<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><form><text><text><text></text></text></text></form></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	Neutron Engineering Inc	
This report concerns (check one): ● Original Grant Class II Change Issued Date :: Feb. 14, 2014 Project No. :: 1312C200 Equipment :: Wireless Repeater Model Name :: Wireless Repeater Address : 201 North Service Road Melville, NY . : : . Date of Receipt: Dec. 23, 2013 ~ Feb. 13, 2014 . . Testing Engineer : . . (David Mao) . . . Technical Manager : . . (Leo Hung) . . . Authorized Signatory <t< th=""><th>FCC Radio Test Report</th><th></th></t<>	FCC Radio Test Report	
Issued Date :: Feb. 14, 2014 Project No. :: 1312C200 Equipment :: Wireless Repeater Model Name :: WL580E Applicant :: Aztech Manufacturing Co., Inc. Address :: 201 North Service Road Melville, NY HT47 Tested by: Neutron Engineering Inc. EMC Laboratory Date of Receipt: Dec. 23, 2013 ~ Feb. 13, 2014 Testing Engineer :: David Mao (David Mao) Technical Manager :: David Mao (Leo Hung) Authorized Signatory :: Dec. 20 (Steven Lu) No.3, Jinshagang 1st Road, ShiXia, Dalang Town, Dong Guan, China. TeL: 0769-8318-3000	FCC ID: I38WL580E	
Project No. : 1312C200 Equipment : Wireless Repeater Model Name : WL580E Applicant : Aztech Manufacturing Co., Inc. Address : 201 North Service Road Melville, NY 11747 Tested by: Neutron Engineering Inc. EMC Laboratory Date of Receipt: Dec. 23, 2013 Date of Test: Dec. 23, 2013 ~ Feb. 13, 2014 Testing Engineer : David Mao (David Mao) Technical Manager : David Mao (David Mao) Muthorized Signatory : Dec. Seam (Leo Hung) Authorized Signatory : Dec. No.3,Jinshagang 1st Road, ShiXia, Dalang Town, Dong Guan, China. TEL: 0769-8318-3000	This report concerns (check one): Criginal Grant Class II Chang	ge
Date of Receipt: Dec. 23, 2013 Date of Test: Dec. 23, 2013 ~ Feb. 13, 2014 Testing Engineer : David Mao (David Mao) Technical Manager : Decembre (Leo Hung) Authorized Signatory : Decembre (Steven Lu) Neutron Engineering Inc. No.3, Jinshagang 1st Road, ShiXia, Dalang Town, Dong Guan, China. TEL: 0769-8318-3000	Project No.: 1312C200Equipment: Wireless RepeaterModel Name: WL580EApplicant: Aztech Manufacturing Co., Inc.Address: 201 North Service Road Melville, NY	
Technical Manager (David Mao) (Leo Hung) (Leo Hung) Authorized Signatory Second (Steven Lu) (Steven Lu) No.3, Jinshagang 1st Road, ShiXia, Dalang Town, Dong Guan, China. TEL: 0769-8318-3000	Date of Receipt: Dec. 23, 2013	
(Leo Hung) Authorized Signatory : Seven Lu) (Steven Lu) No.3, Jinshagang 1st Road, ShiXia, Dalang Town, Dong Guan, China. TEL: 0769-8318-3000		
(Steven Lu) Neutron Engineering Inc. No.3, Jinshagang 1st Road, ShiXia, Dalang Town, Dong Guan, China. TEL: 0769-8318-3000		
No.3,Jinshagang 1st Road, ShiXia, Dalang Town, Dong Guan, China. TEL: 0769-8318-3000		
	No.3,Jinshagang 1st Road, ShiXia, Dalang Town, Dong Guan, China. TEL: 0769-8318-3000	

Declaration

Neutron represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with the standards traceable to National Measurement Laboratory (**NML**) of **R.O.C**, or National Institute of Standards and Technology (**NIST**) of **U.S.A**.

Neutron's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **Neutron** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **Neutron** issued reports.

Neutron's reports must not be used by the client to claim product endorsement by the authorities or any agency of the Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and **Neutron-self**, extracts from the test report shall not be reproduced except in full with **Neutron**'s authorized written approval.

Neutron's laboratory quality assurance procedures are in compliance with the **ISO Guide 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Table of Contents Pa	age
1. CERTIFICATION	6
2 . SUMMARY OF TEST RESULTS	7
2.1 TEST FACILITY	8
2.2 MEASUREMENT UNCERTAINTY	8
3 . GENERAL INFORMATION	9
3.1 GENERAL DESCRIPTION OF EUT	9
3.2 DESCRIPTION OF TEST MODES	11
3.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING	12
3.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	0 13
3.5 DESCRIPTION OF SUPPORT UNITS	14
4. EMC EMISSION TEST	15
4.1 CONDUCTED EMISSION MEASUREMENT	15
4.1.1 POWER LINE CONDUCTED EMISSION LIMITS	15
4.1.2 TEST PROCEDURE 4.1.3 DEVIATION FROM TEST STANDARD	15 15
4.1.4 TEST SETUP	16
4.1.5 EUT OPERATING CONDITIONS	16
4.1.6 EUT TEST CONDITIONS	16
4.1.7 TEST RESULTS	16
4.2 RADIATED EMISSION MEASUREMENT	19
4.2.1 RADIATED EMISSION LIMITS	19 00
4.2.2 TEST PROCEDURE 4.2.3 DEVIATION FROM TEST STANDARD	20 20
4.2.4 TEST SETUP	20
4.2.5 EUT OPERATING CONDITIONS	21
4.2.6 EUT TEST CONDITIONS	21
4.2.7 TEST RESULTS (9K~ 30MHZ)	22
4.2.8 TEST RESULTS (BETWEEN 30 – 1000 MHZ)	23
4.2.9 TEST RESULTS (ABOVE 1000 MHZ)	30 50
5. BANDWIDTH TEST	50
5.1 APPLIED PROCEDURES	50
5.1.1 TEST PROCEDURE 5.1.2 DEVIATION FROM STANDARD	50 50
5.1.3 TEST SETUP	50 50
5.1.4 EUT OPERATION CONDITIONS	50 50
5.1.5 EUT TEST CONDITIONS	50
5.1.6 TEST RESULTS	51

Neutron Engineering Inc.	
Table of Contents	Page
6 . MAXIMUM OUTPUT POWER TEST	61
6.1 APPLIED PROCEDURES / LIMIT	61
6.1.1 TEST PROCEDURE	61
6.1.2 DEVIATION FROM STANDARD	61
6.1.3 TEST SETUP	61
6.1.4 EUT OPERATION CONDITIONS	61
6.1.5 EUT TEST CONDITIONS	61
6.1.6 TEST RESULTS	62
7 . ANTENNA CONDUCTED SPURIOUS EMISSION	65
7.1 APPLIED PROCEDURES / LIMIT	65
7.1.1 TEST PROCEDURE	65
7.1.2 DEVIATION FROM STANDARD	65
7.1.3 TEST SETUP	65
7.1.4 EUT OPERATION CONDITIONS	65
7.1.5 EUT TEST CONDITIONS	65
7.1.6 TEST RESULTS	66
8 . POWER SPECTRAL DENSITY TEST	89
8.1 APPLIED PROCEDURES / LIMIT	89
8.1.1 TEST PROCEDURE	89
8.1.2 DEVIATION FROM STANDARD	89
8.1.3 TEST SETUP	89
8.1.4 EUT OPERATION CONDITIONS	89
8.1.5 EUT TEST CONDITIONS	89
8.1.6 TEST RESULTS	90
9 . MEASUREMENT INSTRUMENTS LIST	102
10 . EUT TEST PHOTO	104
10.EUI TEST PHOTO	104

REPORT ISSUED HISTORY

Issued No.	Description	Issued Date
NEI-FCCP-3-1312C200	Original Issue.	Feb. 14, 2014

1. CERTIFICATION

Equipment	:	Wireless Repeater
Brand Name	:	Aztech
Model Name	:	WL580E
Applicant	:	AZTECH TECHNOLOGIES PTE LTD.
Manufacture	:	Aztech Technologies Pte Ltd
Address	:	31, Ubi Road 1, #09-01, Singapore 408694
Factory	:	Aztech Communication Device (DG) LTD
Address	:	JiuJiangshui, Chang Ping town, Dongguan, Guang Dong
Date of Test	:	Dec. 23, 2013 ~ Feb. 13, 2014
Test Item	:	ENGINEERING SAMPLE
Standard(s)	:	FCC Part15, Subpart C(15.247) / ANSI C63.4-2009

The above equipment has been tested and found compliance with the requirement of the relative standards by Neutron Engineering Inc. EMC Laboratory.

The test data, data evaluation, and equipment configuration contained in our test report (Ref No. NEI-FCCP-3-1312C200) were obtained utilizing the test procedures, test instruments, test sites that has been accredited by the Authority of TAF according to the ISO-17025 quality assessment standard and technical standard(s).

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

Applied Standard(s): FCC Part15 (15.247) , Subpart C

Standard(s) Section	Teat Item	lu deve e et	Dereerle
FCC	Test Item	Judgment	Remark
15.207	Conducted Emission	PASS	
15.247(d)	Antenna conducted Spurious Emission	PASS	
15.247(a)(2)	6dB Bandwidth	PASS	
15.247(b)(3)	Peak Output Power	PASS	
15.247(e)	Power Spectral Density	PASS	
15.203	Antenna Requirement	PASS	
15.209/15.205	Transmitter Radiated Emissions	PASS	

NOTE:

(1)" N/A" denotes test is not applicable in this test report.

(2) The test follows FCC KDB Publication No. 558074 D01 DTS Meas Guidance v03r01 (Measurement Guidelines of DTS)

2.1 TEST FACILITY

The test facilities used to collect the test data in this report is **DG-C02/DG-CB03** at the location of No.3, Jinshagang 1st Road, ShiXia, Dalang Town, Dong Guan, China.523792 Neutron's test firm number for FCC: 319330

2.2 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

The reported uncertainty of measurement y \pm U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of $\,$ k=2 , providing a level of confidence of approximately 95 % $^\circ$

A. Conducted Measurement :

Test Site	Method	Measurement Frequency Range	U , (dB)	NOTE
DG-C02	CISPR	150 KHz ~ 30MHz	1.94	

B. Radiated Measurement :

Test Site	Method	Measurement Frequency Range	Ant. H / V	U,(dB)	NOTE
		9KHz~30MHz	V	3.79	
		9KHz~30MHz	Н	3.57	
		30MHz ~ 200MHz	V	3.82	
DG-CB03 CISPR		30MHz ~ 200MHz	Н	3.60	
		200MHz ~ 1,000MHz	V	3.86	
	200MHz ~ 1,000MHz	Н	3.94		
		1GHz~18GHz	V	3.12	
		1GHz~18GHz	Н	3.68	
		18GHz~40GHz	V	4.15	
		18GHz~40GHz	Н	4.14	

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Equipment	Wireless Repeater					
Brand Name	Aztech	Aztech				
Model Name	WL580E					
Model Difference	N/A					
	Operation Frequency	5745~5825 MHz				
	Modulation Technology	802.11a/n:OFDM				
Product Description	Bit Rate of Transmitter	300Mbps				
	Output Power (Max.)	802.11a: 25.65dBm 802.11n(20MHz): 25.76 dBm 802.11n(40MHz): 25.31 dBm				
Power Source	AC Mains					
Power Rating	100VAC-240VAC 50-60Hz 0.12A					
Connecting I/O Port(s)	Please refer to the User's Manual					

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2.

802.11a / 802.11n 20M					
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
149	5745	153	5765	157	5785
161	5805	165	5825		

802.11n 40M					
Channel Frequency (MHz) Channel Frequency (MHz)					
151	5755	159	5795		

3. Table for Filed Antenna

Ant.	Manufacturer	Model Name	Antenna Type	Connector	Gain (dBi)	Note
1	N/A	N/A	Internal	N/A	2	TX/RX
2	N/A	N/A	Internal	N/A	2	TX/RX

Note:

(1) The EUT incorporates a MIMO function. Physically, the EUT provides two completed two transmitters and two receivers (2T2R), all transmit signals are completely uncorrelated, then, **Direction gain = G**_{ANT}, that is Directional gain=2.

4.

Operating Mode TX Mode	1TX	2ТХ
802.11a	V (ANT 1 or ANT 2)	-
802.11n(20MHz)	-	V (ANT 1 + ANT 2)
802.11n(40MHz)	-	V (ANT 1 + ANT 2)

3.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	TX A MODE CHANNEL 149/157/165
Mode 2	TX N-20MHZ MODE CHANNEL 149/157/165
Mode 3	TX N-40MHZ MODE CHANNEL 151/159
Mode 4	TX MODE

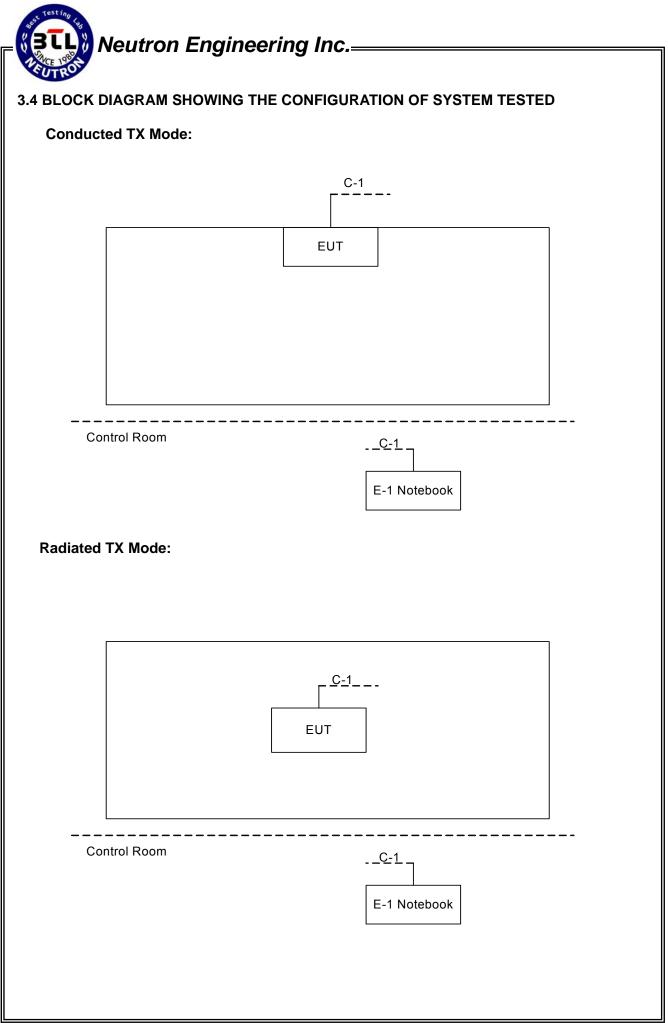
The EUT system operated these modes were found to be the worst case during the pre-scanning test as following:

For Conducted Test		
Final Test Mode Description		
Mode 4 TX MODE		

For Radiated Test			
Final Test Mode	Description		
Mode 1	TX A MODE CHANNEL 149/157/165		
Mode 2	TX N-20MHZ MODE CHANNEL 149/157/165		
Mode 3	TX N-40MHZ MODE CHANNEL 151/159		

Note:

(1) For radiated below 1G test, the 802.11a is found to be the worst case and recorded.



3.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING

During testing, channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of WLAN

Test software version	QA		
Frequency	5745 MHz	5785 MHz	5825 MHz
IEEE 802.11a	10	13	17
IEEE 802.11 n (20MHz)	18	1C	20

Test software version	QA		
Frequency	5755 MHz	5795 MHz	
IEEE 802.11 n (40MHz)	17	1B	

3.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	FCC ID	Series No.	Note
E-1	Notebook	HP	HP NB 331	DOC	N/A	

Item	Shielded Type	Ferrite Core	Length	Note
C-1	NO	NO	10m	RJ45 Cable

4. EMC EMISSION TEST

4.1 CONDUCTED EMISSION MEASUREMENT

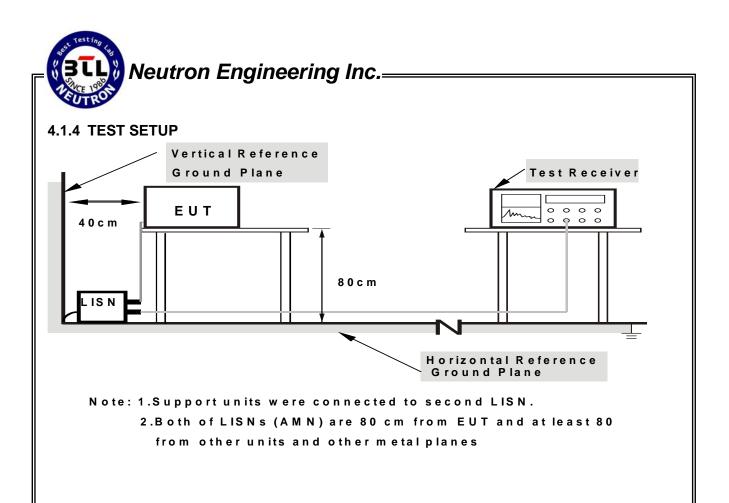
4.1.1 POWER LINE CONDUCTED EMISSION Limits (Frequency Range 150KHz-30MHz)

Frequency (MHz)	Class A (dBuV)		Class B (dBuV)		Standard	
	Quasi-peak	Average	Quasi-peak	Average	Stanuaru	
0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *	CISPR	
0.50 -5.0	73.00	60.00	56.00	46.00	CISPR	
5.0 -30.0	73.00	60.00	60.00	50.00	CISPR	
0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *	FCC	
0.50 -5.0	73.00	60.00	56.00	46.00	FCC	
5.0 -30.0	73.00	60.00	60.00	50.00	FCC	

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver


Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

4.1.2 TEST PROCEDURE

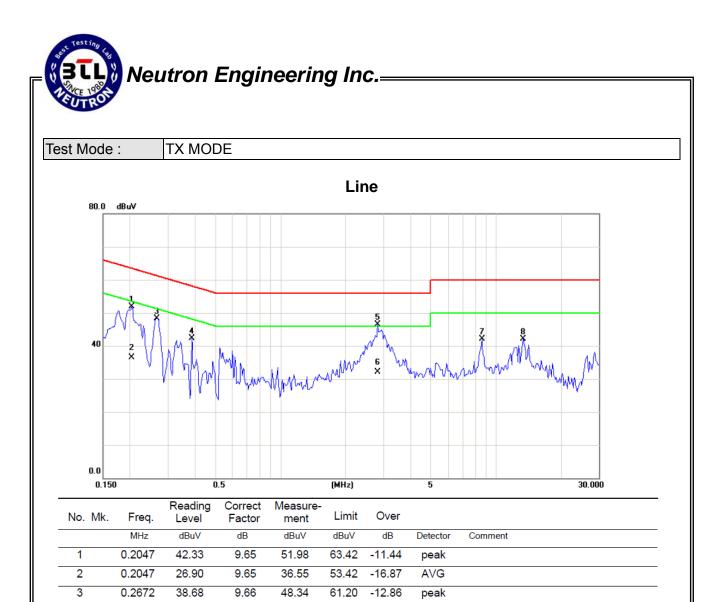
- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

4.1.3 DEVIATION FROM TEST STANDARD

No deviation

4.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.


4.1.6 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: AC 120V/60Hz

4.1.7 TEST RESULTS

Remark:

- (1) All readings are QP Mode value unless otherwise stated AVG in column of ^ℂNote_J. If the QP Mode Measured value compliance with the QP Limits and lower than AVG Limits, the EUT shall be deemed to meet both QP & AVG Limits and then only QP Mode was measured, but AVG Mode didn't perform ∘ In this case, a "*" marked in AVG Mode column of Interference Voltage Measured ∘
- (2) Measuring frequency range from 150KHz to 30MHz \circ

0.3883

2.8258

2.8258

8.5938

13.3594

4

5

7

8

* 6

32.58

36.55

22.30

31.99

31.86

42.26

46.41

32.16

42.01

42.11

9.68

9.86

9.86

10.02

10.25

58.10

56.00

46.00

60.00

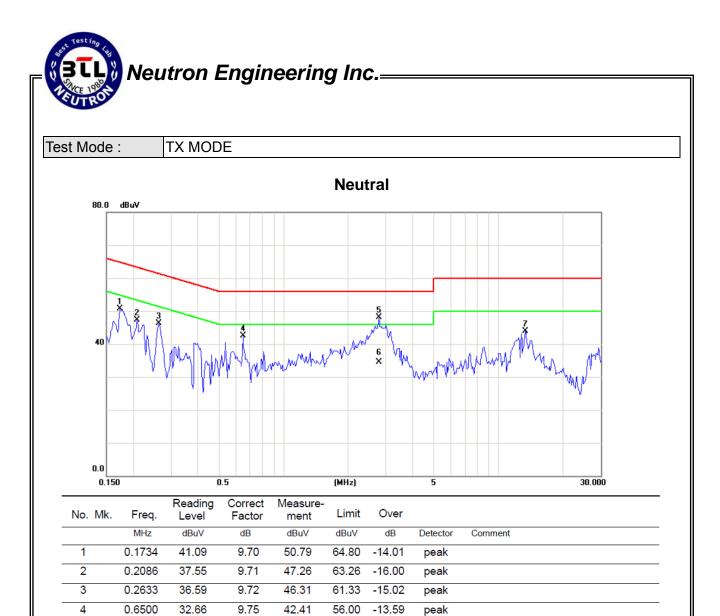
-15.84

-9.59

-13.84

-17.99

60.00 -17.89


peak

peak

AVG

peak

peak

48.09

34.48

43.92

56.00 -7.91

46.00 -11.52

60.00 -16.08

peak

AVG

peak

9.88

9.88

10.43

5

6 7 *

2.7828

2.7828

13.3594

38.21

24.60

33.49

4.2 RADIATED EMISSION MEASUREMENT

4.2.1 RADIATED EMISSION LIMITS (Frequency Range 9KHz-1000MHz)

20dB in any 100 KHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

Frequency (MHz)	(dBuV/m) (at 3 meters)		
Frequency (MITZ)	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

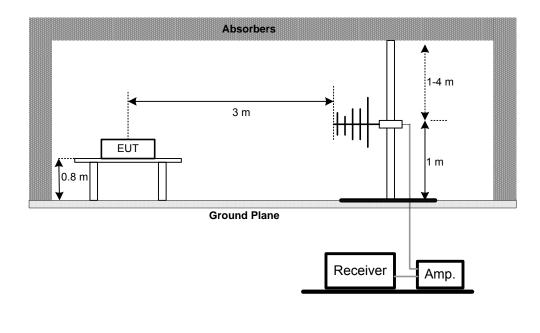
(2) The tighter limit applies at the band edges.

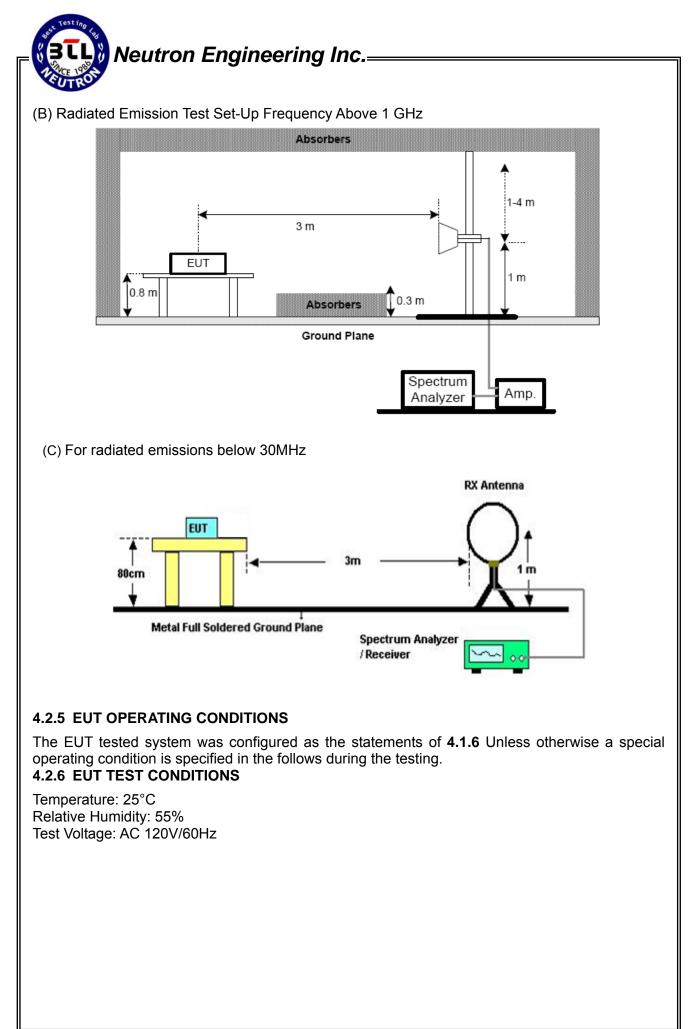
(3) Emission level (dBuV/m)=20log Emission level (uV/m).

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	
(Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector
Start ~ Stop Frequency	90KHz~110KHz for QP detector
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector
Start ~ Stop Frequency	490KHz~30MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP detector

4.2.2 TEST PROCEDURE


- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item -EUT Test Photos.


4.2.3 DEVIATION FROM TEST STANDARD

No deviation

4.2.4 TEST SETUP

(A) Radiated Emission Test Set-Up Frequency Below 1 GHz

4.2.7 TEST RESULTS (9K~ 30MHZ)

Test Mode	: T	X Mode 5745	MHz				
Freq. (MHz)	Ant. 0°/90°	Reading(RA) (dBuV)	Corr.Factor(CF) (dB)	Measured(FS) (dBuV/m)	Limits(QP) (dBuV/m)	Margin (dB)	Note
0.0088	0790 0°	25.11	24.30	49.41	128.71	-79.30	AV
0.0088	0°	29.24	24.30	53.54	148.71	-95.17	PK
0.0263	0°	21.52	23.90	45.42	119.20	-73.78	AV
0.0263	0°	24.46	23.90	48.36	139.20	-90.84	PK
0.0382	0°	21.44	23.14	44.58	115.95	-71.37	AV
0.0382	0°	24.41	23.14	47.55	135.95	-88.40	PK
0.0671	0°	18.14	22.06	40.20	111.07	-70.87	AV
0.0671	0°	23.45	22.06	45.51	131.07	-85.56	PK
0.2686	0°	20.28	20.36	40.64	99.02	-58.39	AVG
0.2686	0°	22.24	20.36	42.60	119.02	-76.43	PK
1.4762	0°	27.76	19.55	47.31	64.22	-16.91	QP
Freq.	Ant.	Reading(RA)	Corr.Factor(CF)	Measured(FS)	Limits(QP)	Margin	Note
(MHz)	0°/90°	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	NOLE
0.0088	90°	25.11	24.30	49.41	128.71	-79.30	AVG
0.0088	90°	29.24	24.30	53.54	148.71	-95.17	PK
0.0263	90°	21.52	23.90	45.42	119.20	-73.78	AVG
0.0263	90°	24.46	23.90	48.36	139.20	-90.84	PK
0.0382	90°	21.44	23.14	44.58	115.95	-71.37	AVG
0.0382	90°	24.41	23.14	47.55	135.95	-88.40	PK
0.0671	90°	18.14	22.06	40.20	111.07	-70.87	AVG
0.0671	90°	23.45	22.06	45.51	131.07	-85.56	PK
0.2686	90°	20.28	20.36	40.64	99.02	-58.39	AVG
0.2686	90°	22.24	20.36	42.60	119.02	-76.43	PK

Remark:

1.4762

90°

27.76

(1) The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

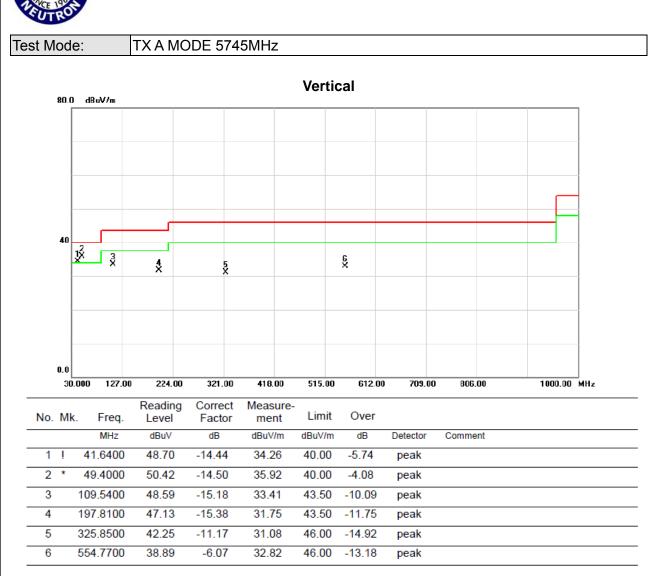
47.31

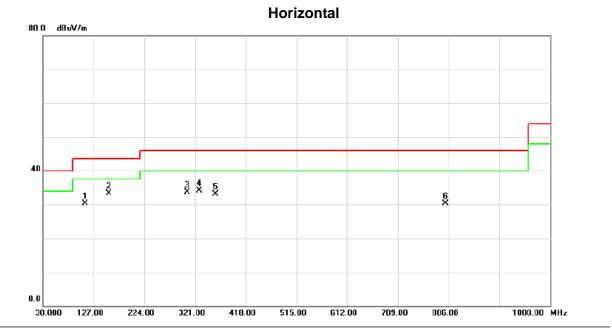
64.22

-16.91

QP

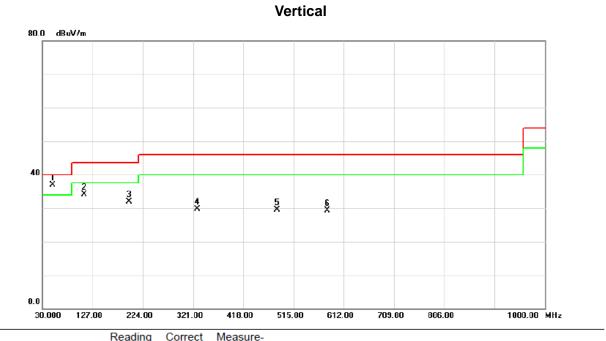
- (2) Distance extrapolation factor = 40 log (specific distance / test distance) (dB);
- (3) Limit line = specific limits (dBuV) + distance extrapolation factor.


19.55

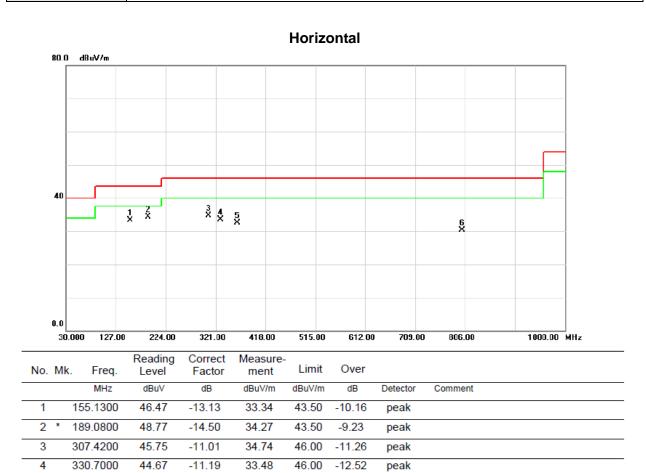

4.2.8 TEST RESULTS (BETWEEN 30 - 1000 MHZ)

Remark:

- (1) Reading in which marked as QP or Peak means measurements by using are Quasi-Peak Mode or Peak Mode with Detector BW=120KHz; SPA setting in RBW=120KHz, VBW =120KHz, Swp. Time = 0.3 sec./MHz.
- (2) All readings are Peak unless otherwise stated QP in column of 『Note』. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (3) Measuring frequency range from 30MHz to 1000MHz.
- (4) If the peak scan value lower limit more than 20dB, then this signal data does not show in table.



Neutron Engineering Inc. Test Mode: TX A MODE 5745MHz


No	M	k.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		11	10.5100	45.31	-15.07	30.24	43.50	-13.26	peak	
2	*	15	56.1000	46.44	-13.06	33.38	43.50	-10.12	peak	
3		30	06.4500	44.68	-11.00	33.68	46.00	-12.32	peak	
4		32	28.7600	45.27	-11.18	34.09	46.00	-11.91	peak	
5		36	60.7700	44.10	-11.01	33.09	46.00	-12.91	peak	
6		80	00.1800	31.90	-1.62	30.28	46.00	-15.72	peak	

Test Mode: TX A MODE 5785MHz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	*	50.3700	51.49	-14.53	36.96	40.00	-3.04	peak	
2		110.5100	49.15	-15.07	34.08	43.50	-9.42	peak	
3		196.8400	47.12	-15.28	31.84	43.50	-11.66	peak	
4	:	329.7300	40.88	-11.20	29.68	46.00	-16.32	peak	
5		482.9900	39.45	-9.91	29.54	46.00	-16.46	peak	
6		579.9900	36.53	-7.26	29.27	46.00	-16.73	peak	

Neutron Engineering Inc. Test Mode: TX A MODE 5785MHz

5

6

362.7100

800.1800

43.53

32.00

-10.96

-1.62

32.57

30.38

46.00

-13.43

46.00 -15.62

peak

peak

Test Mode: TX A MODE 5825MHz Vertical 80.0 dBuV/m 40 × ź 3 3 **4** × 6 X <u>5</u> 0.0 30.000 127.00 224.00 321.00 418.00 515.00 612.00 709.00 806.00 1000.00 MHz Reading Correct Measure-No. Mk. Limit Over Freq. Factor Level ment MHz dBuV dB dBuV/m dBuV/m dB Detector Comment

1 *

2

3

4

5

6

50.3700

111.4800

197.8100

327.7900

482.9900

628.4900

51.37

49.36

48.24

41.98

36.63

34.65

-14.53

-14.95

-15.38

-11.18

-9.91

-6.87

36.84

34.41

32.86

30.80

26.72

27.78

40.00

43.50

43.50

46.00

46.00

46.00

-3.16

-9.09

-10.64

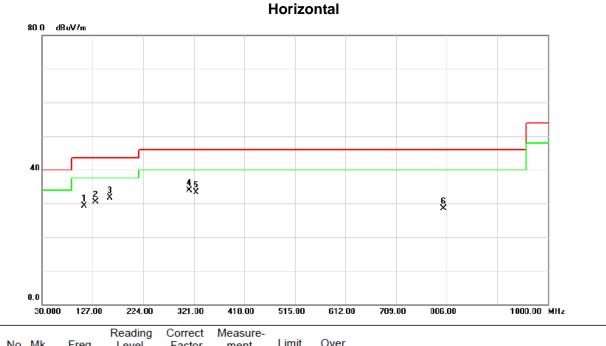
-15.20

-19.28

-18.22

peak

peak


peak

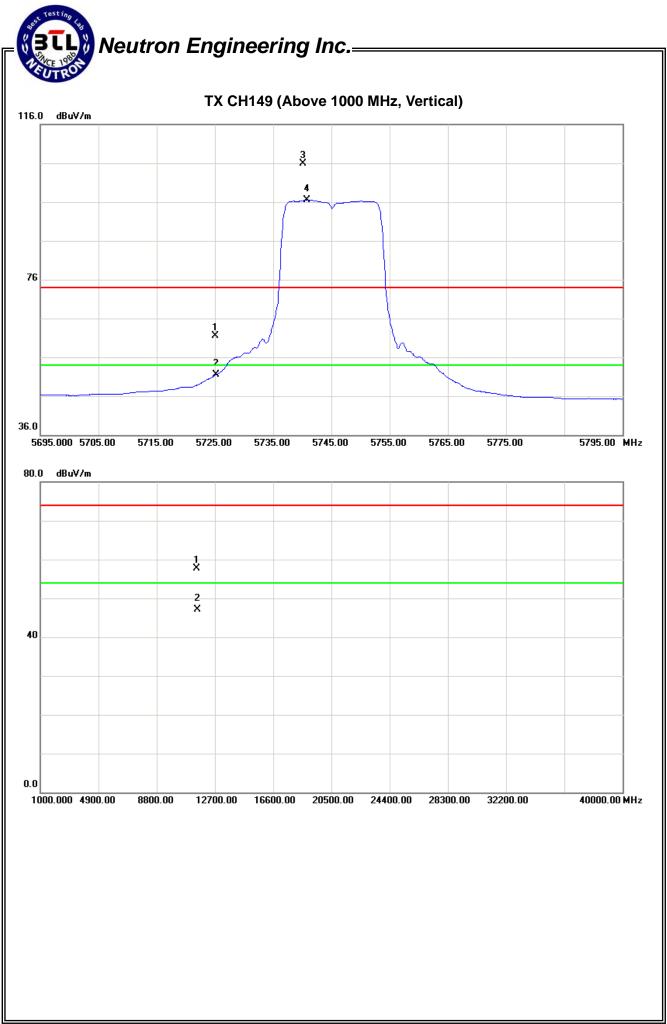
peak

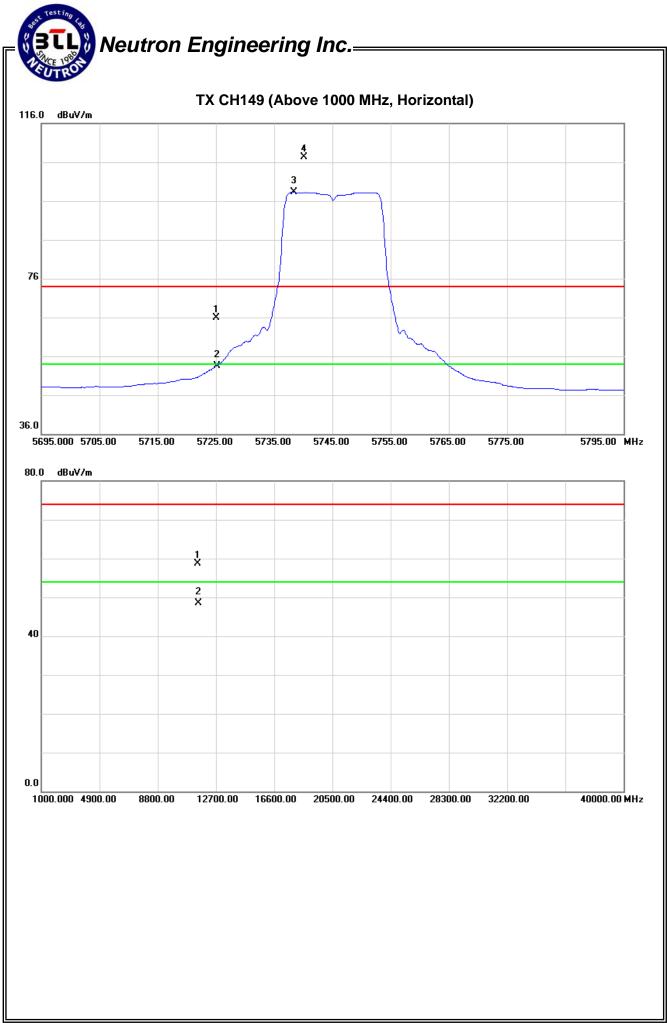
peak

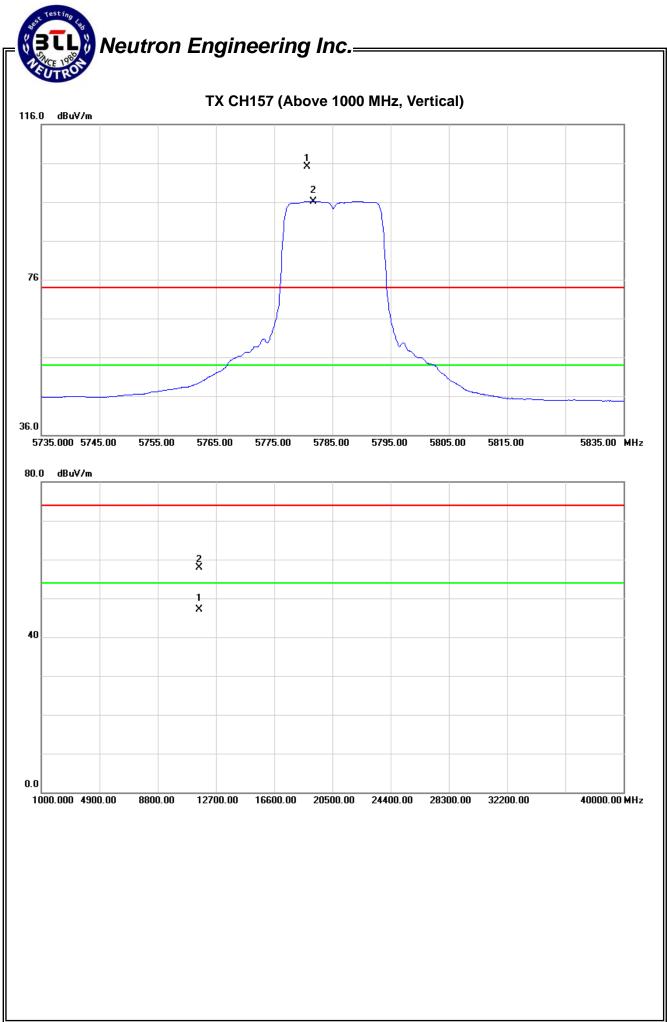
peak

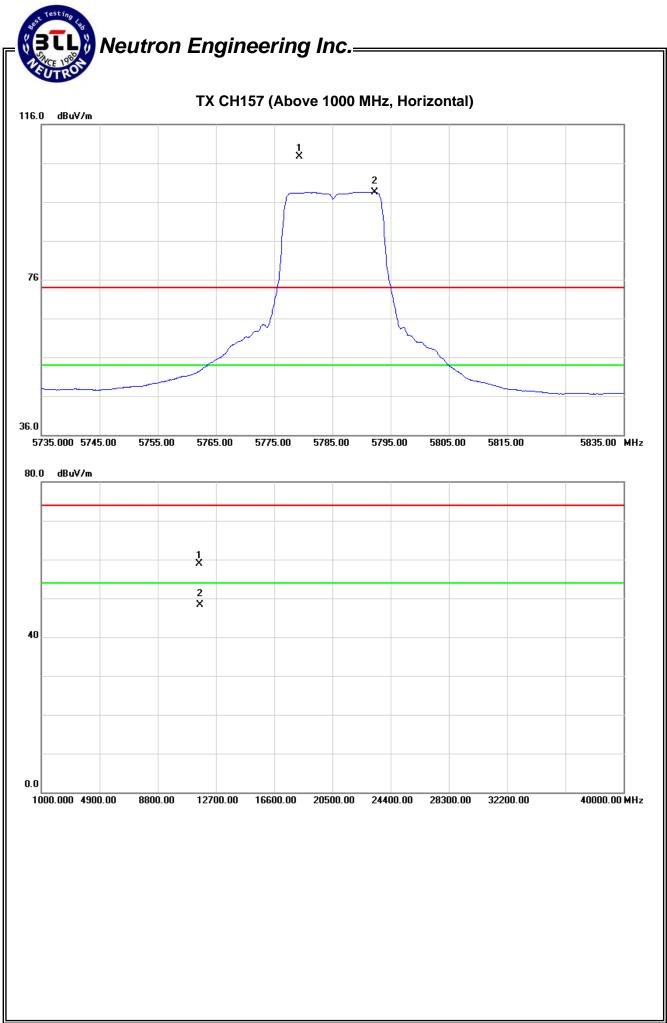
Neutron Engineering Inc. Test Mode: TX A MODE 5825MHz

No.	Mk.	Freq.	Level	Factor	ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		110.5100	44.38	-15.07	29.31	43.50	-14.19	peak	
2		132.8200	44.59	-14.05	30.54	43.50	-12.96	peak	
3	*	159.9800	44.49	-12.75	31.74	43.50	-11.76	peak	
4		312.2700	45.01	-11.05	33.96	46.00	-12.04	peak	
5		325.8500	44.41	-11.17	33.24	46.00	-12.76	peak	
6		800.1800	30.15	-1.62	28.53	46.00	-17.47	peak	

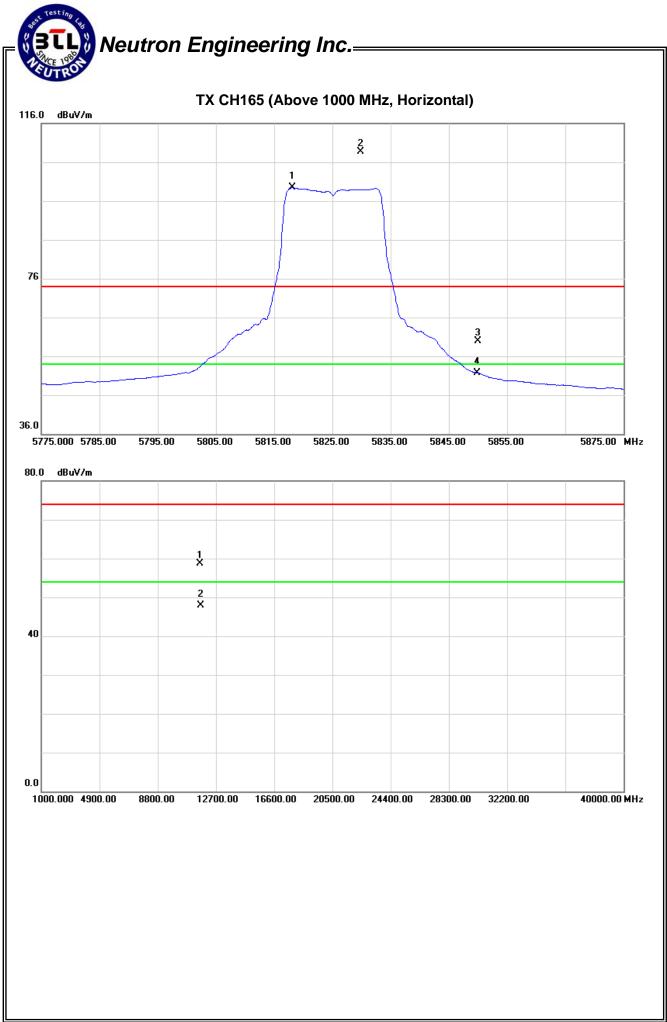

4.2.9 TEST RESULTS (ABOVE 1000 MHZ)

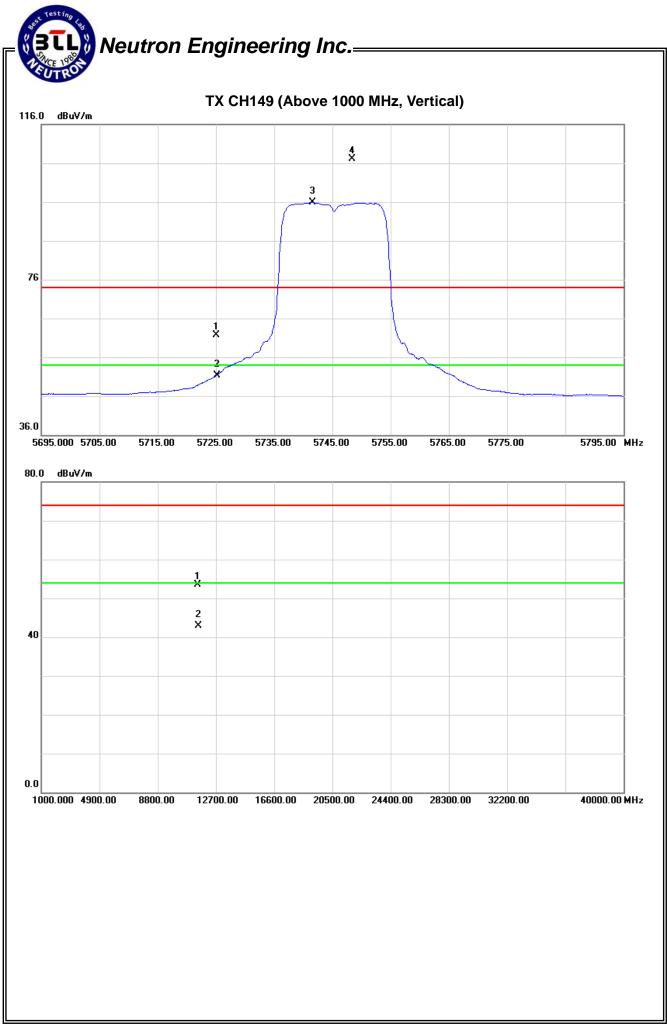

Remark:

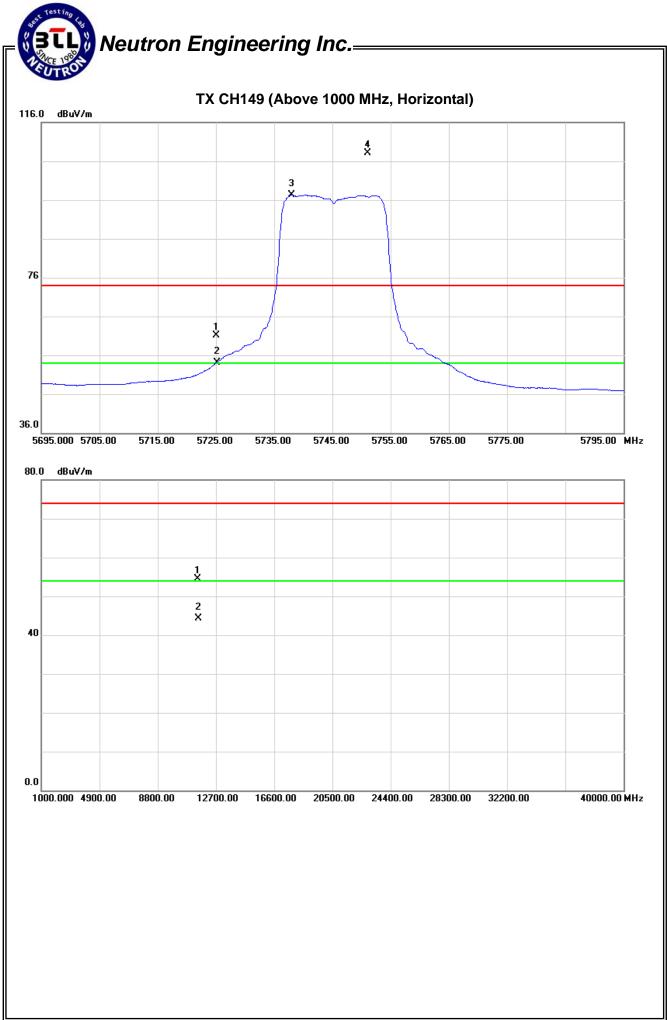

- (1) All readings are Peak unless otherwise stated QP in column of "Note]. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency. "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission.
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
 - "X" denotes Laid on Table; "Y" denotes Vertical Stand; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna
- (8) "#" The radiated frequency is out of the restricted band. Limit line= fundamental 20dB

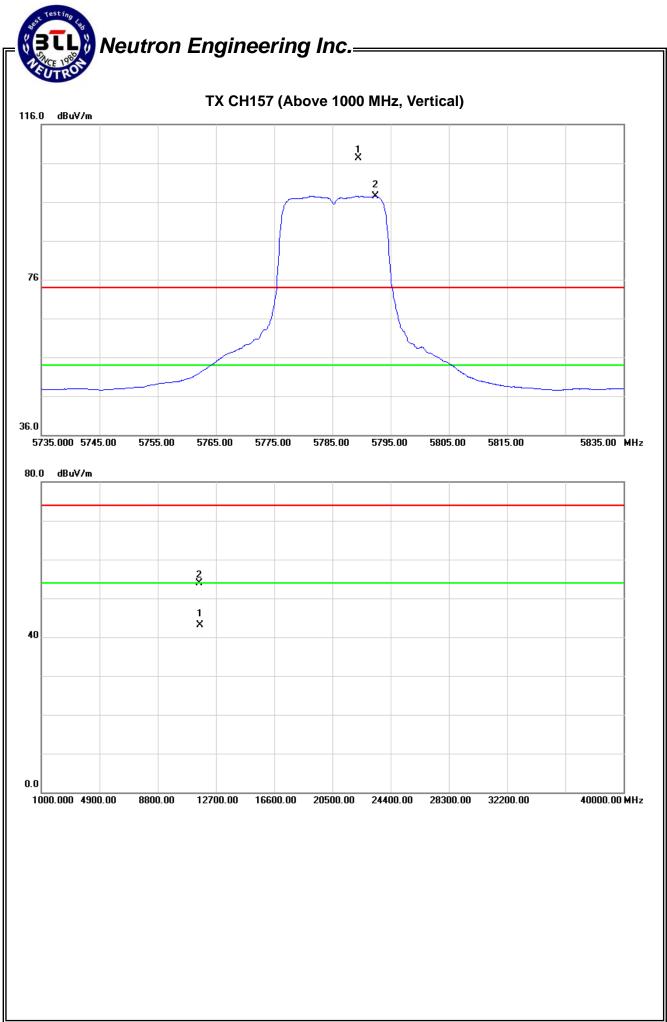

ΰĘ

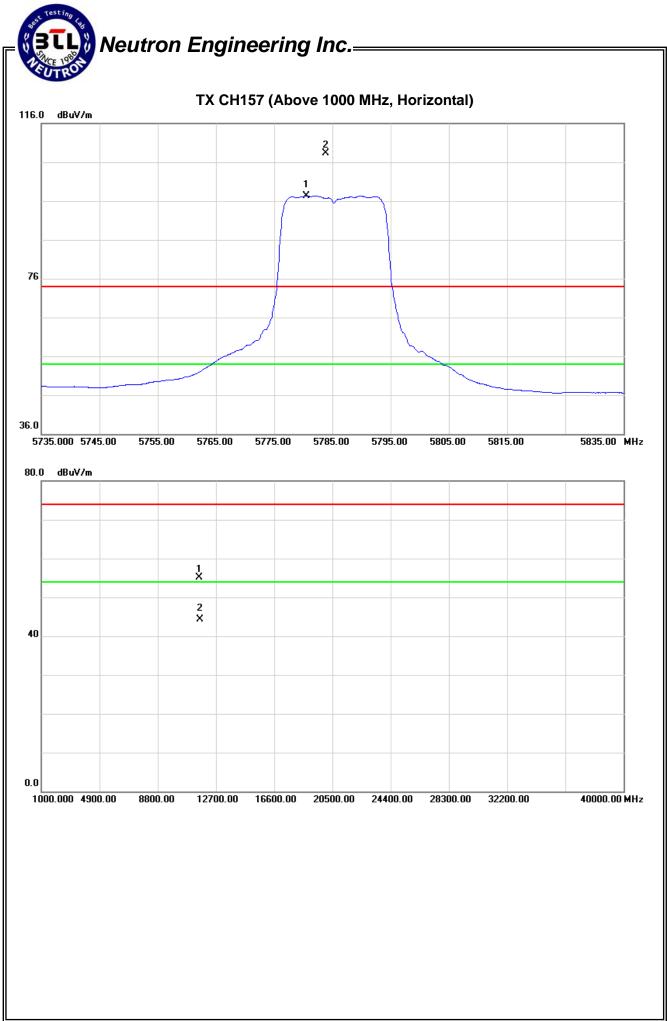
Test Mode	: T>	(A MODI	E 5745M	Hz						
			_ 01 10111							
		Pea	ding		Δ.	ot	Li	mit		
Freq.	Ant.Pol.	Peak		Ant./CF	Act. Peak AV			AV	Note	
(1.41.1-)	1107				Peak		Peak			
(MHz) #5725.00	H/V V	(dBuV)	(dBuV) 7.08	CF(dB) 44.34	(dBuV/m)	(dBuV/m) 51.42	(dBuV/m) 85.91	(dBuV/m) 76.44	X/	
	v	17.09			61.43		05.91	70.44		
5740.10	V V	61.51	52.04	44.40	105.91	96.44	74.00	54.00	X/	
11495.00	V	39.19	28.57	18.48	57.67	47.05	74.00	54.00	X/	
	1	Dee	-P		•	- 1	<u>.</u> 1			
Freq.	Ant.Pol.		ding	Ant./CF		ct.		mit		
· ·	110/	Peak	AV		Peak	AV	Peak	AV	No	
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)		
#5725.00	H	21.63	9.22	44.34	65.97	53.56	87.40	78.23	X/	
5740.10	н	63.00	53.83	44.40	107.40	98.23			X/	
11492.00	Н	40.30	30.02	18.49	58.79	48.51	74.00	54.00	X/I	
Freq.	Ant.Pol.		ading	Ant./CF		ct.		nit		
Freq	Ant Pol	Rea	ading	Ant /CE	A	ct.	Lir	nit		
•		Peak	AV		Peak	AV	Peak	AV	Not	
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)		
5780.60	V	60.56	51.64	44.54	105.10	96.18			X/F	
11573.00	V	39.16	28.53	18.67	57.83	47.20	74.00	54.00	X/F	
-	Ant.Pol.	Rea	ding	Ant./CF	Ac	ct.	Lin	Limit		
⊢rea	ANT POL									
Freq.		Peak	AV		Peak	AV	Peak	AV	Not	
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	Peak (dBuV/m)	AV (dBuV/m)		
(MHz) 5779.30	H/V H	(dBuV) 63.19	(dBuV) 54.01	CF(dB) 44.54	(dBuV/m) 107.73	(dBuV/m) 98.55	(dBuV/m)	(dBuV/m)	X/F	
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)			X/F	
(MHz) 5779.30 11572.00	H/V H H	(dBuV) 63.19	(dBuV) 54.01 29.63	CF(dB) 44.54 18.67	(dBuV/m) 107.73	(dBuV/m) 98.55	(dBuV/m)	(dBuV/m)	X/F	
(MHz) 5779.30 11572.00	H/V H H	(dBuV) 63.19 40.23	(dBuV) 54.01 29.63	CF(dB) 44.54 18.67 Hz	(dBuV/m) 107.73	(dBuV/m) 98.55 48.30	(dBuV/m) 74.00	(dBuV/m)	X/F	
(MHz) 5779.30 11572.00	H/V H H	(dBuV) 63.19 40.23 (A MODI Rea	(dBuV) 54.01 29.63 E 5825M ding	CF(dB) 44.54 18.67	(dBuV/m) 107.73 58.90	(dBuV/m) 98.55 48.30	(dBuV/m) 74.00	(dBuV/m) 54.00	X/F X/F	
(MHz) 5779.30 11572.00 Test Mode Freq.	H/V H H	(dBuV) 63.19 40.23 (A MODI Rea Peak	(dBuV) 54.01 29.63 E 5825M ding AV	CF(dB) 44.54 18.67 Hz Ant./CF	(dBuV/m) 107.73 58.90 Ac Peak	(dBuV/m) 98.55 48.30	(dBuV/m) 74.00 Lir Peak	(dBuV/m) 54.00 mit AV	X/F X/F	
(MHz) 5779.30 11572.00 Test Mode Freq. (MHz)	H/V H H	(dBuV) 63.19 40.23 (A MODI Rea Peak (dBuV)	(dBuV) 54.01 29.63 E 5825M ding AV (dBuV)	CF(dB) 44.54 18.67 Hz Ant./CF CF(dB)	(dBuV/m) 107.73 58.90 Ac Peak (dBuV/m)	(dBuV/m) 98.55 48.30 ct. AV (dBuV/m)	(dBuV/m) 74.00	(dBuV/m) 54.00	X/F X/F	
(MHz) 5779.30 11572.00 Test Mode Freq. (MHz) 5820.10	H/V H H : T) Ant.Pol. H/V V	(dBuV) 63.19 40.23 (A MODI Rea Peak (dBuV) 60.98	(dBuV) 54.01 29.63 E 5825M ding AV (dBuV) 52.09	CF(dB) 44.54 18.67 Hz Ant./CF CF(dB) 44.67	(dBuV/m) 107.73 58.90 Ac Peak (dBuV/m) 105.65	(dBuV/m) 98.55 48.30 ct. AV (dBuV/m) 96.76	(dBuV/m) 74.00 Lir Peak (dBuV/m)	(dBuV/m) 54.00 mit AV (dBuV/m)	X/F X/F	
(MHz) 5779.30 11572.00 Test Mode Freq. (MHz) 5820.10 #5850.00	H/V H H : T> Ant.Pol. H/V V V	(dBuV) 63.19 40.23 (A MODI Rea Peak (dBuV) 60.98 11.54	(dBuV) 54.01 29.63 E 5825M ding AV (dBuV) 52.09 3.03	CF(dB) 44.54 18.67 Hz Ant./CF CF(dB) 44.67 44.78	(dBuV/m) 107.73 58.90 Ac Peak (dBuV/m) 105.65 56.32	(dBuV/m) 98.55 48.30 ct. AV (dBuV/m) 96.76 47.81	(dBuV/m) 74.00 Lir Peak (dBuV/m) 85.65	(dBuV/m) 54.00 mit AV (dBuV/m) 76.76	X/F X/F Not	
(MHz) 5779.30 11572.00 Fest Mode Freq. (MHz) 5820.10 #5850.00	H/V H H : T) Ant.Pol. H/V V	(dBuV) 63.19 40.23 (A MODI Rea Peak (dBuV) 60.98	(dBuV) 54.01 29.63 E 5825M ding AV (dBuV) 52.09	CF(dB) 44.54 18.67 Hz Ant./CF CF(dB) 44.67	(dBuV/m) 107.73 58.90 Ac Peak (dBuV/m) 105.65	(dBuV/m) 98.55 48.30 ct. AV (dBuV/m) 96.76	(dBuV/m) 74.00 Lir Peak (dBuV/m)	(dBuV/m) 54.00 mit AV (dBuV/m)	X/F X/F No X/	
(MHz) 5779.30 11572.00 Test Mode Freq. (MHz) 5820.10 #5850.00 11652.00	H/V H H : T> Ant.Pol. H/V V V	(dBuV) 63.19 40.23 (A MODI Rea Peak (dBuV) 60.98 11.54 38.73	(dBuV) 54.01 29.63 E 5825M ding AV (dBuV) 52.09 3.03 28.19	CF(dB) 44.54 18.67 Hz Ant./CF CF(dB) 44.67 44.78 18.87	(dBuV/m) 107.73 58.90 Ac Peak (dBuV/m) 105.65 56.32 57.60	(dBuV/m) 98.55 48.30 ct. AV (dBuV/m) 96.76 47.81 47.06	(dBuV/m) 74.00 Lir Peak (dBuV/m) 85.65 74.00	(dBuV/m) 54.00 mit AV (dBuV/m) 76.76 54.00	X/F X/F Not	
(MHz) 5779.30 11572.00 Test Mode Freq. (MHz) 5820.10 #5850.00	H/V H H : T> Ant.Pol. H/V V V	(dBuV) 63.19 40.23 (A MODI Rea Peak (dBuV) 60.98 11.54 38.73 Rea	(dBuV) 54.01 29.63 E 5825M ding AV (dBuV) 52.09 3.03 28.19 ding	CF(dB) 44.54 18.67 Hz Ant./CF CF(dB) 44.67 44.78	(dBuV/m) 107.73 58.90 Ac Peak (dBuV/m) 105.65 56.32 57.60 Ac	(dBuV/m) 98.55 48.30 ct. AV (dBuV/m) 96.76 47.81 47.06	(dBuV/m) 74.00 Lir Peak (dBuV/m) 85.65 74.00	(dBuV/m) 54.00 mit AV (dBuV/m) 76.76 54.00 mit	X/F X/F Not X/I X/I	
(MHz) 5779.30 11572.00 Test Mode Freq. (MHz) 5820.10 #5850.00 11652.00 Freq.	H/V H H : T> Ant.Pol. H/V V V V Ant.Pol.	(dBuV) 63.19 40.23 (A MODI Rea Peak (dBuV) 60.98 11.54 38.73 Rea Peak	(dBuV) 54.01 29.63 E 5825M ding AV (dBuV) 52.09 3.03 28.19 ding AV	CF(dB) 44.54 18.67 Hz Hz Ant./CF CF(dB) 44.67 44.78 18.87 Ant./CF	(dBuV/m) 107.73 58.90 Ac Peak (dBuV/m) 105.65 56.32 57.60 Ac Peak	(dBuV/m) 98.55 48.30 247.81 247.06 247.81 247.00 247.80	(dBuV/m) 74.00 Lir Peak (dBuV/m) 85.65 74.00 Lir Peak	(dBuV/m) 54.00 mit AV (dBuV/m) 76.76 54.00 mit AV	X/F X/F Not X/I X/I	
(MHz) 5779.30 11572.00 Test Mode Freq. (MHz) 5820.10 #5850.00 11652.00 Freq. (MHz)	H/V H H : T> Ant.Pol. H/V V V V Ant.Pol. H/V	(dBuV) 63.19 40.23 (A MODI Rea Peak (dBuV) 60.98 11.54 38.73 Rea Peak (dBuV)	(dBuV) 54.01 29.63 E 5825M ding AV (dBuV) 52.09 3.03 28.19 ding AV (dBuV) (dBuV)	CF(dB) 44.54 18.67 Hz Ant./CF CF(dB) 44.78 18.87 Ant./CF CF(dB)	(dBuV/m) 107.73 58.90 58.90 Ac Peak (dBuV/m) 105.65 56.32 57.60 Ac Peak (dBuV/m)	(dBuV/m) 98.55 48.30 247.81 247.81 247.06 247.81 247.00 247.81 247.00 247.81 247.00 247.81 247.00 247.81 247.00 247.81 247.00 247.81 247.00 247.81 247.00 247.81 247.00 247.81 247.00 247.81 247.00 247.81 247.00 247.81 247.00 247.81 247.00 247.81 247.00 247.00 247.81 247.00 247.81 247.00 247.00 247.81 247.00	(dBuV/m) 74.00 Lir Peak (dBuV/m) 85.65 74.00	(dBuV/m) 54.00 mit AV (dBuV/m) 76.76 54.00 mit	X/F X/F Not X/I X/I	
(MHz) 5779.30 11572.00 Test Mode Freq. (MHz) 5820.10 #5850.00 11652.00 Freq.	H/V H H : T> Ant.Pol. H/V V V V Ant.Pol.	(dBuV) 63.19 40.23 (A MODI Rea Peak (dBuV) 60.98 11.54 38.73 Rea Peak	(dBuV) 54.01 29.63 E 5825M ding AV (dBuV) 52.09 3.03 28.19 ding AV	CF(dB) 44.54 18.67 Hz Hz Ant./CF CF(dB) 44.67 44.78 18.87 Ant./CF	(dBuV/m) 107.73 58.90 Ac Peak (dBuV/m) 105.65 56.32 57.60 Ac Peak	(dBuV/m) 98.55 48.30 247.81 247.06 247.81 247.06 247.80	(dBuV/m) 74.00 Lir Peak (dBuV/m) 85.65 74.00 Lir Peak	(dBuV/m) 54.00 mit AV (dBuV/m) 76.76 54.00 mit AV	Not X/F X/I- Not X/I X/I Not	

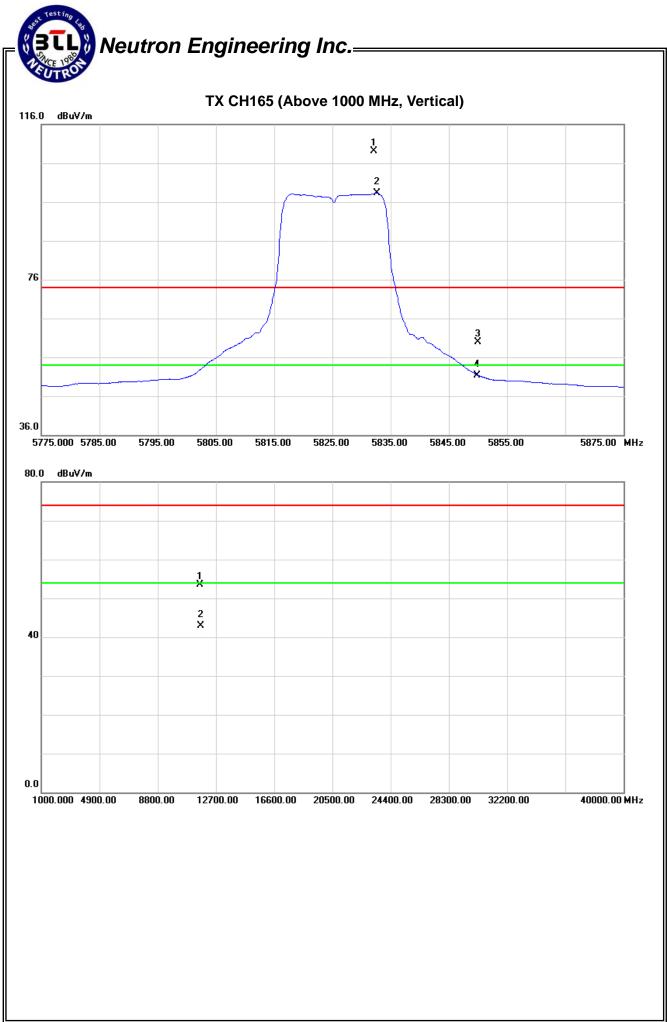


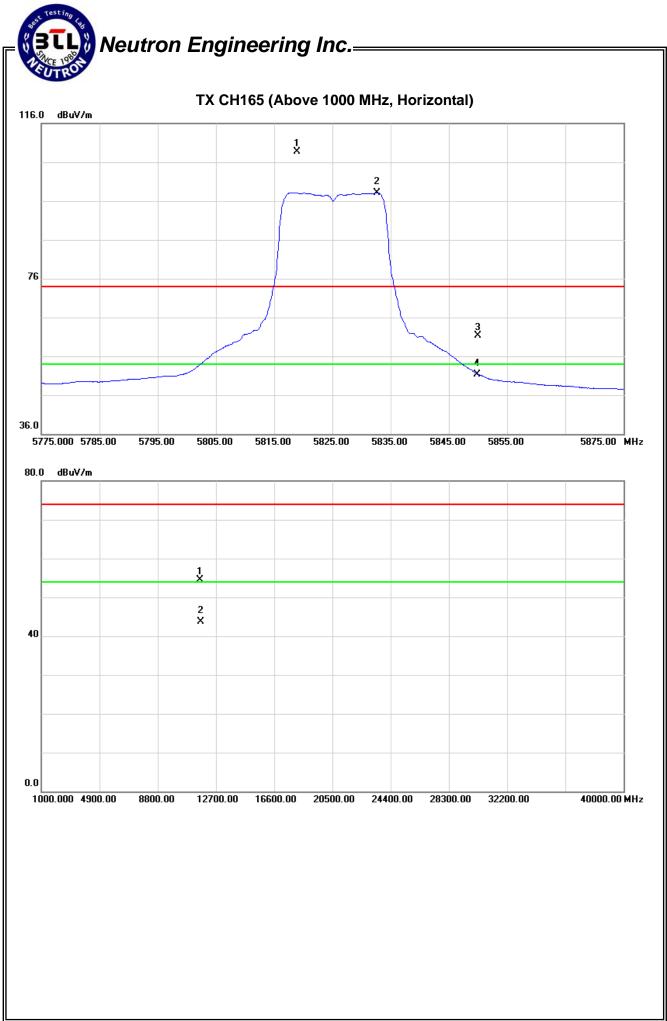




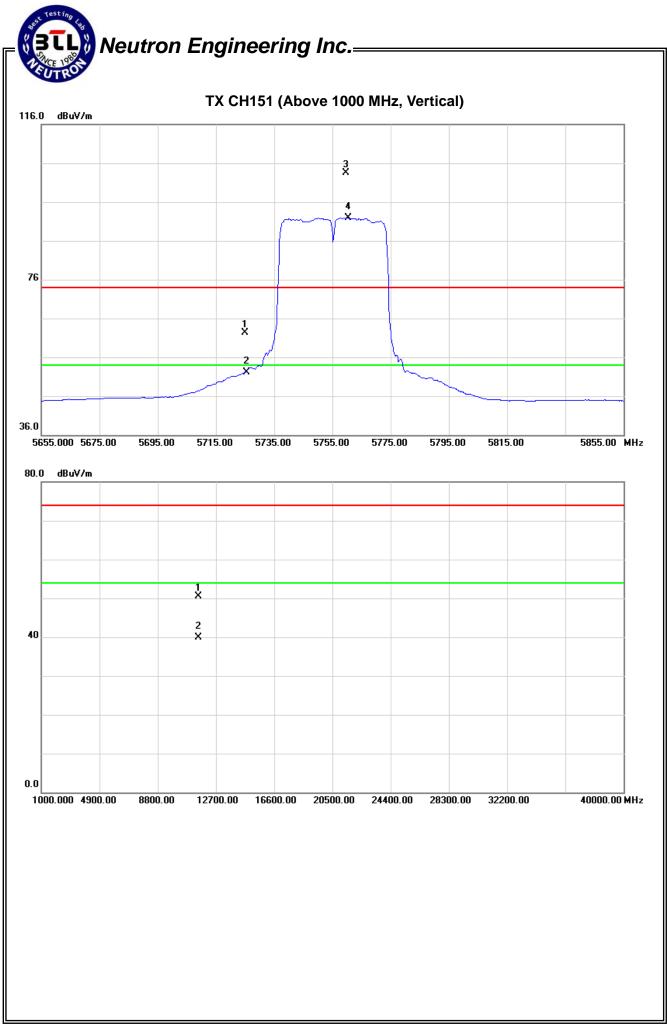


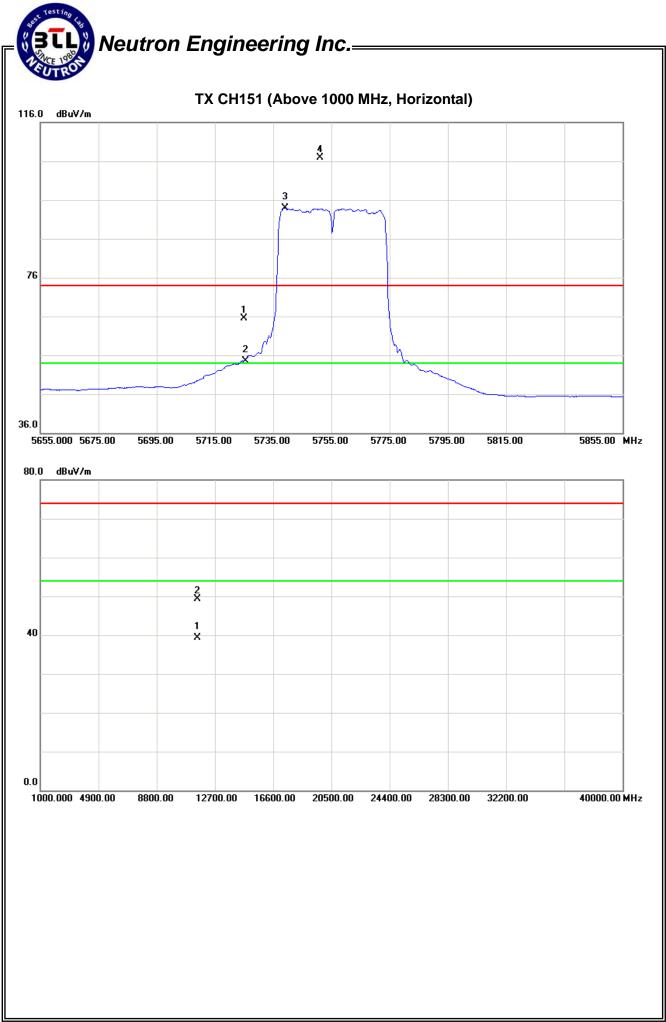

_		Rea	ding		A	ct	l ir	nit	
Freq.	Ant.Pol.	Peak	AV	Ant./CF	Peak	AV	Peak	AV	Not
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
#5725.00	V	17.30	6.99	44.34	61.64	51.33	87.19	75.92	X/E
5748.40	v	62.76	51.49	44.43	107.19	95.92	07.10	10.02	X/
1492.00	V	35.06	24.42	18.47	53.53	42.89	74.00	54.00	X/
11492.00	V	33.00	24.42	10.47	55.55	42.09	74.00	54.00	Λ/
_		Rea	ding		Ad	ct.	Lir	nit	
Freq.	Ant.Pol.	Peak	AV	Ant./CF	Peak	AV	Peak	AV	No
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
#5725.00	H	16.79	9.69	44.34	61.13	54.03	88.03	77.35	Х/
5751.00	H	63.59	52.91	44.44	108.03	97.35			Χ/
1495.00	H	36.12	25.84	18.48	54.60	44.32	74.00	54.00	X/
1100.00		00.12	20.01	10.10	0 1100	11.02	1 1100	01100	70
est Mode	: T)	-	MODE 5	785MHz			•		
Freq.	Ant.Pol.	Rea	ading	Ant./CF	A	ct.	Lir	mit	
r ieq.	Ant.i Ol.	Peak	AV	Ant./O	Peak	AV	Peak	AV	No
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
5789.40	V	62.67	52.92	44.57	107.24	97.49			X/
11576.00	V	35.29	24.46	18.68	53.97	43.14	74.00	54.00	X/
		_	. 1		1		T		1
Freq.	Ant.Pol.	Rea	U U	Ant./CF		Act.		imit	
(8.41.1.)	1107	Peak	AV		Peak	AV	Peak	AV	No
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	, , ,	(dBuV/m)	(dBuV/m)	V
5783.90	H	63.68	52.74	44.55	108.23	97.29	74.00	54.00	X
1574.00	Н	36.51	25.62	18.67	55.18	44.29	74.00	54.00	Х
est Mode	: T)	X N-20M	MODE 5	825MHz					
_		Rea	ding		A	ct.	Lir	nit	
Freq.	Ant.Pol.	Peak	AV	Ant./CF	Peak	AV	Peak	AV	No
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
5832.10	V	64.40	53.57	44.72	109.12	98.29	((Х/
#5850.00	V	15.04	6.57	44.78	59.82	51.35	89.12	78.29	X/
1654.00	V	34.62	23.96	18.87	53.49	42.83	74.00	54.00	X/
1004.00	v	01.02	20.00	10.07	00.40	42.00	74.00	04.00	70
Free		Rea	ding		Ac	ct.	Lir	nit	
Freq.	Ant.Pol.	Peak	AV	Ant./CF	Peak	AV	Peak	AV	No
	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
•		63.96	53.48	44.67	108.63	98.15	((Χ/
(MHz)	H							1	- 4
•	H H	16.47	6.55	44.78	61.25	51.33	88.63	78.15	X/I

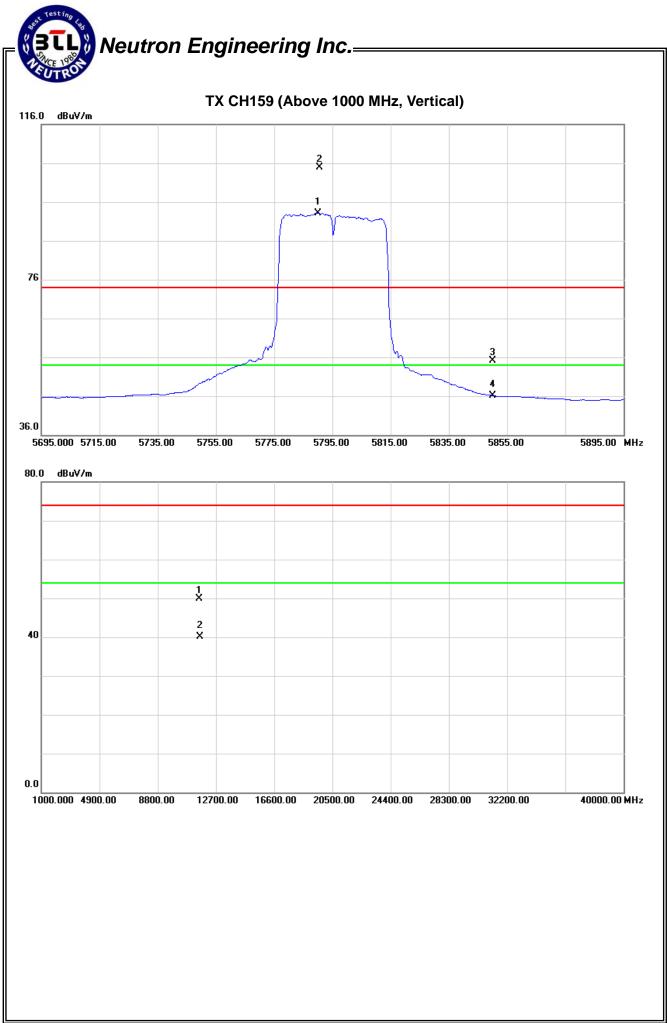


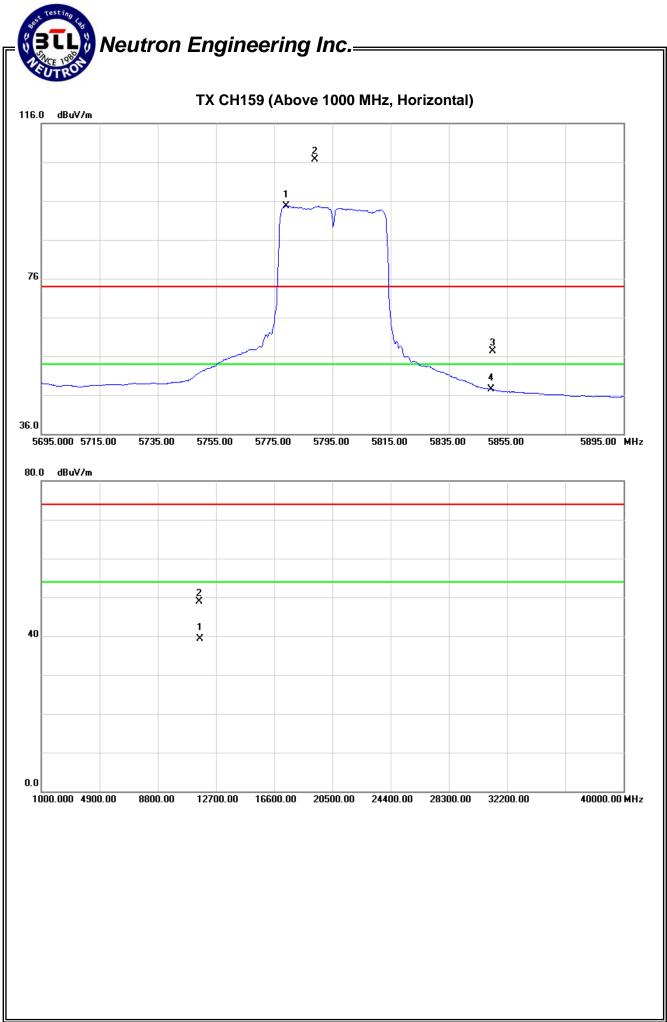


Report No.: NEI-FCCP-3-1312C200






Report No.: NEI-FCCP-3-1312C200



Test Mode	. 17	K N-40M							
					•				. <u> </u>
Freq.	Ant.Pol.	Rea	ding	Ant./CF	A	ct.	Lii	nit	
1104.		Peak	AV	Ant./Or	Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
#5725.00	V	17.94	7.80	44.34	62.28	52.14	83.49	71.97	X/E
5759.60	V	59.02	47.50	44.47	103.49	91.97			X/F
11512.00	V	31.97	21.29	18.52	50.49	39.81	74.00	54.00	X/H
	 T								
Freq.	Ant.Pol.		ding	Ant./CF	Ac		Lir		
•		Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
#5725.00	Н	21.10	10.16	44.34	65.44	54.50	86.90	74.02	X/E
nor Eeree					400.00	94.02			
5751.20	Н	62.46	49.58	44.44	106.90	94.UZ			X/F
	Н	62.46 30.86	20.74	18.54	106.90 49.40	39.28	74.00	54.00	
5751.20 11519.00	Н	30.86 (N-40M	20.74 MODE 5	18.54	49.40	39.28			X/F X/H
5751.20 11519.00	Н	30.86 < N-40M Rea	20.74 MODE 5 ding	18.54	49.40 Ad	39.28	Lir	nit	X/H
5751.20 11519.00 Test Mode Freq.	H : TX Ant.Pol.	30.86 (N-40M Rea Peak	20.74 MODE 5 ding AV	18.54 795MHz Ant./CF	49.40 Ac Peak	39.28 2t. AV	Lir Peak	nit AV	X/H
5751.20 11519.00 Test Mode Freq. (MHz)	H : T) Ant.Pol. H/V	30.86 K N-40M Rea Peak (dBuV)	20.74 MODE 5 ding AV (dBuV)	18.54 795MHz Ant./CF CF(dB)	49.40 Ad Peak (dBuV/m)	39.28 ct. AV (dBuV/m)	Lir	nit	X/H Note
5751.20 11519.00 Test Mode Freq. (MHz) 5790.60	H : T) Ant.Pol. H/V V	30.86 K N-40M Rea Peak (dBuV) 60.43	20.74 MODE 5 ding AV (dBuV) 48.61	18.54 795MHz Ant./CF CF(dB) 44.57	49.40 Ao Peak (dBuV/m) 105.00	39.28 ct. (dBuV/m) 93.18	Lir Peak (dBuV/m)	nit AV (dBuV/m)	X/H Note
5751.20 11519.00 Test Mode Freq. (MHz) 5790.60 #5850.00	H : T) Ant.Pol. H/V	30.86 < N-40M Rea Peak (dBuV) 60.43 10.38	20.74 MODE 5 ding AV (dBuV) 48.61 1.39	18.54 795MHz Ant./CF CF(dB) 44.57 44.78	49.40 Ac Peak (dBuV/m) 105.00 55.16	39.28 ct. (dBuV/m) 93.18 46.17	Lir Peak (dBuV/m) 85.00	nit AV (dBuV/m) 73.18	X/H Note X/F X/E
5751.20 11519.00 Test Mode Freq. (MHz) 5790.60	H : T> Ant.Pol. H/V V V	30.86 (N-40M Rea Peak (dBuV) 60.43 10.38 31.11	20.74 MODE 5 ding AV (dBuV) 48.61 1.39 21.35	18.54 795MHz Ant./CF CF(dB) 44.57	49.40 Ac Peak (dBuV/m) 105.00	39.28 ct. (dBuV/m) 93.18	Lir Peak (dBuV/m)	nit AV (dBuV/m)	X/H Note X/F X/E
5751.20 11519.00 Test Mode Freq. (MHz) 5790.60 #5850.00 11594.00	H : T> Ant.Pol. H/V V V V	30.86 (N-40M Rea Peak (dBuV) 60.43 10.38 31.11	20.74 MODE 5 ding AV (dBuV) 48.61 1.39	18.54 795MHz Ant./CF CF(dB) 44.57 44.78 18.72	49.40 Ac Peak (dBuV/m) 105.00 55.16	39.28 ct. AV (dBuV/m) 93.18 46.17 40.07	Lir Peak (dBuV/m) 85.00	nit AV (dBuV/m) 73.18 54.00	X/H Note X/F X/E X/H
5751.20 11519.00 Test Mode Freq. (MHz) 5790.60 #5850.00	H : T> Ant.Pol. H/V V V	30.86 (N-40M Rea Peak (dBuV) 60.43 10.38 31.11	20.74 MODE 5 ding AV (dBuV) 48.61 1.39 21.35	18.54 795MHz Ant./CF CF(dB) 44.57 44.78	49.40 Ad Peak (dBuV/m) 105.00 55.16 49.83	39.28 ct. AV (dBuV/m) 93.18 46.17 40.07	Lir Peak (dBuV/m) 85.00 74.00	nit AV (dBuV/m) 73.18 54.00	X/H Note X/F X/E X/H
5751.20 11519.00 Test Mode Freq. (MHz) 5790.60 #5850.00 11594.00	H : T> Ant.Pol. H/V V V V	30.86 K N-40M Rea Peak (dBuV) 60.43 10.38 31.11 Rea	20.74 MODE 5 ding AV (dBuV) 48.61 1.39 21.35 ding	18.54 795MHz Ant./CF CF(dB) 44.57 44.78 18.72	49.40 Ad Peak (dBuV/m) 105.00 55.16 49.83 Ad	39.28 ct. (dBuV/m) 93.18 46.17 40.07	Lir Peak (dBuV/m) 85.00 74.00 Lir	nit AV (dBuV/m) 73.18 54.00 nit	X/H Note X/F X/E X/H
5751.20 11519.00 Test Mode Freq. (MHz) 5790.60 #5850.00 11594.00 Freq.	H Ant.Pol. H/V V V Ant.Pol.	30.86 K N-40M Rea Peak (dBuV) 60.43 10.38 31.11 Rea Peak	20.74 MODE 5 ding AV (dBuV) 48.61 1.39 21.35 ding AV	18.54 795MHz Ant./CF CF(dB) 44.57 44.78 18.72 Ant./CF	49.40 Ac Peak (dBuV/m) 105.00 55.16 49.83 Ac Peak	39.28 2t. AV (dBuV/m) 93.18 46.17 40.07 2t. AV	Lir Peak (dBuV/m) 85.00 74.00 Lir Peak	nit AV (dBuV/m) 73.18 54.00 nit AV	X/H Note X/F X/E X/H
5751.20 11519.00 Test Mode Freq. (MHz) 5790.60 #5850.00 11594.00 Freq. (MHz)	H Ant.Pol. H/V V V Ant.Pol. H/V	30.86 (N-40M Rea Peak (dBuV) 60.43 10.38 31.11 Rea Peak (dBuV)	20.74 MODE 5 ding AV (dBuV) 48.61 1.39 21.35 ding AV (dBuV)	18.54 795MHz Ant./CF CF(dB) 44.57 44.78 18.72 Ant./CF CF(dB)	49.40 Ac Peak (dBuV/m) 105.00 55.16 49.83 Ac Peak (dBuV/m)	39.28 2t. AV (dBuV/m) 93.18 46.17 40.07 2t. AV (dBuV/m)	Lir Peak (dBuV/m) 85.00 74.00 Lir Peak	nit AV (dBuV/m) 73.18 54.00 nit AV	X/H Note X/F X/E X/H

5. BANDWIDTH TEST

5.1 Applied procedures

FCC Part15 (15.247) , Subpart C						
Section	Frequency Range (MHz)	Result				
15.247(a)(2)	Bandwidth	5725 - 5825	PASS			

5.1.1 TEST PROCEDURE

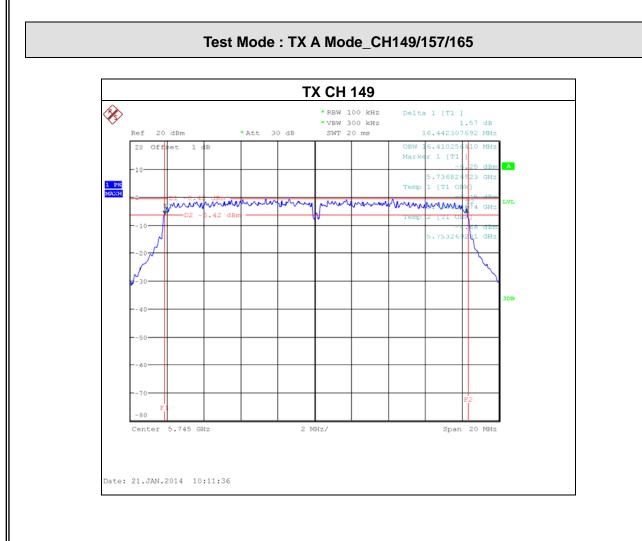
- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 100KHz, VBW=300KHz, Sweep time = Auto.

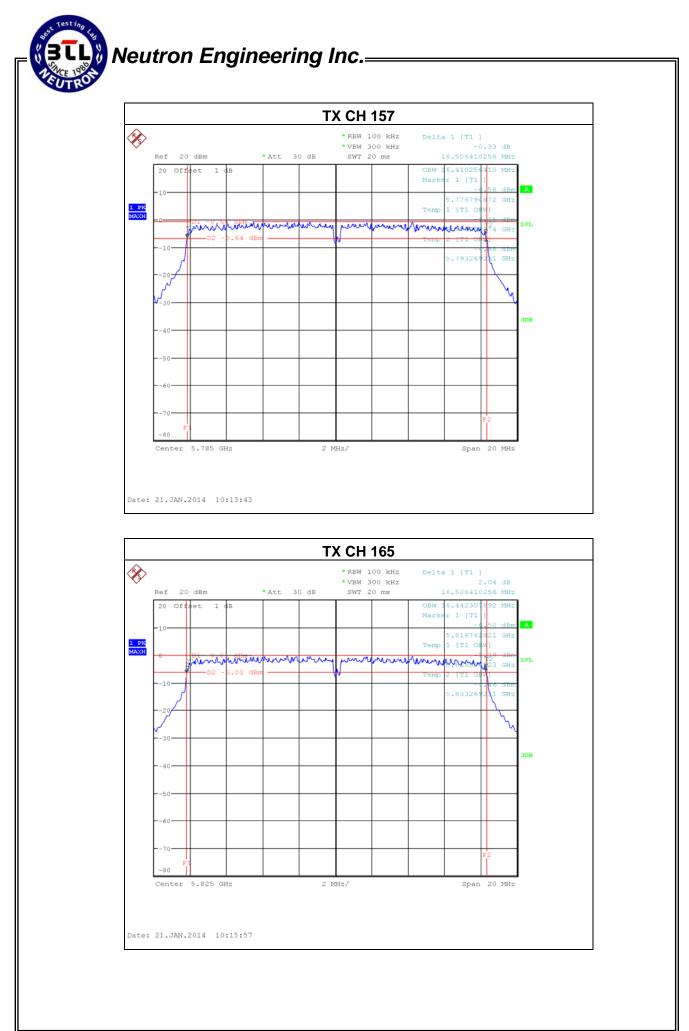
5.1.2 DEVIATION FROM STANDARD

No deviation.

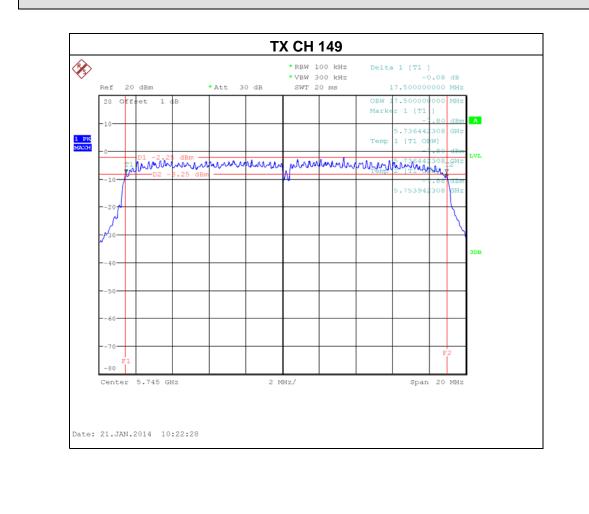
5.1.3 TEST SETUP

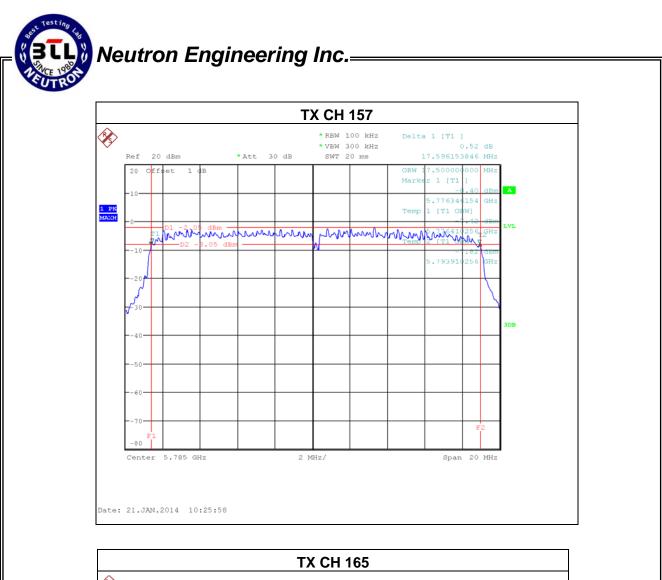
EUT	SPECTRUM
	ANALYZER

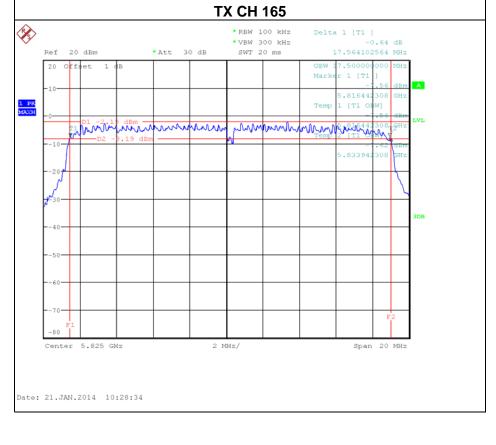

5.1.4 EUT OPERATION CONDITIONS

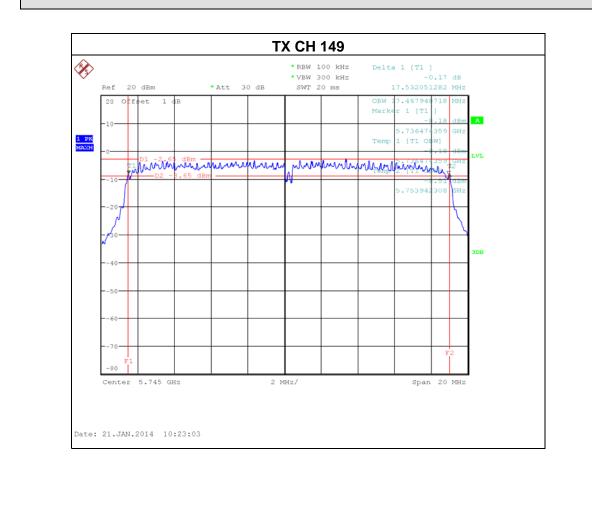

The EUT tested system was configured as the statements of 4.1.6 Unless otherwise a special operating condition is specified in the follows during the testing.

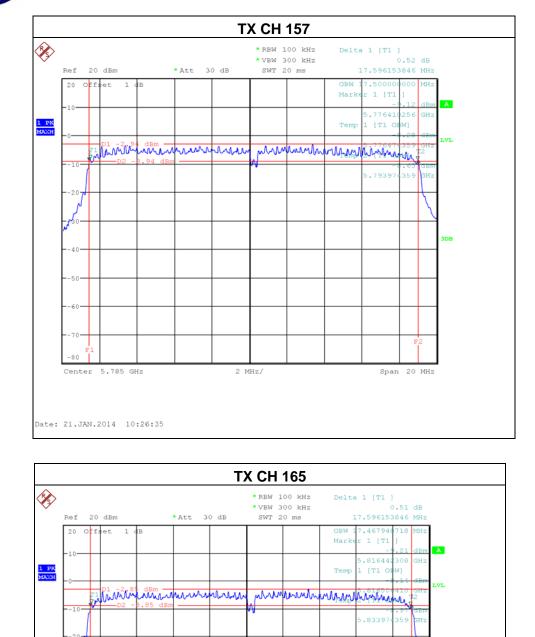
5.1.5 EUT TEST CONDITIONS

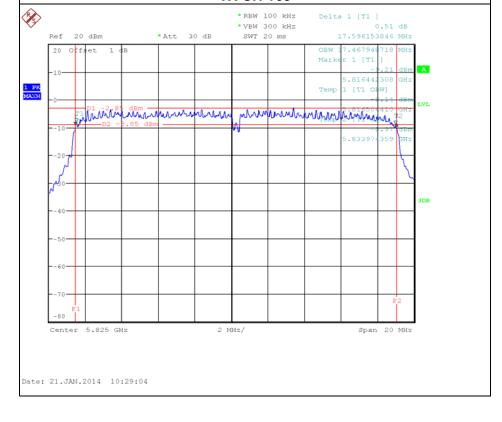

Temperature: 25°C Relative Humidity: 55% Test Voltage: AC 120V/60Hz


5.1.6 TEST RESULTS




Test Mode : TX N-20MHz Mode_CH149/157/165_ANT 1





Test Mode : TX N-20MHz Mode_CH149/157/165_ANT 2

Neutron Engineering Inc. Test Mode : TX N-40MHz Mode_CH151/159_ANT 1 **TX CH 151** Ì *RBW 100 kHz Delta 1 [T1] *VBW 300 kHz -1.60 dB Ref 20 dBm 36.378205128 MHz *Att 30 dB SWT 20 ms 20 Offset OBW 5.02564 1 dB Mark r 1 (T1

4 MHz/

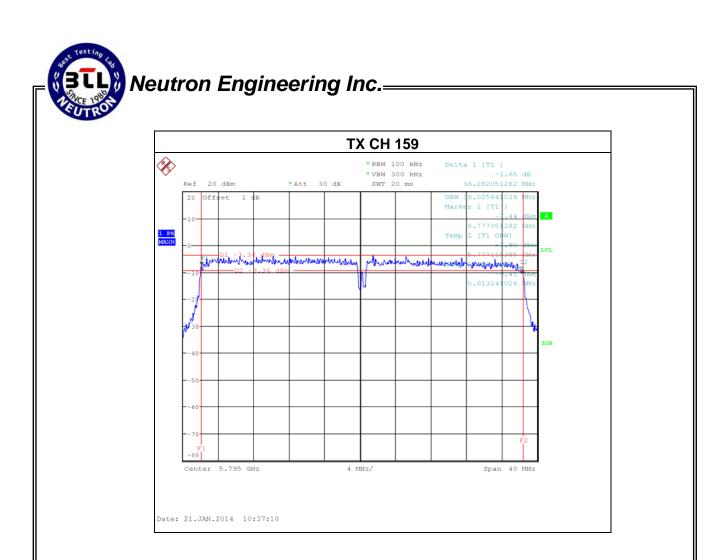
Temp

white when the man we we we when the when

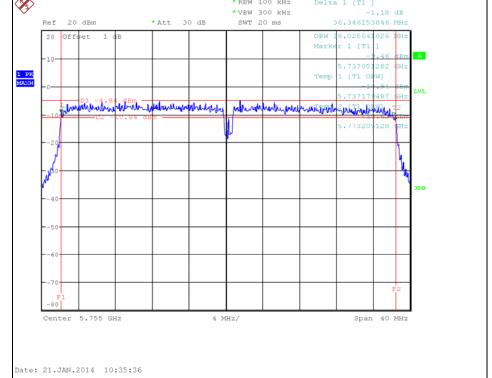
1 [T1 C

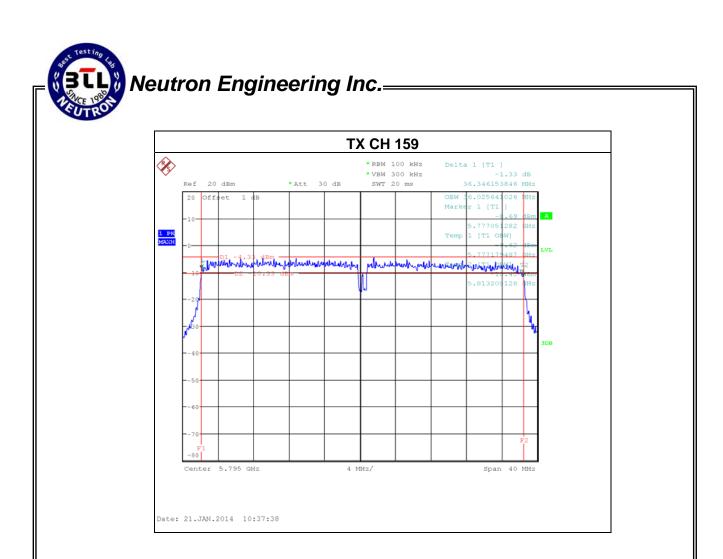
4]

Span 40 MHz


Report No.: NEI-FCCP-3-1312C200

1 PK MAXH


property of the providence of the property of the providence of th


Center 5.755 GHz

Date: 21.JAN.2014 10:35:09

Evention Engineering Inc. Test Mode : TX N-40MHz Mode_CH151/159_ANT 2 Image: Comparison of the state of the state

6. MAXIMUM OUTPUT POWER TEST

6.1 Applied procedures / limit

FCC Part15 (15.247) , Subpart C							
Section	Test Item	Limit	Frequency Range (MHz)	Result			
15.247(b)(3)	Maximum Output Power	1 Watt or 30dBm	5725 - 5825	PASS			

6.1.1 TEST PROCEDURE

- a. The EUT was directly connected to the power meter and antenna output port as show in the block diagram below,
- b. The maximum peak conducted output power was performed in accordance with method 9.1.3 of FCC KDB 558074 D01 DTS Meas Guidance v03r01.

6.1.2 DEVIATION FROM STANDARD

No deviation.

6.1.3 TEST SETUP

6.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 4.1.6 Unless otherwise a special operating condition is specified in the follows during the testing.

Transmit output power was measured while the host equipment supply voltage was varied from 85 % to 115 % of the nominal rated supply voltage. No change in transmit output power was observed.

6.1.5 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: AC 120V/60Hz

6.1.6 TEST RESULTS

Test Mode : TX A Mode								
Test Channel	Frequency (MHz)	Output Power (dBm)	Limit (dBm)	Limit (Watt)				
CH149	5745	25.65	30	1				
CH157	5785	25.55	30	1				
CH165	5825	25.51	30	1				

Test Mode : TX N-20M Mode_ANT 1							
Test Channel	Frequency	Output Power	Limit	Limit			
Test Channel	(MHz)	(dBm)	(dBm)	(Watt)			
CH149	5745	22.48	30	1			
CH157	5785	22.35	30	1			
CH165	5825	22.48	30	1			

Test Mode : TX N-20M Mode_ANT 2

Test Channel	Frequency (MHz)	Output Power (dBm)	Limit (dBm)	Limit (Watt)
CH149	5745	23.01	30	1
CH157	5785	22.75	30	1
CH165	5825	22.91	30	1

Test Mode	: TX	N-20M	Mode_	Total
-----------	------	-------	-------	-------

Test Channel	Frequency	Output Power	Limit	Limit
Test Channel	(MHz)	(dBm)	(dBm)	(Watt)
CH149	5745	25.76	30	1
CH157	5785	25.56	30	1
CH165	5825	25.71	30	1

Test Mode : TX N-40M Mode_ANT 1								
Test Channel	Frequency (MHz)	Output Power (dBm)	Limit (dBm)	Limit (Watt)				
CH151	5755	22.12	30	1				
CH159	5795	21.85	30	1				

Test Mode : TX N-40M Mode_ANT 2							
Test Channel	Frequency	Output Power	Limit	Limit			
	(MHz)	(dBm)	(dBm)	(Watt)			
CH151	5755	22.48	30	1			
CH159	5795	22.63	30	1			

	Test Mo	de : TX N-40M Mode	_Total	
Test Channel	Frequency (MHz)	Output Power (dBm)	Limit (dBm)	Limit (Watt)
CH151	5755	25.31	30	1
CH159	5795	25.27	30	1

7. ANTENNA CONDUCTED SPURIOUS EMISSION

7.1 Applied procedures / limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

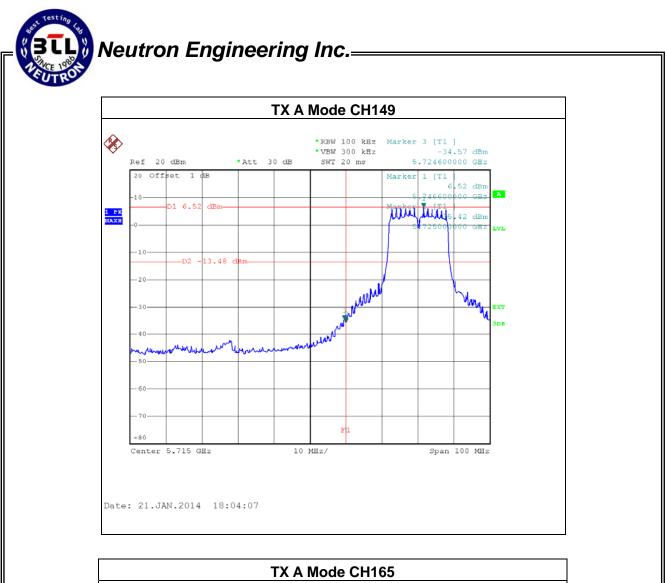
7.1.1 TEST PROCEDURE

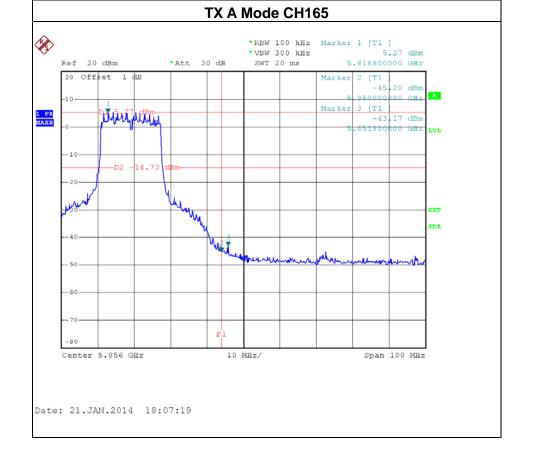
- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 100KHz, VBW=300KHz, Sweep time = Auto.

7.1.2 DEVIATION FROM STANDARD

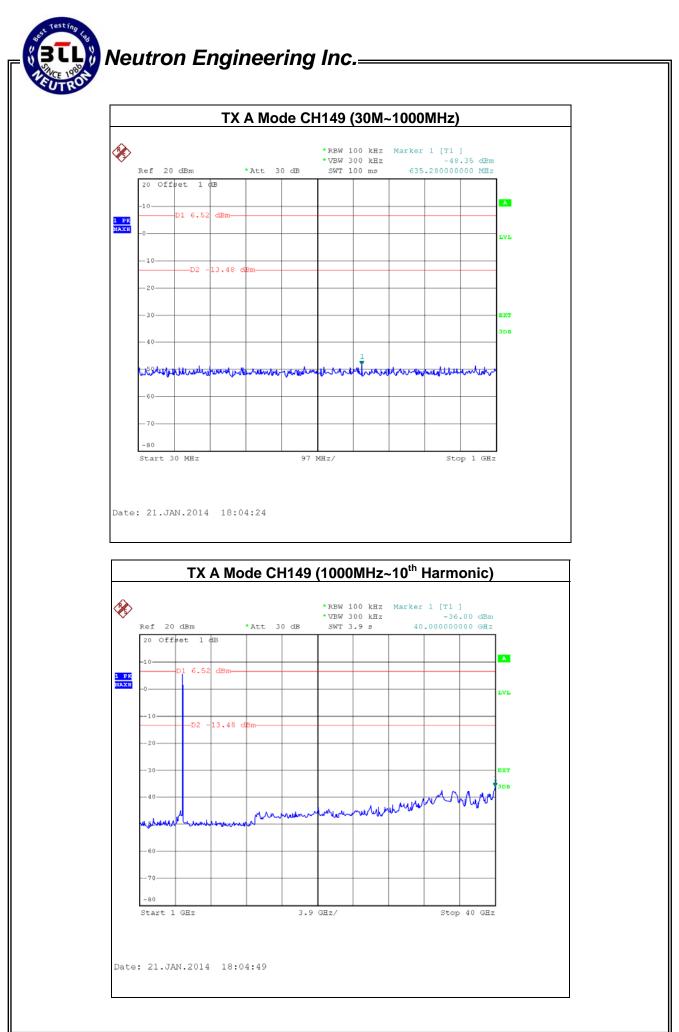
No deviation.

7.1.3 TEST SETUP

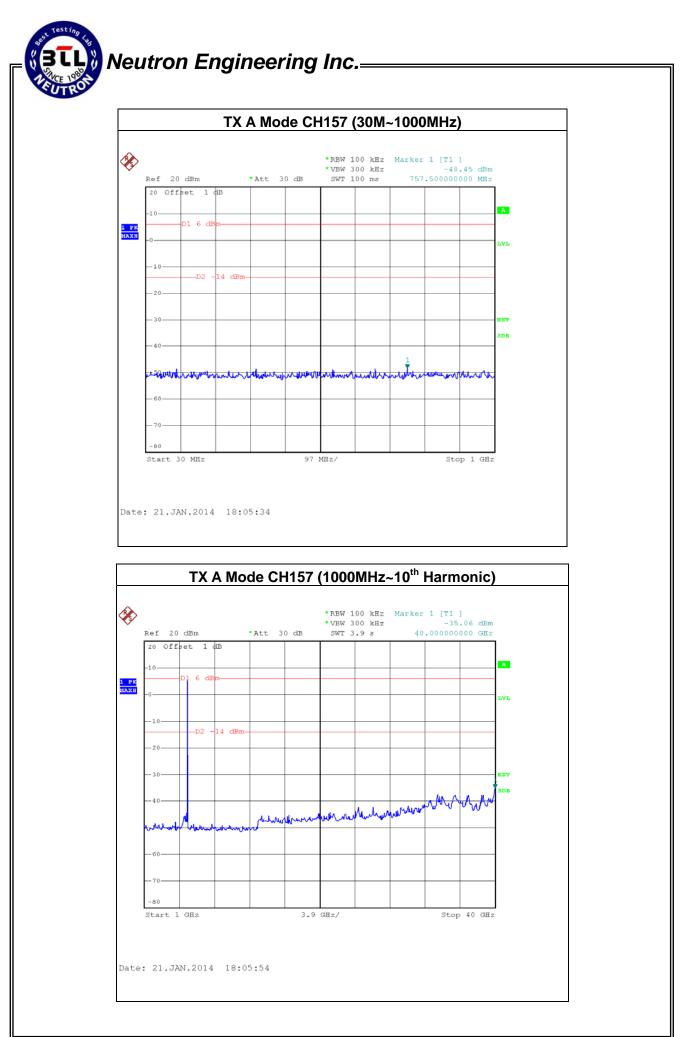

7.1.4 EUT OPERATION CONDITIONS

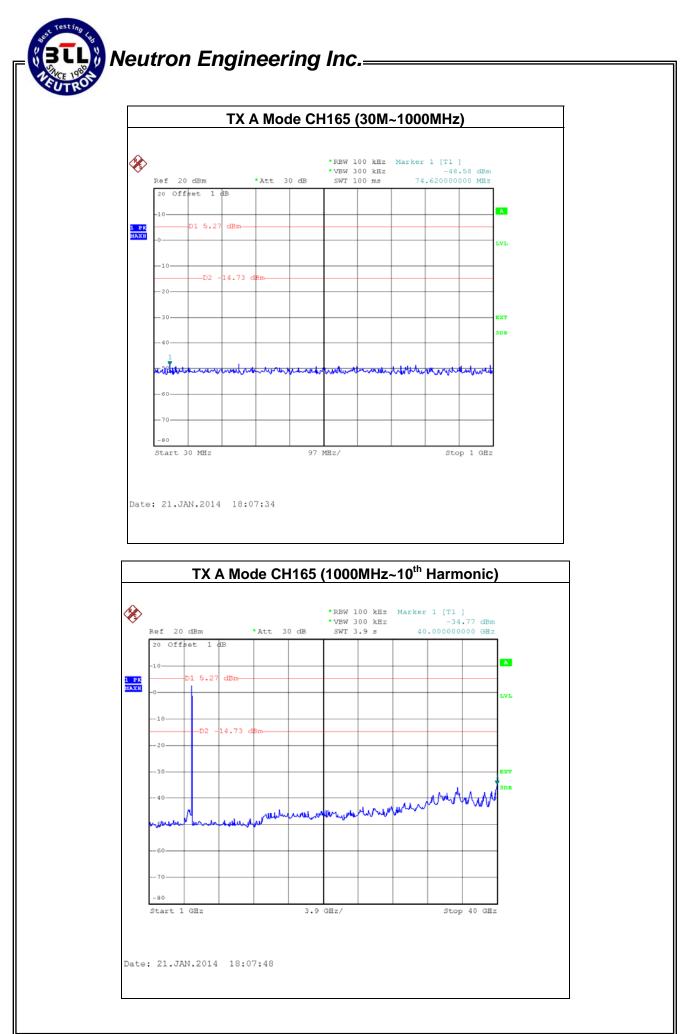

The EUT tested system was configured as the statements of 4.1.6 Unless otherwise a special operating condition is specified in the follows during the testing.

7.1.5 EUT TEST CONDITIONS

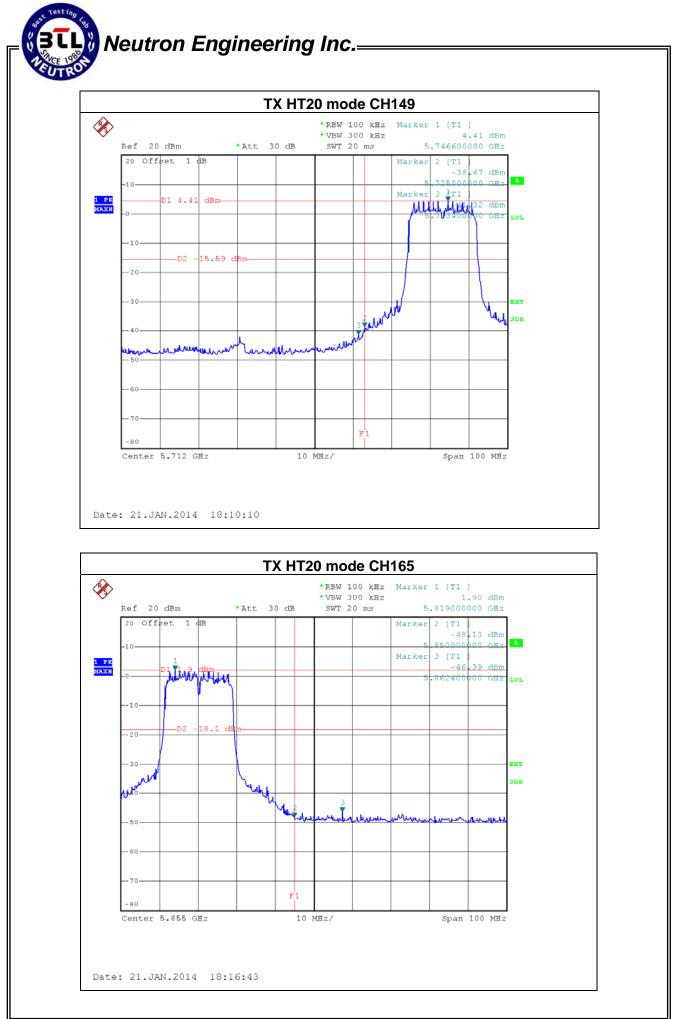

Temperature: 25°C Relative Humidity: 55% Test Voltage: AC 120V/60Hz

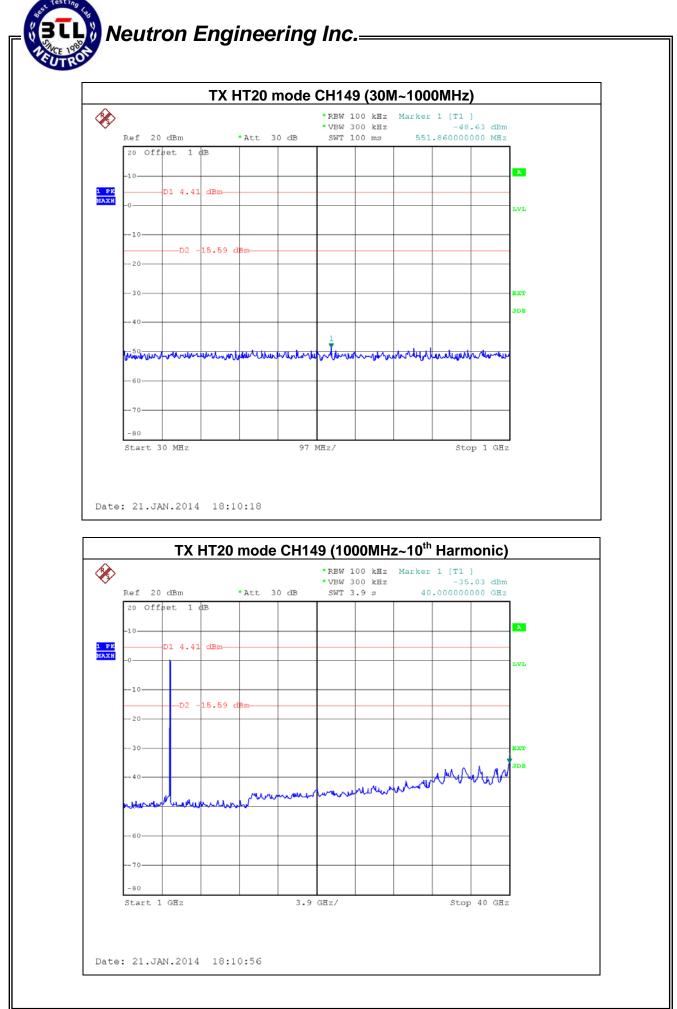
BIL A	leutron Engineering Inc	
VEUTRON		
7.1.6 TEST R	ESULTS	
Test Mode :	TX A Mode	
Test mode .		
Report No.: NEI-P	-CCP-3-1312C200	Page 66 of 107

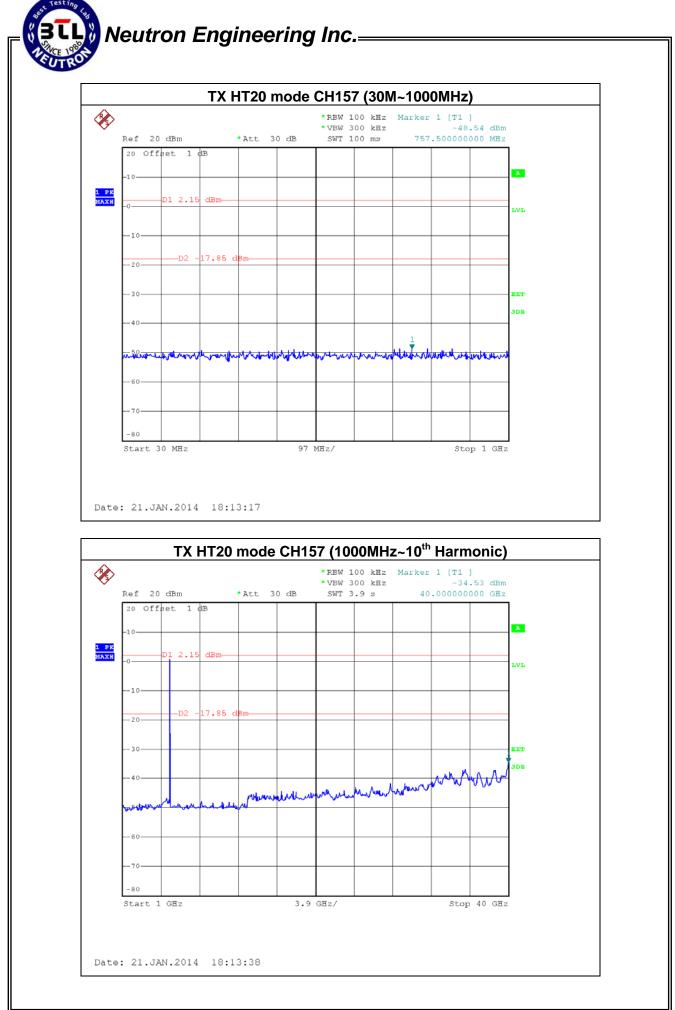


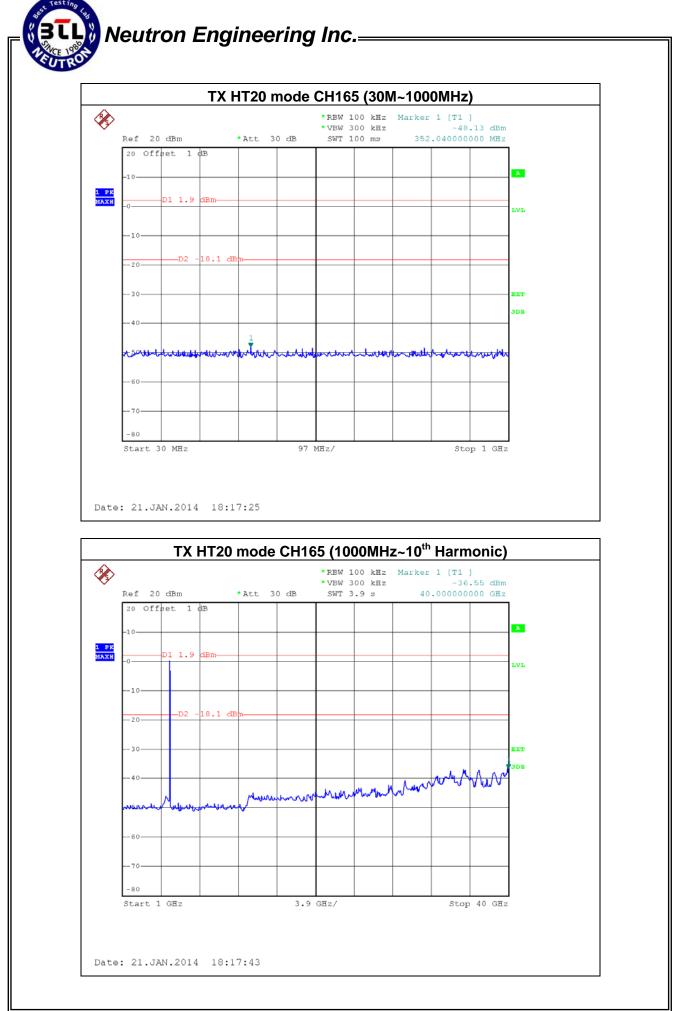


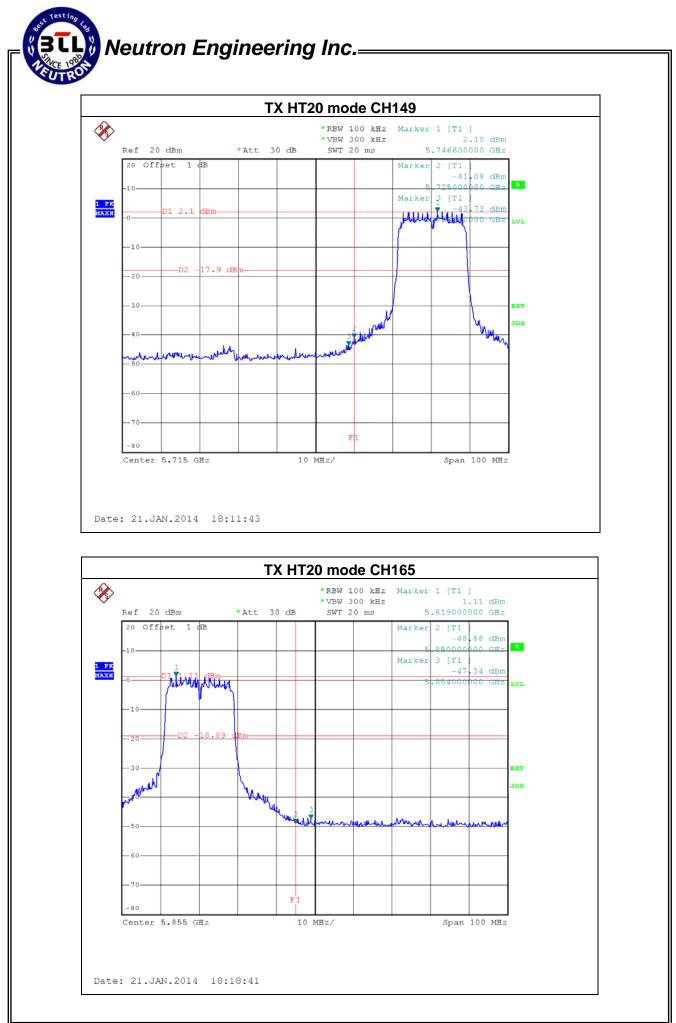
Report No.: NEI-FCCP-3-1312C200

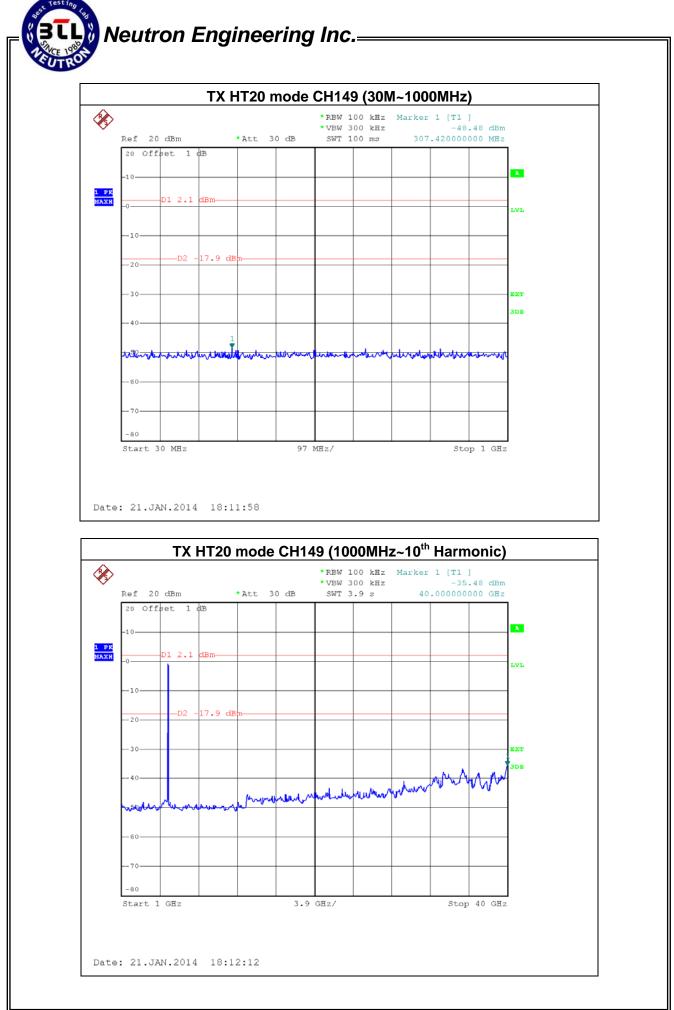


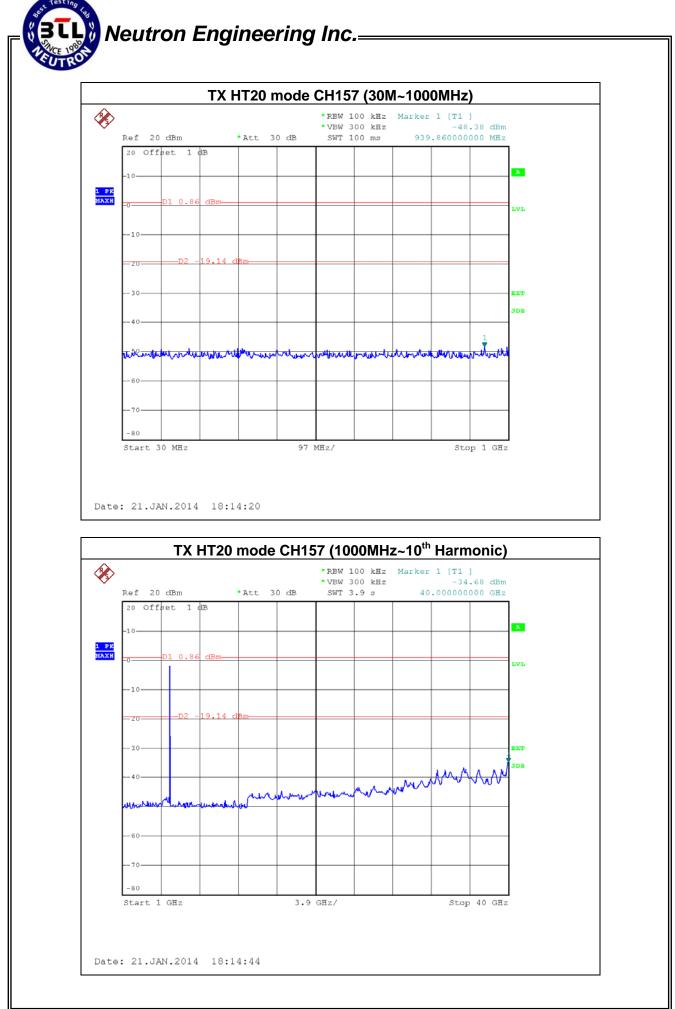

Report No.: NEI-FCCP-3-1312C200

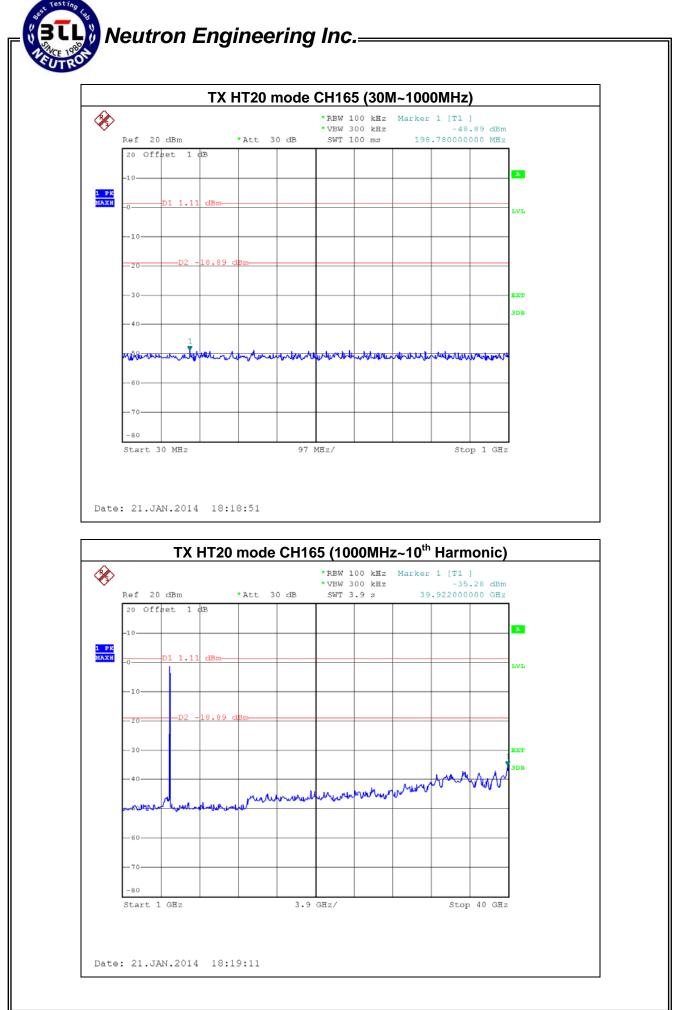



t Mode :	TX N-20M Mode_ANT 1			

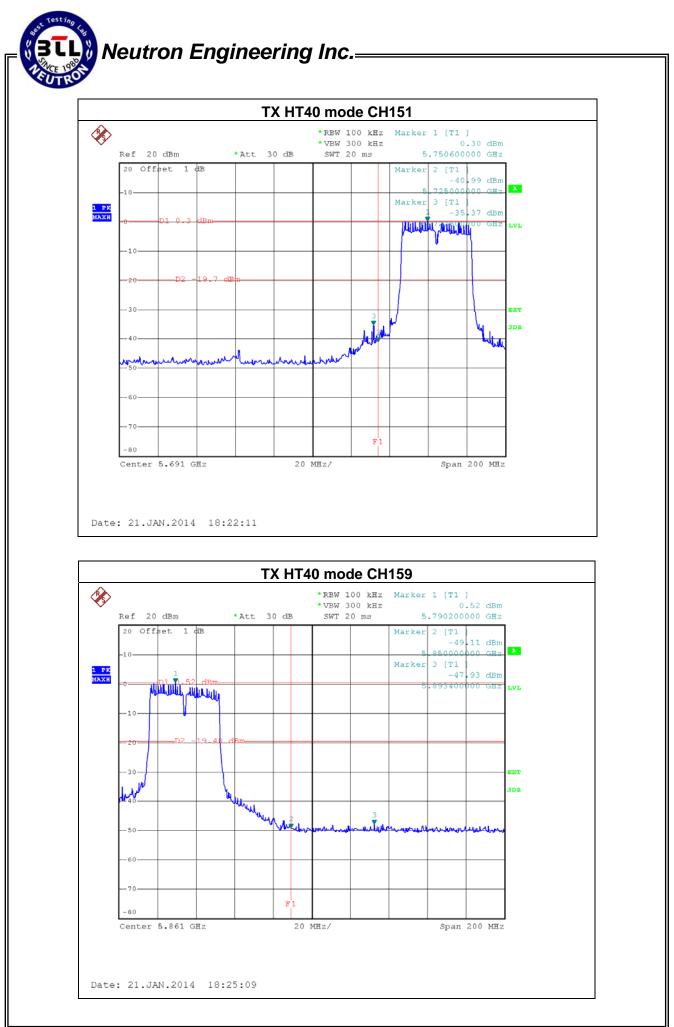


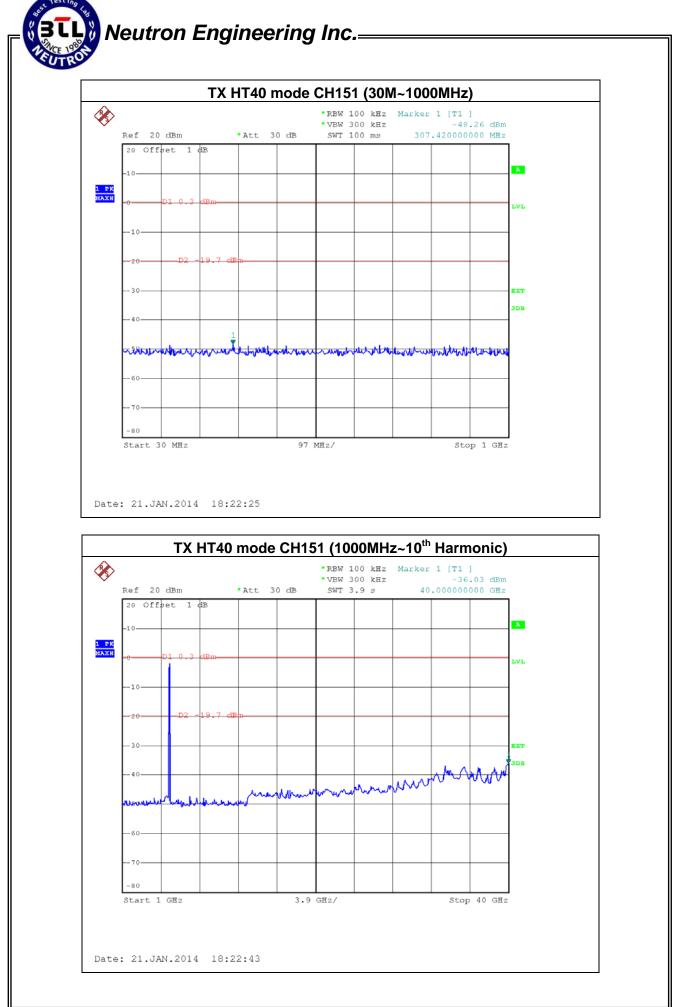


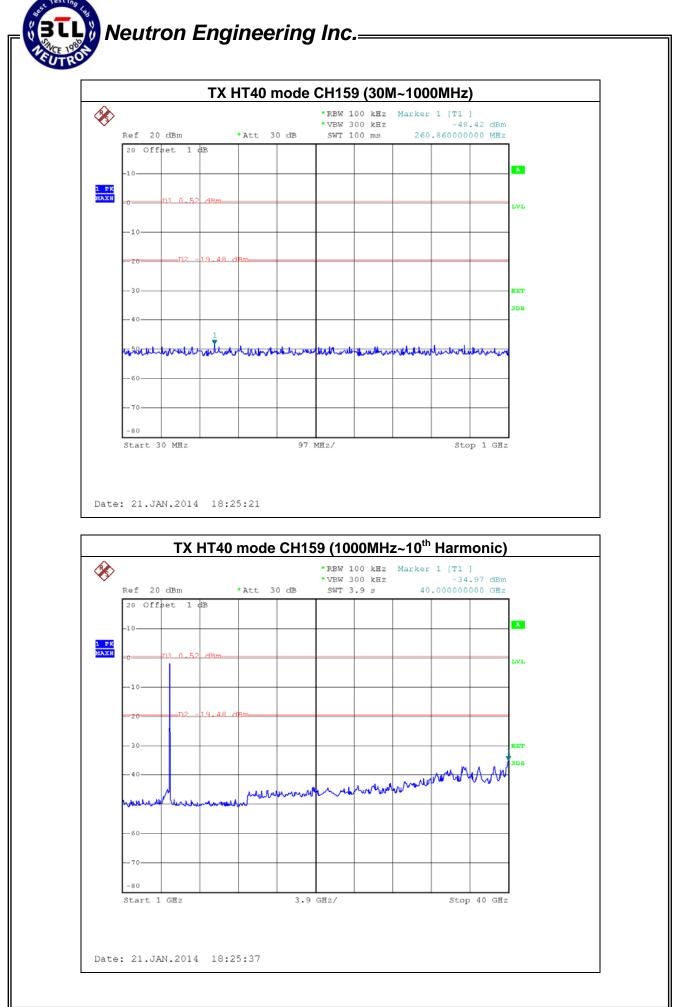

Page 74 of 107



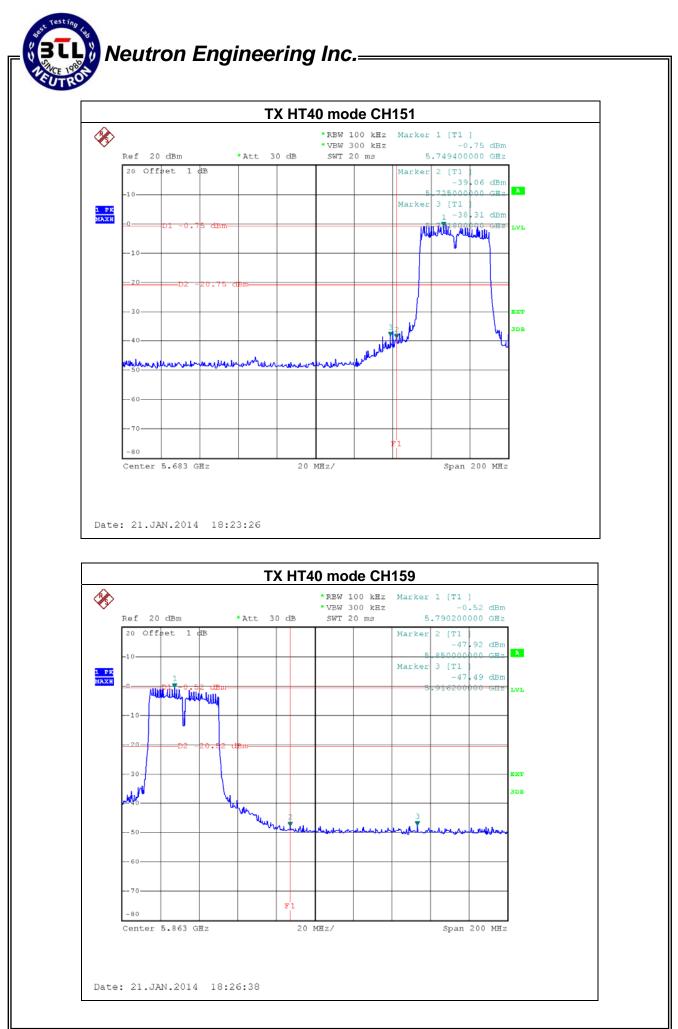
st Mode :	TX N-20M Mode_ANT 2	

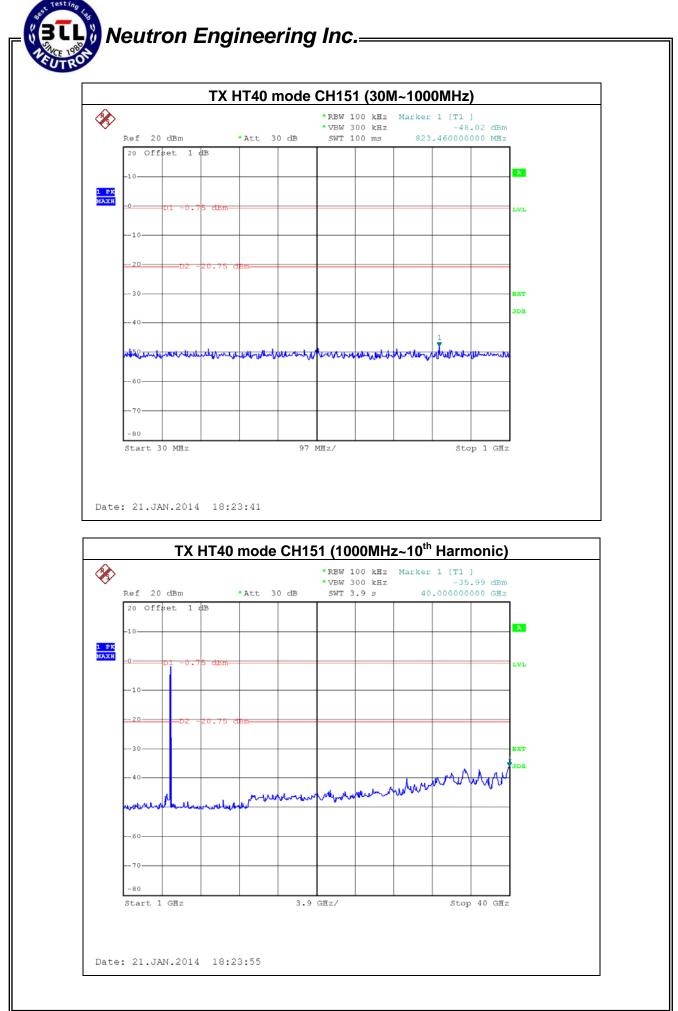


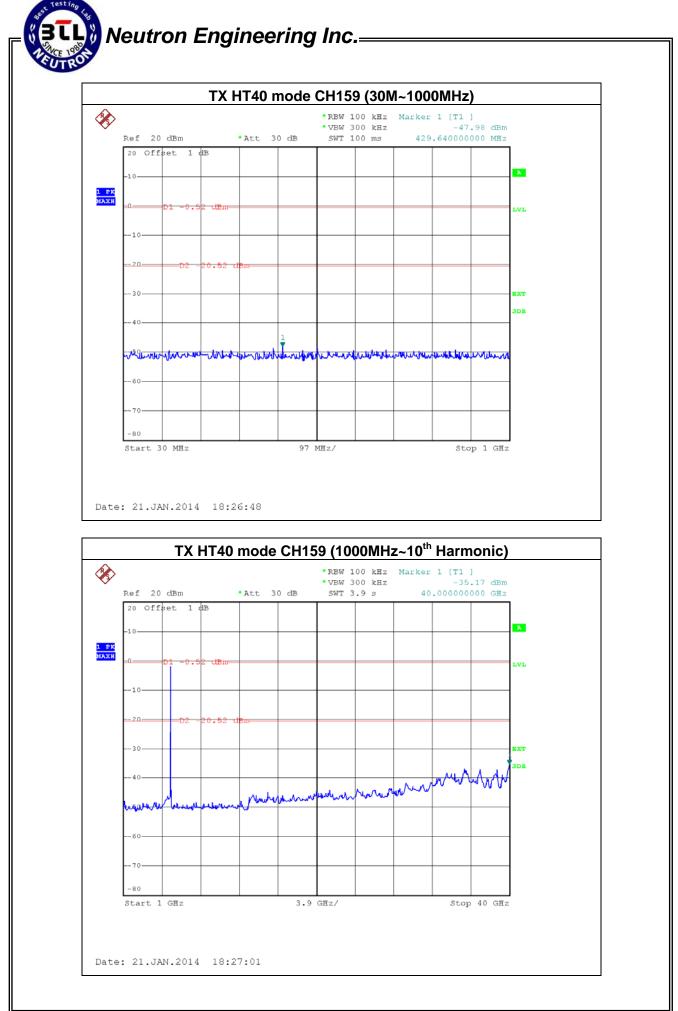




Report No.: NEI-FCCP-3-1312C200


st Mode :	TX N-40M Mode_ANT 1	





st Mode :	TX N-40M Mode_ANT 2	

8. POWER SPECTRAL DENSITY TEST

8.1 Applied procedures / limit

	FCC Part15 (15.247) , Subpart C					
Section	Test Item	Limit	Frequency Range (MHz)	Result		
15.247(e)	Power Spectral Density	8 dBm (in any 3KHz)	5745 - 5825	PASS		

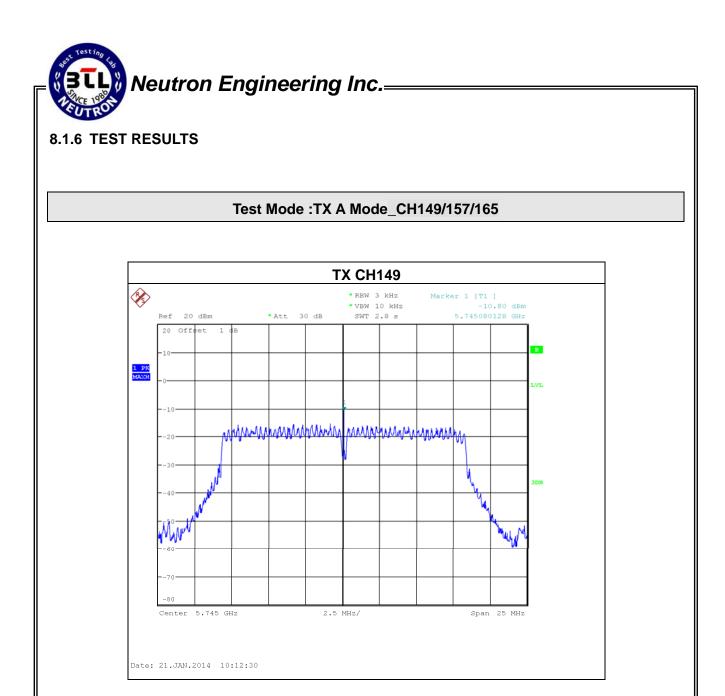
8.1.1 TEST PROCEDURE

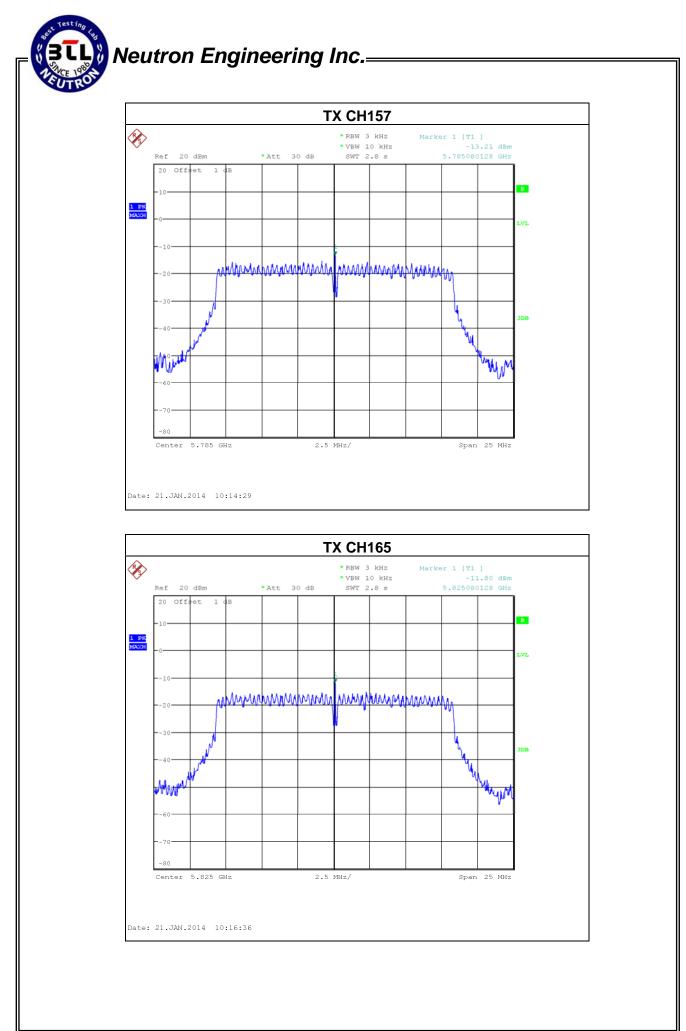
- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW=3KHz, VBW=10KHz, Sweep time = Auto.

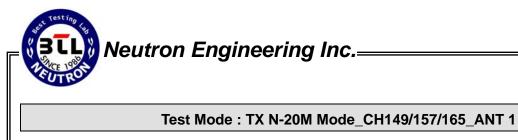
8.1.2 DEVIATION FROM STANDARD

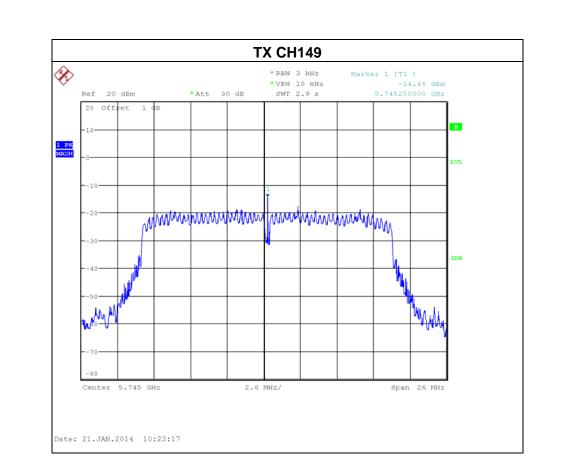
No deviation.

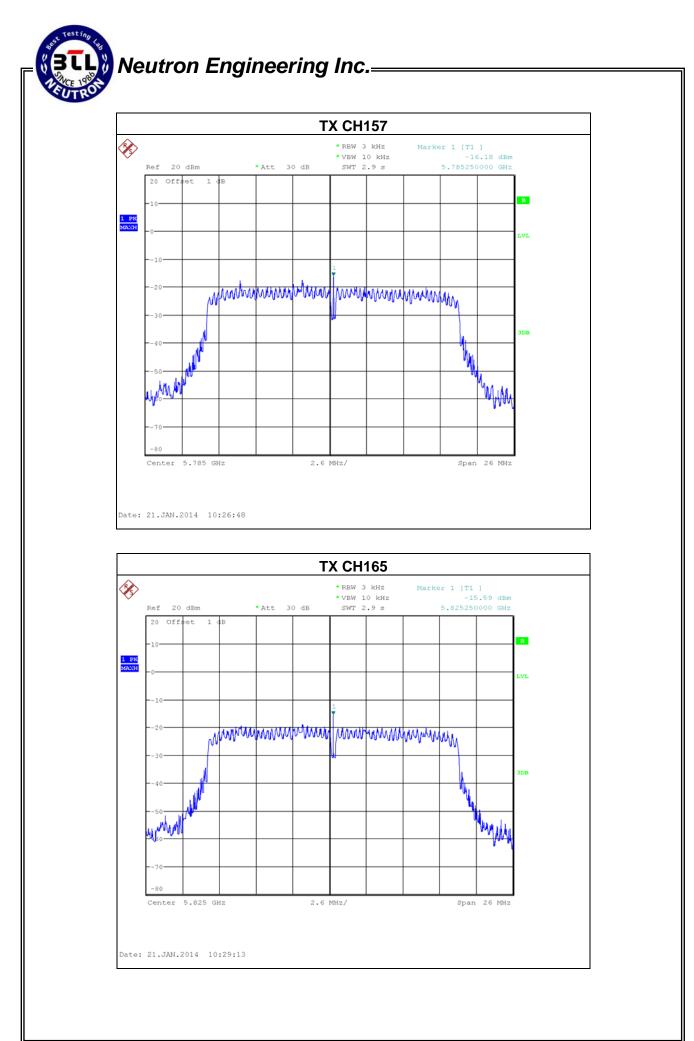
8.1.3 TEST SETUP

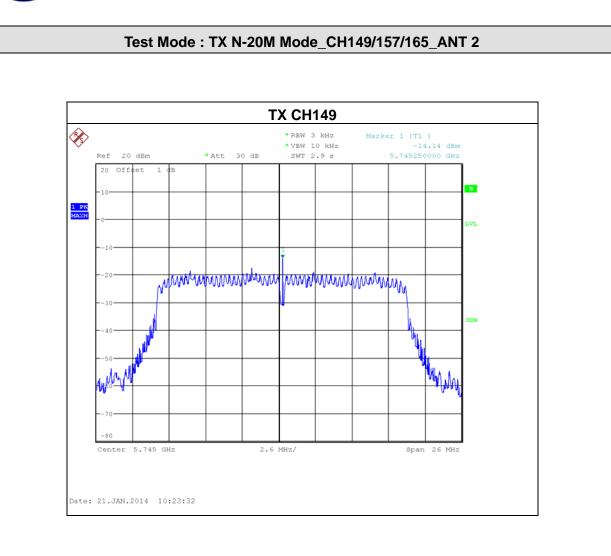

EUT	SPECTRUM
	ANALYZER

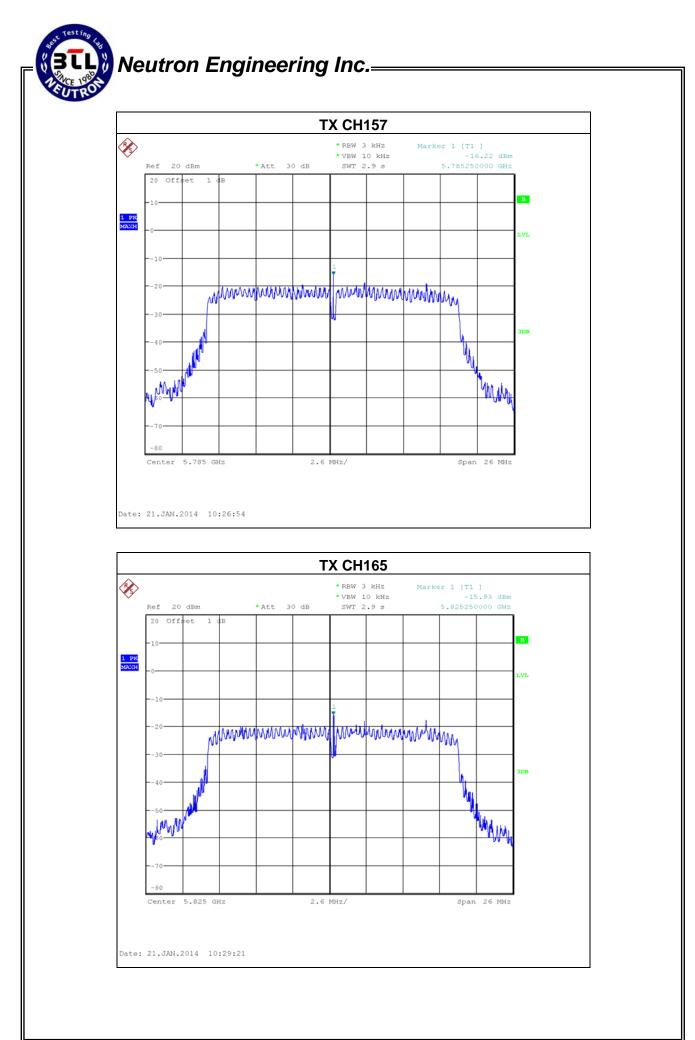

8.1.4 EUT OPERATION CONDITIONS

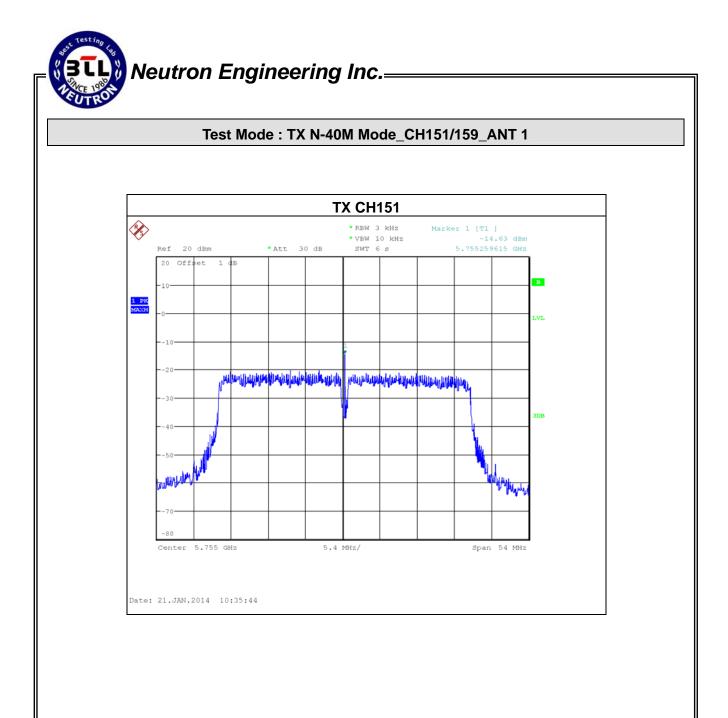

The EUT tested system was configured as the statements of 4.1.6 Unless otherwise a special operating condition is specified in the follows during the testing.

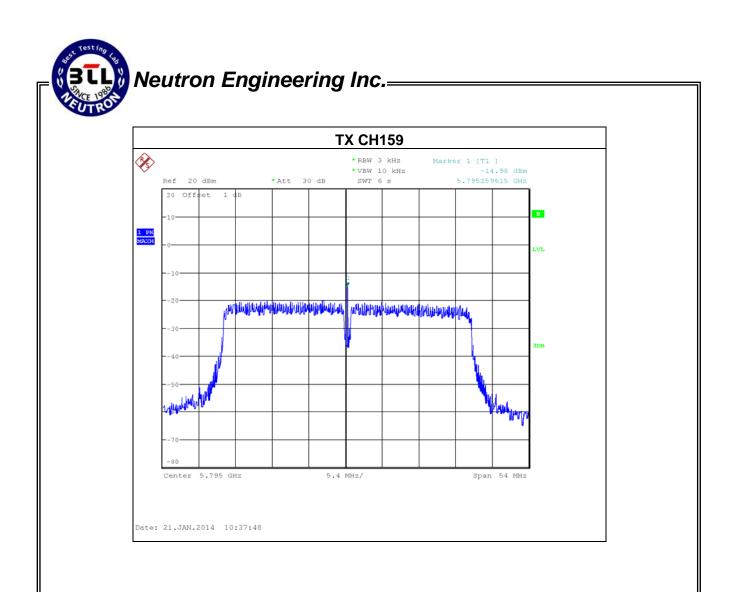

8.1.5 EUT TEST CONDITIONS

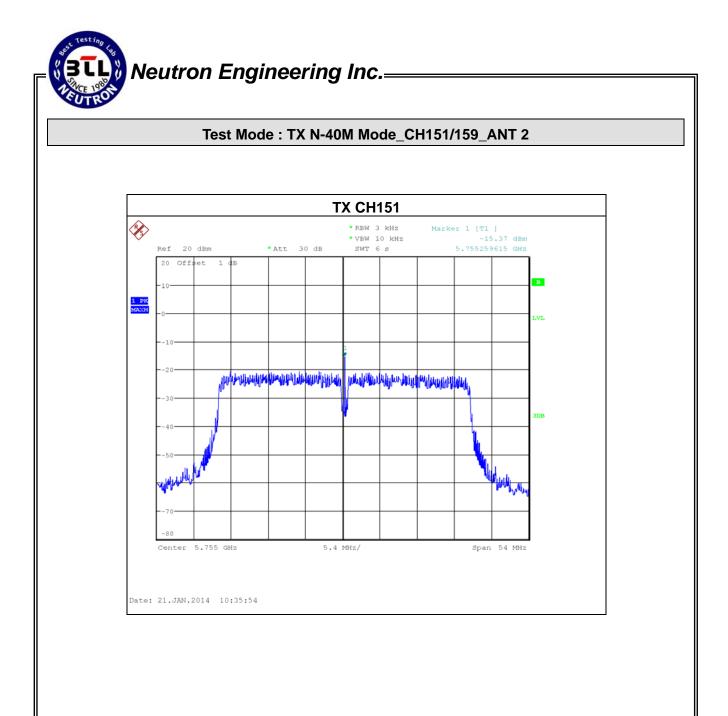

Temperature: 25°C Relative Humidity: 55% Test Voltage: AC 120V/60Hz

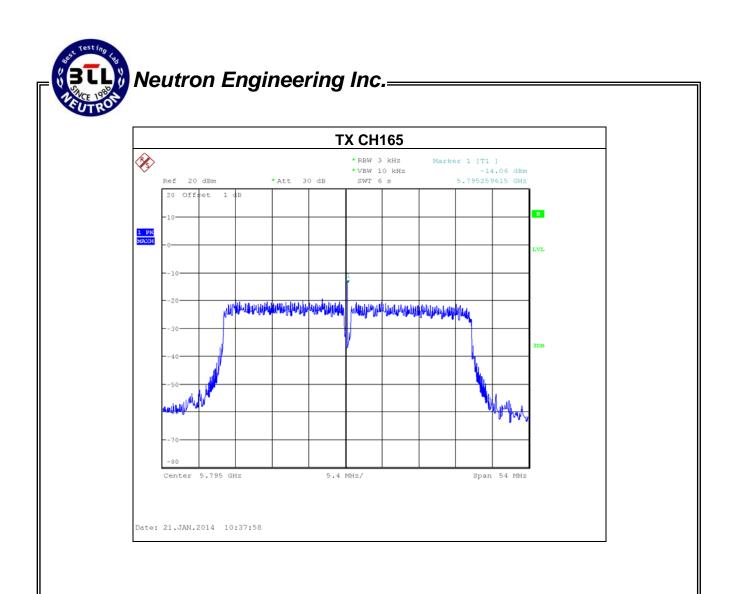












Test Mode : TX N-20M Mode_CH149/157/165_Total						
Test Channel	Frequency	Power Density	Limit			
	(MHz)	(dBm)	(dBm)			
CH149	5745	-11.29	8			
CH157	5785	-13.19	8			
CH165	5825	-12.75	8			

Test Mode : TX N-40M Mode_CH151/159_Total						
Test Channel	Frequency	Power Density	Limit			
	(MHz)	(dBm)	(dBm)			
CH151	5755	-11.97	8			
CH159	5795	-11.49	8			

9. MEASUREMENT INSTRUMENTS LIST

	Conducted Emission Measurement						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until		
1	LISN	EMCO	3816/2	00052765	Apr. 25, 2014		
2	LISN	R&S	ENV216	100087	Nov. 09, 2014		
3	Test Cable	N/A	C_17	N/A	Mar.15, 2014		
4	EMI TEST RECEIVER	R&S	ESCS30	826547/022	Apr. 25, 2014		
5	50Ω Terminator	SHX	TF2-3G-A	08122902	Apr. 25, 2014		

	Radiated Emission Measurement					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	Antenna	Schwarbeck	VULB9160	9160-3232	Apr. 25, 2014	
2	Amplifier	HP	8447D	2944A09673	Apr. 25, 2014	
3	Test Receiver	R&S	ESCI	100382	Apr. 25, 2014	
4	Test Cable	N/A	C-01_CB03	N/A	Jul. 02, 2014	
5	Antenna	ETS	3115	00075789	Apr. 25, 2014	
6	Amplifier	Agilent	8449B	3008A02274	Apr. 25, 2014	
7	Spectrum	Agilent	E4408B	US39240143	Nov. 09, 2014	
8	Test Cable	HUBER+SUHNER	C-45	N/A	Apr. 30, 2014	
9	Controller	СТ	SC100	N/A	N/A	
10	Horn Antenna	EMCO	3115	9605-4803	Apr. 25, 2014	
11	Active Loop Antenna	R&S	HFH2-Z2	830749/020	Apr. 25, 2014	
12	Broad-Band Horn Antenna	Schwarzbeck	BBHA 9170	9170319	Oct. 22, 2014	

	6dB Bandwidth Measurement					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	Spectrum Analyzer	R&S	FSP 40	100185	Nov. 09, 2014	

	Peak Output Power Measurement					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	P-series Power meter	Agilent	N1911A	MY45100473	Apr. 25, 2014	
2	Wireband Power sensor	Agilent	N1921A	MY51100041	Apr. 25, 2014	

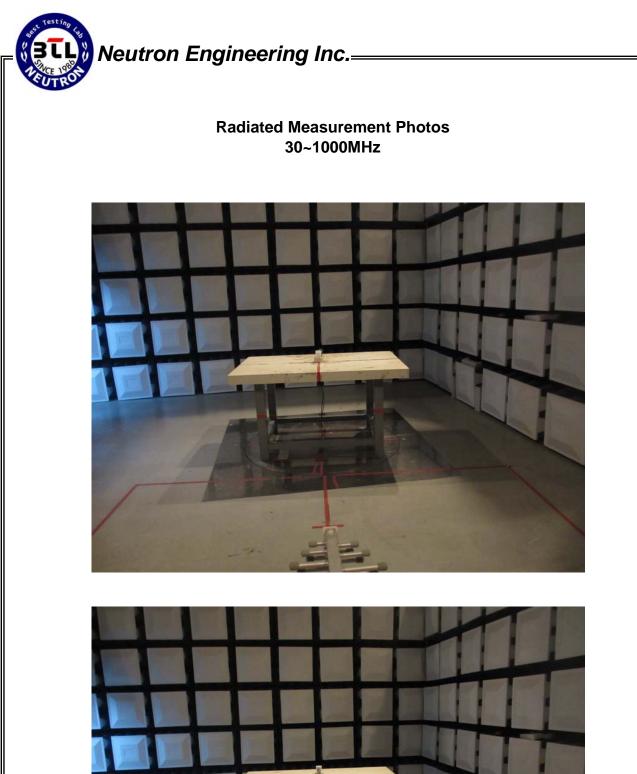
	Antenna Conducted Spurious Emission Measurement					
ltem	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	Spectrum Analyzer	R&S	FSP 40	100185	Nov. 09, 2014	

	Power Spectral Density Measurement				
ltem	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Spectrum Analyzer	R&S	FSP 40	100185	Nov. 09, 2014

Remark: "N/A" denotes no model name, serial no. or calibration specified. All calibration period of equipment list is one year.

10. EUT TEST PHOTO

Conducted Measurement Photos



Radiated Measurement Photos 9K~30MHz

Radiated Measurement Photos Above 1000MHz

