

Elliott Laboratories Inc. 684 West Moude Avenue www.elliptiabs.com Sunnyvale. CA 94086-3518 408-245-3499 Fax

408-245-7800 Phone

Electromagnetic Emissions Test Report For a Class II Permissive change In Accordance With Industry Canada Radio Standards Specification 133 & FCC Part 24 Subpart E on the **PCS** Amplifier Model: DPA4040G

APPLICANT: REMEC 350 West Java Drive Sunnyvale, CA 94089

TEST SITE: Elliott Laboratories, Inc. 684 W. Maude Ave Sunnyvale, CA 94086

REPORT DATE:

June 3, 2003 May 30, 2003

FINAL TEST DATE:

AUTHORIZED SIGNATORY:

uan man

Sr. EMC Engineer

This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, Inc.

TABLE OF CONTENTS

COVER PAGE	1
TABLE OF CONTENTS	. 2
FCC CERTIFICATION INFORMATION	.3
SCOPE	. 5
OBJECTIVE	. 5
EMISSION TEST RESULTS	. 6
 SECTION 2.1046: RF POWER OUTPUT RSS-133 (6.2): RF POWER OUTPUT. SECTION 2.1047: MODULATION CHARACTERISTICS. Section 2.1047 (d) Other types of equipment. SECTION 2.1049: OCCUPIED BANDWIDTH RSS-133 (5.6): DEFINITION OF BANDWIDTH SECTION 2.1051: SPURIOUS EMISSION AT ANTENNA TERMINAL. RSS-133 (6.3): UNWANTED EMISSION. SECTION 2.1053: FIELD STRENGTH OF SPURIOUS RADIATION. RSS-133 (6.3): FIELD STRENGTH OF SPURIOUS RADIATION. SECTION 2.1055: FREQUENCY STABILITY RSS-133 (7): FREQUENCY STABILITY 	. 6 . 6 . 7 . 7 . 7 . 7 . 7 . 7 . 8 . 8
TEST SITE	.9
GENERAL INFORMATION CONDUCTED EMISSIONS CONSIDERATIONS RADIATED EMISSIONS CONSIDERATIONS	. 9
MEASUREMENT INSTRUMENTATION	10
RECEIVER SYSTEM INSTRUMENT CONTROL COMPUTER PEAK POWER METER FILTERS/ATTENUATORS ANTENNAS ANTENNA MAST AND EQUIPMENT TURNTABLE INSTRUMENT CALIBRATION	10 10 10 11 11
TEST PROCEDURES	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
RADIATED EMISSIONS SPECIFICATION LIMITS CALCULATIONS – EFFECTIVE RADIATED POWER EXHIBIT 1: Test Equipment Calibration Data EXHIBIT 2: Test Measurement Data	15 . <i>1</i>

FCC CERTIFICATION INFORMATION

The following information is in accordance with FCC Rules, 47CFR Part 2, Subpart J, Section 2.1033(C) & to Industry Canada RSP-100.

2.1033(c)(1) Applicant: REMEC 350 West Java Drive Sunnyvale, CA 94089

2.1033(c)(2) & RSP-100 (4) FCC ID: I20DPA4040G

2.1033(c)(3) & RSP-100 (7.2(a)) Instructions/Installation Manual

266KG7W (EDGE)

2.1033(c)(5) & RSP-100 (7.2(a)) Frequency Range

Forward: 1930.3 - 1989.8 MHz

2.1033(c)(6) & RSP-100 (7.2(a)) Range of Operation Power

Forward: 39.8 Watts (46.0dBm) Combined EDGE Forward: 44.7 Watts (46.5dBm) Isolated EDGE

2.1033(c)(7) & RSP-100 (7.2(a)) Maximum FCC & IC Allowed Power Level

24.232(a) & RSS-133 (6.2): In no case may the peak output power of a base station transmitter exceed 100 watts.

24.235(b) & RSS-133 (6.2): Mobile/portable stations are limited to 2 watts E.I.R.P. peak power and the equipment must employ means to limit the power to the minimum necessary for successful communications.

2.1033(c)(8) & RSP-100 (7.2(a)) Applied voltage and currents into the final transistor elements

This document was provided on the original approval.

2.1033(c)(9) & RSP-100 (7.2(a)) Tune-up Procedure

There are no user tunable components in the design so no Tune-up procedure is required.

2.1033(c)(10) & RSP 100 (7.2(a)) Schematic Diagram of the Transmitter

This document was provided on the original approval.

2.1033(c)(10) & RSP-100 (7.2(a)) Means for Frequency Stabilization

Not applicable EUT is an amplifier

2.1033(c)(10) & RSP-100 (7.2(a)) Means for Suppression of Spurious radiation

This document was provided on the original approval.

2.1033(c)(10) & RSP-100 (7.2(a)) Means for Limiting Modulation

This document was provided on the original approval.

2.1033(c)(10) & RSP-100 (7.2(a)) Means for Limiting Power

This document was provided on the original approval.

2.1033(c)(11) & RSP-100 (7.2(g)) Photographs or Drawing of the Equipment Identification Plate or Label

This document was provided on the original approval.

2.1033(c)(12) & RSP-100 (7.2(c)) Photographs of equipment

This document was provided on the original approval.

2.1033(c)(13) & RSP-100 (7.2(a)) Equipment Employing Digital Modulation

The PCS amplifier does not produce the EDGE internally. The PCS amplifier will only provide amplification for the transmission of the EDGE modulation.

2.1033(c)(14) & RSP-100 (7.2(b)(ii)) Data taken per Section 2.1046 to 2.1057 and RSS-133 issue 2, Rev. 1.

Refer to Exhibit 2

SCOPE

FCC Part 24 Subpart E & IC RSS-133 testing was performed for the equipment mentioned in this report. The equipment was tested in accordance with the procedures specified in Sections 2.1046 to 2.1057 of the FCC Rules & in IC RCC-133. TIA-603 was also used as a test procedure guideline to perform some of the required tests.

The intentional radiator above was tested in a simulated typical installation to demonstrate compliance with the relevant FCC & RSS performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

OBJECTIVE

The primary objective of the manufacturer is compliance with the FCC Rules part 24 Subpart E & IC RSS-133. Certification of these devices is required as a prerequisite to marketing as defined in Section 2.1033 & RSP-100.

Certification is a procedure where the manufacturer or a contracted laboratory makes measurements and submits the test data and technical information to FCC & Industry Canada. FCC & Industry Canada issues a grant of equipment authorization and a certification number upon successful completion of their review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product that may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

EMISSION TEST RESULTS

Section 2.1046: RF Power Output RSS-133 (6.2): RF Power Output

The RF Power Output was tested to Section 24.213(a) & (b) and RSS-133 (6.2)

The following modulations were tested: EDGE

Procedure used: **B**

Result: Maximum 46 dBm Combine, 46.5 Isolated

Refer to the test data in Exhibit 2: Test Measurement Data for full details.

SECTION 2.1047: MODULATION CHARACTERISTICS

Section 2.1047 (d) Other types of equipment.

Other types of modulations were tested to Section 24.238 (b).

The following modulations were tested: EDGE

Procedure used: **H & C**

Result: 266.3 kHz

Refer to the test data in Exhibit 2: Test Measurement Data for full details.

SECTION 2.1049: OCCUPIED BANDWIDTH RSS-133 (5.6): Definition of Bandwidth

The Occupied Bandwidth was tested to Section 24.238 (b) and RSS-133 (5.6).

The following modulations were tested: EDGE

Procedure used: **D & C**

Result: 266.3 kHz

Refer to the test data in Exhibit 2: Test Measurement Data for full details.

SECTION 2.1051: SPURIOUS EMISSION AT ANTENNA TERMINAL. RSS-133 (6.3): Unwanted Emission

The Spurious Emission at the Antenna terminal was tested to Section 24.232(a)(b) & (c) and RSS-133 (6.3)

The following modulations were tested: EDGE

Procedure used: I & J

Result:.-18.07 dBm @ 1990 MHz (Bandedge); -3.99 dBm @ 3950 MHz (Second Harmonic)

Note: An external filter will be placed at the output of the amplifier to attenuate the second harmonic. The specified minimum filter attenuation should be 15dB or more at the second harmonic.

Refer to the test data in Exhibit 2: Test Measurement Data for full details.

SECTION 2.1053: FIELD STRENGTH OF SPURIOUS RADIATION. RSS-133 (6.3): FIELD STRENGTH OF SPURIOUS RADIATION.

The Field Strength was tested to Section FCC 24.238(a) and RSS-133 (6.3)

Procedure used: N

Result: -6.8 dB @ 3866 MHz

Refer to Setup Photo# 1 & 2 in Exhibit 3 and the test data in Exhibit 2: Test Measurement Data for full details.

SECTION 2.1055: FREQUENCY STABILITY RSS-133 (7): FREQUENCY STABILITY

Not applicable EUT is an amplifier

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on May 30, 2003 at the Elliott Laboratories Open Area Test Site # 1 & 4 located at 684 West Maude Avenue, Sunnyvale, California. Pursuant to Section 2.948 of the FCC Rules, construction, calibration, and equipment data has been filed with the Commission.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing are performed in conformance with Section 2 of FCC Rules. Measurements are made with the EUT connected to a spectrum analyzer through an attenuator to prevent overloading the analyzer.

RADIATED EMISSIONS CONSIDERATIONS

Radiated measurements are performed in an open field environment. The test site is maintained free of conductive objects within the CISPR 16-1 defined elliptical area.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers are capable of measuring over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the particular detector used during measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. If average measurements above 1000MHz are performed, the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz is used.

INSTRUMENT CONTROL COMPUTER

A personal computer is utilized to record the receiver measurements of the field strength at the antenna, which is then compared directly with the appropriate specification limit. The receiver is programmed with appropriate factors to convert the received voltage into filed strength at the antenna. Results are printed in a graphic and/or tabular format, as appropriate.

The test receiver also provides a visual display of the signal being measured.

PEAK POWER METER

A peak power meter and thermister mount may be used for output power measurements from transmitters as they provide a broadband indication of the power output.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or EUT and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transmitters and transient events.

ANTENNAS

A biconical antenna is used to cover the range from 30 MHz to 300 MHz and a log periodic antenna is utilized from 300 MHz to 1000 MHz. Narrowband tuned dipole antennas are used over the 30 to 1000 MHz range for precision measurements of field strength. Above 1000 MHz, a horn antenna is used. The antenna calibration factors are included in site factors programmed into the test receivers

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor drive to vary the antenna height.

The requirements of ANSI C63.4 were used for configuration of the equipment turntable. It specifies that the test height above ground for table-mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An appendix of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

General: For Transmitters with detachable antenna, direct measurements for output power, modulation characterization, occupied bandwidth, and frequency stability are performed with the antenna port of the EUT connected to either the power meter, modulation analyzer, or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the transmitter fundamental will not overload the front end of the measurement instrument.

Procedure B – Power Measurement (Conducted Method): The following procedure was used for transmitters that do use external antennas.

- 1) Set the EUT to maximum power and to the lowest channel.
- 2) Either a power meter or a spectrum analyzer was used to measure the power output.
- 3) If a spectrum analyzer was used a resolution and video bandwidth 1MHz was used to measure the power output. Corrected for any external attenuation used for the protection of the input of analyzer. In addition, For CDMA or TDMA modulations set spectrum analyzer resolution to 1MHz and video to 30 kHz. Use video averaging with a 100-sample rate.
- 4) If a power meter was used, corrected for any external attenuation used for the protection of the input of the sensor head. Also set the power sensor correction by setting up the frequency range that will be measured.
- 5) Repeat this for the high channel and all modulations that will be used and all output ports used for transmission

Procedure C – Amplifier Bandwidth (Conducted Method): If the EUT is an amplification device the following procedure was performed:

- 1) Set the EUT to maximum power and to the lowest channel. Set the Resolution and Video Bandwidth to 30 kHz, with no averaging. These settings were used to show the true representation of the signal bandwidth.
- 2) Made a plot of the EUT output port and label it "Output"
- 3) With the same setting on the spectrum analyzer connect the cable that was connected to the input port of the amplifier to the analyzer. Made a plot and label it "Input"
- 4) Repeat this for the high channel and all modulations that will be used and all output ports used for transmission

Procedure D - Occupied Bandwidth (Conducted Method): Either for analog, digital, or data modulations, occupied bandwidth was performed. The EUT was set to transmit the appropriate modulation at maximum power. The bandwidth was measured using following methods:

- 1) The built-in 99% function of the spectrum analyzer was used.
- 2) If the built-in 99% is not available then the following method is used:

26-dB was subtracted from the maximum peak of the emission. The display line function was then set 26-dB below the maximum peak of the signal. The display line function was used, in conjunction with the marker delta function, to measure the emissions 26-dB bandwidth.

3) For the above two methods a resolution and video bandwidth of 30 kHz was used to measure the emission's bandwidth.

Procedure H - Other Types of Equipment: Either digital or data modulated signals were simulated, by software or external sources, to performed the required tests. The EUT was set to transmit the appropriate digital modulation.

Procedure I – Bandedge: Where Bandedge measurements are specified the following procedure was performed:

- 1) Set the transmitting signal as close as possible to the edge of the frequency band/block per 24.232(a)(b) & (c). Power is set to maximum
- 2) Set the spectrum analyzer display line function to -13 dBm.
- 3) Set the spectrum analyzer bandwidth to 30 kHz. Which is the minimum 1 % of the emission bandwidth. Per FCC, if a resolution, less then the calculate 1% is used, for the Bandedge measurement; the following formula is to be used to correct the measured value (10*log (1% RB / RB used)).
- 4) Set the marker function to the FCC specified frequency band/block.
- 5) Set the spectrum analyzer span to show any emission within 2 MHz above or below the frequency band/block. All spurious or intermodulation emission must not exceed the -13dBm limit.
- 6) Steps 1 to 3 were repeated for all modulations and output ports that will be used for transmission.

Procedure J – Antenna Conducted Emissions: For spurious emission measurements at the antenna terminal the following procedure was performed:

- 1) Set the transmitting signal as close as possible to the edge of the frequency band/block per 24.232(a)(b) & (c). Power is set to maximum
- 2) Set the spectrum analyzer display line function to -13-dBm.
- 3) Set the spectrum analyzer bandwidth to 1 MHz.
- 4) For the spectrum analyzer, the start frequency was set to 30 MHz and the stop frequency set to 20 GHz. All spurious or intermodulation emission must not exceed the -13dBm limit.
- 5) Steps 1 to 3 were repeated for all modulations and output ports that will be used for transmission.

Procedure N - Field Strength Measurement: The EUT was set on the turntable and the search antenna position 3 meters away. The output antenna terminal was terminated with a 50-ohm terminator. The EUT was set at the middle of the frequency band and set at maximum output power.

For the first scan, a pre-liminary measurement is performed. A preliminary scan of emissions is conducted in which all significant EUT frequencies are identified with the system in a nominal configuration. One or more of these is with the antenna polarized vertically while the one or more of these are with the antenna polarized horizontally. During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit.

For the final measurement, Substitution method is performed on spurious emissions not being 20-dB below the calculated radiated limit. Substitution method is performed by replacing the EUT with a horn antenna, which factors can be reference to a half-wave dipole, and with a signal generator. The signal generator power level was adjusted until a similar level, which was measured on the first scan, is achieved on the spectrum analyzer. The level on the signal generator is than added to the antenna factor, in dBi, which will give the corrected value.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

RADIATED EMISSIONS SPECIFICATION LIMITS

The limits for radiated emissions are based on the power of the transmitter at the operating frequency. Data is measured in the logarithmic form of decibels relative to one milliwatt (dBm) or one microvolt/meter (dBuV/m,). The field strength of the emissions from the EUT is measured on a test site with a receiver.

Below is a formula example used to calculate the attenuation requirement, relative to the transmitters power output, in dBuV/m. For this example an operating power range of 3 watts is used. The radiated emissions limit for spurious signals outside of the assigned frequency block is $43+10Log_{10}$ (mean output power in watts) dB below the measured amplitude at the operating power.

CALCULATIONS – EFFECTIVE RADIATED POWER

$$E(V/m) = \frac{\sqrt{30 * P * G}}{d}$$

E= Field Strength in V/m P= Power in Watts (for this example we use 3 watts) G= Gain of antenna in numeric gain (Assume 1.64 for ERP) d= distance in meters

$$E(V/m) = \frac{\sqrt{30 * 3 \text{ watts } * 1.64 \text{ dB}}}{3 \text{ meters}}$$

 $20 * \log (4.049 \text{ V/m} * 1,000,000) = 132.14 \text{ dBuV/m} @ 3 \text{ meters}$

FCC Rules request an attenuation of $43 + 10 \log (3)$ or 47.8 dB for all emissions outside the assigned block, the limit for spurious and harmonic emissions is:

132.1 dBuV/m - 47.8 dB = 84.3 dBuV/m @ 3 meter.

Note: Substitution Method is performed for spurious emission not being 20-dB below the calculated field strength.

EXHIBIT 1: Test Equipment Calibration Data

Radiated Emissions, 30 - 1000 MHz, 28-May-03

Engineer: volivas						
Manufacturer	Description	Model #	Assett #	Cal interval	Last Calibrated	Cal Due
EMCO	Biconical Antenna, 30-300 MHz	3110B	801	12	5/13/2003	5/13/2004
EMCO	Log Periodic Antenna, 0.3-1 GHz	3146A	364	12	9/12/2002	9/12/2003
Rohde & Schwarz	Test Receiver, 9kHz-2750MHz	ESCS 30	1337	12	12/27/2002	12/27/2003
Radiated Emissions	, 1000 - 20,000 MHz, 03-Jun-03					
Engineer: jmartinez						
Manufacturer	Description	Model #	Assett #	Cal interval	Last Calibrated	Cal Due
EMCO	Horn Antenna, D. Ridge 1-18GHz	3115	487	12	4/24/2003	4/24/2004
Hewlett Packard	Microwave EMI test system (SA40, 30Hz - 40GHz), system 2	84125C	1410	12	4/2/2003	4/2/2004
Hewlett Packard	Signal Generator (sweep) 0.01 - 26.5 GHz	8340A	1244	N/A		
Hewlett Packard	Spectrum Analyzer, 9KHz - 26.5GHz	8563E	F1202LB	12	9/27/2002	9/27/2003
Antenna Conducted	Emissions, 03-Jun-03					
Engineer: jmartinez						
Manufacturer	<u>Description</u>	Model #	Assett #	Cal interval	Last Calibrated	Cal Due
Hewlett Packard	Spectrum Analyzer 30Hz - 40 GHz	8564E (84125C)	1148	12	4/2/2003	4/2/2004
Hewlett Packard	Spectrum Analyzer, 9KHz - 26.5GHz	8563E	F1202LB	12	9/27/2002	9/27/2003
Substitution Method	l, 09-Jun-03					
Engineer: jmartinez						
Manufacturer	<u>Description</u>	Model #	Assett #	Cal interval	Last Calibrated	Cal Due
EMCO	Horn Antenna, D. Ridge 1-18GHz	3115	487	12	4/24/2003	4/24/2004
Hewlett Packard	Signal Generator (sweep) 0.01 - 26.5 GHz	8340A	1244	N/A		

EXHIBIT 2: Test Measurement Data

The following data includes conducted and radiated emission measurements of the REMEC, Model No: DPA4040G.

T51335 20 pages

Elliott

EMC Test Data

(
Client:	REMEC	Job Number:	J51255
Model:	DPA-4040G	T-Log Number:	T51335
		Account Manager:	Christine Vu
Contact:	Mandel Berenberg		
Emissions Spec:	FCC 24E, FCC 15	Class:	Amplifier / B
Immunity Spec:	-	Environment:	-

EMC Test Data

For The

REMEC

Model

DPA-4040G

Date of Last Test: 5/30/2003

Ell C	iott			EM	C Test Data
	Client: REMEC			Job Number:	
	Model: DPA-4040G			T-Log Number:	
0				Account Manager:	Christine Vu
	ontact: Mandel Berenk			Class	Amplifier / D
Immunity	Spec: FCC 24E, FCC	10		Class: Environment:	Amplifier / B
	opoo.			Linioini	
		EUT IN	IFORMATIO	ON	
EUT would be p	•	esigned for base operation. The I	EUT was, therefore	ts in low signal coverage , treated as table-top equi	
		Equip	nent Under Tes	st	
Manufacture	r Mode		Description	Serial Number	FCC ID
REMEC	DPA-404	log F	PCS Amplifier	N/A	IO2DPA4040G
The EUT enclos 3 cm high.	ure is primarily constru		IT Enclosure d sheet steel. It me	easures approximately 7 c	m wide by 12 cm deep by
			fication History		
Mod. #	Test	Date		Modification	
Ι	-	-		None	
Modifications ap	plied are assumed to	be used on subse	equent tests unless	otherwise stated as a furt	her modification.

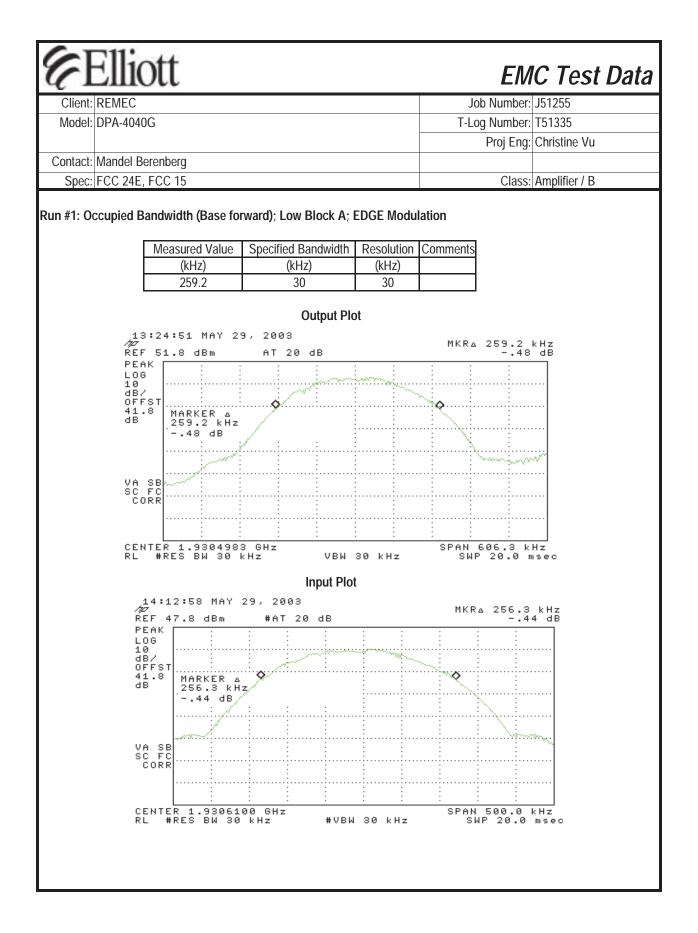
Client	: REMEC		Job Number:	J51255
Mode	I: DPA-4040G		T-Log Number:	T51335
			Account Manager:	Christine Vu
	: Mandel Berenberg			
	:: FCC 24E, FCC 15		Class:	Amplifier / B
Immunity Spec			Environment:	-
Manufacturer	Model	Description	Serial Number	FCC ID
Hewlett Packard	438A	Power Meter	3513U04847	-
Instek	-	DC Supply	9566367	
Agilent	E4432B	Signal Generator	U537231536	-
Agilent	E4432A	Signal Generator	U537231102	-
Generic	-	Driver Amp	5	-
Generic	-	Driver Amp	1	-
Centaur	SA-9-115	E DI		
Centau		Fan Blower	-	-
Manufacturer none		Fan Blower ote Support Equipm Description		- FCC ID
Manufacturer	Rem Model	ote Support Equipm	nent Serial Number Ports	- FCC ID
Manufacturer	Rem Model	ote Support Equipm	nent Serial Number	
Manufacturer none	Rem Model EUT In	ote Support Equipm Description terface Cabling and	nent Serial Number Ports Cable(s)	
Manufacturer none Port	Rem Model EUT In Connected To	ote Support Equipm Description terface Cabling and Description	nent Serial Number Ports Cable(s) Shielded or Unshield	ded Length(m
Manufacturer none Port EUT DC input	Rem Model EUT In Connected To DC Supply (x2)	ote Support Equipm Description terface Cabling and Description 2 wire	nent Serial Number Ports Cable(s) Shielded or Unshielded	ded Length(m)

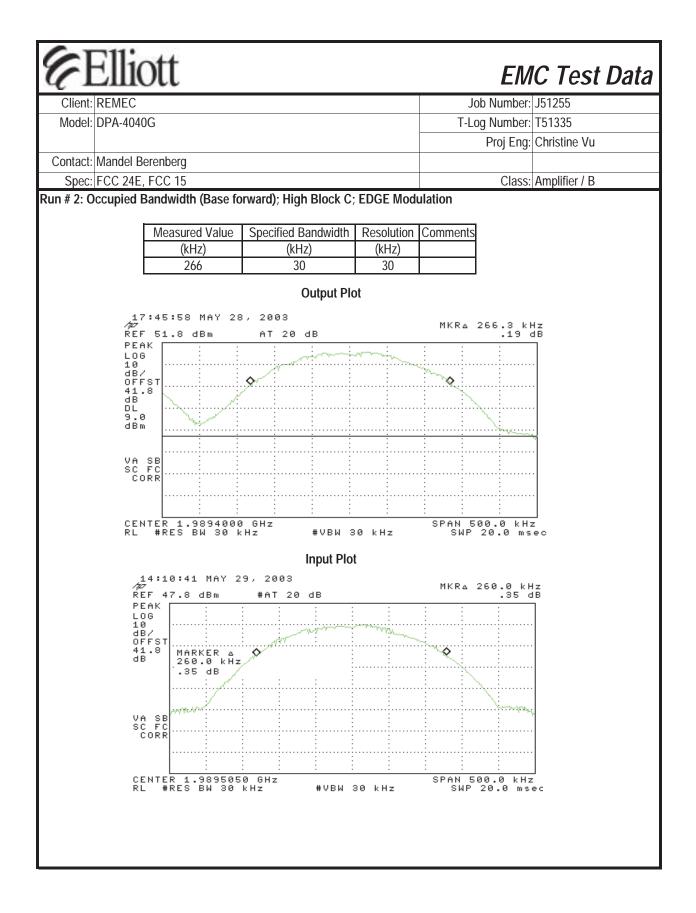
Elli	Ju				C Test	Da
Client: REMEC				b Number:		
Model: DPA-404)G			g Number:		
			Account	Manager:	Christine Vu	
Contact: Mandel B						
Spec: FCC 24E	, FCC 15			Class:	Amplifier / B	
	Section	2.1046: RF F	Power			
est Specifics						
Objective:	The objective of this test session specification listed above.	is to perform final qua	alification testi	ng of the E	UT with respe	ect to
Date of Test:		Config. Used				
Test Engineer:		Config Change				
Test Location:	SVUATS #1	EUT Voltage	28700			
The EUT was loca located underneath For radiated emiss	ted on the turntable for radiated fie the table. tions testing the measurement anter temperature: 19	enna was located 3 m 9°C			ort equipment	was
The EUT was loca located underneath For radiated emiss	ted on the turntable for radiated fie to the table. tions testing the measurement anter tons: Temperature: 19 Rel. Humidity: 55	enna was located 3 m 9°C			ort equipment	was
The EUT was loca located underneath For radiated emiss	ted on the turntable for radiated fie to the table. tions testing the measurement anter tons: Temperature: 19 Rel. Humidity: 55	enna was located 3 m 9°C		EUT.	ort equipment	was
located underneath For radiated emiss Ambient Condition Summary of Res Run # 1	ted on the turntable for radiated fie on the table. ions testing the measurement ante ons: Temperature: 19 Rel. Humidity: 55 ults	enna was located 3 m 9°C 5%	eters from the	EUT. Measu		was

E	Elliott	EM	IC Test Data
Client:	REMEC	Job Number:	J51255
Model:	DPA-4040G	T-Log Number:	T51335
		Account Manager:	Christine Vu
Contact:	Mandel Berenberg		
Spec:	FCC 24E, FCC 15	Class:	Amplifier / B

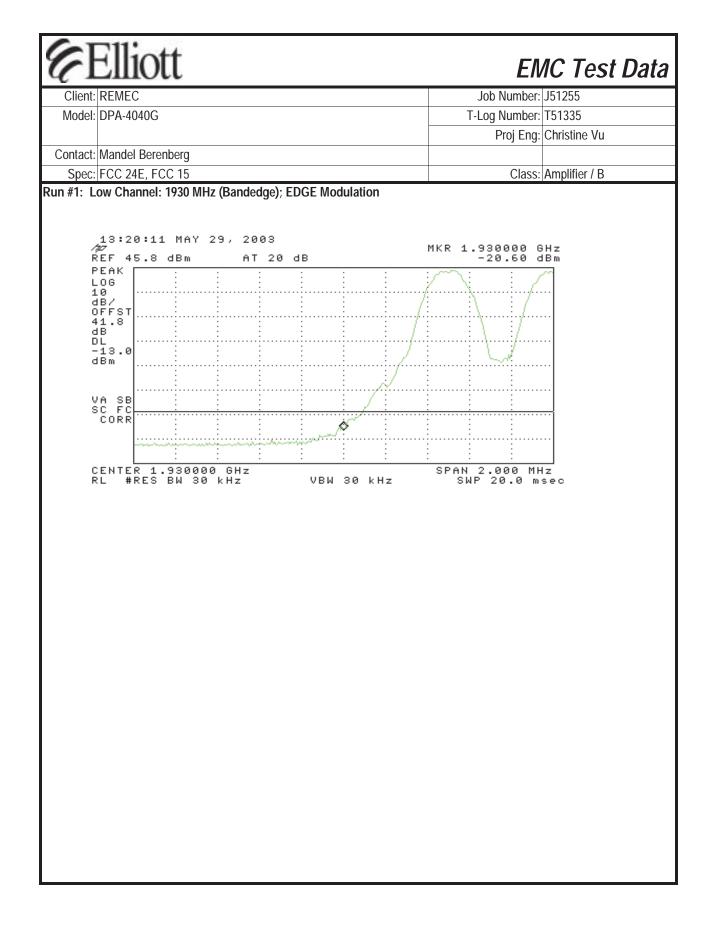
Run #1: Conducted Output Power; EDGE Modulation

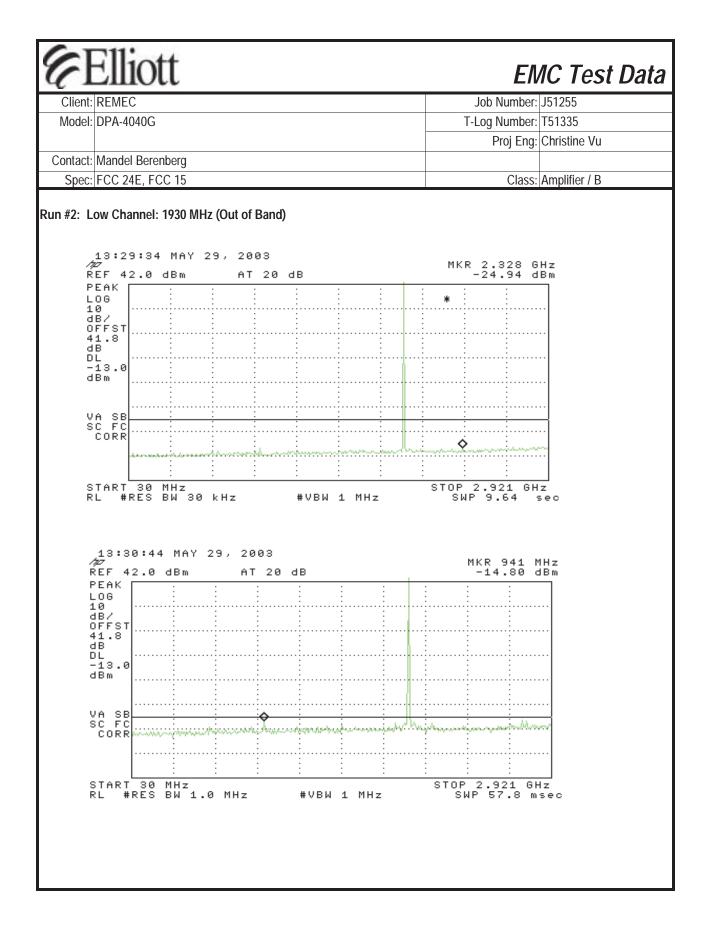
Output power measured with a HP438A Power Meter and 8481A Sensor Head	d:
---	----

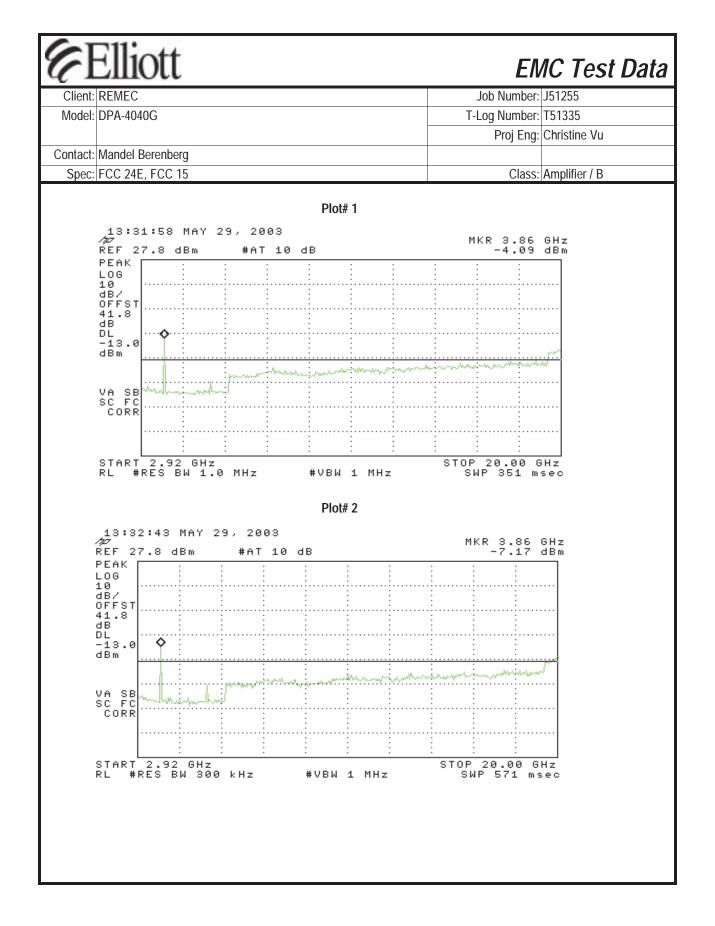

			Two carrier composite	
Freq	Mode	Power per carrier	power	Comments
(MHz)		(dBm)	(dBm)	
1930.00	Isolated	46.50	N/A	Power Meter
1990.00	Isolated	46.50	N/A	Power Meter
1930.00	Combine	43.00	46.00	Power Meter-note 1
1990.00	Combine	43.00	46.00	Power Meter-note 1

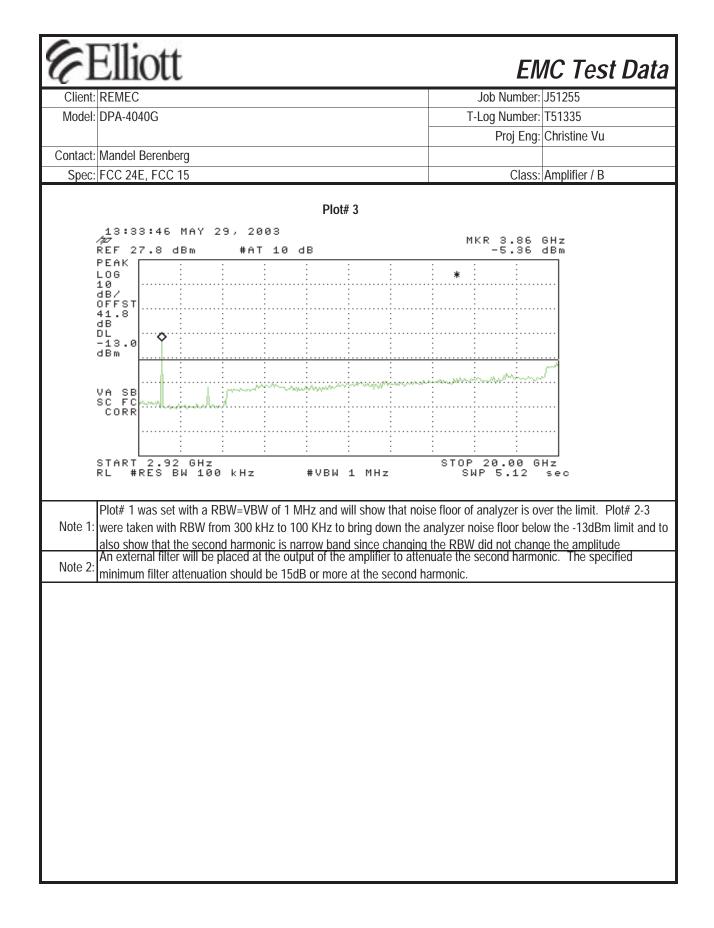

Note 1: Measurements was in combine mode which was the worst case condition.

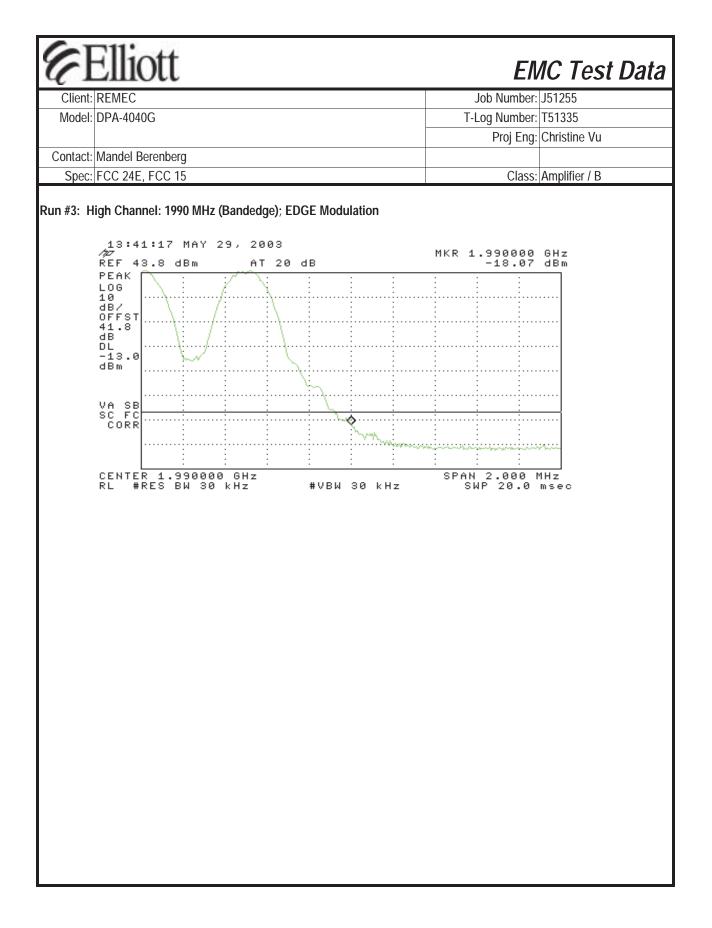
Elli					C Test
Client: REMEC				lob Number: JS	
Model: DPA-40	40G		T-L	og Number: T	
				Proj Eng: C	hristine Vu
Contact: Mandel					
Spec: FCC 24	E, FCC 15			Class: A	mplifier / B
	Section 2.104	9: Occupied	l Bandw	vidth	
Test Specifics					
Objective	e: The objective of this test sessior specification listed above.	n is to perform final qu	alification tes	sting of the EU	T with respe
Date of Tes	t: 5/29/2003	Config. Use	d:		
Test Enginee		Config Chang			
Test Location	n: SVOATS #1	EUT Voltag	e: 27Vdc		
General Test C	onfiguration				
	conducted measurements from th	e FLIT's antenna nort	the antenna	nort of the FU	T was conne
	er or power meter via a suitable atte			•	
. ,	re corrected. Modulation must not	•	•		
	est the occupied bandwidth was m				dth that will
•	easurements. This requirement is s				
Because the EU	F is an amplifer, input and output pl	lots were made to sho	w that the ba	andwidth was n	ot altered. I
we refer to the ba	andwidth increasing in width.				
Ampliant Candi	Lene. Tomporatura.	10% C			
Ambient Condi					
	Rel. Humidity: !	00%			
Summary of Re	sults				
Run #	Test Performed	Limit	Result	Comm	nent
IXull #	Occupied Bandwidth / EDGE	24.238(b)	Pass	Refer to indiv	
<u>1</u> 2	Occupied Bandwidth / EDGE	24.238(b)	Pass	Refer to indiv	dual runa

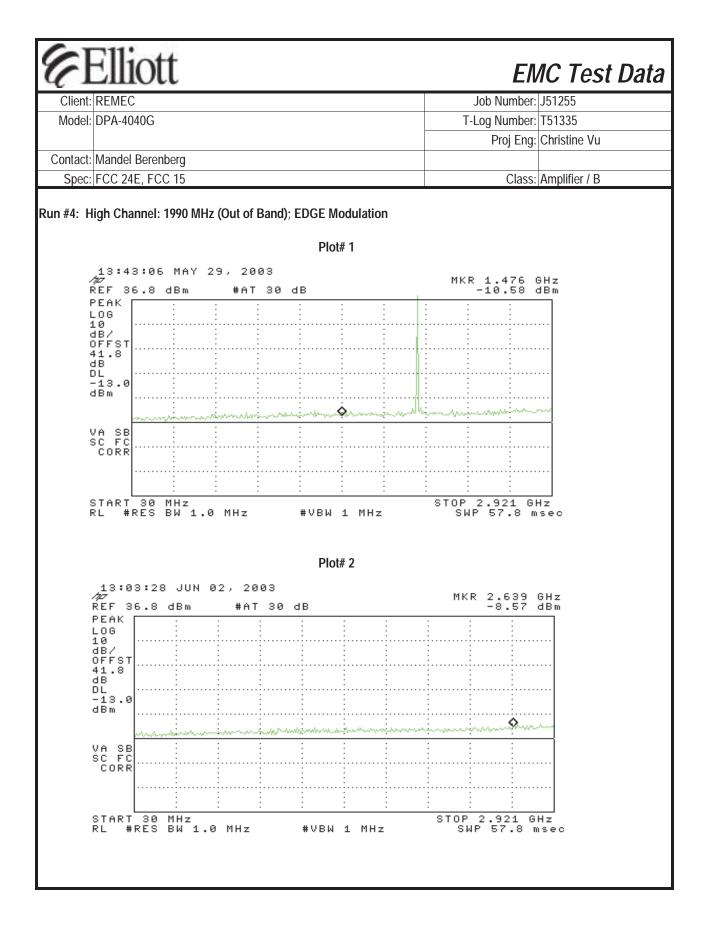

Deviations From The Standard

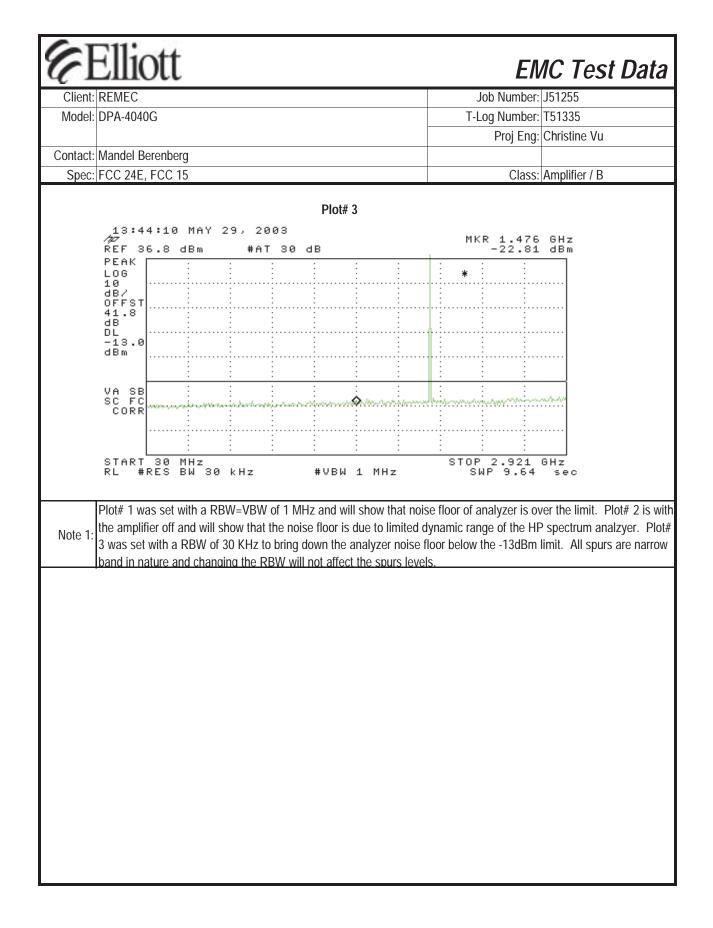

No deviations were made from the requirements of the standard.

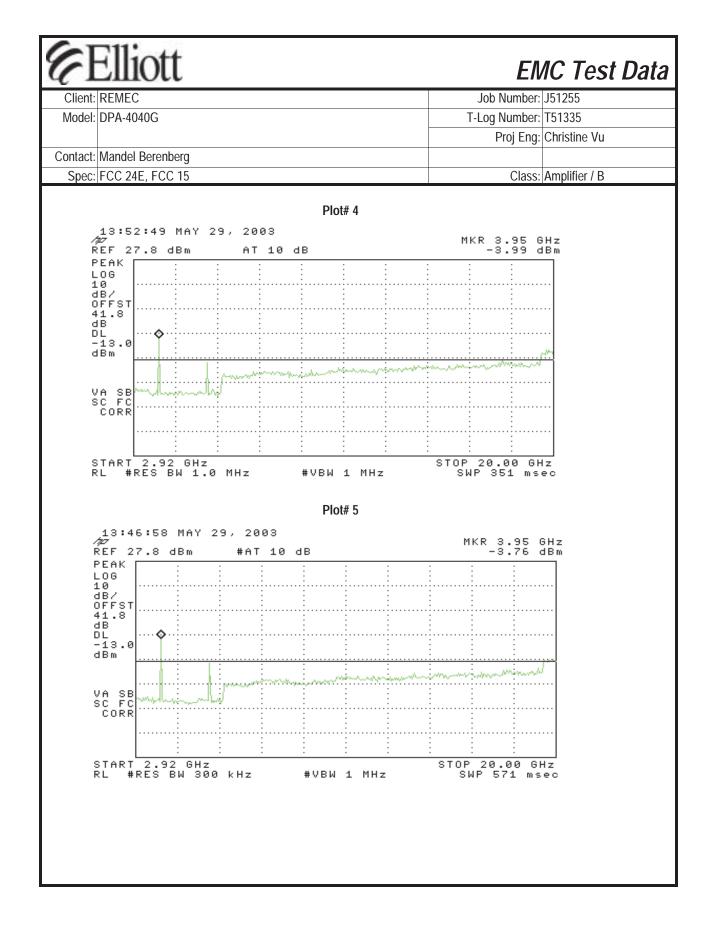


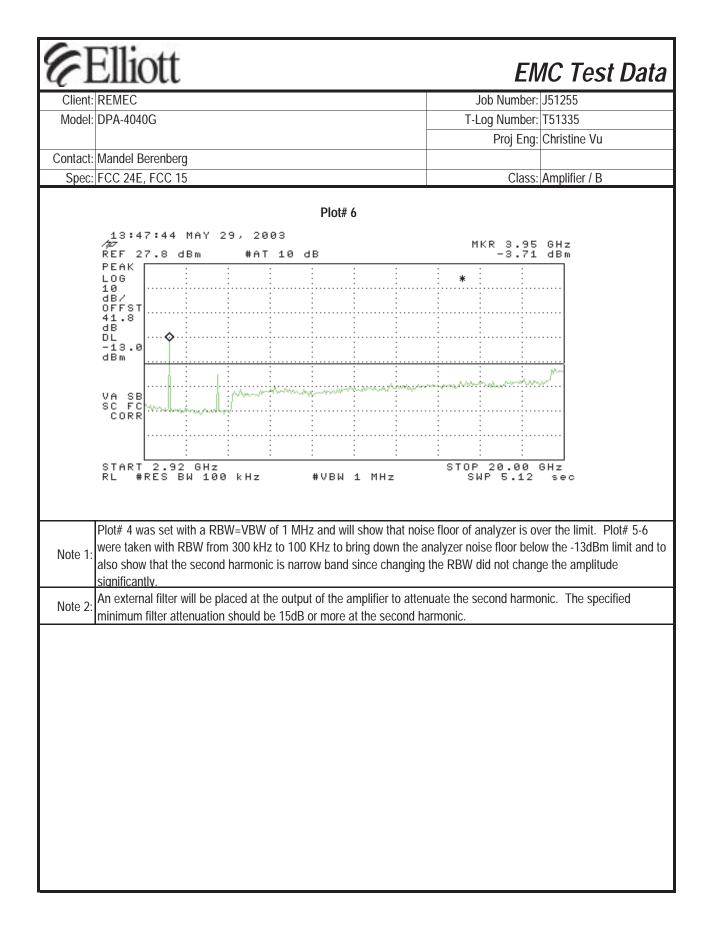



						EN Iob Number:	151255
mouon	REMEC DPA-40400					.og Number:	
	DI II IOIOC	,				•	Christine Vu
Contact:	Mandel Ber	renbera					
	FCC 24E, F					Class:	Amplifier / B
	Sectio	n 2.1051: S	purious	emission a	t the Ar	ntenna T	Terminal
Fest Spe	cifics						
	Objective:	The objective of this specification listed a		s to perform final qu	alification tes	sting of the El	UT with respect to t
	ate of Test:			Config. Use			
	t Engineer:			Config Chang			
Tes	SI LUCATION.	SVOATS #1		EUT Voltag	e: Zovuc		
The EUT Receiver	and all loca	figuration al support equipmen ator was used betwe ns: Te		nd Test Receiver.	ing. The Eut	was connect	ed directly to Test
The EUT Receiver Ambient	and all loca	al support equipmen lator was used betwo ns: Te Rel	een the EUT an	nd Test Receiver. °C	ing. The Eut	was connect	ed directly to Test
The EUT Receiver Ambient	and all loca An attenu Condition	al support equipmen lator was used betwo ns: Te Rei Its	een the EUT an emperature: 19°	nd Test Receiver. °C	ing. The Eut		ed directly to Test
The EUT Receiver Ambient Summary	and all loca Condition Y of Resu	al support equipmen lator was used betwo ns: Te Rei Its	een the EUT an emperature: 19° I. Humidity: 559	nd Test Receiver. °C %			evel
The EUT Receiver Ambient Summary Run#	and all loca Condition Y of Resu Plot#	al support equipmen lator was used betwe ns: Te Rei Its Test Performed	een the EUT an emperature: 19° I. Humidity: 559 Modulation	nd Test Receiver. °C % Limit	Result	Le -20.6dBm @ -4.09dBm	evel









Client: REMEC			J	ob Number: J51255	
Model: DPA-404	0G		T-Log Number: T51335		
				Proj Eng: Christine V	
Contact: Mandel E	•				
Spec: FCC 24E	, FCC 15			Class: Amplifier /	
	Radia	ated Emissi	ons		
Test Specifics					
Objective:	The objective of this test session specification listed above.	is to perform final qu	alification tes	ting of the EUT with res	
	5/29/2003 & 5/30/2003	Config. Use			
Lest Engineer	jmartinez	Config Change:			
Test Location:	SVOATS #4	EUT Voltag	e: 27Vdc		
Test Location:		EUT Voltag	e: 27Vdc		
Test Location: General Test Co			e: 27Vdc		
Test Location: General Test Co The EUT was loca On the OATS, the	nfiguration ted on the turntable for radiated er measurement antenna was locate	missions testing. ad 3m from the EUT t	for the frequer	5 0	
Test Location: General Test Co The EUT was loca On the OATS, the For radiated emiss	nfiguration ted on the turntable for radiated en measurement antenna was locate ions testing the measurement ante	missions testing. ed 3m from the EUT f enna was located 3 r	for the frequer neters from th	e EUT. For any Spurio	
Test Location: General Test Co The EUT was loca On the OATS, the For radiated emiss more than 20-dB s	nfiguration ted on the turntable for radiated en measurement antenna was locate ions testing the measurement ant ubstitution was performed. Subst	missions testing. ed 3m from the EUT f enna was located 3 r	for the frequer neters from th	e EUT. For any Spurio	
Test Location: General Test Co The EUT was loca On the OATS, the For radiated emiss	nfiguration ted on the turntable for radiated en measurement antenna was locate ions testing the measurement ant ubstitution was performed. Subst	missions testing. ed 3m from the EUT f enna was located 3 r	for the frequer neters from th	e EUT. For any Spurio	
Test Location: General Test Co The EUT was loca On the OATS, the For radiated emiss more than 20-dB s	nfiguration ted on the turntable for radiated en measurement antenna was locate ions testing the measurement ant ubstitution was performed. Substi ength limit.	missions testing. ed 3m from the EUT f enna was located 3 r itution Method is not	for the frequer neters from th	e EUT. For any Spurio	
Test Location: General Test Co The EUT was loca On the OATS, the For radiated emiss more than 20-dB s calculated field stru	nfiguration ted on the turntable for radiated en measurement antenna was locate ions testing the measurement ant ubstitution was performed. Substi ength limit.	missions testing. ed 3m from the EUT f enna was located 3 r itution Method is not 9°C	for the frequer neters from th	e EUT. For any Spurio	
Test Location: General Test Co The EUT was loca On the OATS, the For radiated emiss more than 20-dB s calculated field stru Ambient Conditi	nfiguration ted on the turntable for radiated en measurement antenna was locate ions testing the measurement ant ubstitution was performed. Substi ength limit. ons: Temperature: 1 Rel. Humidity: 5	missions testing. ed 3m from the EUT f enna was located 3 r itution Method is not 9°C	for the frequer neters from th	e EUT. For any Spurio	
Test Location: General Test Co The EUT was loca On the OATS, the For radiated emiss more than 20-dB s calculated field stru	nfiguration ted on the turntable for radiated en measurement antenna was locate ions testing the measurement ant ubstitution was performed. Substi ength limit. ons: Temperature: 1 Rel. Humidity: 5	missions testing. ed 3m from the EUT f enna was located 3 r itution Method is not 9°C	for the frequer neters from th	e EUT. For any Spurio	
Test Location: General Test Co The EUT was loca On the OATS, the For radiated emiss more than 20-dB s calculated field stru Ambient Conditi	nfiguration ted on the turntable for radiated en measurement antenna was locate ions testing the measurement ant ubstitution was performed. Substi ength limit. ons: Temperature: 1 Rel. Humidity: 5 sults Test Performed	missions testing. ed 3m from the EUT f enna was located 3 r itution Method is not 9° C 5% Limit	for the frequer neters from th required for S	e EUT. For any Spurio purious emissions 20-d Margin	
Test Location: General Test Co The EUT was loca On the OATS, the For radiated emiss more than 20-dB s calculated field str Ambient Conditi	nfiguration ted on the turntable for radiated er measurement antenna was locate ions testing the measurement ant- ubstitution was performed. Substi- ength limit. ons: Temperature: 1 Rel. Humidity: 5 sults Test Performed RE, 1000 - 20,000 MHz	missions testing. ed 3m from the EUT f enna was located 3 r itution Method is not 9°C 5%	for the frequer neters from th required for S	e EUT. For any Spurio purious emissions 20-d	
Test Location: General Test Co The EUT was loca On the OATS, the For radiated emiss more than 20-dB s calculated field stru Ambient Conditi Summary of Res Run #	nfiguration ted on the turntable for radiated en measurement antenna was locate ions testing the measurement ant ubstitution was performed. Substi ength limit. ons: Temperature: 1 Rel. Humidity: 5 sults Test Performed	missions testing. ed 3m from the EUT f enna was located 3 r itution Method is not 9° C 5% Limit	for the frequer neters from th required for S	e EUT. For any Spurio purious emissions 20-d Margin	

DGE Modulation; Combine mode, Single Output. IRP measurements requency Level Pol Substitution Note 2 MHz dBu/Vim Vin Pol Substitution Note 2 MHz dBu/Vim Vin GBB 3866.000 79.3 h -21.2 7732.000 67.1 h -43.8 10.4 0.8 -32.7 1584.00 53.5 h -56.4 11.7 1.0 -48.2 -13 -32.7 1584.00 57.9 v -33.6 -9 -33.6 -23.7 10.4 0.8 -23.7 -13 -33.6 57.9 -58.3 <th col<="" th=""><th>Client:</th><th>REMEC</th><th></th><th></th><th></th><th></th><th></th><th>J</th><th>b Number:</th><th>J51255</th></th>	<th>Client:</th> <th>REMEC</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>J</th> <th>b Number:</th> <th>J51255</th>	Client:	REMEC						J	b Number:	J51255
Proj Eng: Christine Vu Contact: Mandel Berenberg Spec: FCC 24E, FCC 15 Class: Amplifier / B un #1: Radiated Emissions, 1000-20,000 MHz (Low Channel: 1930 MHz) DGE Modulation; Combine mode, Single Output. IRP measurements requency Level Pol Substitution Note 2 MHz dBµV/m vh Pin Gain Cable Loss EIRP Limit Margin 3866.000 79.3 h -29.0 9.8 0.6 -19.8 -13 -6.8 7799.000 67.1 h -43.4 10.0 0.9 -34.3 -13 -21.3 9653.000 51.2 h -56.4 11.7 1.0 -48.2 -13 -35.2 9866.000 77.5 v -30.6 9.21.4 -13 -10.1 7732.000 64.2 v -32.7 10.4 0.8 -23.1 -13 -10.1 Tegenetry <th colspan<="" td=""><td>Model:</td><td>DPA-4040</td><td>G</td><td></td><td></td><td></td><td></td><td>T-Le</td><td>og Number:</td><td>T51335</td></th>	<td>Model:</td> <td>DPA-4040</td> <td>G</td> <td></td> <td></td> <td></td> <td></td> <td>T-Le</td> <td>og Number:</td> <td>T51335</td>	Model:	DPA-4040	G					T-Le	og Number:	T51335
Contact: Mandel Berenberg Spec: FCC 24E, FCC 15 Class: Amplifier / B Substitution ^{Note 2} Class: Amplifier / B Class: Amplifier / B Substitution ^{Note 2} Class: Amplifier / B Class: Amplifier / B Class: Amplifier / B Class: Amplifier / B Class: Class: Amplifier / B <th colspai<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td></th>	<td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td>									•	
Spec: FCC 24E, FCC 15 Class: Amplifier / B Run #1: Radiated Emissions, 1000-20,000 MHz (Low Channel: 1930 MHz) DGE Modulation; Combine mode, Single Output. IRP and ERP measurements Substitution Note 2 Trequency Level Pol Substitution Substitution (dBm)	Contact:	Mandel Be	erenberd	1					,		
Run #1: Radiated Emissions, 1000-20,000 MHz (Low Channel: 1930 MHz) EDGE Modulation; Combine mode, Single Output. Substitution Note: 2 IRP and ERP measurements									Class:	Amplifier / B	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DGE Mod	lulation; C ERP meas	Combine uremen	e mode, Sin		t.		z)			
Image: constraint of the second structure in the secon				Din	Cain			Limit	Margin		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		υσμν/Π	V/II			 					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3866.000	79.3	h	· · /	1 /		1 /		. ,		
9653.000 51.2 h -56.4 11.7 1.0 -45.7 -13 -32.7 11584.00 53.5 h -59.3 12.1 1.0 -48.2 -13 -35.2 3866.000 77.5 v -30.6 9.8 0.6 -21.4 -13 -8.4 5799.000 64.2 v -32.7 10.4 0.8 -23.1 -13 -10.1 7732.000 67.9 v -41.2 10.0 0.9 -32.1 -13 -19.1 9653.000 52.9 v -59.3 11.7 1.0 -48.6 -13 -35.6 11584.00 50.9 v -58.3 12.1 1.0 -47.2 -13 -34.2 Run #2: Radiated Emissions, 1000-20,000 MHz (High Channel: 1990 MHz) EDGE Modulation; Combine mode, Single Output. IRP and ERP measurements <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
11584.00 53.5 h -59.3 12.1 1.0 -48.2 -13 -35.2 3866.000 77.5 v -30.6 9.8 0.6 -21.4 -13 -8.4 5799.000 64.2 v -32.7 10.4 0.8 -23.1 -13 -10.1 7732.000 67.9 v -41.2 10.0 0.9 -32.1 -13 -19.1 9653.000 52.9 v -59.3 11.7 1.0 -48.6 -13 -35.6 11584.00 50.9 v -58.3 12.1 1.0 -47.2 -13 -34.2 Run#2: Radiated Emissions, 1000-20,000 MHz (High Channel: 1990 MHz) EDGE Modulation; Combine mode, Single Output. EIRP Limit Margin ETequency Level Pol Substitution Nole 2 MHz dBµV/m V/h Pin Gain Cable Loss EIRP Limit Margin 3980.000 71.8 h -36.6 9.8 0.6 -27.4 -13 -14.4 9945.000 51.1 <td></td>											
3866.000 77.5 ν -30.6 9.8 0.6 -21.4 -13 -8.4 5799.000 64.2 v -32.7 10.4 0.8 -23.1 -13 -10.1 7732.000 67.9 v -41.2 10.0 0.9 -32.1 -13 -19.1 9653.000 52.9 v -59.3 11.7 1.0 -48.6 -13 -35.6 11584.00 50.9 v -58.3 12.1 1.0 -47.2 -13 -34.2 Run #2: Radiated Emissions, 1000-20,000 MHz (High Channel: 1990 MHz) EDGE Modulation; Combine mode, Single Output. EIRP and ERP measurements Frequency Level Pol Substitution Note 2 MHz dBµ/m v/h Pin Gain Cable Loss EIRP Limit Margin 980.000 71.8 h -36.6 9.8 0.6 -27.4 -13 -14.4 5970.000 62.0 h -48.7 <td>9653.000</td> <td></td> <td>h</td> <td>-56.4</td> <td>11.7</td> <td>1.0</td> <td>-45.7</td> <td>-13</td> <td>-32.7</td> <td></td>	9653.000		h	-56.4	11.7	1.0	-45.7	-13	-32.7		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			h								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3866.000	77.5	V	-30.6	9.8	0.6	-21.4	-13	-8.4		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
11584.00 50.9 v -58.3 12.1 1.0 -47.2 -13 -34.2 Run #2: Radiated Emissions, 1000-20,000 MHz (High Channel: 1990 MHz)EDGE Modulation; Combine mode, Single Output.EIRP measurementsSubstitution Note 2MHzLevel PolSubstitution Note 2MHzdB μ V/mv/hPinGainCable LossEIRPLimitMargin3980.00071.8h -36.6 9.8 0.6 -27.4 -13 -14.4 5970.00062.0h -48.7 10.4 0.8 -39.1 -13 -26.1 7960.00072.1h -38.5 10.0 0.9 -29.4 -13 -16.4 9945.00051.1h -56.4 11.7 1.0 -45.7 -13 -37.1 3980.000 70.4 v -37.6 9.8 0.6 -28.4 -13 -15.4 5970.000 57.6 v -39.2 10.4 0.8 -29.6 -13 -16.6 7960.000 69.2 v -43.8 10.0 0.9 -34.7 -13 -21.7 9945.000 52.7 v -59.4 11.7 1.0 -48.7 -13 -35.7	5799.000		V								
Run #2: Radiated Emissions, 1000-20,000 MHz (High Channel: 1990 MHz)EDGE Modulation; Combine mode, Single Output.EIRP measurementsSubstitution Note 2MHzMey V/mV/hPinGainCable LossEIRPLimitMarginMHzdB μ V/mv/hPinGainCable LossEIRPLimitMarginMHzdB μ V/mv/hPinGainCable LossEIRPLimitMargin980.00071.8h-36.69.80.6-27.4-13-14.45970.00062.0h-48.710.40.8-39.1-13-26.17960.00072.1h-56.411.71.0-45.7-13-32.711933.0051.2h-61.212.11.0-50.1-13-37.13980.00070.4v-37.69.80.6-28.4-13-15.45970.00057.6v-39.210.40.8-29.6-13-16.67960.00069.2v-43.810.00.9-34.7-13-35.79945.00052.7v-59.411.71.0-48.7-13-35.7	5799.000 7732.000	67.9	-	-41.2	10.0	0.9	-32.1	-13	-19.1		
Frequency Level Pol Substitution Note 2 MHz dBµV/m v/h Pin Gain Cable Loss EIRP Limit Margin 3980.000 71.8 h -36.6 9.8 0.6 -27.4 -13 -14.4 5970.000 62.0 h -48.7 10.4 0.8 -39.1 -13 -26.1 7960.000 72.1 h -38.5 10.0 0.9 -29.4 -13 -16.4 9945.000 51.1 h -56.4 11.7 1.0 -45.7 -13 -32.7 11933.00 51.2 h -61.2 12.1 1.0 -50.1 -13 -37.1 3980.000 70.4 v -37.6 9.8 0.6 -28.4 -13 -15.4 5970.000 57.6 v -39.2 10.4 0.8 -29.6 -13 -16.6 7960.000 69.2 v -43.8 10.0 0.9	5799.000 7732.000 9653.000	67.9 52.9	V V	-41.2 -59.3	10.0 11.7	0.9 1.0	-32.1 -48.6	-13 -13	-19.1 -35.6		
MHz dBµV/m v/h Pin Gain Cable Loss EIRP Limit Margin 3980.000 71.8 h -36.6 9.8 0.6 -27.4 -13 -14.4 5970.000 62.0 h -48.7 10.4 0.8 -39.1 -13 -26.1 7960.000 72.1 h -38.5 10.0 0.9 -29.4 -13 -16.4 9945.000 51.1 h -56.4 11.7 1.0 -45.7 -13 -32.7 11933.00 51.2 h -61.2 12.1 1.0 -50.1 -13 -37.1 3980.000 70.4 v -37.6 9.8 0.6 -28.4 -13 -15.4 5970.000 57.6 v -39.2 10.4 0.8 -29.6 -13 -16.6 7960.000 69.2 v -43.8 10.0 0.9 -34.7 -13 -21.7 9945.000 52.7	5799.000 7732.000 9653.000 11584.00 Run #2: R	67.9 52.9 50.9 adiated Er	v v v	-41.2 -59.3 -58.3 s, 1000-20 ,	10.0 11.7 12.1	0.9 1.0 1.0	-32.1 -48.6 -47.2	-13 -13 -13	-19.1 -35.6		
(dBm) (dBi) (dB) (dBm) (dBm) (dB) 3980.000 71.8 h -36.6 9.8 0.6 -27.4 -13 -14.4 5970.000 62.0 h -48.7 10.4 0.8 -39.1 -13 -26.1 7960.000 72.1 h -38.5 10.0 0.9 -29.4 -13 -16.4 9945.000 51.1 h -56.4 11.7 1.0 -45.7 -13 -32.7 11933.00 51.2 h -61.2 12.1 1.0 -50.1 -13 -37.1 3980.000 70.4 v -37.6 9.8 0.6 -28.4 -13 -15.4 5970.000 57.6 v -39.2 10.4 0.8 -29.6 -13 -16.6 7960.000 69.2 v -43.8 10.0 0.9 -34.7 -13 -21.7 9945.000 52.7 v -59.4 11.7 1.0 <td>5799.000 7732.000 9653.000 11584.00 Run #2: R EDGE Moo</td> <td>67.9 52.9 50.9 adiated En</td> <td>v v v mission</td> <td>-41.2 -59.3 -58.3 s, 1000-20, e mode, Sin</td> <td>10.0 11.7 12.1</td> <td>0.9 1.0 1.0</td> <td>-32.1 -48.6 -47.2</td> <td>-13 -13 -13</td> <td>-19.1 -35.6</td> <td></td>	5799.000 7732.000 9653.000 11584.00 Run #2: R EDGE Moo	67.9 52.9 50.9 adiated En	v v v mission	-41.2 -59.3 -58.3 s, 1000-20, e mode, Sin	10.0 11.7 12.1	0.9 1.0 1.0	-32.1 -48.6 -47.2	-13 -13 -13	-19.1 -35.6		
3980.000 71.8 h -36.6 9.8 0.6 -27.4 -13 -14.4 5970.000 62.0 h -48.7 10.4 0.8 -39.1 -13 -26.1 7960.000 72.1 h -38.5 10.0 0.9 -29.4 -13 -16.4 9945.000 51.1 h -56.4 11.7 1.0 -45.7 -13 -32.7 11933.00 51.2 h -61.2 12.1 1.0 -50.1 -13 -37.1 3980.000 70.4 v -37.6 9.8 0.6 -28.4 -13 -15.4 5970.000 57.6 v -39.2 10.4 0.8 -29.6 -13 -16.6 7960.000 69.2 v -43.8 10.0 0.9 -34.7 -13 -21.7 9945.000 52.7 v -59.4 11.7 1.0 -48.7 -13 -35.7	5799.000 7732.000 9653.000 11584.00 Run #2: R EDGE Moc EIRP and I	67.9 52.9 50.9 adiated En Julation; C ERP meas	V V V mission Combine	-41.2 -59.3 -58.3 s, 1000-20, e mode, Sin	10.0 11.7 12.1	0.9 1.0 1.0 High Chann t. Substitu	-32.1 -48.6 -47.2 el: 1990 MH	-13 -13 -13	-19.1 -35.6		
5970.000 62.0 h -48.7 10.4 0.8 -39.1 -13 -26.1 7960.000 72.1 h -38.5 10.0 0.9 -29.4 -13 -16.4 9945.000 51.1 h -56.4 11.7 1.0 -45.7 -13 -32.7 11933.00 51.2 h -61.2 12.1 1.0 -50.1 -13 -37.1 3980.000 70.4 v -37.6 9.8 0.6 -28.4 -13 -15.4 5970.000 57.6 v -39.2 10.4 0.8 -29.6 -13 -16.6 7960.000 69.2 v -43.8 10.0 0.9 -34.7 -13 -21.7 9945.000 52.7 v -59.4 11.7 1.0 -48.7 -13 -35.7	5799.000 7732.000 9653.000 11584.00 Run #2: R EDGE Moc EIRP and I	67.9 52.9 50.9 adiated En Iulation; C ERP meas Level	v v v v v v v v v v v v v v v v v v v	-41.2 -59.3 -58.3 s, 1000-20, e mode, Sin ts Pin	10.0 11.7 12.1 000 MHz (gle Outpu Gain	0.9 1.0 1.0 High Chann t. Substitu Cable Loss	-32.1 -48.6 -47.2 el: 1990 MH	-13 -13 -13 z) Limit	-19.1 -35.6 -34.2 Margin		
7960.000 72.1 h -38.5 10.0 0.9 -29.4 -13 -16.4 9945.000 51.1 h -56.4 11.7 1.0 -45.7 -13 -32.7 11933.00 51.2 h -61.2 12.1 1.0 -50.1 -13 -37.1 3980.000 70.4 v -37.6 9.8 0.6 -28.4 -13 -15.4 5970.000 57.6 v -39.2 10.4 0.8 -29.6 -13 -16.6 7960.000 69.2 v -43.8 10.0 0.9 -34.7 -13 -21.7 9945.000 52.7 v -59.4 11.7 1.0 -48.7 -13 -35.7	5799.000 7732.000 9653.000 11584.00 Run #2: R EDGE Moc EIRP and I Frequency MHz	67.9 52.9 50.9 adiated En Julation; C ERP meas Level dBμV/m	v v v v combine combine uremen Pol v/h	-41.2 -59.3 -58.3 s, 1000-20, e mode, Sin ts Pin (dBm)	10.0 11.7 12.1 000 MHz (gle Outpu Gain (dBi)	0.9 1.0 1.0 High Chann t. Substitu Cable Loss (dB)	-32.1 -48.6 -47.2 el: 1990 MH tion ^{Note 2} EIRP (dBm)	-13 -13 -13 z) Limit (dBm)	-19.1 -35.6 -34.2 Margin (dB)		
9945.000 51.1 h -56.4 11.7 1.0 -45.7 -13 -32.7 11933.00 51.2 h -61.2 12.1 1.0 -50.1 -13 -37.1 3980.000 70.4 v -37.6 9.8 0.6 -28.4 -13 -15.4 5970.000 57.6 v -39.2 10.4 0.8 -29.6 -13 -16.6 7960.000 69.2 v -43.8 10.0 0.9 -34.7 -13 -21.7 9945.000 52.7 v -59.4 11.7 1.0 -48.7 -13 -35.7	5799.000 7732.000 9653.000 11584.00 11584.00 Run #2: R DGE Moc IRP and I requency MHz 3980.000	67.9 52.9 50.9 adiated Er lulation; C ERP meas Level dBμV/m 71.8	v v v v v v v v v v v v v h h	-41.2 -59.3 -58.3 s, 1000-20, e mode, Sin ts Pin (dBm) -36.6	10.0 11.7 12.1 000 MHz (igle Outpu Gain (dBi) 9.8	0.9 1.0 1.0 High Chann t. Substitu Cable Loss (dB) 0.6	-32.1 -48.6 -47.2 el: 1990 MH tion ^{Note 2} EIRP (dBm) -27.4	-13 -13 -13 z) Limit (dBm) -13	-19.1 -35.6 -34.2 Margin (dB) -14.4		
11933.0051.2h-61.212.11.0-50.1-13-37.13980.00070.4v-37.69.80.6-28.4-13-15.45970.00057.6v-39.210.40.8-29.6-13-16.67960.00069.2v-43.810.00.9-34.7-13-21.79945.00052.7v-59.411.71.0-48.7-13-35.7	5799.000 7732.000 9653.000 11584.00 11584.00 Run #2: R DGE Moc IRP and I Frequency MHz 3980.000 5970.000	67.9 52.9 50.9 adiated En lulation; C ERP meas Level dBμV/m 71.8 62.0	v v v v mission Combine uremen Pol v/h h h	-41.2 -59.3 -58.3 s, 1000-20, e mode, Sin ts Pin (dBm) -36.6 -48.7	10.0 11.7 12.1 000 MHz (gle Outpu Gain (dBi) 9.8 10.4	0.9 1.0 1.0 High Chann t. Substitu Cable Loss (dB) 0.6 0.8	-32.1 -48.6 -47.2 el: 1990 MH tion ^{Note 2} EIRP (dBm) -27.4 -39.1	-13 -13 -13 z) Limit (dBm) -13 -13	-19.1 -35.6 -34.2 Margin (dB) -14.4 -26.1		
3980.000 70.4 v -37.6 9.8 0.6 -28.4 -13 -15.4 5970.000 57.6 v -39.2 10.4 0.8 -29.6 -13 -16.6 7960.000 69.2 v -43.8 10.0 0.9 -34.7 -13 -21.7 9945.000 52.7 v -59.4 11.7 1.0 -48.7 -13 -35.7	5799.000 7732.000 9653.000 11584.00 200 200 200 200 200 200 200 200 200	67.9 52.9 50.9 adiated En Julation; C ERP meas Level dBμV/m 71.8 62.0 72.1	v v v v v mission combine uremen Pol v/h h h	-41.2 -59.3 -58.3 s, 1000-20,/ e mode, Sin ts Pin (dBm) -36.6 -48.7 -38.5	10.0 11.7 12.1 000 MHz (gle Outpu Gain (dBi) 9.8 10.4 10.0	0.9 1.0 1.0 High Chann t. Substitu Cable Loss (dB) 0.6 0.8 0.9	-32.1 -48.6 -47.2 el: 1990 MH tion ^{Note 2} EIRP (dBm) -27.4 -39.1 -29.4	-13 -13 -13 z) Limit (dBm) -13 -13 -13	-19.1 -35.6 -34.2 Margin (dB) -14.4 -26.1 -16.4		
5970.000 57.6 v -39.2 10.4 0.8 -29.6 -13 -16.6 7960.000 69.2 v -43.8 10.0 0.9 -34.7 -13 -21.7 9945.000 52.7 v -59.4 11.7 1.0 -48.7 -13 -35.7	5799.000 7732.000 9653.000 11584.00 200 200 200 200 200 200 200 200 200	67.9 52.9 50.9 adiated En Julation; C ERP meas Level dBμV/m 71.8 62.0 72.1 51.1	v v v v v mission combine uremen Pol v/h h h h	-41.2 -59.3 -58.3 s, 1000-20, e mode, Sin ts Pin (dBm) -36.6 -48.7 -38.5 -56.4	10.0 11.7 12.1 000 MHz (gle Outpu Gain (dBi) 9.8 10.4 10.0 11.7	0.9 1.0 1.0 High Chann t. Cable Loss (dB) 0.6 0.8 0.9 1.0	-32.1 -48.6 -47.2 el: 1990 MH tion Note 2 EIRP (dBm) -27.4 -39.1 -29.4 -45.7	-13 -13 -13 z) Limit (dBm) -13 -13 -13 -13 -13	-19.1 -35.6 -34.2 Margin (dB) -14.4 -26.1 -16.4 -32.7		
7960.000 69.2 v -43.8 10.0 0.9 -34.7 -13 -21.7 9945.000 52.7 v -59.4 11.7 1.0 -48.7 -13 -35.7	5799.000 7732.000 9653.000 11584.00 200 200 200 200 200 200 200 200 200	67.9 52.9 50.9 adiated En Julation; C ERP meas Level dBμV/m 71.8 62.0 72.1 51.1 51.2	v v v v v v v v v h v/h h h h h h h	-41.2 -59.3 -58.3 s, 1000-20, e mode, Sin ts Pin (dBm) -36.6 -48.7 -38.5 -56.4 -61.2	10.0 11.7 12.1 000 MHz (gle Outpu Gain (dBi) 9.8 10.4 10.0 11.7 12.1	0.9 1.0 1.0 High Chann t. Substitu Cable Loss (dB) 0.6 0.8 0.9 1.0 1.0	-32.1 -48.6 -47.2 el: 1990 MH tion ^{Note 2} EIRP (dBm) -27.4 -39.1 -29.4 -45.7 -50.1	-13 -13 -13 z) <u>Limit</u> (dBm) -13 -13 -13 -13 -13 -13 -13	-19.1 -35.6 -34.2 Margin (dB) -14.4 -26.1 -16.4 -32.7 -37.1		
9945.000 52.7 v -59.4 11.7 1.0 -48.7 -13 -35.7	5799.000 7732.000 9653.000 11584.00 11584.00 Run #2: R DGE Moc IRP and I requency MHz 3980.000 5970.000 7960.000 9945.000 11933.00 3980.000	67.9 52.9 50.9 adiated Er Julation; C ERP meas Level dBμV/m 71.8 62.0 72.1 51.1 51.2 70.4	v v v v v v v v combine uremen Pol v/h h h h h h h h	-41.2 -59.3 -58.3 s, 1000-20, e mode, Sin ts Pin (dBm) -36.6 -48.7 -38.5 -56.4 -61.2 -37.6	10.0 11.7 12.1 000 MHz (igle Outpu Gain (dBi) 9.8 10.4 10.0 11.7 12.1 9.8	0.9 1.0 1.0 High Chann t. Substitu Cable Loss (dB) 0.6 0.8 0.9 1.0 1.0 0.6	-32.1 -48.6 -47.2 el: 1990 MH tion ^{Note 2} EIRP (dBm) -27.4 -39.1 -29.4 -45.7 -50.1 -28.4	-13 -13 -13 z) <u>Limit</u> (dBm) -13 -13 -13 -13 -13 -13 -13 -13 -13	-19.1 -35.6 -34.2 Margin (dB) -14.4 -26.1 -16.4 -32.7 -37.1 -15.4		
	5799.000 7732.000 9653.000 11584.00 11584.00 Run #2: R DGE Moc IRP and I requency MHz 3980.000 5970.000 9945.000 11933.00 3980.000 5970.000	67.9 52.9 50.9 adiated En Julation; C ERP meas Level dBμV/m 71.8 62.0 72.1 51.1 51.2 70.4 57.6	v v v v v v v v v v h combine uremen v/h h h h h h h h v v v	-41.2 -59.3 -58.3 s, 1000-20, e mode, Sin ts Pin (dBm) -36.6 -48.7 -38.5 -56.4 -61.2 -37.6 -39.2	10.0 11.7 12.1 000 MHz (gle Outpu Gain (dBi) 9.8 10.4 10.0 11.7 12.1 9.8 10.4	0.9 1.0 1.0 High Chann t. Substitu Cable Loss (dB) 0.6 0.8 0.9 1.0 1.0 1.0 0.6 0.8	-32.1 -48.6 -47.2 el: 1990 MH tion Note 2 EIRP (dBm) -27.4 -39.1 -29.4 -45.7 -50.1 -28.4 -29.6	-13 -13 -13 z) Limit (dBm) -13 -13 -13 -13 -13 -13 -13 -13 -13 -13	-19.1 -35.6 -34.2 Margin (dB) -14.4 -26.1 -16.4 -32.7 -37.1 -15.4 -16.6		
	5799.000 7732.000 9653.000 11584.00 11584.00 Run #2: R 50GE Moc IRP and I requency MHz 3980.000 5970.000 7960.000 11933.00 3980.000 5970.000 7960.000	67.9 52.9 50.9 adiated En Julation; C ERP meas Level dBμV/m 71.8 62.0 72.1 51.1 51.2 70.4 57.6 69.2	v v v v v v v v v h combine uremen v/h h h h h h h h v v v v v v	-41.2 -59.3 -58.3 s, 1000-20, e mode, Sin ts Pin (dBm) -36.6 -48.7 -38.5 -56.4 -61.2 -37.6 -39.2 -43.8	10.0 11.7 12.1 000 MHz (gle Outpu Gain (dBi) 9.8 10.4 10.0 11.7 12.1 9.8 10.4 10.0	0.9 1.0 1.0 High Chann t. Substitu Cable Loss (dB) 0.6 0.8 0.9 1.0 1.0 1.0 0.6 0.8 0.9 1.0 1.0	-32.1 -48.6 -47.2 el: 1990 MH tion Note 2 EIRP (dBm) -27.4 -39.1 -29.4 -45.7 -50.1 -28.4 -29.6 -34.7	-13 -13 -13 z) Limit (dBm) -13 -13 -13 -13 -13 -13 -13 -13 -13 -13	-19.1 -35.6 -34.2 Margin (dB) -14.4 -26.1 -16.4 -32.7 -37.1 -15.4 -16.6 -21.7		