent microwave	A81-SMAMSMAM-12. 5M	N/A	Oct. 15, 2022		
10	Cable	Talent microwave	A40-2.92M2.92M-2.5 M	N/A	Nov. 30, 2022		
11	Filter	STI	STI15-9912	N/A	Jul. 10, 2022		
12	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A		
13	966 Chamber Room	RM	9*6*6	N/A	Jul. 24, 2022		

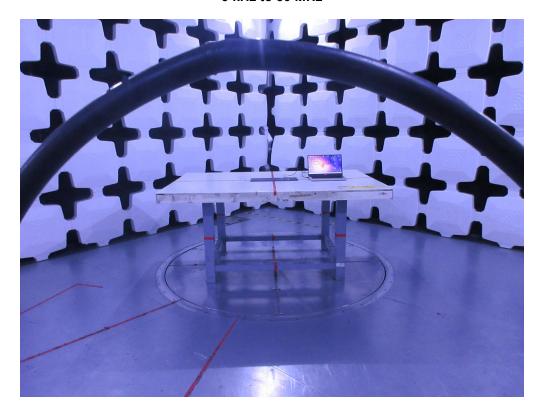
	Bandwidth						
Item Kind of Equipment Manufacturer Type No. Serial No. Calibrat							
1	Spectrum Analyzer	R&S	FSP40	100185	Jul. 10, 2022		
2	Attenuator	WOKEN	6SM3502	VAS1214NL	N/A		
3	RF Cable	Tongkaichuan	N/A	N/A	N/A		
4	DC Block	Mini	N/A	N/A	N/A		

Remark "N/A" denotes no model name, serial no. or calibration specified.

Except * item, all calibration period of equipment list is one year.

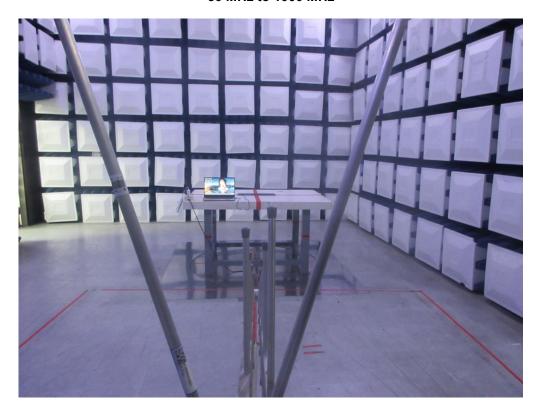
[&]quot;*" calibration period of equipment list is three year.

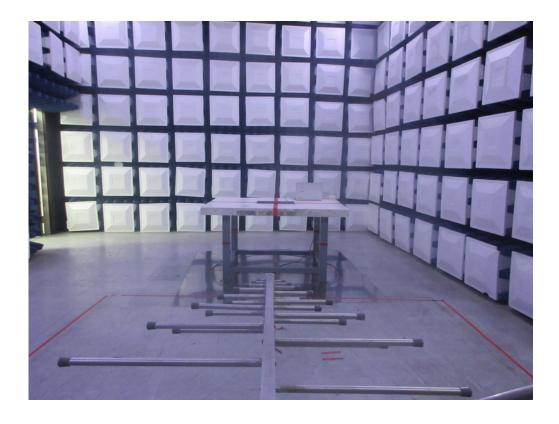
7. EUT TEST PHOTO



Radiated Emissions Test Photos

9 kHz to 30 MHz



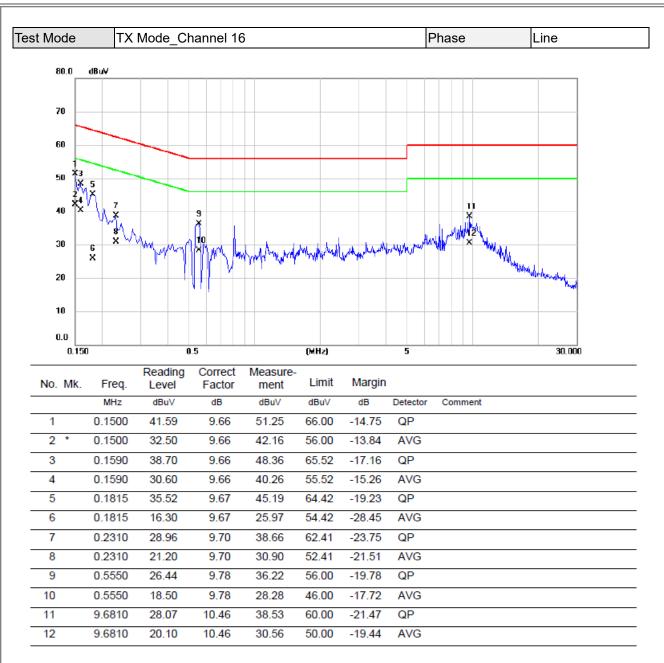


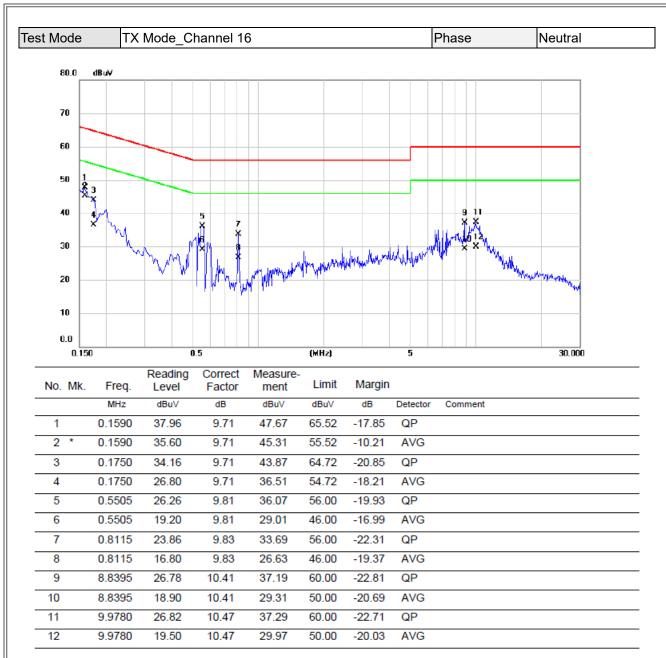
Radiated Emissions Test Photos

30 MHz to 1000 MHz

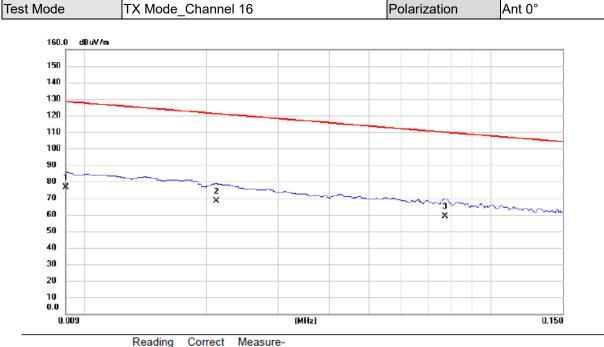
Radiated Emissions Test Photos

Above 1 GHz



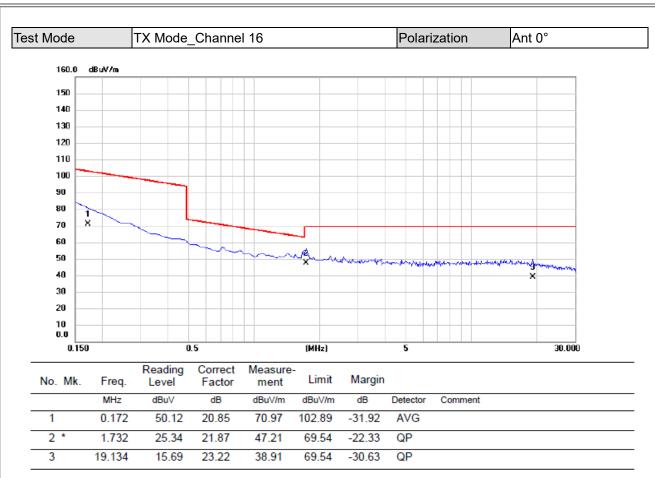

APPENDIX A - AC POWER LINE CONDUCTED EMISSIONS

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

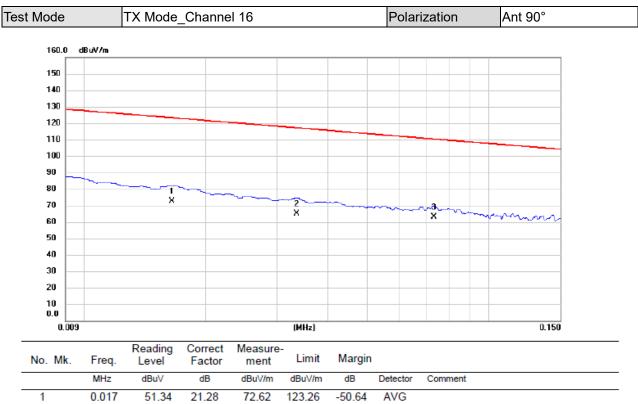


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

APPENDIX B - RADIATED EMISSION - 9 KHZ TO 30 MHZ



	No. Mk.	Freq.	Level	Factor	ment	Limit	Margin		
		MHz	dBu∀	dB	dBuV/m	dBuV/m	dB	Detector	Comment
	1	0.009	54.85	21.80	76.65	128.52	-51.87	AVG	
	2	0.021	46.96	21.09	68.05	121.12	-53.07	AVG	
	3 *	0.077	37.98	20.97	58.95	109.85	-50.90	AVG	
-									


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

AVG

AVG

AVG

-50.64

-51.93

-47.45

72.62

65.17

62.86

123.26

117.10

110.31

21.28

21.01

20.99

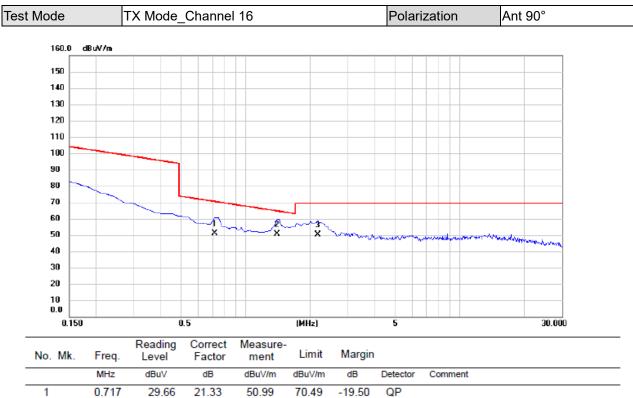
REMARKS:

1 2

3 *

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

44.16


41.87

0.017

0.034

0.073

1 2 *

3

1.404

2.180

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

28.74

28.36

21.77

21.97

50.51

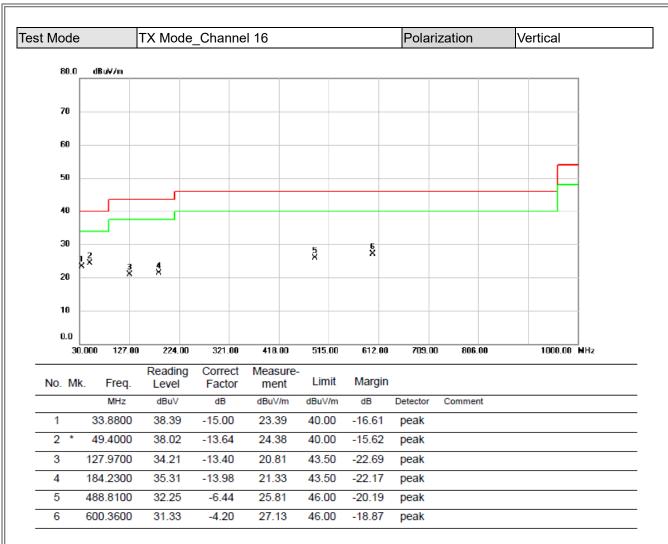
50.33

64.66

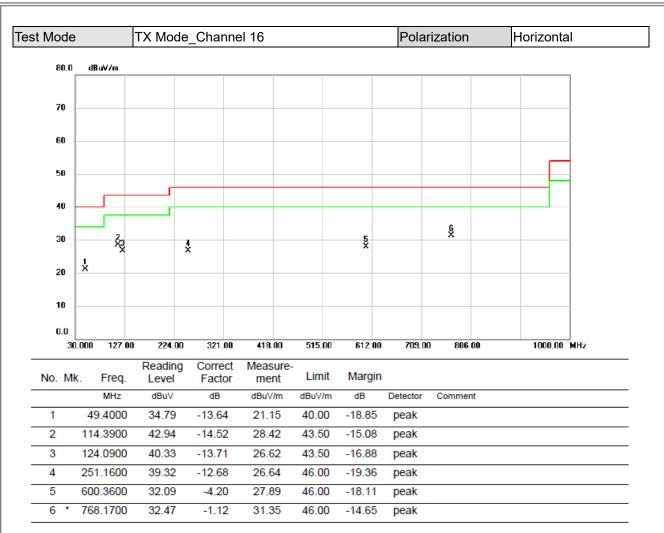
69.54

-14.15

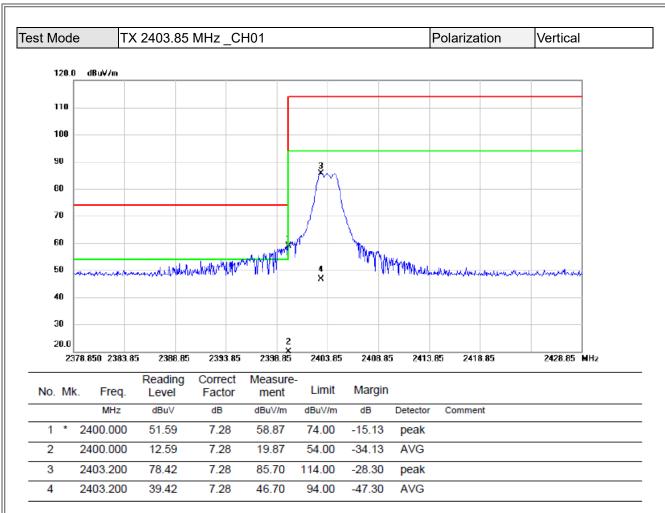
-19.21


QP

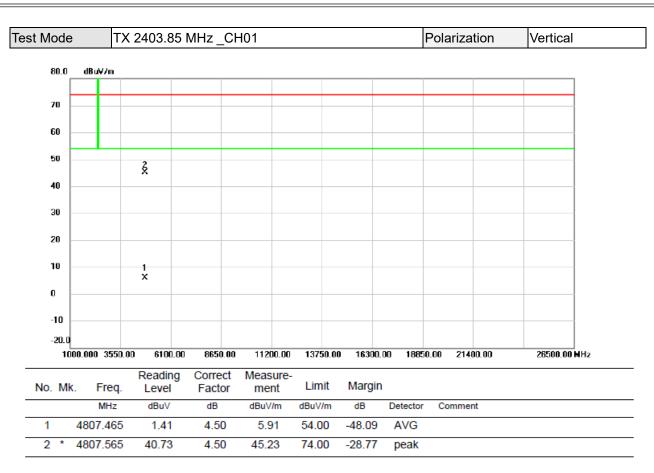
QΡ

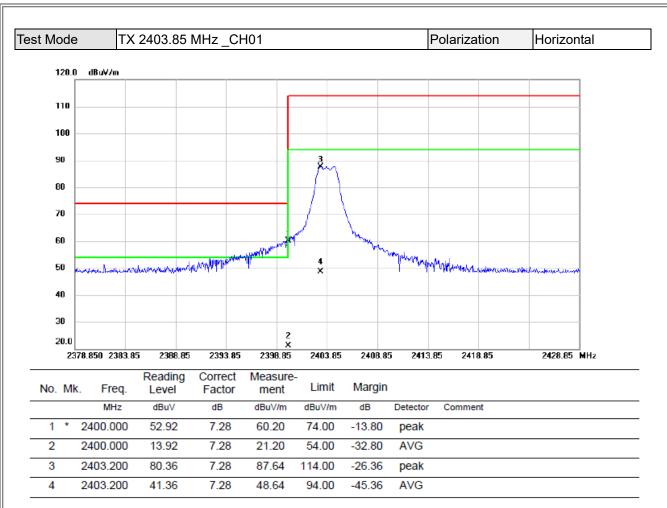

APPENDIX C - RADIATED EMISSION - 30 MHZ TO 1000 MHZ

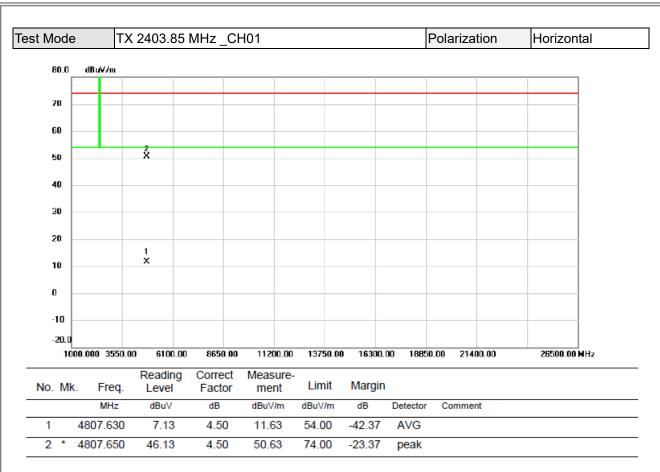
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

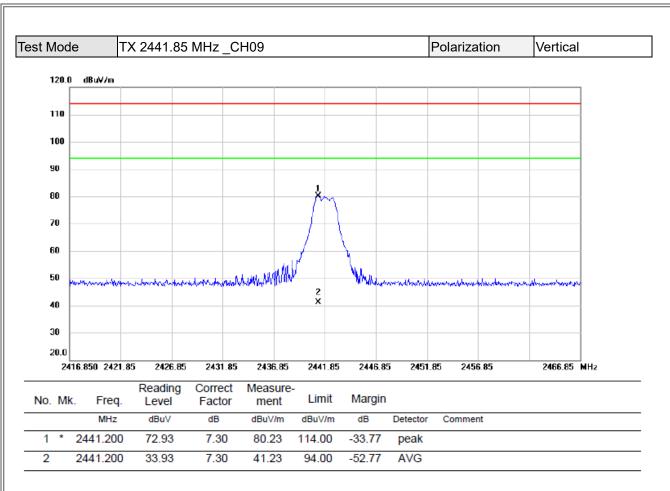


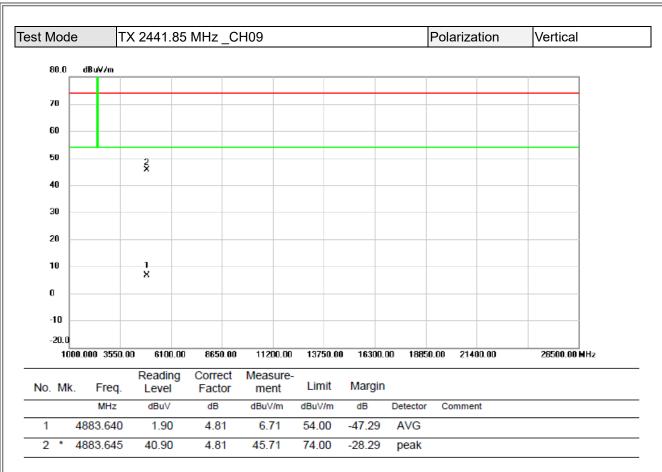
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

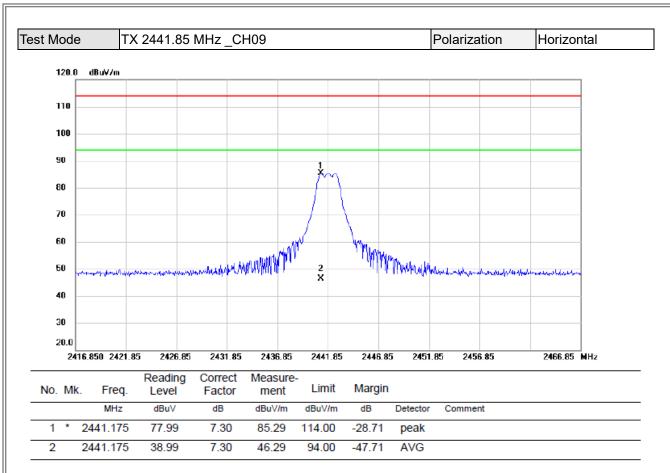

APPENDIX D - RADIATED EMISSION - ABOVE 1000 MHZ		

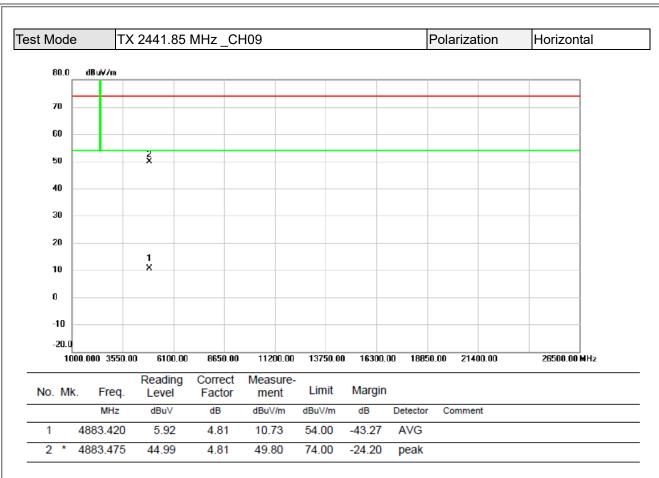

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

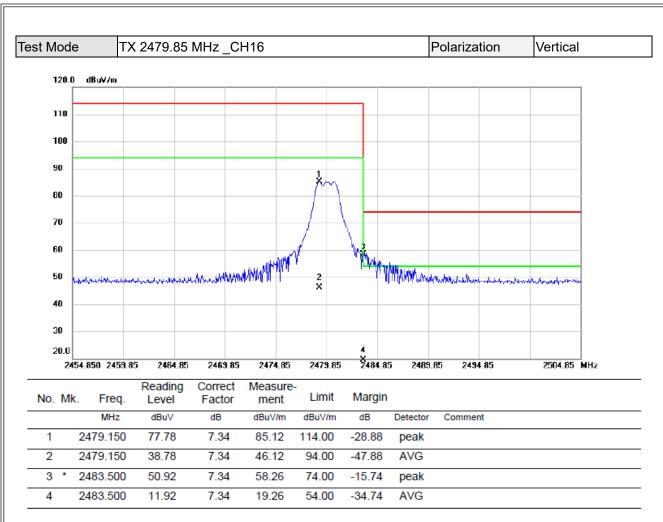

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

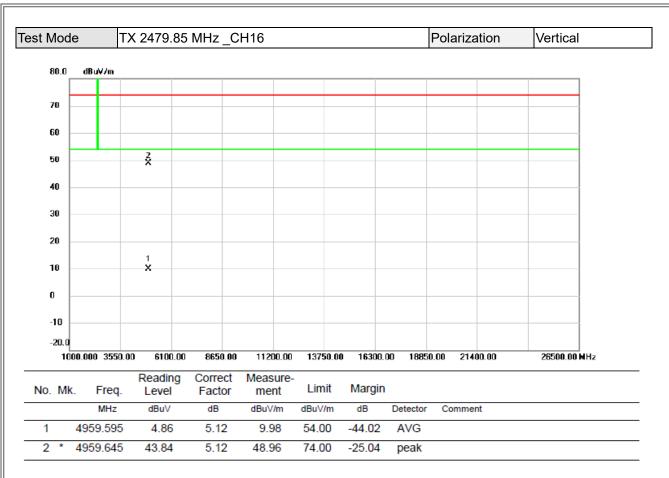

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

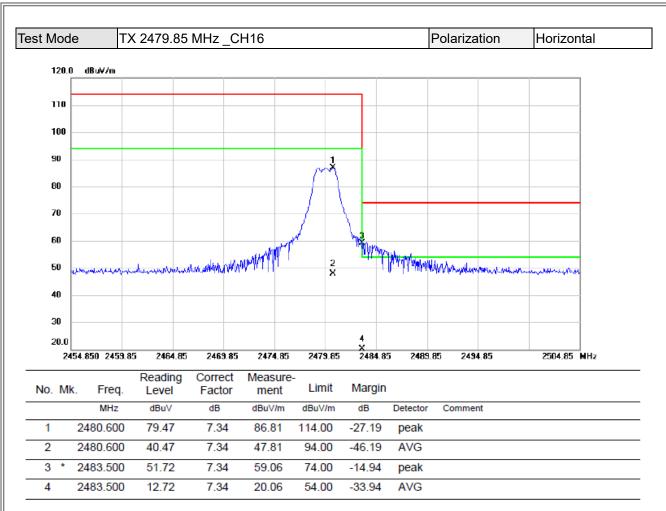

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

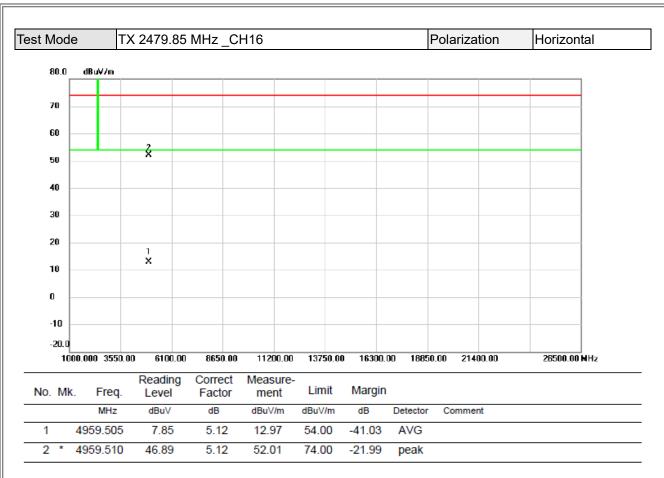

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

APPENDIX E - BANDWIDTH		

Channel	Frequency (MHz)	20 dB Bandwidth (MHz)	Result
01	2403.85	2.410	Complies
09	2441.85	2.390	Complies
16	2479.85	2.350	Complies

