

Product Name	Notebook
Model No	MS-1243, MS-1241
FCC ID.	I4L-1243-E7306891
Transmitter Module	Ralink / MS-6891

Applicant	MICRO-STAR INT'L Co., LTD.
Address	No. 69, Li-De St., Jung-He City, Taipei Hsien, Taiwan, R.O.C.

Date of Receipt	Aug. 25, 2009
Issue Date	Nov. 16, 2009
Report No.	098447R-RFUSP28V01
Report Version	V1.0

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation. This report must not be used to claim product endorsement by NVLAP any agency of the U.S. Government

Test Report Certification

Issue Date: Nov. 16, 2009 Report No.: 098447R-RFUSP28V01

Accredited by NIST (NVLAP) NVLAP Lab Code: 200533-0

Product Name	Notebook		
Applicant	MICRO-STAR INT'L Co., LTD.		
Address	No. 69, Li-De St., Jung-He City, Taipei Hsien,	Taiwan, R.O.C.	
Manufacturer	MICRO-STAR INT'L Co., LTD.		
Model No.	MS-1243, MS-1241		
EUT Rated Voltage	AC 100-240V/50-60Hz		
EUT Test Voltage	AC 120V/60Hz		
Trade Name	MSI		
Applicable Standard	FCC CFR Title 47 Part 15 Subpart C: 2008		
	ANSI C63.4: 2003		
Test Result	Complied	NVLAP Lab Code: 200533-0	

The test results relate only to the samples tested.

:

:

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation. This report must not be used to claim product endorsement by NVLAP any agency of the U.S. Government

Documented By

en inn

(Adm. Specialist / Jinn Chen)

Tested By

Kung

(Engineer / Eason Hung)

Approved By

(Manager / Vincent Lin)

TABLE OF CONTENTS

Description Page 1. 1.1. 1.2. 1.3. 1.4. 1.5. 1.6. 2. Conducted Emission......11 21 2.2. 2.3. 2.4. 2.5. 2.6. 3. Peak Power Output15 3.1. Test Equipment......15 3.2. 3.3. 3.4. 3.5. Uncertainty15 3.6. 4. 4.1. 4.2. 4.3. 4.4. 4.5. 4.6. 5. RF antenna conducted test......40 51 5.2. 5.3. 5.4. 5.5. Uncertainty41 5.6. 6. 61 6.2. 6.3. 6.4. 6.5. 6.6.

7.	Occupied Bandwidth	
7.1.	Test Equipment	
7.2.	Test Setup	
7.3.	Limits	
7.4.	Test Procedure	
7.5.	Uncertainty	
7.6.	Test Result of Occupied Bandwidth	
8.	Power Density	81
8.1.	Test Equipment	
8.2.	Test Setup	
8.3.	Limits	
8.4.	Test Procedure	
8.5.	Uncertainty	
8.6.	Test Result of Power Density	
9.	EMI Reduction Method During Compliance Testing	94

Attachment 1: EUT Test Photographs

Attachment 2: EUT Detailed Photographs

1. GENERAL INFORMATION

1.1. EUT Description

Product Name	Notebook	
Trade Name	MSI	
Model No.	MS-1243, MS-1241	
FCC ID.	I4L-1243-E7306891	
Frequency Range	2412-2462MHz for 802.11b/g/n-20BW, 2422-2452MHz for 802.11n-40BW	
Number of Channels	802.11b/g/n-20MHz: 11, n-40MHz: 7	
Data Speed	802.11b: 1-11Mbps, 802.11g: 6-54Mbps, 802.11n: 7.2-150Mbps	
Type of Modulation	802.11b:DSSS, DBPSK, DQPSK, CCK	
	802.11g/n:OFDM, BPSK, QPSK, 16QAM, 64QAM	
Antenna Type	PIFA	
Antenna Gain	Refer to the table "Antenna List"	
Channel Control	Auto	
Power Adapter	DELTA, ADP-65HB BB	
	Cable Out: Non-shielded, 1.8m, with one ferrite core bonded.	

Antenna List

No.	Manufacturer	Part No.	Peak Gain
1	JOINSOON	S79-1800K90-J51	1.76 dBi in 2.4GHz

802.11b/g/n-20MHz Center Frequency of Each Channel:

U		1 2					
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel 01:	2412 MHz	Channel 02:	2417 MHz	Channel 03:	2422 MHz	Channel 04:	2427 MHz
Channel 05:	2432 MHz	Channel 06:	2437 MHz	Channel 07:	2442 MHz	Channel 08:	2447 MHz
Channel 09:	2452 MHz	Channel 10:	2457 MHz	Channel 11:	2462 MHz		
802.11n-40MHz Center Frequency of Each Channel:							

Channel Frequency Channel Frequency Channel Frequency Channel Frequency Channel 01: 2422 MHz Channel 02: 2427 MHz Channel 03: 2432 MHz Channel 04: 2437 MHz Channel 05: 2442 MHz Channel 06: 2447 MHz Channel 07: 2452 MHz

- 1. The EUT is a Notebook with a built-in 2.4GHz WLAN transceiver.
- 2. The EUT is including two models for difference is CPU.
- 3. Regarding to the operation frequency, the lowest, middle and highest frequency are selected to perform the test.
- 4. Lowest and highest data rates are tested in each mode. Only worst case is shown in the report. (802.11b is 1Mbps \$802.11g is 6Mbps \$802.11n(20M-BW) is 6.5Mbps and \$802.11n(40M-BW) is 13.5Mbps)
- 5. These tests are conducted on a sample for the purpose of demonstrating compliance of 802.11b/g/n transmitter with Part 15 Subpart C Paragraph 15.247 of spread spectrum devices
- 6. The radiation measurements are performed in X, Y, Z axis positioning. Only the worst case is shown in the report.

1.2. Operational Description

The EUT is a Notebook with 11 channels. This device provided four kinds of transmitting speed 1, 2, 5.5 and 11Mbps and the device of RF carrier is DBPSK, DQPSK and CCK (IEEE 802.11b). The device provided of eight kinds of transmitting speed 6, 9, 12, 18, 24, 36, 48 and 54Mbps the device of RF carrier is BPSK, QPSK, 16QAM and 64QAM (IEEE 802.11g).

The device provided of eight kinds of transmitting speed 7.2,14.4,21.7,28.9,43.3,57.8,65 and 72.2Mbps in 802.11n(20M-BW) mode and 15,30,45,60,90,120,135 and 150Mbps(40M-BW) the device of RF carrier is BPSK, QPSK, 16QAM and 64QAM (IEEE 802.11n), The IEEE 802.11n is Single In, Single Out" (SISO) technology and two antennas to support 1(Transmit) * 1(Receive) SISO technology.

This Notebook, compliant with IEEE 802.11b and IEEE 802.11g/n, is a high-efficiency Wireless LAN adapter. It allows your computer to connect to a wireless network and to share resources, such as files or printers without being bound to the network wires. Operation in 2.4GHz Direst Sequence Spread Spectrum (DSSS) and Orthogonal Frequency Division Multiplexing (OFDM) radio transmission, the Notebook Wired Equivalent Protection (WEP) algorithm is used. In addition, its standard compliance ensures that it can communicate with any IEEE 802.11b and IEEE 802.11g/n network.

Test Mode:	Mode 1: Transmit (802.11b 1Mbps)
	Mode 2: Transmit (802.11g 6Mbps)
	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)
	Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW)

1.3. Tested System Details

The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:

	Product	Manufacturer	Model No.	Serial No.	Power Cord
(1)	Monitor	Dell	2407WFPb	CN-0YY528-46633-796-12T	N/A
(1)				S	
(2)	IPod nano	Apple	A1199	5U704829VQ5	N/A
(2)	Microphone &	PCHOME	N/A	N/A	N/A
(3)	Earphone				
(4)	IPod nano	Apple	A1199	YM706L7GVQ5	N/A
(5)	IPod nano	Apple	A1199	5U72892MVQ5	N/A

Signa	ll Cable Type	Signal cable Description	
А	HDMI Cable	Shielded, 2.0m, with two ferrite cores bonded.	
В	VGA Cable	Shielded, 1.6m, with two ferrite cores bonded.	
С	IPod Cable	Non-Shielded, 1.2m	
D	Microphone & Earphone Cable	Non-Shielded, 2.0m	
E	IPod Cable	Non-Shielded, 1.2m	
F	IPod Cable	Non-Shielded, 1.2m	
G	RJ-45 Cable	Non-Shielded, 4.0m	

1.4. Configuration of Tested System

1.5. EUT Exercise Software

- (1) Setup the EUT as shown in Section 1.4
- (2) Execute "QA Test "Ver 1.2.0.1 on the EUT.
- (3) Configure the test mode, the test channel, and the data rate.
- (4) Press "OK" to start the continuous transmission.
- (5) Verify that the EUT works properly.

1.6. Test Facility

Ambient conditions in the laboratory:

Items	Required (IEC 68-1)	Actual
Temperature (°C)	15-35	20-35
Humidity (%RH)	25-75	50-65
Barometric pressure (mbar)	860-1060	950-1000

The related certificate for our laboratories about the test site and management system can be downloaded from QuieTek Corporation's Web Site : <u>http://tw.quietek.com/modules/myalbum/</u> The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site : <u>http://www.quietek.com/</u>

Site Description: File on

Federal Communications Commission FCC Engineering Laboratory 7435 Oakland Mills Road Columbia, MD 21046 Registration Number: 92195

Accreditation on NVLAP NVLAP Lab Code: 200533-0

Site Name: Quietek Corporation Site Address: No. 5-22, Ruei-Shu Valley, Ruei-Ping Tsuen, Lin-Kou Shiang, Taipei, Taiwan, R.O.C. TEL: 886-2-8601-3788 / FAX : 886-2-8601-3789 E-Mail : <u>service@quietek.com</u>

FCC Accreditation Number: TW1014

2. Conducted Emission

2.1. Test Equipment

The following test equipment are used during the conducted emission test:

Item	Instrument	Manufacturer	Type No./Serial No	Last Cal.	Remark
1	Test Receiver	R & S	ESCS 30/825442/17	May, 2009	
2	L.I.S.N.	R & S	ESH3-Z5/825016/6	May, 2009	EUT
3	L.I.S.N.	Kyoritsu	KNW-407/8-1420-3	May, 2009	Peripherals
4	Pulse Limiter	R & S	ESH3-Z2	May, 2009	
5	No.1 Shielded Roor	N/A			

Note: All instruments are calibrated every one year.

2.2. Test Setup

2.3. Limits

FCC Part 15 Subpart C Paragraph 15.207 (dBuV) Limit									
Frequency	Limits								
MHz	QP	AVG							
0.15 - 0.50	66-56	56-46							
0.50-5.0	56	46							
5.0 - 30	60	50							

2.4. Test Procedure

The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm /50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs.)

Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement.

Conducted emissions were invested over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.

2.5. Uncertainty

± 2.26 dB

2.6. Test Result of Conducted Emission

Product	:	Notebook
Test Item	:	Conducted Emission Test
Power Line	:	Line 1
Test Mode	:	Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW) (2437MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV	dB	dBuV
Line 1					
Quasi-Peak					
0.209	9.701	35.020	44.721	-19.593	64.314
0.252	9.675	31.890	41.565	-21.521	63.086
0.275	9.659	31.620	41.279	-21.150	62.429
0.318	9.650	24.140	33.790	-27.410	61.200
0.877	9.669	21.810	31.479	-24.521	56.000
15.091	9.990	27.250	27.250 37.240		60.000
Average					
0.209	9.701	19.950	29.651	-24.663	54.314
0.252	9.675	15.360	25.035	-28.051	53.086
0.275	9.659	19.170	28.829	-23.600	52.429
0.318	9.650	7.130	16.780	-34.420	51.200
0.877	9.669	4.210	13.879	-32.121	46.000
15.091	9.990	20.860	30.850	-19.150	50.000

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product	: Notebook									
Test Item	: Conducted Emission Test									
Power Line	: Line 2									
Test Mode	: Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW) (2437MHz)									
Frequency	Correct	Reading	Measurement	Margin	Limit					
	Factor	Level	Level							
MHz	dB	dBuV	dBuV	dB	dBuV					
Line 2										
Quasi-Peak										
0.205	9.713	35.460	45.173	-19.256	64.429					
0.220	9.703	28.820	38.523	-25.477	64.000					
0.275	9.669	31.220	40.889	-21.540	62.429					
0.310	9.660	22.080	31.740	-29.689	61.429					
0.877	9.671	22.680	32.351	-23.649	56.000					
15.045	10.000	26.540	36.540	-23.460	60.000					
Average										
0.205	9.713	22.590	32.303	-22.126	54.429					
0.220	9.703	3.450	13.153	-40.847	54.000					
0.275	9.669	19.570	29.239	-23.190	52.429					
0.310	9.660	2.170	11.830	-39.599	51.429					
0.877	9.671	7.000	16.671	-29.329	46.000					
15.045	10.000	19.170	29.170	-20.830	50.000					

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

3. Peak Power Output

3.1. Test Equipment

The following test equipments are used during the radiated emission tests:

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Х	Power Meter	Anritsu	ML2495A/6K00003357	May, 2009
Х	Power Sensor	Anritsu	MA2491A/034457	May, 2009

Note: 1. All instruments are calibrated every one year.

2. The test instruments marked by "X" are used to measure the final test results.

3.2. Test Setup

Conducted Measurement

3.3. Limits

The maximum peak power shall be less 1 Watt.

3.4. Test Procedure

The EUT was tested according to DTS test procedure of Mar. 2005 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

3.5. Uncertainty

 \pm 1.27 dB

3.6. Test Result of Peak Power Output

Product	:	Notebook
Test Item	:	Peak Power Output Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps)

Cable Los	ss=0.5dB	Peak Power Output									
Channel No	Г										
	(MHz)		Data	Peak Power	D . 11						
		1	2	5.5	11	1	Required Limit				
1	2412.00	10.22				15.00	1Watt= 30 dBm				
6	2437.00	10.32	10.11	9.63	9.21	15.01	1Watt= 30 dBm				
11	2462.00	10.35				15.09	1Watt= 30 dBm				

Notebook
Peak Power Output Data
No.3 OATS
Mode 2: Transmit (802.11g 6Mbps)

Cable Loss=0.5dB		Peak Power Output									
Channel No.	Frequency		Data Rate								Required Limit
	(MHz)	6	9	12	18	24	36	48	54	6	
1	2412.00	14.25								17.00	1Watt= 30 dBm
6	2437.00	14.90	14.61	14.05	13.86	13.51	13.22	12.95	12.43	18.9	1Watt= 30 dBm
11	2462.00	14.57								18.7	1Watt= 30 dBm

Product	:	Notebook
Test Item	:	Peak Power Output Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)

Cable Loss=0.5dB		Peak Power Output									
	Frequency		Data Rate								
Channel No.	(MHz)										Required Limit
		MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	MCS0	
1	2412.00	12.07		-					-	20.13	1Watt= 30 dBm
6	2437.00	12.03	11.82	11.61	11.37	11.05	10.82	10.46	10.13	20.07	1Watt= 30 dBm
11	2462.00	12.74								21.76	1Watt= 30 dBm

Product	:	Notebook
Test Item	:	Peak Power Output Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW)

Cable Los]	Peak Po	ower Ou	utput (d	Bm)			
	Г		Average Power						Peak		
Channel No. Frequency (MHz)		For different Data Rate (Mbps)					Power	Required Limit			
	(MHz)	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	MCS0	
3	2422.00	7.85								21.21	1Watt= 30 dBm
6	2437.00	8.13	8.03	7.84	7.62	7.49	7.33	6.88	6.5	22.11	1Watt= 30 dBm
9	2452.00	7.99								20.98	1Watt= 30 dBm

4. Radiated Emission

4.1. Test Equipment

The following test equipment are used during the radiated emission test:

Test Site		Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Site # 3	Х	Bilog Antenna	Schaffner Chase	CBL6112B/2673	Sep., 2009
	Х	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2009
	Х	Horn Antenna	Schwarzbeck	BBHA9170/208	Jul., 2009
	Х	Pre-Amplifier	AGILENT	8447D/2944A09549	Sep., 2009
	Х	Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2009
	Х	Spectrum Analyzer	Advantest	R3162/91700283	Oct., 2009
	Х	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2009
	Х	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	Х	Coaxial Switch	Anritsu	MP59B/6200265729	N/A

Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

2. The test instruments marked with "X" are used to measure the final test results.

4.2. Test Setup

Radiated Emission Below 1GHz

Radiated Emission Above 1GHz

4.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15 Subpart C Paragraph 15.209(a) Limits						
Frequency MHz	uV/m@3m	dBuV/m@3m				
30-88	100	40				
88-216	150	43.5				
216-960	200	46				
Above 960	500	54				

Remarks: E field strength $(dBuV/m) = 20 \log E$ field strength (uV/m)

4.4. Test Procedure

The EUT was setup according to ANSI C63.4, 2003 and tested according to DTS test procedure of Mar. 2005 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned between 1 meter and 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.4:2003 on radiated measurement.

The resolution bandwidth below 1GHz setting on the field strength meter is 120 kHz and above 1GHz is 1MHz.

Radiated emission measurements below 1GHz are made using broadband Bilog antenna and above 1GHz are made using Horn Antennas.

The measurement is divided into the Preliminary Measurement and the Final Measurement. The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB beamwidth of the antenna. The worst radiated emission is measured in the Open Area Test Site on the Final Measurement. The measurement frequency range form 30MHz - 10th Harmonic of fundamental was investigated.

4.5. Uncertainty

- ± 3.9 dB above 1GHz
- ± 3.8 dB below 1GHz

4.6. Test Result of Radiated Emission

Product	:	Notebook
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2412MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4824.000	5.206	45.790	50.996	-23.004	74.000
7236.000	10.500	41.400	51.900	-22.100	74.000
9648.000	15.867	40.020	55.887	-18.113	74.000
Average					
Detector:					
9648.000	15.867	29.280	45.147	-8.853	54.000
Vertical					
Peak Detector:					
4824.000	5.298	43.330	48.628	-25.372	74.000
7236.000	11.445	41.840	53.285	-20.715	74.000
9648.000	16.345	39.710	56.055	-17.945	74.000
Average					
Detector:					
9648.000	16.345	28.940	45.285	-8.715	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	: Notebook						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OA	ATS					
Test Mode	: Mode 1	Transmit (802.11	lb 1Mbps) (2437 MH	z)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	Db	dBuV	dBuV/m	Db	dBuV/m		
Horizontal							
Peak Detector:							
4874.000	5.091	46.530	51.621	-22.379	74.000		
7311.000	10.089	42.140	52.229	-21.771	74.000		
9748.000	15.595	39.120	54.715	-19.285	74.000		
Average							
Detector:							
9748.000	15.595	29.160	44.755	-9.245	54.000		
Vertical							
Peak Detector:							
4874.000	5.565	44.470	50.036	-23.964	74.000		
7311.000	10.902	41.950	52.852	-21.148	74.000		
9748.000	15.694	39.880	55.574	-18.426	74.000		
Average							
Detector:							
9748.000	15.694	29.080	44.774	-9.226	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Notebook						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 1	: Transmit (802.11	lb 1Mbps) (2462 MH	z)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	Db	dBuV	dBuV/m	Db	dBuV/m		
Horizontal							
Peak Detector:							
4924.000	5.487	44.240	49.728	-24.272	74.000		
7386.000	9.028	40.860	49.889	-24.111	74.000		
9848.000	15.951	39.400	55.350	-18.650	74.000		
Average							
Detector:							
9848.000	15.951	28.970	44.920	-9.080	54.000		
Vertical							
Peak Detector:							
4924.000	6.344	43.110	49.455	-24.545	74.000		
7386.000	9.709	40.920	50.630	-23.370	74.000		
9848.000	15.920	39.340	55.260	-18.740	74.000		
Average							
Detector:							
9848.000	15.920	28.980	44.900	-9.100	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

=

Product	: Notebook						
Test Item	: Harmonic Radiated Emission Data						
Test Site	Test Site : No.3 OATS						
Test Mode	: Mode 2	: Transmit (802.11	g 6Mbps) (2412MHz	z)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	Db	dBuV	dBuV/m	Db	dBuV/m		
Horizontal							
Peak Detector:							
4824.000	5.206	50.920	56.126	-17.874	74.000		
7236.000	10.500	43.700	54.200	-19.800	74.000		
9648.000	15.867	38.540	54.407	-19.593	74.000		
Average							
Detector:							
4824.000	5.206	38.310	43.516	-10.484	54.000		
7236.000	10.500	31.870	42.370	-11.630	54.000		
9648.000	15.867	28.340	44.207	-9.793	54.000		
Vertical							
Peak Detector:							
4824.000	5.298	46.010	51.308	-22.692	74.000		
7236.000	11.445	44.680	56.125	-17.875	74.000		
9848.000	15.920	39.270	55.190	-18.810	74.000		
Average							
Detector:							
7236.000	11.445	32.470	43.915	-10.085	54.000		
9848.000	15.920	28.420	44.340	-9.660	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Notebook						
Test Item	: Harmon	ic Radiated Emiss	sion Data				
Test Site	: No.3 OATS						
Test Mode	: Mode 2	: Transmit (802.11	g 6Mbps) (2437 MH	z)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	Db	dBuV	dBuV/m	Db	dBuV/m		
Horizontal							
Peak Detector:							
4874.000	5.091	51.510	56.601	-17.399	74.000		
7236.000	10.500	44.560	55.060	-18.940	74.000		
9748.000	15.595	39.670	55.265	-18.735	74.000		
Average							
Detector:							
4874.000	5.091	44.800	49.891	-4.109	54.000		
7311.000	10.089	32.270	42.359	-11.641	54.000		
9748.000	15.595	28.900	44.495	-9.505	54.000		
Vertical							
Peak Detector:							
4874.000	5.565	48.820	54.386	-19.614	74.000		
7311.000	10.902	44.760	55.662	-18.338	74.000		
9748.000	15.694	39.180	54.874	-19.126	74.000		
Average							
Detector:							
4874.000	5.565	35.310	40.876	-13.124	54.000		
7311.000	10.902	32.820	43.722	-10.278	54.000		
9748.000	15.694	28.310	44.004	-9.996	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Notebook						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OA	ATS					
Test Mode	: Mode 2	Transmit (802.11	g 6Mbps) (2462 MH	z)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level	8			
MHz	Db	dBuV	dBuV/m	Db	dBuV/m		
Horizontal							
Peak Detector:							
4924.000	5.487	53.680	59.168	-14.832	74.000		
7386.000	9.028	42.550	51.579	-22.421	74.000		
9848.000	15.951	40.030	55.980	-18.020	74.000		
Average							
Detector:							
4924.000	5.487	41.250	46.738	-7.262	54.000		
9848.000	15.951	29.090	45.040	-8.960	54.000		
Vertical							
Peak Detector:							
4924.000	6.344	50.770	57.115	-16.885	74.000		
7386.000	9.709	43.210	52.920	-21.080	74.000		
9848.000	15.920	38.900	54.820	-19.180	74.000		
Average							
Detector:							
4924.000	6.344	38.130	44.474	-9.526	54.000		
9848.000	15.920	29.020	44.940	-9.060	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Notebook						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 3:	Transmit (802.11	n MCS0 7.2Mbps 20	M-BW) (2412M)	Hz)		
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	Db	dBuV	dBuV/m	Db	dBuV/m		
Horizontal							
Peak Detector:							
4824.000	5.206	49.360	54.566	-19.434	74.000		
7236.000	10.500	45.560	56.060	-17.940	74.000		
9648.000	15.867	39.630	55.497	-18.503	74.000		
Average							
Detector:							
4824.000	5.206	34.430	39.636	-14.364	54.000		
7236.000	10.500	30.470	40.970	-13.030	54.000		
9648.000	15.867	28.460	44.327	-9.673	54.000		
Vertical							
Peak Detector:							
4824.000	5.298	45.470	50.768	-23.232	74.000		
7236.000	11.445	45.700	57.145	-16.855	74.000		
9648.000	16.345	39.320	55.665	-18.335	74.000		
Average							
Detector:							
7236.000	11.445	31.050	42.495	-11.505	54.000		
9648.000	16.345	28.330	44.675	-9.325	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Noteboo	ok				
Test Item	: Harmon	ic Radiated Emiss	sion Data			
Test Site	: No.3 O	ATS				
Test Mode	: Mode 3	: Transmit (802.11	In MCS0 7.2Mbps 20	M-BW) (2437 M	Hz)	
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	Db	dBuV	dBuV/m	Db	dBuV/m	
Horizontal						
Peak Detector:						
4874.000	5.091	50.030	55.121	-18.879	74.000	
7311.000	10.089 44.000		54.089	-19.911	74.000	
9748.000	15.595	39.410	55.005	-18.995	74.000	
Average						
Detector:						
4874.000	5.091	33.100	38.191	-15.809	54.000	
7311.000	10.089	30.000	40.089	-13.911	54.000	
9748.000	15.595	28.130	43.725	-10.275	54.000	
Vertical						
Peak Detector:						
4874.000	5.565	45.380	50.946	-23.054	74.000	
7311.000	10.902	43.360	54.262	-19.738	74.000	
9748.000	15.694	39.450	55.144	-18.856	74.000	
Average						
Detector:						
7311.000	10.902	29.410	40.312	-13.688	54.000	
9748.000	15.694	28.310	44,004	-9.996	54.000	

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Noteboo	ok			
Test Item	: Harmon	ic Radiated Emiss	sion Data		
Test Site	: No.3 OA	ATS			
Test Mode	: Mode 3	Transmit (802.11	n MCS0 7.2Mbps 20	M-BW) (2462 M	(Hz)
Frequency	Correct	Reading	Measurement	Margin	Limit
1 2	Factor	Level	Level	C	
MHz	Db	dBuV	dBuV/m	Db	dBuV/m
Horizontal					
Peak Detector:					
4924.000	9.487	53.510	62.996	-11.004	74.000
7386.000	14.798	41.800	56.598	-17.402	74.000
9848.000	20.005	39.050	59.056	-14.944	74.000
Average					
Detector:					
4924.000	9.487	37.090	46.576	-7.424	54.000
7386.000	14.798	26.410	41.208	-12.792	54.000
9848.000	20.005	28.720	48.726	-5.274	54.000
Vertical					
Peak Detector:					
4924.000	9.415	50.490	59.904	-14.096	74.000
7386.000	15.269	43.720	58.989	-15.011	74.000
9848.000	19.191	39.050	58.241	-15.759	74.000
Average					
Detector:					
4924.000	9.415	34.620	44.034	-9.966	54.000
7386.000	15.269	28.520	43.789	-10.211	54.000
9848.000	19.191	28.990	48.181	-5.819	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Noteboo	ok			
Test Item	: Harmon	ic Radiated Emiss	sion Data		
Test Site	: No.3 OA	ATS			
Test Mode	: Mode 4:	: Transmit (802.11	n MCS0 15Mbps 40	M-BW) (2422MH	Hz)
Fraguanay	Corrot	Deading	Maguramant	Morgin	Limit
Frequency	Contect	Keauling	Ivieasurement	Margin	Linnt
	Factor	Level	Level	DI	
MHz	Db	dBuV	dBuV/m	Db	dBuV/m
Horizontal					
Peak Detector:					
4844.000	9.536	45.130	54.666	-19.334	74.000
7266.000	14.459	36.280	50.739	-23.261	74.000
9688.000	19.847	38.940	58.787	-15.213	74.000
Average					
Detector:					
4844.000	9.536	31.840	41.376	-12.624	54.000
9688.000	19.847	28.620	48.467	-5.533	54.000
Vertical					
Peak Detector:					
4844.000	8.627	41.310	49.937	-24.063	74.000
7266.000	15.363	37.070	52.434	-21.566	74.000
9688.000	19.057	38.650	57.707	-16.293	74.000
Average					
Detector:					
9688.000	19.057	28.860	47.917	-6.083	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Noteboo	ok			
Test Item	: Harmon	ic Radiated Emis	sion Data		
Test Site	: No.3 O	ATS			
Test Mode	: Mode 4	: Transmit (802.11	In MCS0 15Mbps 40	M-BW) (2437 M	Hz)
Frequency	Correct	Reading	Measurement	Margin	Limit
1 10 100 100	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4874.000	9.473	47.130	56.603	-17.397	74.000
7311.000	14.540	35.780	50.319	-23.681	74.000
9748.000	20.024	39.030	59.055	-14.945	74.000
Average					
Detector:					
4874.000	9.473	34.550	44.023	-9.977	54.000
9748.000	20.024	28.910	48.935	-5.065	54.000
Vertical					
Peak Detector:					
4874.000	8.882	42.180	51.061	-22.939	74.000
7311.000	15.283	36.990	52.273	-21.727	74.000
9748.000	19.228	38.880	58.109	-15.891	74.000
Average					
Detector:					
9748.000	19.228	28.900	48.129	-5.871	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Noteboo	ok			
Test Item	: Harmon	nic Radiated Emiss	sion Data		
Test Site	: No.3 O	ATS			
Test Mode	: Mode 4	: Transmit (802.11	n MCS0 15Mbps 40	M-BW) (2452 M	Hz)
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4904.000	9.518	47.130	56.648	-17.352	74.000
7536.000	15.588	36.280	51.868	-22.132	74.000
9808.000	20.066	39.020	59.086	-14.914	74.000
Average					
Detector:					
4904.000	9.518	32.260	41.778	-12.222	54.000
9808.000	20.066	28.960	49.026	-4.974	54.000
Vertical					
Peak Detector:					
4904.000	9.235	43.060	52.294	-21.706	74.000
7356.000	15.318	35.980	51.298	-22.702	74.000
9808.000	19.266	38.950	58.216	-15.784	74.000
Average					
Detector:					
9808 000	19 266	29 030	48 296	-5 704	54 000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

46.000

-11.624

Product Test Item	NotebookGeneral Radiated Emission Data								
Test Site	: No.3 O	: No.3 OATS							
Test Mode	: Mode 1: Transmit (802.11b 1Mbps)(2437 MHz)								
Frequency	Correct	Reading	Measurement	Margin	Limit				
	Factor	Level	Level						
MHz	dB	dBuV	dBuV/m	dB	dBuV/m				
Horizontal									
35.820	-1.516	35.665	34.149	-5.851	40.000				
286.080	-5.822	39.715	33.893	-12.107	46.000				
466.500	3.015	31.368	34.383	-11.617	46.000				
555.740	2.645	32.273	34.918	-11.082	46.000				
827.340	7.244	30.201	37.455	-8.545	46.000				
988.360	7.349	32.628	40.007	-13.993	54.000				
Vertical									
30.000	-3.088	35.570	32.482	-7.518	40.000				
286.080	-5.612	39.103	33.491	-12.509	46.000				
357.860	-1.339	34.535	33.196	-12.804	46.000				
499.480	-0.383	33.705	33.322	-12.678	46.000				
790.480	2.597	33.510	36.107	-9.893	46.000				

Note:

932.100

1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.

34.376

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.

31.186

"*", means this data is the worst emission level. 4.

3.190

5. Measurement Level = Reading Level + Correct Factor.

The average measurement was not performed when the peak measured data under the limit of average 6. detection.

46.000

Product	: Notebook							
Test Item	: General Radiated Emission Data							
Test Site	: No.3 OATS							
Test Mode	Mode 2: Transmit (802 11g 6Mbns)(2437 MHz)							
1050 111000	. 111040 2	. 1141151111 (002.11	5 0000p5)(2 15 / 10112	-)				
_								
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
35.820	-1.516	35.868	34.352	-5.648	40.000			
286.080	-5.822	39.872	34.050	-11.950	46.000			
462.620	3.449	30.981	34.430	-11.570	46.000			
697.360	3.097	32.396	35.493	-10.507	46.000			
813.760	6.213	31.265	37.478	-8.522	46.000			
1000.000	9.421	29.951	39.372	-14.628	54.000			
Vertical								
30.000	-3.088	34.736	31.648	-8.352	40.000			
286.080	-5.612	39.405	33.793	-12.207	46.000			
357.860	-1.339	35.068	33.729	-12.271	46.000			
501.420	-0.290	33.612	33.323	-12.677	46.000			
691.540	1.962	30.989	32.952	-13.048	46.000			

Note:

786.600

1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.

34.637

-11.363

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.

32.014

4. "*", means this data is the worst emission level.

2.622

- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product Test Item	: Notebo : General	ok l Radiated Emissic	on Data		
Test Site	: No.3 O	ATS			
Test Mode	: Mode 3	: Transmit (802.11	n MCS0 7.2Mbps 20	M-BW)(2437 M	Hz)
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
30.000	-0.228	35.414	35.186	-4.814	40.000
286.080	-5.822	39.232	33.410	-12.590	46.000
431.580	0.597	32.652	33.249	-12.751	46.000
881.660	6.584	31.818	38.402	-7.598	46.000
932.100	7.030	31.605	38.635	-7.365	46.000
1000.000	9.421	29.800	39.221	-14.779	54.000
Vertical					
30.000	-3.088	34.921	31.833	-8.167	40.000
175.500	-2.042	32.842	30.800	-12.700	43.500
286.080	-5.612	39.506	33.894	-12.106	46.000
540.220	1.947	30.696	32.643	-13.357	46.000
604.240	1.964	30.918	32.883	-13.117	46.000
934.040	2.746	31.463	34.209	-11.791	46.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

-11.066

46.000

Product	: Notebook								
Test Item	: General Radiated Emission Data								
Test Site	: No.3 OATS								
Test Mode	: Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW)(2437 MHz)								
1000 1110 40	. $(002.111) = (0$								
Frequency	Correct	Reading	Measurement	Margin	Limit				
	Factor	Level	Level	C					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m				
Horizontal									
30.000	-0.228	36.306	36.078	-3.922	40.000				
286.080	-5.822	39.166	33.344	-12.656	46.000				
460.680	3.891	32.234	36.125	-9.875	46.000				
584.840	3.008	31.333	34.341	-11.659	46.000				
856.440	6.950	30.397	37.347	-8.653	46.000				
1000.000	9.421	31.106	40.527	-13.473	54.000				
Vertical									
30.000	-3.088	34.886	31.798	-8.202	40.000				
286.080	-5.612	38.974	33.362	-12.638	46.000				
357.860	-1.339	34.898	33.559	-12.441	46.000				
503.360	-0.280	33.981	33.701	-12.299	46.000				
687.660	2.166	30.557	32.724	-13.276	46.000				

Note:

786.600

1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.

34.934

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.

32.311

4. "*", means this data is the worst emission level.

2.622

- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

5. **RF** antenna conducted test

5.1. Test Equipment

The following test equipments are used during the radiated emission tests:

Equipment		Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Nov, 2009
	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2009
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2009

Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

2. The test instruments marked with "X" are used to measure the final test results.

5.2. Test Setup

RF antenna Conducted Measurement:

5.3. Limits

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

5.4. Test Procedure

The EUT was tested according to DTS test procedure of Mar. 2005 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

Set RBW = 100 kHz, Set VBW> RBW, scan up through 10th harmonic.

5.5. Uncertainty

The measurement uncertainty Conducted is defined as \pm 1.27dB

5.6. Test Result of RF antenna conducted test

Product	:	Notebook
Test Item	:	RF antenna conducted test
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps)

Channel 01 (2412MHz) 30 MHz -25GHz

D Agi	lent Spectru	ım Analyzer	- Swept SA			15						
₩ Disp	olay Lin	^{io Ω}	7 dBm	A		NSE:INT	Avg Ty	ALIGNAUTO pe: Log-Pwr	09:29:14 A	M Sep 10, 2009		Display
10 dE	3/div R	ef 20.00	Input: RF P IF) dBm	NO: Fast 😱 Gain:Low	#Atten: 3	e Run 0 dB		Μ	lkr1 2.4 4.3	02 GHz 31 dBm		Annotation►
Log 10.0		1										Title▶
0.00											<u>On</u>	Graticule Off
-20.0										-15.67 dBm	On	Display Line -15.67 dBm
-30.0										Welkingstown		
-50.0	Mullinde	- mathing and	WWWWWWWWWW	- Mununantral	inducedur	Minandhalin	m alleven Lundh	Two and the second s	ang Wer want of	Note:		System
-70.0												Display► Settings
Star #Re:	t 30 MH: s BW 10	z 0 kHz		#VBW				Sweep	Stop 2 2.30 s (5.00 GHz 1001 pts)		
MSG								STATUS				

Channel 06 (2437MHz) 30 MHz -25GHz

Channel 11 (2462MHz) 30 MHz -25GHz

Product	:	Notebook
Test Item	:	RF Antenna Conducted Spurious
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps)

Channel 01 (2412MHz) 30 MHz -25GHz

🗊 Agil	lent Spec	trum Analyzer -	Swept SA										
<mark>⊯</mark> Disp	olay Li	50 Ω ne -23.14	dBm		AC SE		Avg Type	LIGNAUTO	09:40:34 A	E 1 2 3 4 5 6		Display	
10 dE	Input: RF PNO: Fast IFGain:Low #Atten: 20 dB Mkr1 2.402 GHz -3.138 dBm												
0.00		1										Title►	
-10.0										-23.14 dBm	<u>On</u>	Graticule Off	
-30.0											<u>On</u>	Display Line -23.14 dBm Off	
-50.0								ALAMONTRA	engleser frainglineses	W. W. W. Hand			
-70.0	umbran	and Marallahanstal	Annu - Annu - Annu	humana a tanta fa	waraany waaki	all appenditions	ann a' ann ann ann ann ann ann ann ann a	at have				System Display▶ Settings	
Start #Res	t 30 M s BW 1	Hz 100 kHz		#VBW	 			Sweep	Stop 2 2.30 s (5.00 GHz 1001 pts)			
MSG								STATUS					

Channel 06 (2437MHz) 30 MHz -25GHz

Channel 11 (2462MHz) 30 MHz -25GHz

Product	:	Notebook
Test Item	:	RF Antenna Conducted Spurious
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)

Channel 01 (2412MHz) 30 MHz -25GHz

🗊 Agi	ilent Spectru	ım Analyzer - !	Swept SA										
w Disp	play Lin	^{io Ω} e -28.61	dBm		AC SE		Avg 1	ALIGN ype: Log	iauto j -Pwr	10:00:13 A TRAC	M Sep 10, 2009		Display
10 d	B/div F	In tef 10.00 (d Bm	40: Fast ⊆ Gain:Low	#Atten: 20) dB			M	lkr1 2.4 -8.0	02 GHz 61 dBm		Annotation►
0.00		1									· · · · · ·		Title►
-10.0 -20.0												<u>On</u>	Graticule Off
-30.0 -40.0											-28.61 dBm	<u>On</u>	Display Line -28.61 dBm Off
-50.0			S. Obs. de .					to and formed	www.thet	Rushhulling	man		
-70.0	pulle Nurrigenta	MWW MUCHAN	Ware and the second	the all and the state of the	nt-up-ar-an-	him have had been	househine						System Display▶ Settings
-80.0 Star #Re	t 30 MH s BW 10	z 0 kHz		#VBW	·			s	weep	Stop 2 2.30 s (5.00 GHz 1001 pts)		
MSG									STATUS				

Channel 06 (2437MHz) 30 MHz -25GHz

Channel 11 (2462MHz) 30 MHz -25GHz

Product	:	Notebook
Test Item	:	RF Antenna Conducted Spurious
Test Site	:	No.3 OATS
Test Mode	:	Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW)

Channel 01 (2422MHz) 30 MHz -25GHz

🗊 Agi	ilent Spectr	um Analyzer -	Swept SA									
w. Disp	olay Lin	^{50 Ω} le -24.91	dBm		AC SE		Avg Type	ALIGNAUTO : Log-Pwr	09:50:12 AI TRAC	E 1 2 3 4 5 6		Display
10 dl	B/div I	In Ref 10.00 (d Bm	40: Fast ⊆⊾ Gain:Low	#Atten: 20) dB		N	ته 1kr1 2.4 4.9'	02 GHz 11 dBm		Annotation►
0.00		•1										Title►
-10.0						-						Graticule
-20.0										-24.91 dBm	<u> 0n</u>	Off
-30.0											On	Display Line -24.91 dBm Off
-40.0												
-60.0			WHWWWWWWWWWW				Added to a statistical		harderster line and	putter		
-70.0	a la vita i a la l	e marter water	A	Monard and a contraction of the	9-41.14.1.1.4.44 1-4	U. A. Ball Internet	and the second sec					System Display► Settings
-80.0												
Star #Re	t 30 MH s BW 10	z D0 kHz		#VBW	·			Sweep	Stop 2 2.30 s (5.00 GHz 1001 pts)		
MSG		ne e Principalitation		44				STATUS				

Channel 04 (2437MHz) 30 MHz -25GHz

Channel 07 (2452MHz) 30MHz-25GHz

6. Band Edge

6.1. Test Equipment

The following test equipments are used during the band edge tests:

Test Site		Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr, 2009
		Bilog Antenna	Schaffner Chase	CBL6112B/2673	Sep., 2009
	Х	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2009
Site # 3	Х	Pre-Amplifier	AGILENT	8447D/2944A09549	Sep., 2009
	X Test Receiver		R & S	ESCS 30/ 825442/018	Sep., 2009
	Х	Spectrum Analyzer	Advantest	R3162/91700283	Oct., 2009
	Х	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2009
	Х	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	X	Coaxial Switch	Anritsu	MP59B/6200265729	N/A

Note:

1. All instruments are calibrated every one year.

2. The test instruments marked by "X" are used to measure the final test results.

6.2. Test Setup

RF Radiated Measurement:

6.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

6.4. Test Procedure

The EUT was setup according to ANSI C63.4, 2003 and tested according to DTS test procedure of Mar. 2005 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.4:2003 on radiated measurement.

6.5. Uncertainty

- ± 3.9 dB above 1GHz
- ± 3.8 dB below 1GHz

6.6. Test Result of Band Edge

Product	:	Notebook
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2412MHz)

Marker Delta Method (Low band)

Fundamental Filed Strength

Antenna Pole	Frequency [MHz]	Correction Factor [dB/m]	Reading Level [dBuV]	Emission Level [dBuV/m]	Detector
Horizontal	2412	36.613	66.240	102.853	Peak
Horizontal	2412	36.613	62.350	98.963	Average
Vertical	2412	35.629	63.510	99.139	Peak
Vertical	2412	35.629	59.200	94.829	Average

Note: 1:Spectrum Analyzer setting:

```
Peak detector: RBW=1MHz, VBW=1MHz
```

```
Average detector: RBW=1MHz, VBW=10Hz
```

Band Edge Test Data

Antenna Pole	Test Frequency (MHz)	uency Fundamental z) (dBuV/m)		Band Edge Field Strength (dBuV/m)	Detector
Horizontal	2389.2	102.853	49.12	53.733	Peak
Horizontal	2390	98.963	59.183	39.78	Average
Vertical	2389.2	99.139	49.12	50.012	Peak
Vertical	2390	94.829	59.183	35.646	Average

Note:

- 1. The Marker Delta Method is refer to FCC DA 00-705.
- 2. The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge measurements per the Marker-Delta Method with the following formula:

Band Edge field Strength = F - Δ

- F = Fundamental field Strength (Peak or Average)
- Δ = Conducted Band Edge Delta (Peak or Average)
- 3. AVG Measurement=Peak Measurement + Duty Cycle.
- 4. If Duty Cycle is smaller than -20dB,based on FCC part15 the duty cycle correction factor is -20dB for calculating average emission.

🗊 Agilent Spe	ctrum Analyz	er - Swept SA								
Marker 2	50 Ω 2.38920	0000000 G	Hz	AC SEN	SE:INT	Avg Typ	e: Log-Pwr	02:17:20 F	M Oct 30, 2009 E 1 2 3 4 5 6	Marker
		Input: RF P IF	NO: Fast 🕞 Gain:Low	#Atten: 30	dB	AVGIHOIO		r2 2 38		Select Marker
10 dB/div	Ref 20.0	10 dBm						-47.5	91 dBm	2
10.0										Normal
-10.0		_					\rightarrow			
-20.0					220					Delta
-40.0		_			22	\$		$\overline{\ }$		
-50.0 aus.adular		han a share a s	ومريع المريح والمريح و	and a straight more than	and a start of the					
-60.0										Fixed⊳
Center 2.3	39000 GH	z					10	Span 1	00.0 MHz	
#Res BW	1.0 MHz		#VBV	V 1.0 MHz			#Sweep	500 ms (1001 pts)	Off
MKR MODE TR	C SCL	× 2.411	0 GHz	1.529 dB	FUN	CTION FI	JNCTION WIDTH	FUNCTIO	IN VALUE	
2 N 1 3 N 1	f	2.389 2.398	2 GHz 6 GHz	-47.591 dB -42.634 dB	m m		l.			
4										Properties►
7					-					
9					-					More
11										1 of 2
MSG							STATUS			

Peak Detector of conducted Band Edge Delta

Average Detector of conducted Band Edge Delta

D Agi	lent S	pect	rum i	Analyzer -	Swept	SA										
w Marl	ker	2 2	50 g	90000	0000	000 G	iHz	A	c se	NSE:INT	Av	g Type	ALIGNAUTO	02:18:53 TRA	PM Oct 30, 2009	Marker
10 dE	3/div		Ref	20.00	nput: R dBm	F PI IFC	NO: Fast Gain:Low	, ,	#Atten: 30) dB	AV	giriola:	Mk	r2 2.39 -60.7	0 0 GHz 82 dBm	Select Marker
Log 10.0 0.00 -10.0												~	2			Normal
-20.0 -30.0 -40.0											~3/	/				Delta
-50.0 -60.0 -70.0		_			-					2~	×#			\sim		Fixed⊳
Cent #Res	ter 2 s BV	2.39 V 1	000 .0 N	0 GHz /IHz	>	2 444	#V	BW	10 Hz		UNCTION	FU	Sweep	Ŝpan 1 7.80 s (FUNOT	00.0 MHz 1001 pts)	Off
2 3 4 5 6 7	N N	1	f			2.390 2.398	0 GHZ 0 GHZ 3 GHZ		-1.599 di -60.782 di -51.609 di	3m 3m 3m						Properties▶
8 9 10 11 12																More 1 of 2
MSG													STATUS			

QuieTer

Product	:	Notebook
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2462MHz)

Marker Delta Method (Low band)

Fundamental Filed Strength

Antenna	Frequency	Correction Factor	Reading Level [dBuV]	Emission Level	Detector
Pole	[MHz]	[dB/m]		[dBuV/m]	
Horizontal	2462	36.699	60.840	97.539	Peak
Horizontal	2462	36.699	56.980	93.679	Average
Vertical	2462	36.039	60.890	96.929	Peak
Vertical	2462	36.039	56.940	92.979	Average

Note: 1:Spectrum Analyzer setting:

Peak detector: RBW=1MHz, VBW=1MHz

Average detector: RBW=1MHz, VBW=10Hz

Band Edge Test Data

Antenna Pole	Test Frequency (MHz)	Fundamental (dBuV/m)	Δ(dB)	Band Edge Field Strength (dBuV/m)	Detector
Horizontal	2484.8	97.539	46.845	50.694	Peak
Horizontal	2483.5	93.679	57.818	35.861	Average
Vertical	2484.8	96.929	46.845	50.084	Peak
Vertical	2483.5	92.979	57.818	35.161	Average

- 1. The Marker Delta Method is refer to FCC DA 00-705.
- 2. The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge measurements per the Marker-Delta Method with the following formula:
 - Band Edge field Strength = $F \Delta$
 - F = Fundamental field Strength (Peak or Average)
 - Δ = Conducted Band Edge Delta (Peak or Average)
- 3. AVG Measurement=Peak Measurement + Duty Cycle.
- 4. If Duty Cycle is smaller than -20dB,based on FCC part15 the duty cycle correction factor is -20dB for calculating average emission.

D Agi	lent S	pect	rum i	Analyzer -	Swept SA							8		
<mark>w</mark> Mar	ker	2 2	50 ຊ 2.4	848000	000000 G	Hz	AC SEM	NSE:INT	Avg *	ALIGN Type: Log-	AUTO Pwr	02:22:12F TRAC	M Oct 30, 2009	Marker
				In	put: RF PI IF(NO: Fast 🕒 Sain:Low	#Atten: 30	dB	A Y Y	1010.2 1007		DI	PNNNNN	Select Marker
10 di	B/div		Ref	20.00	dBm						Mk	r2 2.48 -48.1	1 8 GHz 32 dBm	2
10.0					<u>1</u>				_	_				Normal
0.00					1 miles	~								Norma
-20.0					/									
-30.0				/	/	$ \rightarrow $								Delta
-40.0	-			m			harris	♦ ² —			-	- attended and	Thimsonwood	
-60.0														Fixed
-70.0	_				-									Fixeu
Cen	ter 2	2.48	335	0 GHz		-#\/D\/				# C		Span 1	00.0 MHz	
#RC		ny I. Man	.0 R		×	#VBV	V 1.0 IVIN2		INCTION		wona			Off
1	N N	1	f		2.460	9 GHz 8 GHz	-1.287 dE	3m 3m						
3														Properties ►
5														Topolaco
8			_							6				Mara
10 11	_	_								-				1 of 2
12														
MSG											STATUS			

Peak Detector of conducted Band Edge Delta

ectrum Analyzer - Swept SA 2:53 PM Oct 30, 2009 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N N Peak Search Marker 2 2.483500000000 GHz Avg Type: Log-Pwr Avg|Hold: 7/100 Trig: Free Run #Atten: 30 dB PNO: Fast IFGain:Low Ģ Next Peak Mkr2 2.483 5 GHz -61.525 dBm Ref 20.00 dBm 10 dB/div Log 10.0 ∆¹Ì Next Right 0.00 $\langle \rangle$ 10.0 -20.0 -30.0 Next Left 40.0 -50.0 2 -60.0 Marker Delta -70.0 Center 2.48350 GHz #Res BW 1.0 MHz Span 100.0 MHz Sweep 7.80 s (1001 pts) #VBW 10 Hz Mkr→CF MKR MODE TRC SCL FUNCTION FUNCTION WIDTH FUNCTION ' -3.707 dBm -61.525 dBm 1 N 1 f 2 N 1 f 2.461 2 GHz 2.483 5 GHz Mkr→RefLvl ŧ 6 7 8 9 10 11 12 More 1 of 2 ISG STATUS

Average Detector of conducted Band Edge Delta

Product	:	Notebook
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2412MHz)

Marker Delta Method (Low band)

Fundamental Filed Strength

Antenna Pole	Frequency [MHz]	Correction Factor [dB/m]	Reading Level [dBuV]	Emission Level [dBuV/m]	Detector
Horizontal	2412	31.455	74.210	105.664	Peak
Horizontal	2412	31.455	64.860	96.314	Average
Vertical	2412	31.455	71.270	102.724	Peak
Vertical	2412	31.455	61.780	93.234	Average

Note: 1:Spectrum Analyzer setting:

Peak detector: RBW=1MHz, VBW=1MHz

Average detector: RBW=1MHz, VBW=10Hz

Band Edge Test Data

Antenna Pole	Test Frequency (MHz)	Fundamental (dBuV/m)	Δ (dB)	Band Edge Field Strength (dBuV/m)	Detector
Horizontal	2390.0	105.664	50.94	54.724	Peak
Horizontal	2359.8	96.314	52.71	43.604	Average
Vertical	2390.0	102.724	50.94	51.784	Peak
Vertical	2359.8	93.234	52.71	40.524	Average

Note:

- 1. The Marker Delta Method is refer to FCC DA 00-705.
- 2. The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge measurements per the Marker-Delta Method with the following formula:

Band Edge field Strength = $F - \Delta$

- F = Fundamental field Strength (Peak or Average)
- Δ = Conducted Band Edge Delta (Peak or Average)
- 3. AVG Measurement=Peak Measurement + Duty Cycle.
- 4. If Duty Cycle is smaller than -20dB,based on FCC part15 the duty cycle correction factor is -20dB for calculating average emission.

		8						- Swept SA	Analyzer	pectrum	gilent S	
Marker	M Sep 10, 2009 CE 1 2 3 4 5 6	11:14:56 A TRAC	ALIGNAUTO e: Log-Pwr	Avg T	E:INT	AC SENS			2	50 9		IXI
Select Marker	ETPNNNNN	D			4B	#Atten: 20 d	PNO: Fast IFGain:Low	dBm	ı f 10.00	Re	IB/div	10 0
Normal			¥1	\int								Log 0.01 -10.0 -20.0
Delta	and the second	h			2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		e.tope ar-servel it for the	the malane	manthal			-30.0 -40.0 -50.0
Fixed⊳)))	-60.0 -70.0 -80.0
Off	00.0 MHz (1001 pts) on value	Span 1 500 ms (#Sweep	CTION	FUN	/ Y 5.04 dBr	#VI	× 2.41	0 GHz VIHz	2.3900 V 1.0 I	nter 2 es Bl MODE	Cer #Re MKE
Properties►					n	-45.90 dBr	90 0 GHz	2.39		1 f	N	2 3 4 5 6 7
More 1 of 2												7 8 9 10 11 12
4			STATUS									MSG

Peak Detector of conducted Band Edge Delta

🇊 Agil	ent Sp	oectru	ım Anal	yzer - !	Swept	SA																X
₩ Mark	(er 3	3 2	ົດ Ω .3598	3000	0000	000 G	SHz		AC	SE	NSE:IN	Т	A١	g Тур	ALIGN A	NUTO Pwr	11:15:2 T	21 AM	1 Sep 10, 2	2009 5 6	Marker	
					put: R	F P IF	'NO: Fa Gain:L	ow	#At	ten: 20	0 dB					Mk	3 2.3	DE 59		Hz	Select Marke	r 3
10 de 0.00 -10.0	3/div	R												~	Ò	1		0.0			Norm	nal
-30.0 -40.0 -50.0					3_						2		J				L				Del	lta
-60.0 -70.0 -80.0																					Fixed	d⊳
Cent #Res	ter 2 S BW	.390 / 1.0	000 G 0 MH2	iHz z	>	<	#	¢rew	4	Y		FUN	ICTION	FU	SW	veep мотн	Spar 7.80	n 1(s (1	00.0 M 1001 p	Hz ts)	c	off
1 2 3 4 5 6	N N	1	f f			2.413 2.390 2.359	8 GH 0 GH 8 GH	z z z	-60 -58	5.36 dl).97 dl 3.07 dl	Bm Bm Bm										Properties	sÞ
8 9 10 11 12																					Mo 1 of	f 2
MSG															s	TATUS						

Average Detector of conducted Band Edge Delta

Product	:	Notebook
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2462MHz)

Marker Delta Method (Low band)

Fundamental Filed Strength

Antenna Pole	Frequency [MHz]	Correction Factor [dB/m]	Reading Level [dBuV]	Emission Level [dBuV/m]	Detector
Horizontal	2462	31.650	78.070	109.720	Peak
Horizontal	2462	31.650	68.560	100.210	Average
Vertical	2462	31.650	75.480	107.130	Peak
Vertical	2462	31.650	66.020	97.670	Average

Note: 1:Spectrum Analyzer setting:

Peak detector: RBW=1MHz, VBW=1MHz

Average detector: RBW=1MHz, VBW=10Hz

Band Edge Test Data

Antenna Pole	Test Frequency (MHz)	Fundamental (dBuV/m)	Δ (dB)	Band Edge Field Strength (dBuV/m)	Detector
Horizontal	2485.2	109.720	47.95	61.77	Peak
Horizontal	2483.5	100.210	51.4	48.81	Average
Vertical	2485.2	107.130	47.95	59.18	Peak
Vertical	2483.5	97.670	51.4	46.27	Average

Note:

- 1. The Marker Delta Method is refer to FCC DA 00-705.
- 2. The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge measurements per the Marker-Delta Method with the following formula:

Band Edge field Strength = $F - \Delta$

- F = Fundamental field Strength (Peak or Average)
- Δ = Conducted Band Edge Delta (Peak or Average)
- 3. AVG Measurement=Peak Measurement + Duty Cycle.
- 4. If Duty Cycle is smaller than -20dB,based on FCC part15 the duty cycle correction factor is -20dB for calculating average emission.

🗊 Agi	ilent S	ipect	trum	Analyzer	- Swe	pt SA									w.								
ыл Mar	ker	3	50 s 2.4	2 85200	000	0000	G	Hz		AC	SEN	VSE:IN	ſ	Avg	Туре	ALIGNAU : Log-P	jto 'wr	11:16	:15 AN TRAC	4 Sep 1 E 1 2 3	0,2009 3456	•	Marker
					Input:	: RF	PN IFG	0: Fas ain:Lo	st ⊊ iw	#At	g: Free ten: 30	dB							DE		INNN		Select Marker
10 di	B/div		Ref	f 10.00	dB	m										18	Mk	r3 2.4 -4	485 11.4	520 11 d	GHz Bm		3
0.00	F		-		1	~~~~	~	~X:	1						_								Normal
-20.0				1	1				1													_	
-30.0 -40.0			-	monent						ma	m	Å ³									38 83		Delta
-50.0	al al a second	Mark	+		-		_					Wards	mont	worken	hunser	and the second	Herm	handrent	*****	spensohn	othnese	_	
-60.0 -70.0			1									-											Fixed
-80.0																							TIACUP
Cen #Re	ter : s Bl	2.48 N 1	835 .0 M	0 GHz ⁄IHz				#\	vвw	·				~		#Swe	ер	Spa 500 m	ın 1 1s ('	00.0 1001	MHz pts)		Off
MKR 1	MODE N	TRC 1	SCL			× 2.4	67 2	2 GHz	2	6	54 dE	3m	FUN	CTION	FUI	NCTION W	IDTH	FU	NCTIO	IN VALU	E		011
2	N N	1	f f			2.4 2.4	83 5 85 2	5 GHz 2 GHz	2	-42 -41	. <u>49 dE</u> .41 dE	3m 3m									_		Businestiant
5																					_		Properties
7 8 9															2						_		More
10 11 12																							1 of 2
MSG			1						1						1	ST	TATUS						

Peak Detector of conducted Band Edge Delta

Average Detector of conducted Band Edge Delta

💴 Agilent S	Spectrum Analyzei	r - Swept SA						
l)XI	50 Ω		AC SENSE:	INT Avg Type	ALIGNAUTO e: Log-Pwr	11:16:39 Al TRAC	M Sep 10, 2009 E 1 2 3 4 5 6	Marker
10 dB/div	v Ref 10.00	Input: RF PNO: Fa IFGain:L	ist 🖵 Trig: Free Ru ow #Atten: 30 dE	in 3		DE		Select Marker
0.00								Normal
-30.0)	2					Delta
-60.0 -70.0 -80.0								Fixed⊳
Center #Res Bi	2.48350 GHz W 1.0 MHz	: * 2.457.5.CH	VBW	FUNCTION FU	Sweep	Span 1 7.80 s (00.0 MHz 1001 pts) N VALUE	Off
2 N 3 4 5 6 7		2.483 5 GH	z -55.01 dBm					Properties▶
8 9 10 11 12								More 1 of 2
MSG					STATUS			

Product	:	Notebook
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2412MHz)

Marker Delta Method (Low band)

Fundamental Filed Strength

Antenna Pole	Frequency [MHz]	Correction Factor [dB/m]	Reading Level [dBuV]	Emission Level [dBuV/m]	Detector
Horizontal	2412	31.455	70.490	101.944	Peak
Horizontal	2412	31.455	59.430	90.884	Average
Vertical	2412	31.455	67.660	99.114	Peak
Vertical	2412	31.455	55.940	87.394	Average

Note: 1:Spectrum Analyzer setting:

Peak detector: RBW=1MHz, VBW=1MHz

Average detector: RBW=1MHz, VBW=10Hz

Band Edge Test Data

Antenna Pole	Test Frequency (MHz)	Fundamental (dBuV/m)	Δ (dB)	Band Edge Field Strength (dBuV/m)	Detector
Horizontal	2390.0	101.944	41.88	60.064	Peak
Horizontal	2390.0	90.884	50.7	40.184	Average
Vertical	2390.0	99.114	41.88	57.234	Peak
Vertical	2390.0	87.394	50.7	36.694	Average

Note:

1. The Marker Delta Method is refer to FCC DA 00-705.

2. The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge measurements per the Marker-Delta Method with the following formula:

Band Edge field Strength = $F - \Delta$

F = Fundamental field Strength (Peak or Average)

 Δ = Conducted Band Edge Delta (Peak or Average)

3. AVG Measurement=Peak Measurement + Duty Cycle.

4. If Duty Cycle is smaller than -20dB,based on FCC part15 the duty cycle correction factor is -20dB for calculating average emission.

D Agi	lent S	ipect	rum	Analyzer	- Swep	ot SA						392		Ö			
LXI			50 \$	2				A	c s	ENSE:INT	Av	а Тур-	ALIGNAUTO e: Log-Pwr	11:17:30/ TRA	AM Sep 10, 2009 CE 1 2 3 4 5 6	Marke	r
10 dl	3/div		Ref	10.00	nput:	rf p IF	NO: Fast Gain:Lov	t 😱	#Atten: 30 dB					t		Select Ma	arker 3
Log 0.00 -10.0 -20.0											1		¥1			N	ormal
-30.0 -40.0 -50.0	-radient	en des	un n	ารสาราราช	att the street	Array Page Partice	annahaat	ynderder		2	- And				Thut may a share		Delta
-60.0 -70.0 -80.0																F	ˈixed⊳
Cen #Re	ter 2 s Bl	2.39 N 1	900 .0 M	0 GHz /IHz		×	#V	BW	 Y		FUNCTION	FL	#Sweep	Span 7 500 ms	100.0 MHz (1001 pts) ^{ON VALUE}		Off
2 3 4 5 6 7	N	1	f			2.390	0 GHz		-35.95 (iBm						Prope	erties►
9 9 10 11 12																	More 1 of 2
MSG													STATUS	5			

Peak Detector of conducted Band Edge Delta

	gilent S	Spect	rum i	Analyzer -	Swept SA	8								
LXI			50 G	2			AC	SEN	ISE:INT	Avg	ALIGN AUTO Fype: Log-Pwr	11:17:54) TRA	AM Sep 10, 2009 CE 1 2 3 4 5 6	Marker
10 0	B/div	,	Ref	^{Ir} 10.00	nput: RF dBm	PNO: Fast IFGain:Low		#Atten: 30	dB			t	PET P N N N N N	Select Marker 3
-10.0 -20.1										ſ	1			Normal
-30.1 -40.1 -50.1)))								2					Delta
-60.1 -70.1 -80.1														Fixed⊳
Cei #Re	nter es Bi	2.39 W 1	900 .0 N	0 GHz /IHz	×	#VI	BW ·		E	NCTION	Swee	Span ′ p 7.80 s	100.0 MHz (1001 pts)	Off
1 2 3 4 5 6 7	N	1	f		2.4 2.3	09 1 GHz 90 0 GHz		-3.12 dE -53.82 dB	Sm Sm					Properties▶
7 9 10 11 12														More 1 of 2
MSG											STATU	IS		

Average Detector of conducted Band Edge Delta

Product	:	Notebook
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2462MHz)

Marker Delta Method (Low band)

Fundamental Filed Strength

Antenna	Frequency	Correction Factor	Deading Level [dDuV]	Emission Level	Detector
Pole	[MHz]	[dB/m]	Keaunig Level [ubuv]	[dBuV/m]	
Horizontal	2462	31.650	74.150	105.800	Peak
Horizontal	2462	31.650	63.040	94.690	Average
Vertical	2462	31.650	74.140	105.790	Peak
Vertical	2462	31.650	63.020	94.670	Average

Note: 1:Spectrum Analyzer setting:

Peak detector: RBW=1MHz, VBW=1MHz

Average detector: RBW=1MHz, VBW=10Hz

Band Edge Test Data

Antenna Pole	Test Frequency (MHz)	Fundamental (dBuV/m)	Δ (dB)	Band Edge Field Strength (dBuV/m)	Detector
Horizontal	2483.5	105.800	44.88	60.92	Peak
Horizontal	2483.5	94.690	50.27	44.42	Average
Vertical	2483.5	105.790	44.88	60.9	Peak
Vertical	2483.5	94.670	50.27	44.40	Average

- 1. The Marker Delta Method is refer to FCC DA 00-705.
- 2. The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge measurements per the Marker-Delta Method with the following formula:
 - Band Edge field Strength = $F \Delta$
 - F = Fundamental field Strength (Peak or Average)
 - Δ = Conducted Band Edge Delta (Peak or Average)
- 3. AVG Measurement=Peak Measurement + Duty Cycle.
- 4. If Duty Cycle is smaller than -20dB,based on FCC part15 the duty cycle correction factor is -20dB for calculating average emission.

🗊 Agiler	nt Spec	trum A	nalyzer -	Swept S	A			- 645	100		2.95						
LXI		50 Ω					AC	SE	NSE:INT		Avg Ty	Al (pe: L	.ign auto .og-Pwr	11:18:22 TF	2 AM Sep 10, 2009 ACE 1 2 3 4 5	5	Marker
10 dB/	div	Ref	In 10.00 (dBm	PNC IFGa): Fast ○ in:Low	₽ #A	ig: Free Atten: 30	e Run 0 dB								Select Marker
0.00 -10.0 -20.0						7											Normal
-30.0 -40.0 🚧 -50.0	and half miles	m	mm					had	2 Internation	millio	mellenver	mala	the manual	wontreaterer	and a stand and a strong		Delta
-60.0 -70.0 -80.0																	Fixed⊳
Cente #Res	er 2.4 BW 1	8350 1.0 N) GHz 1Hz	×	450.7	#VB	w	Y 764 d	Davi	FUNCT	ION	#: FUNC	Sweep	Span 500 ms	100.0 MH2 (1001 pts)		Off
2 N 3 4 5 6		f		2	.483 5	GHz	3	7.24 di	Bm								Properties►
8 9 10 11 12																	More 1 of 2
MSG													STATUS				

Peak Detector of conducted Band Edge Delta

Average Detector of conducted Band Edge Delta

🍺 Agilent Spec	trum Analyzer - Swept S	A						
w Marker 2	50 Ω 2.48350000000	A OO GHz		Avg Type:	LIGNAUTO Log-Pwr	11:18:37 AF	4 Sep 10, 2009 E 1 2 3 4 5 6	Marker
10 dB/div	Input: RF Ref 10.00 dBm	PNO: Fast 😱 IFGain:Low	#Atten: 30 dB		Mk	r2 2.483 -51.7	5 GHz 5 dBm	Select Marker
-10.0								Norma
-30.0			2					Delta
-60.0 -70.0 -80.0								Fixed⊳
Center 2.4 #Res BW 7	8350 GHz 1.0 MHz	#VBW		UNCTION	Sweep	Span 1 7.80 s ('	00.0 MHz 1001 pts) NVALUE	Off
2 N 1 3 4 5 6 7		2.483 5 GHz	-1.48 dBm -51.75 dBm					Properties►
8 9 10 11 12								More 1 of 2
MSG					STATUS			

Product	1	Notebook
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW) (2422MHz)

Marker Delta Method (Low band)

Fundamental Filed Strength

Antenna Pole	Frequency [MHz]	Correction Factor [dB/m]	Reading Level [dBuV]	Emission Level [dBuV/m]	Detector
Horizontal	2422	31.495	68.420	99.915	Peak
Horizontal	2422	31.495	57.700	89.195	Average
Vertical	2422	31.495	65.940	97.435	Peak
Vertical	2422	31.495	54.880	86.375	Average

Note: 1:Spectrum Analyzer setting:

Peak detector: RBW=1MHz, VBW=1MHz

Average detector: RBW=1MHz, VBW=10Hz

Band Edge Test Data

Antenna Pole	Test Frequency (MHz)	Fundamental (dBuV/m)	Δ (dB)	Band Edge Field Strength (dBuV/m)	Detector
Horizontal	2388.8	99.915	33.68	66.235	Peak
Horizontal	2390.0	89.195	43.27	45.925	Average
Vertical	2388.8	97.435	33.68	63.755	Peak
Vertical	2390.0	86.375	43.27	43.105	Average

- 1. The Marker Delta Method is refer to FCC DA 00-705.
- 2. The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge measurements per the Marker-Delta Method with the following formula:
 - Band Edge field Strength = F Δ
 - F = Fundamental field Strength (Peak or Average)
 - Δ = Conducted Band Edge Delta (Peak or Average)
- 3. AVG Measurement=Peak Measurement + Duty Cycle.
- 4. If Duty Cycle is smaller than -20dB,based on FCC part15 the duty cycle correction factor is -20dB for calculating average emission.

D Agil	ent Sj	pectru	n Analyzer - !	Swept SA									
₩ Mark	ker	50 3 2.	າຊ 3888000	00000 G	SHz	AC SE	ENSE:INT	Avg	ALIGN Type: Log-	AUTO -Pwr	11:19:47 A TRAC	M Sep 10, 2009	Marker
			Inj	put: RF P IF	NO: Fast ⊂ Gain:Low	Atten: 3	e Run 0 dB				DI		Select Marker
10 dE	Мkr3 2.388 8 GHz 10 dB/div Ref 10.00 dBm -28.92 dBm										3		
Log 0.00										¥	1	· · · · · · · · · · · · · · · · · · ·	
-10.0													Normal
-20.0							32~~	\sim				·· ·· ··	
-30.0 -40.0					- Antono	man	Word						Delta
-50.0	hallo	nounely	antishingunagny	- Herry Marine									
-60.0							1						
-70.0 -80.0													Fixed⊳
		200	00.04-								Onon 1		
#Res	s BV	V 1.0	MHz		#VB	w			#Sw	eep :	500 ms (1001 pts)	Off
MKR M	(ODE	TRC SI	1	X 2 419	7.647	Y 4 76 c	Bm	FUNCTION	FUNCTION	WIDTH	FUNCTIO	IN VALUE	0
2	N	1 f		2.390	0 GHz	-32.17 d	Bm						
4													Properties►
6 7									5				
8													More
10													1 of 2
MSG			1							STATUS			

Peak Detector of conducted Band Edge Delta

Average Detector of conducted Band Edge Delta

🎾 Agilent Sp	ectrum Analyzer - Swi	ept SA							
Marker 2	50 Ω 2.39000000	0000 GHz	AC SENSE:IN	T Avg Typ	ALIGNAUTO e: Log-Pwr	11:20:03 A TRAC	M Sep 10, 2009 E 1 2 3 4 5 6	Marker	
Input: RF PNO: Fast Trig: Free Run IFGain:Low #Atten: 30 dB Mkr2 2.390 0 GHz 10 dB/div Ref 10.00 dBm -48.09 dBm									
-10.0						~		Normal	
-30.0 -40.0 -50.0			2-					Delta	
-60.0 -70.0 -80.0								Fixed⊳	
Center 2. #Res BW	Center 2.39000 GHz Span 100.0 MHz #Res BW 1.0 MHz #VBW Sweep 7.80 s (1001 pts) MKR_MODE_TRC_SCL X Y FUNCTION WIDTH FUNCTION WIDTH								
2 N 3 4 5 6		2.390 0 GHz	-48.09 dBm					Properties▶	
7 8 9 10 11 12								More 1 of 2	
MSG					STATUS				