ZEBRA TECHNOLOGIES CORP.

PORTABLE LABEL PRINTER WITH RFID AND WLAN

Model: P4T

28 August 2008

Report No.: SL08041104-ZBR-024(15.247) (P4T with RFID and WLAN)

(This report supersedes NONE)

Modifications made to the product: None

This Test Report is Issued Under the Authority of:

Choon Sian Ooi
Test Engineer

Engineering Reviewer

Sang global markets
Sang global markets
To: ECC Part 15 247 & IC RS 240

SL08041104-ZBR-024(15.247) (P4T with RFID and WLAN)

SIEMIC ACREDITATION DETAILS: NVLAP Lab Code: 200729-0

United States Department of Commerce National Institute of Standards and Technology

Certificate of Accreditation to ISO/IEC 17025:2005

NVLAP LAB CODE: 200729-0

SIEMIC Laboratories

San Jose, CA

is accredited by the National Voluntary Laboratory Accreditation Program for specific services, listed on the Scope of Accreditation, for:

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique dated 18 June 2005).

2008-01-01 through 2008-12-31

Elfective dates

For the National Institute of Standards and Technology

NVLAP-01C (REV. 2006-09-13)

SIEMIC ACREDITATION DETAILS: FCC Registration No. 783147

FEDERAL COMMUNICATIONS COMMISSION

Laboratory Division 7435 Oakland Mills Road Columbia, MD 21046

December 20, 2007

Registration Number: 783147

SIEMIC Laboratories 2206 Ringwood Avenue, San Jose, CA 95131

Attention: Leslie Bai

Re: Measurement facility located at San Jose

3 & 10 meter site

Date of Renewal: December 20, 2007

Dear Sir or Madam:

Your request for renewal of the registration of the subject measurement facility has been received. The information submitted has been placed in your file and the registration has been renewed. The name of your organization will remain on the list of facilities whose measurement data will be accepted in conjunction with applications for Certification under Parts 15 or 18 of the Commission's Rules. Please note that the file must be updated for any changes made to the facility and the registration must be renewed at least every three years.

Measurement facilities that have indicated that they are available to the public to perform measurement services on a fee basis may be found on the FCC website www.fcc.gov under E-Filing, OET Equipment Authorization Electronic Filing, Test Firms.

Sincerely,

Phyllis Parrish Industry Analyst

SL08041104-ZBR-024(15.247) (P4T with RFID and WLAN) Serial# Issue Date 28 August 2008 Page

OUR HILE: 46405-4842 Submission No: 126429

SIEMIC ACREDITATION DETAILS: Industry of Canada Registration No. 4842-1

| Industry Industrie

May 23rd, 2008

Siemie Inc. 2205 Ringwood Avc. San Jose CA 95131

Attention: Leslie Bai

Dear Sir/Madame:

The Beceau has beceived your application for the registration (recewal of a 3/10m OATS. Be advised that the information received was satisfactory to Industry Canada. The following number(s) is now associated to the site(s) for which registration / renewal was sought (4842A-1). Please reference the appropriate site number in the body of test reports containing measurements performed on the site. In addition, please be informed that the Bureau is now utilizing a new site numbering scheme in order to simplify the electronic filling process. Our goal is to reduce the number of secondary codes associated to one particular company. The following changes have been made to your record.

- Your primary code is: 4842
- The company number associated to the site(s) located at the above address is: 4842A
- The table below is a summary of the changes made to the unique site registration number(s):

New Site Number	Obsolete Site Number	Description of Site:	Expiry Date (YYYY-MM-DD)
4842A-1	4842-1	3m Claimber	2010-05-23

Furthermore, to obtain or renew a unique site number, the applicant shall demonstrate that the site has been accredited to ANSI C63.4-2003 or later. A scope of accreditation indicating the recreditation by a recognized accreditation body to ANSI C63.4-2003 shall be accepted. Please indicate in a letter the previous assigned site number if applicable and the type of site (example: 3 meter OATS or 3 meter chamber). If the test facility is not accredited to ANSI C63.4-2003 or later, the test facility shall submit test data demonstrating full compliance with the ANSI standard. The Bureau will evaluate the filing to determine if recognition shall be granted.

The frequency for re-validation of the test site and the information that is required to be filed or retained by the testing party shall comply with the requirements established by the accrediting organization. However, in all cases, test site re-validation shall occur on an interval not to exceed two years. There is no fee or form associated with an OATS filing. OATS submissions are encouraged to be submitted electronically to the Bureau using the following URL; http://strategis.ie.ge.ea/epie/internet/inceb-bhst.nsf/en/h_tt00052e.html.

If you have any questions, you may contact the Bureau by e-mail at certification bureau@ic.gc.c Please reference our file and submission number above for all correspondence

Yours sincerely.

Test & Mensuement Specialist Testification and Engineering Bareau 1701 Cading Ave., Building 94 2004, Ontario K2H 882

SL08041104-ZBR-024(15.247) (P4T with RFID and WLAN)

SIEMIC ACREDITATION DETAILS: Japan VCCI Registration No. 2195

Voluntary Control Council for Interference Voluntary Country Country Transcript Transcript Trays, Japan, 108-0041 Tet-81-3-557-3138 Fac+81-3-5575-3137 http://www.vooi.or.jp

February 12, 2004

TO: SIEMIC, INC.

Membership NO: 2195

We confirmed your payment for annual membership fee and admission fee. Thank you very much for your remitting.

Please find enclosed VCCI documents. As admission fee and annual membership fee were confirmed, your company registered as VCCI official member.

From now on, it is possible for your company to submit conformity verification report. or/and application for registration of measurement facilities.

Please find necessary forms for your submission from VCCI web-site. www.weei.or.jp.

When you submit conformity verification report, please submit to Ms. Yoko Inagaki / inagaki@voci.or.jp and application for registration of measurement facilities, please submit to Mr. Masaru Denda / denda@vcci.or.jp.

Their address, phone and fax number are absolutly same as I. Please refer address indicated on top right-hand corner of this page.

If you have any other questions regarding membership, feel free to contact me. Thank you very much.

Best Regards,

Naoko Hori (Ms.) VOCE hori@voci.or.jp

Enclosure

SL08041104-ZBR-024(15.247) (P4T with RFID and WLAN)

SIEMIC ACREDITATION DETAILS: Japan RF Technologies Accreditation No. MRF050927

Certificate

This is to certify that the Quality Management System

SIEMIC, Inc.

2286 Ringwood Avenue San Jose, California 95131 U.S.A.

has been authorized to carry out Japan Specified Radio Equipment test by order and under supervision of RF Technologies Co., Ltd. according to Notification No.88 of Radio Law.

An assessment of the laboratory was conducted according to the "Procedure and Conditions for Appointments of 2.4GHz Band Low power data communications system that Bluetooth and Wireless LAN test with reference to ISO/IEC 17025 by an RF Technologies Co., Ltd. auditor.

Audit Report No. MRF050927

Kaznyuki Sarashina

Auditor

RF Technologies Co., Ltd.

Audit Date September 27th, 2005

President

RF Technologies Co., Ltd.

Issued Date October 5th, 2005

This Certificate is valid until September 26th 2006 or next schedule audit.

No:006 Registered Certification Body RF Technologies Co., Ltd. 472, Nippa-cho, Kohoku-ku, Yokohama, 223-0057, Japan

SL08041104-ZBR-024(15.247) (P4T with RFID and WLAN)

SIEMIC ACREDITATION DETAILS: Korea MIC Lab Code: KR0032

시험기관지정서 Certificate

of Designated Testing Laborator,

지정변호(No.) : KR0032

시행기관명 : (주)현대고정인증기술원

(Name of Lab.) (Hundi Calibration & Certification Technologies Co., Ltd.)

25 45 : 경기도 이천시 부반음 아미리 산136-1

(13)-1, Am-ri, Bibol-eap, Idean-si, Kyunggi-Do, Korea) (Address)

2206 Ringwood Avenue San Jose, CA, USA.

시험문야 및 법위 : 유선(Telecommunication Part)

무선(Radio Communication Part) (Area & Category)

> 전자와장매(EMI): 미국지사 포함 전자파내성(EMS): 미국지사 포함

전기안전(Safety) 전자파름수울(SAR)

위 기관을 정보통신기기시험기관지정및관리등에관한규칙에 의해 정보통신기기시험기관으로 지정합니다.

This is to certify that the above mentioned laboratory is designated as the testing laboratory in accordance with the Regulations on Designation of Testing Laboratory for Information and Communication Equipment.

2005년(Year) 7월(Month) 5월(Dates

Director General of Radio Research Daborator Ministry of Information and Communication Republic of Korea

Serial# SL08041104-ZBR-024(15.247) (P4T with RFID and WLAN) Issue Date 28 August 2008

Page 8 of 85

SIEMIC ACREDITATION DETAILS: Korea CAB ID: US0160

UNITED STATES DEPARTMENT OF COMMERCE National Institute of Standards and Technology Galdensburg, Maryland 20889-

April 17, 2006

Mr. Leslie Bai SIEMIC Laboratories 2206 Ringwood Avenue San Jose, CA 95131

Dear Mr. Bair

I am pleased to inform you that your laboratory has been recognized by the Ministry of Information and Communication's Radio Research Laboratory (RRL) under the Asia Pacific Economic Cooperation (APEC) Mutual Recognition Arrangement (MRA). Your laboratory is now designated to act as a Conformity Assessment Body (CAB) under Appendix B, Phase I Procedures, of the APEC Tel MRA. The pertinent information about your laboratory's designation is as fullows:

CAB Name: SIEMIC Laboratories

Identification No.: US0160

Scope:

Coverage	Standards	Dute of Recognition
Electro Magnetic Interference	RRL Notice No. 2005-82: Technical Requirements for Electromagnetic Interference Annex 8(KN-22), RRL Notice No. 2005-131: Conformity Assessment Procedure for Electromagnetic Interference	April 13, 2006
Electro Magnetic Susceptibility	RRI. Notice No. 2005-130: Technical Requirements for Electromagnetic Susceptibility 2. Annex 1—7(KN-61000-4-2, -4-3, -4-4, -4-5, -4-6, -4-8, -4-11). RRI. Notice No. 2005-132: Conformity Assessment Procedure for Electromagnetic Susceptibility	April 13, 2006

You may submit test data to RRL to verify that the equipment to be imported into Korea satisfies the applicable requirements. The designation of your organization will remain in force as long as its accreditation for the designated scope remains valid and comply with the designation requirements.

The names of all recognized CABs will be posted on the NIST website at http://bs.nist.gov/mra. If you have any questions please contact Mr. Jogindar (Joe) Dhillon at (301) 975-5521. We appreciate your continued interest in our international conformity assessment activities.

Sincerely,

David F. Alderman.

Group Leader, Standards Coordination and Conformity Group

2 alexo

cc: Jogindar Dhillion

SL08041104-ZBR-024(15.247) (P4T with RFID and WLAN) Serial# Issue Date 28 August 2008 Page

www.siemic.com

SIEMIC ACREDITATION DETAILS: Taiwan BSMI Accreditation No. SL2-IN-E-1130R

UNITED STATES DEPARTMENT OF COMMERCE Mational Institute of Standards and Technology Beldwinsburg, Maryland 20899

May 3, 2006

Mr. Leslie Bai SIEMIC Laboratories 2206 Ringwood Avenue San Jose, CA 95131.

Dear Mr. Buit

I am pleased to inform you that your laboratory has been recognized by the Chinese Taipei's Bureau of Standards, Metrology, and Inspection (BSMI) under the Asia Pacific Economic Cooperation (APEC) Mutual Recognition Arrangement (MRA). Your laboratory is now designated to act as a Conformity Assessment Body (CAB) under Appendix B, Phase I Procedures, of the APEC Tel MRA. You may submit test data to BSMI to verify that the equipment to be imported into Chieses Taipei satisfies the applicable requirements. The designation of your organization will remain in force as long as its accreditation for the designated scope remains valid and comply with the designation requirements. The pertinent designation information is as follows:

BSMI number: SL2-IN-E-1130R (Must be applied to the test reports)

US0160 U.S Identification No: CNS 13438 Scope of Designation: Authorized signatory: Mr. Leslie Bai

Pand of acce

The names of all recognized CABs will be posted on the NIST website at http://ts.nist.gov/mra. If you have any questions, please contact Mr. Dhillon at 301-975-5521. We appreciate your continued interest in our international conformity assessment activities.

Sincerely,

David F. Alderman

Group Leader, Standards Coordination and Conformity Group

Jogindar Dhillon

Serial# SL08041104-ZBR-024(15.247) (P4T with RFID and WLAN) Issue Date 28 August 2008

Page 10 of 85 www.siemic.con

SIEMIC ACREDITATION DETAILS: Taiwan NCC CAB ID: US0160

UNITED STATES DEPARTMENT OF COMMERCE National Institute of Standards and Technology Catherdory, Maryland 20899-

August 8, 2006

Mr. Leslie Bai SIEMIC Laboratories 2206 Ringwood Avenue San Jose, CA 95131

Dear Mr. Bai:

I am pleased to inform you that SIEMIC Laboratories has been recognized by the Chinese Taipei's National Communications Commission (NCC) under the Asia Pacific Economic Cooperation for Telecommunications and Information, Mutual Recognition Arrangement (APEC Tel MRA). Your laboratory is now designated to act as a Conformity Assessment Body (CAB) under Appendix B, Phase I Procedures, of the APEC Tel MRA.

You may submit test data to NCC to verify that the equipment to be imported into Chinese Taipei satisfies their applicable requirements using the following guidelines:

- Your laboratory's assigned 6-digit U.S. identification number is US0160. You should reference this number in your correspondence.
- The scope of designation is limited to LP0002. Your designation will remain in force as long as your accreditation remains valid for the scope of designation.

If you have any questions please contact Mr. Jogindar Dhillon via email at dhillon@nist.gov or via fix at 301-975-5414. The names of all recognized laboratories will be posted on the NIST website at http://ta.nist.gov/mra. We appreciate your continued interest in our international conformity assessment activities.

Sincerely,

David F. Alderman

Group Leader, Standards Coordination and Conformity Group

ee: Jogindar Dhillon

1 = acc

Serial# SL08041104-ZBR-024(15.247) (P4T with RFID and WLAN) Issue Date 28 August 2008

Page 11 of 85

SIEMIC ACREDITATION DETAILS: Mexico NOM Recognition

Laboratorio Valentin V. Rivero

Maxico D.F. a 16 de octubre de 2006.

LESLIE BAI DIRECTOR OF CERTIFICATION SIEMIC LABORATORIES, INC. ACCESSING GLOBAL MARKETS PRESENTE

En contestación a su escrito de fecha 5 de septiembre del año en curso, le comento que estamos muy interesados en su interición de firmar un Acuerdo de Reconocimiento Mutuo, para lo cual adjunto a este escrito encontrara el Acuardo en dioma ingles y español prellenado de los cuales le pido sea revisado y en su caso corregido, para que si este de ecuerdo poder firmario para mandario con las autoridades Mexicanas para su visto bueno y así poder ejercer dicho acuerdo.

Aprovecho este escrito para mencionarie que nuestro intermediano gester será la empresa lastel de México. S. A. de C. V., empresa que ha colaborado durante mucho tempo con nosotros en lo refecionado a la evaluación de la conformidad y que cuanta con amplia experiencia en la gestoria de la certificación de cumplimiento con Normas Oficiales Mexicanas de producto en México.

Me daspido de usted enviándole un cordial seludo y experando sus comentanos al Acuerdo que nos soupa

Atentamente:

ing, Fayeting Gorfez Conzález Gerente Tentico del Laboratorio de CASHEST

Cutanin ?*

Plantine or Condeta
Octor Mises, 2.5

Ter 5204-000 con 12 hours
Fax 5284-000
enr. con 811 hou

SL08041104-ZBR-024(15.247) (P4T with RFID and WLAN) Serial# Issue Date 28 August 2008 Page

SIEMIC ACREDITATION DETAILS: Hong Kong OFTA Recognition No. D23/16V

Your Ref 來商檔號: Our Ref 本局檔號: D23/16 V

(852) 2961 6320 Telephone 電話: Fax No 國文傳真: (852) 2838 5004

E-mail 電郵地址:

20 July 2005

Mr. Leslie Bai Director of Certification. SIEMIC Laboratories 2206 Ringwood Avenue San Jose, California 95131 USA

Dear Mr. Bai.

Application of Recognised Testing Agency (RTA)

Referring your submission of 28 June 2005 in relation to the application of RTA, I am pleased to inform you that OFTA has appointed SIEMIC Laboratories (SIEMIC) as a Recognised Testing Agency (RTA):

Please note that, under the Hong Kong Telecommunications Equipment Evaluation and Certification (HKTEC) Scheme, SIEMIC is authorized to conduct evaluation tests on telecommunications equipment against the following HKTA specifications:

Scope of recognition (HKTA Specifications):

1001, 1002, 1004, 1006, 1007, 1008

1010, 1015, 1016

1022, 1026, 1027, 1029

1030, 1031, 1032, 1033, 1034, 1035, 1039

1041, 1042, 1043, 1045, 1047, 1048

You are requested to refer to and comply with the code of practice and guidelines for RTA as given in the Information Note OFTA I 411 "Recognised Testing Agency (RTA) for Conducting Evaluation Test of Telecommunications Equipment*, can be downloaded from OFTA's homepage http://www.ofta.gov.hk/tec/information-notes.html.

If you have any queries, please do not hesitate to contact me.

Yours sincerely,

(K K Sin)

for Director-General of Telecommunications

Office of the Telecommunications Authority 29/F Wu Chung House 213 Queen's Road East Wan Chai Hong Kong

http://www.ofta.gov.hk

電訊管理局 香港灣仔皇后大道東 213 號胡忠大廈 29 字樓

 Serial#
 \$L08041104-ZBR-024(15.247) (P4T with RFID and WLAN)

 Issue Date
 28 August 2008

 Page
 13 of 85

 www.siemic.com

This page has been left blank intentionally.

 Serial#
 \$L08041104-ZBR-024(15.247) (P4T with RFID and WLAN)

 Issue Date
 28 August 2008

 Page
 14 of 85

 www.siemic.com

CONTENTS

1	EXECUTIVE SUMMARY & EUT INFORMATION	16
2	TECHNICAL DETAILS	17
3	MODIFICATION	18
4	TEST SUMMARY	19
5	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS	21
ANNE	EX A. TEST INSTRUMENT & METHOD	77
ANNE	EX B EUT AND TEST SETUP PHOTOGRAPHS	81
ANNE	EX C. TEST SETUP AND SUPPORTING EQUIPMENT	81
ANNE	EX D USER MANUAL, BLOCK & CIRCUIT DIAGRAM	85

 Serial#
 \$L08041104-ZBR-024(15.247) (P4T with RFID and WLAN)

 Issue Date
 28 August 2008

 Page
 15 of 85

 www.siemic.com

This page has been left blank intentionally.

 Serial#
 \$\$L08041104-ZBR-024(15.247) (P4T with RFID and WLAN)

 Issue Date
 28 August 2008

 Page
 16 of 82

1 Executive Summary & EUT information

The purpose of this test programme was to demonstrate compliance of the Zebra Technologies Corp., model: P4T against the current Stipulated Standards. The RFID Encoder and WLAN radio have demonstrated compliance with the FCC 15.247 2008 & IC RSS210 Issue 7: 2007.

EUT Information

EUT Description

This is a Zebra Host Printer, primarily with P4T WLAN radio and Mercury5e-Compact (M5e-Compact) RFID radio. Those radios will be installed inside the product and will not be user accessible. The antenna is an internal antenna and will not be user accessible. 802.11b/g radios is designed to operate in the international ISM Band from 2.412 to 2.462 GHz. and RFID radio is designed to operate form 902.75MHz to 927.25MHz.

Model No : P4T

Serial No : 18CA22 & 18CA5B

100~240 VAC, 50~60Hz

Input Power 12 VDC , 4A

Power Supply → Model : FSP048-DBCA2

Classification

Per Stipulated Test Standard

Frequency Hopping Spread Spectrum / Device & Spread Spectrum System / Device

 Serial#
 \$L08041104-ZBR-024(15.247) (P4T with RFID and WLAN)

 Issue Date
 28 August 2008

 Page
 17 of 85

 www.siemic.com

2 TECHNICAL DETAILS

	Z TECHNICAL DETAILS
Purpose	Compliance testing of RFID Encoder & WLAN radio with stipulated standard
Applicant / Client	ZEBRA TECHNOLOGIES CORP.
Manufacturer	Zebra Technologies Corp. 333 Corporate Woods Parkway Vernon Hills, IL 60061 USA
Laboratory performing the tests	SIEMIC Laboratories
Test report reference number	SL08041104-ZBR-024(15.247) (P4T with RFID and WLAN)
Date EUT received	10 July 2008
Standard applied	47 CFR §15.247: 2008 & RSS 210 Issue 7: 2007
Dates of test (from – to)	Test Date : July 14-August 20 2008
No of Units:	1
Equipment Category:	DSS & DTS
Trade Name:	Zebra Technologies Corp.
Model:	P4T
RF Operating Frequency (ies)	RFID (902.75 MHz to 927.25 MHz,), WLAN (2412MHZ-2462MHz)
Number of Channels :	RFID (50 Channels), WLAN (11 Channels)
Modulation :	ISO 18000-6C, CCK & OFDM
FCC ID:	I28RFID-R4LANG-01
IC ID :	3798B-R4LANG01

MODIFICATION

NONE

| Serial# | SL08041104-ZBR-024(15.247) (P4T with RFID and WLAN) | Issue Date | 28 August 2008 | Page | 19 of 85

TEST SUMMARY

The product was tested in accordance with the following specifications. All testing has been performed according to below product classification:

Frequency Hopping Spread Spectrum / Device

Test Results Summary

Test Standard		Decembries	Pass / Fail	
47 CFR Part 15.247: 2008	RSS 210 Issue 7: 2007	Description Pass		
15.203		Antenna Requirement Pass		
15.205	RSS210(A8.5)	Restricted Band of Operation	Pass	
15.207(a)	RSS Gen (7.2.2)	AC Line Conducted Emissions Voltage	Pass	
15.247(a) (1)	RSS210(A8.1)	Channel Separation	Pass	
15.247(a)(1)	RSS210(A8.1)	Occupied Bandwidth	Pass	
15.247(a) (2)	RSS210 (A8.2)	6dB Bandwidth	N/A	
15.247(a) (1) (i)	RSS210(A8.1)	Number of Hopping Channels	Pass	
15.247(a) (1) (i)	RSS210(A8.1)	Time of Occupancy Pas		
15.247(b) (2)	RSS210(A8.4)	Output Power Pass		
15.247(c)	RSS210(A8.4)	Antenna Gain > 6dBi	N/A	
15.247(d)	RSS210(A8.5)	Antenna Port Conducted Spurious Emissions	Pass	
15.209; 15.247(d)	RSS210(A8.5)	Radiated Spurious Emissions	Pass	
15.247(e)	RSS210(A8.3)	Power Spectral Density	N/A	
15.247 (f)	RSS210(A8.3)	Hybrid System Requirement	N/A	
15.247(g)	RSS210(A8.1)	Hopping Capability	Pass	
15.247(h)	RSS210(A8.1)	Hopping Coordination Requirement Pass		
15.247(i) §2.1091& §2.1093	RSS Gen(5.5)	Maximum Permissible Exposure	Pass	
15.247 (d)		100 kHz Bandwidth of Frequency Band Edge	Pass	
	RSS Gen(4.8)	Receiver Spurious Emissions	Pass	

ANSI C63.4: 2003/ RSS-Gen Issue 2: 2007

PS: All measurement uncertainties are not taken into consideration for all presented test result.

 Serial#
 \$L08041104-ZBR-024(15.247) (P4T with RFID and WLAN)

 Issue Date
 28 August 2008

 Page
 20 of 85

Spread Spectrum System / Device

Test Results Summary

Test Standard		Description	Pass / Fail
CFR 47 Part 15.247: 2007	RSS 210 Issue 7: 2007		
15.203		Antenna Requirement	Pass
15.205	RSS210(A8.5)	Restricted Band of Operation	Pass
15.207(a)	RSSGen(7.2.2)	Conducted Emissions Voltage	Pass
15.247(a)(1)	RSS210(A8.1)	Channel Separation	N/A
15.247(a)(1)	RSS210(A8.1)	Occupied Bandwidth	Pass
15.247(a)(2)	RSS210 (A8.2)	Bandwidth	Pass
15.247(a)(1)	RSS210(A8.1)	Number of Hopping Channels	N/A
15.247(a)(1)	RSS210(A8.1)	Time of Occupancy	N/A
15.247(b)	RSS210(A8.4)	Output Power	Pass
15.247(c)	RSS210(A8.4)	Antenna Gain > 6 dBi	N/A
15.247(d)	RSS210(A8.5)	Conducted Spurious Emissions	Pass
15.209; 15.247(d)	RSS210(A8.5)	Radiated Spurious Emissions	Pass
15.247(e)	RSS210(A8.3)	Power Spectral Density	Pass
15.247(f)	RSS210(A8.3)	Hybrid System Requirement	N/A
15.247(g)	RSS210(A8.1)	Hopping Capability	N/A
15.247(h)	RSS210(A8.1)	Hopping Coordination Requirement	N/A
15.247(i)	RSSGen(5.5)	RF Exposure requirement	Pass
	RSSGen(4.8)	Receiver Spurious Emissions	Pass

ANSI C63.4: 2003/ RSS-Gen Issue 2: 2007

PS: All measurement uncertainties are not taken into consideration for all presented test result.

 Serial#
 SL08041104-ZBR-024(15.247) (P4T with RFID and WLAN)

 Issue Date
 28 August 2008

 Page
 21 of 85

5 MEASUREMENTS, EXAMINATION AND DERIVED RESULTS

5.1 Antenna Requirement

Requirement(s): 47 CFR §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna requirement must meet at least one of the following:

- a) Antenna must be permanently attached to the device.
- b) Antenna must use a unique type of connector to attach to the device.
- c) Device must be professionally installed. Installer shall be responsible for ensuring that the correct antenna is employed with the device.
- 1) The RFID antenna has a unique connector and installed inside on the chassis with a gain of -19.5dBi which meets the requirement.
- 2) The WLAN antenna has unique connector and installed inside chassis with a gain 3.76dBi which meet the requirement.

Serial# Page

SL08041104-ZBR-024(15.247) (P4T with RFID and WLAN) Issue Date 28 August 2008

5.2 Conducted Emissions Voltage

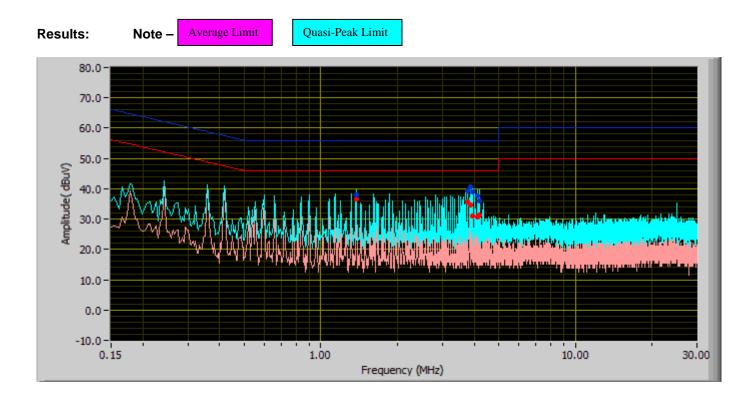
Requirement:

	Conducted limit (dBµV)		
Frequency of emission (MHz)	Quasi-peak	Average	
0.15–0.5	66 to 56*	56 to 46*	
0.5–5	56	46	
5–30	60	50	

^{*}Decreases with the logarithm of the frequency.

Procedures:

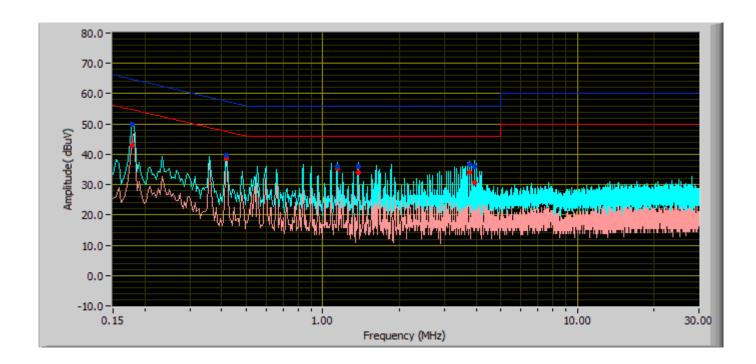
- 1. All possible modes of operation were investigated. Only the 6 worst case emissions measured, using the correct CISPR and Average detectors, are reported. All other emissions were relatively insignificant.
- 2. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
- **Conducted Emissions Measurement Uncertainty** 3.


All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 9kHz - 30MHz (Average & Quasi-peak) is ±3.5dB.

Environmental Conditions Temperature 4.

23°C - 25°C Relative Humidity 50% Atmospheric Pressure 1019mbar

Test Date: July 14- August 25 2008


Tested By: Choon Sian Ooi

Phase Line Plot at 120Vac, 60Hz

Line Under Test	Frequency (MHz)	Corrected Amplitude (dBuV) QP	Limit (dBuV) QP	Margin (dB) QP	Corrected Amplitude (dBuV) AVG	Limit (dBuV) AVG	Margin (dB) AVG
Phase	3.95	38.94	56.00	-17.06	31.02	46.00	-14.98
Phase	1.37	38.04	56.00	-17.96	36.55	46.00	-9.45
Phase	3.77	39.15	56.00	-16.85	35.76	46.00	-10.24
Phase	4.19	36.15	56.00	-19.85	31.36	46.00	-14.64
Phase	4.13	37.70	56.00	-18.30	30.85	46.00	-15.15
Phase	3.89	40.62	56.00	-15.38	34.71	46.00	-11.29

Results: Note - Average Limit Quasi-Peak Limit

Neutral Line Plot at 120Vac, 60Hz

Line Under Test	Frequency (MHz)	Corrected Amplitude (dBuV) QP	Limit (dBuV) QP	Margin (dB) QP	Corrected Amplitude (dBuV) AVG	Limit (dBuV) AVG	Margin (dB) AVG
Neutral	0.18	50.00	64.74	-14.74	42.89	54.74	-11.85
Neutral	0.42	39.53	57.51	-17.98	38.50	47.51	-9.02
Neutral	3.95	35.95	56.00	-20.05	30.66	46.00	-15.34
Neutral	3.77	36.59	56.00	-19.41	34.06	46.00	-11.94
Neutral	1.14	35.97	56.00	-20.03	35.18	46.00	-10.82
Neutral	1.37	35.89	56.00	-20.11	33.98	46.00	-12.02

 Serial#
 \$L08041104-ZBR-024(15.247) (P4T with RFID and WLAN)

 Issue Date
 28 August 2008

 Page
 25 of 85

5.3 Channel Separation

1. <u>Conducted Measurement</u>

EUT was set for low, mid, high channel with modulated mode and highest RF output power.

The spectrum analyzer was connected to the antenna terminal.

2 Environmental Conditions Temperature 23°C - 25°C Relative Humidity 50%

Atmospheric Pressure 1019mbar

3 Conducted Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz - 20GHz is $\pm 1.5dB$.

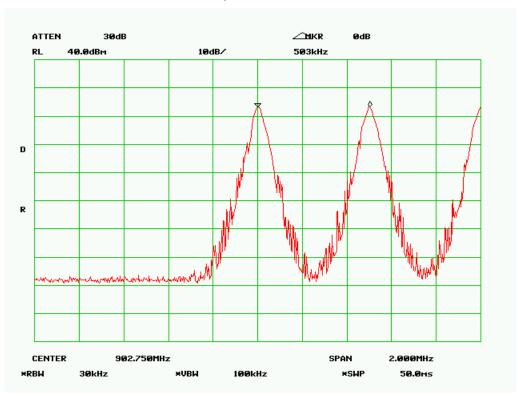
4 Test Date : July 14- August 25 2008

Tested By: Choon Sian Ooi

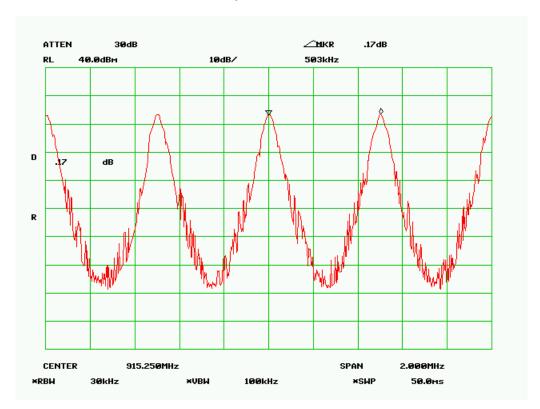
Requirement(s): 47 CFR §15.247(a)(1)(i)

Procedures: The Channel Separation was measured conducted using a spectrum analyzer at low, mid, and hi channels.

Frequency hopping systems in the 902-928 MHz shall have, hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies.


Channel	Channel Frequency (MHz)	Channel Separation (MHz)	20 dB Channel Bandwidth (KHz)
Low	902.750	0.503	72.60
Mid	915.250	0.503	72.30
High	927.250	0.500	73.00

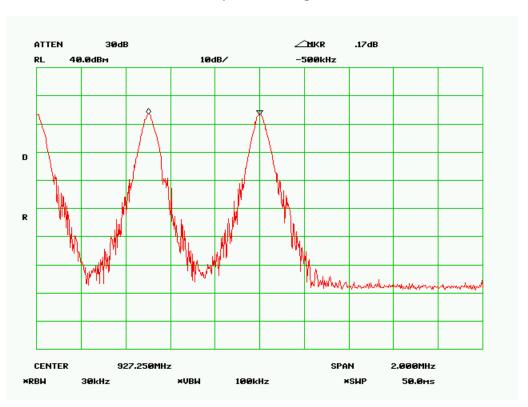
 Serial#
 \$L08041104-ZBR-024(15.247) (P4T with RFID and WLAN)


 Issue Date
 28 August 2008

 Page
 26 of 85

Channel Separation - Low Channel

Channel Separation – Mid Channel



 Serial#
 \$L08041104-ZBR-024(15.247) (P4T with RFID and WLAN)

 Issue Date
 28 August 2008

 Page
 27 of 85

Channel Separation – High Channel

 Serial#
 \$L08041104-ZBR-024(15.247) (P4T with RFID and WLAN)

 Issue Date
 28 August 2008

 Page
 28 of 85

www.siemic.com

5.4 20dB Occupied Bandwidth

1. <u>Conducted Measurement</u>

EUT was set for low, mid, high channel with modulated mode and highest RF output power.

The spectrum analyzer was connected to the antenna terminal.

2 Environmental Conditions Temperature 23°C - 25°C

Relative Humidity 50% Atmospheric Pressure 1019mbar

3 Conducted Emissions Measurement Uncertainty

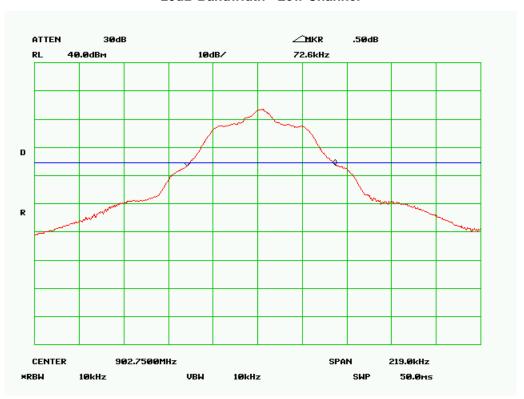
All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz - 20GHz is $\pm 1.5dB$.

4 Test Date : July 14- August 25 2008

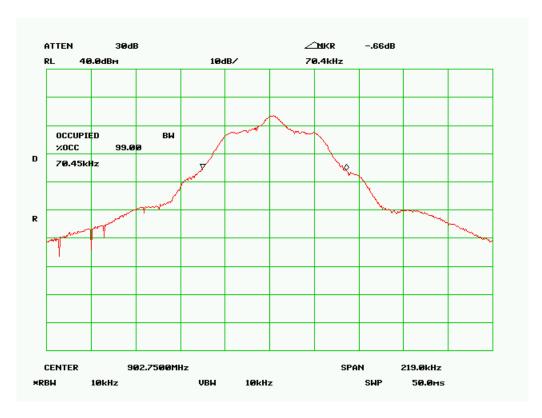
Tested By :Choon Sian Ooi

Requirement(s): 47 CFR §15.247(a)(1)(i)

Procedures: The 20dB bandwidths were measured conducted using a spectrum analyzer at low, mid, and


hi channels.

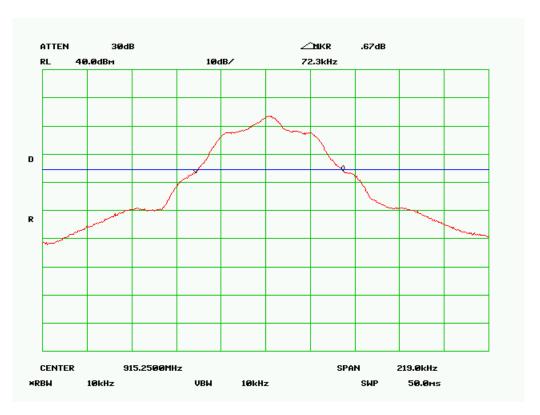
Note: The maximum allowed 20 dB bandwidth of the hopping is 500 kHz.


Channel	Channel Frequency (MHz)	20 dB Channel Bandwidth (KHz)	99% Channel Bandwidth (KHz)
Low	902.750	72.60	70.40
Mid	915.250	72.30	70.10
High	927.250	73.00	70.1

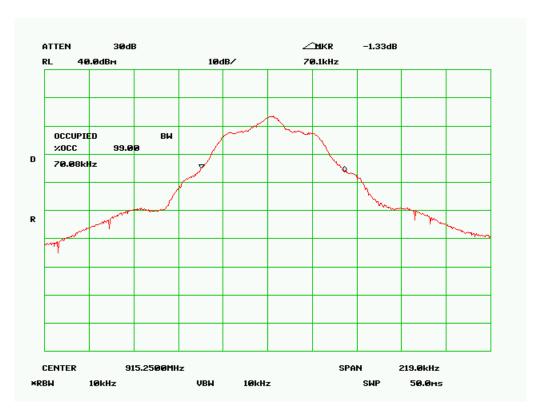
Refer to the attached plots.

20dB Bandwidth - Low Channel

99% Bandwidth - Low Channel



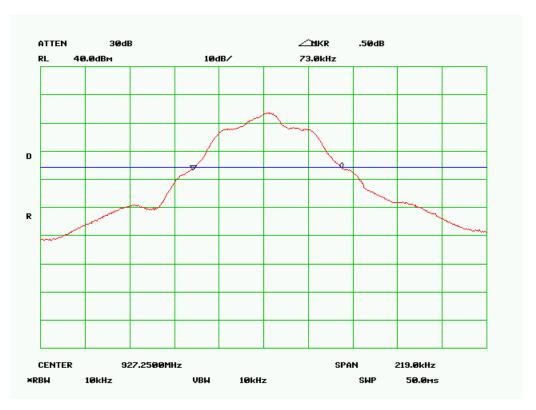
 Serial#
 SL08041104-ZBR-024(15.247) (P4T with RFID and WLAN)


 Issue Date
 28 August 2008

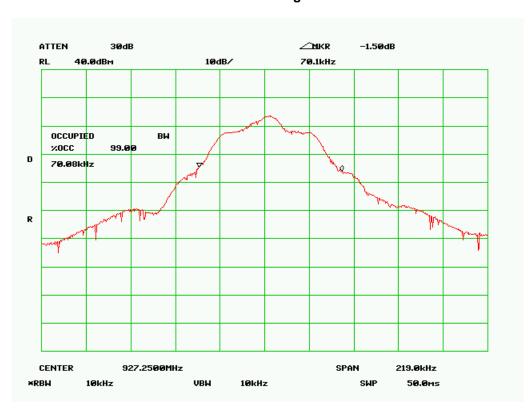
 Page
 30 of 85

20dB Bandwidth - Mid Channel

99% Bandwidth - Mid Channel



 Serial#
 \$L08041104-ZBR-024(15.247) (P4T with RFID and WLAN)


 Issue Date
 28 August 2008

 Page
 31 of 85

20dB Bandwidth - High Channel

99% Bandwidth - High Channel

 Serial#
 \$L08041104-ZBR-024(15.247) (P4T with RFID and WLAN)

 Issue Date
 28 August 2008

 Page
 32 of 85

www.siemic.com

5.5 Number of Hopping Channel

1. Conducted Measurement

EUT was set for low, mid, high channel with modulated mode and highest RF output power.

The spectrum analyzer was connected to the antenna terminal.

2 Conducted Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the

range 30MHz - 20GHz is $\pm 1.5dB$.

3 Environmental Conditions Temperature 23°C - 25°C Relative Humidity 50%

Atmospheric Pressure 1019mbar

4 Test Date : July 14- August 25 2008

Tested By :Choon Sian Ooi

Standard Requirement: 47 CFR §15.247(a)(1)(iii)

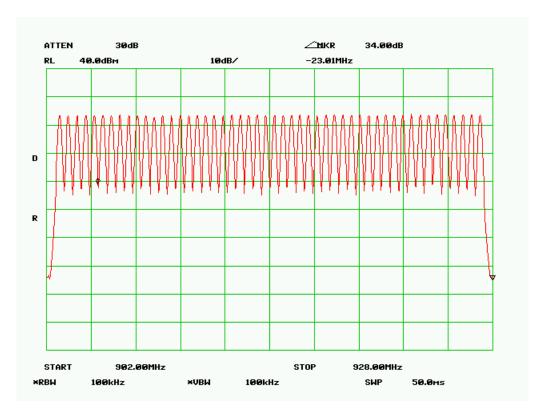
For frequency hopping systems operating in the 902–928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

Procedures: The Number of Hopping Channel measurement was taken conducted using a spectrum analyzer.

RBW=30 KHz, VBW > RBW

Test Result:

Total Channel: 50 Channels


 Serial#
 \$L08041104-ZBR-024(15.247) (P4T with RFID and WLAN)

 Issue Date
 28 August 2008

 Page
 33 of 85

Number of Hopping Channel

902 - 928 MHz: 50 Channels

 Serial#
 \$L08041104-ZBR-024(15.247) (P4T with RFID and WLAN)

 Issue Date
 28 August 2008

 Page
 34 of 85

5.6 Time of Occupancy

1. Conducted Measurement

EUT was set for low, mid, high channel with modulated mode and highest RF output power.

The spectrum analyzer was connected to the antenna terminal.

2 Conducted Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the

range 30MHz – 20GHz is ±1.5dB. Environmental Conditions

Temperature 23°C - 25°C Relative Humidity 50% Atmospheric Pressure 1019mbar

4 Test Date: July 14- August 25 2008

Tested By: Choon Sian Ooi

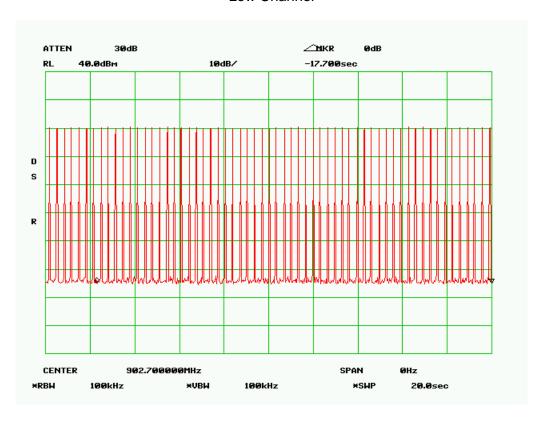
Standard Requirement: 47 CFR §15.247(a)(1)

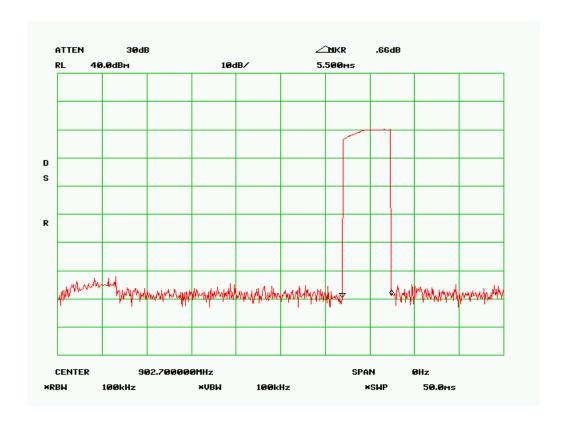
For frequency hopping systems operating in the 902–928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period.

Procedures: The Time of Occupancy measurement was taken conducted using a spectrum analyzer.

Test Result:

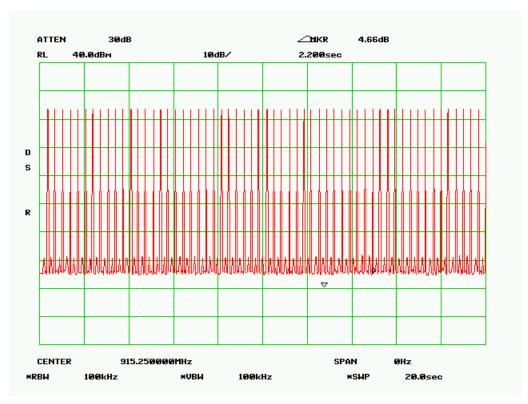
3

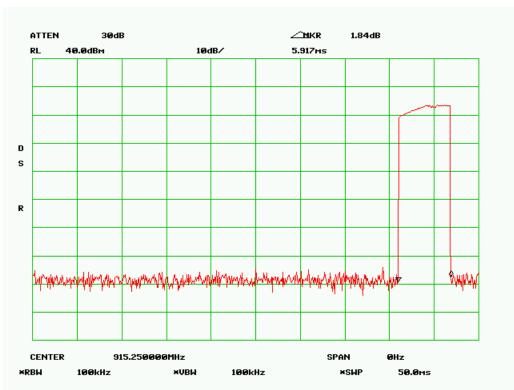

Channel	Channel Frequency (MHz)	Dwell Time (sec)	Limit (sec)
Low	902.750	0.336	0.4
Mid	915.250	0.361	0.4
High	927.250	0.270	0.4


 Serial#
 SL08041104-ZBR-024(15.247) (P4T with RFID and WLAN)

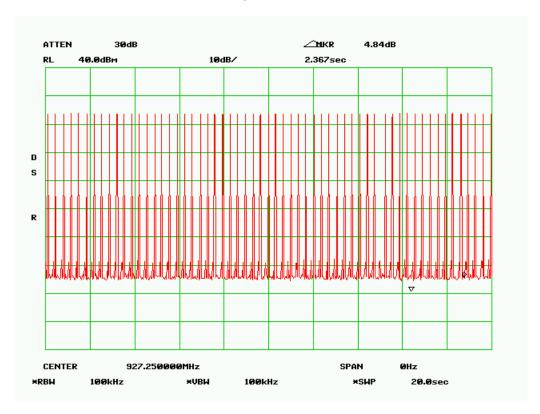
 Issue Date
 28 August 2008

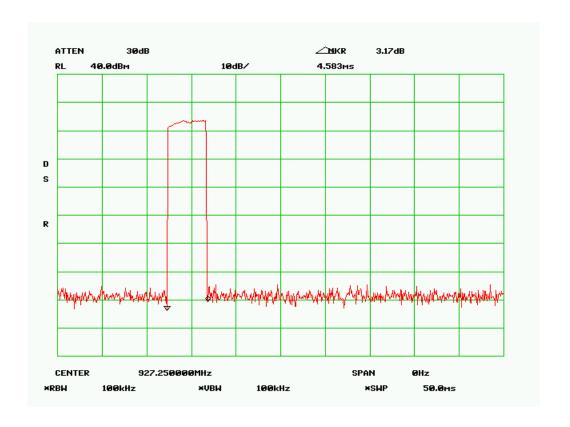
 Page
 35 of 85


Low Channel



Serial# SL08041104-2D Issue Date 28 August 2008 Page 36 of 85 SL08041104-ZBR-024(15.247) (P4T with RFID and WLAN)


Mid Channel



Serial# SL08041104-2D Issue Date 28 August 2008 Page 37 of 85 SL08041104-ZBR-024(15.247) (P4T with RFID and WLAN)

High Channel

 Serial#
 SL08041104-ZBR-024(15.247) (P4T with RFID and WLAN)

 Issue Date
 28 August 2008

 Page
 38 of 85

5.7 Peak Output Power

1. Conducted Measurement

EUT was set for low, mid, high channel with modulated mode and highest RF output power.

The spectrum analyzer was connected to the antenna terminal.

2 Conducted Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the

range 30MHz - 40GHz is $\pm 1.5dB$.

3 Environmental Conditions

Temperature 23°C - 25°C Relative Humidity 50% Atmospheric Pressure 1019mbar

4 Test Date : July 14- August 25 2008

Tested By :Choon Sian Ooi

Standard Requirement: 47 CFR §15.247(b)

Procedures: The peak output power was measured conducted using a spectrum analyzer at low, mid,

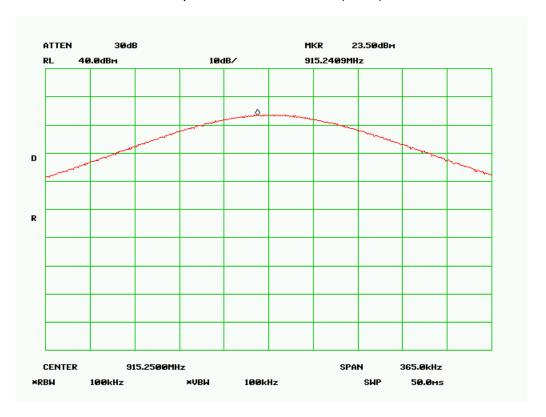
and hi channels. Peak detector was set to measure the power output. The power is converted from watt to dBm, therefore, 1 watt = 30 dBm. The highest antenna gain that will

be used is -20dBi.

Test Result:

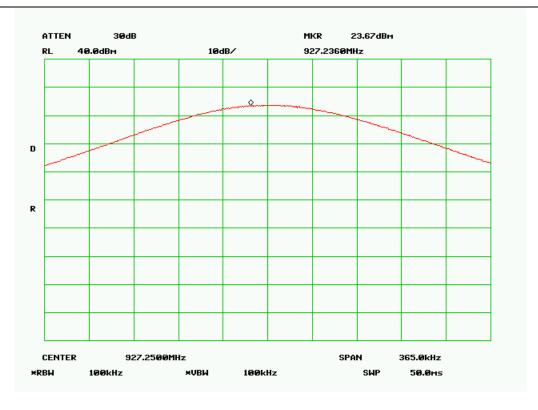
RFID

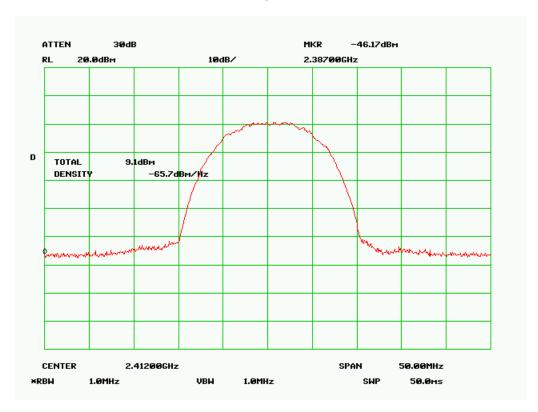
Channel	Channel Frequency (MHz)	Measured Output Power (dBm)	Peak Output Power Limit (dBm)		
Low	902.750	23.50	30		
Mid	915.250	23.50	30		
High	927.250	23.67	30		


WLAN Radio

Protocol	Channel	Channel Frequency (MHz)	Peak Output Power Limit (dBm)	Measured Output Power(dBm)
802.11b	Low	2412	30	9.1
802.11b	Mid	2437	30	9.6
802.11b	High	2462	30	10.0
802.11g	Low	2412	30	10.1
802.11g	Mid	2437	30	10.0
802.11g	High	2462	30	10.1

Output Power Low Channel (RFID)

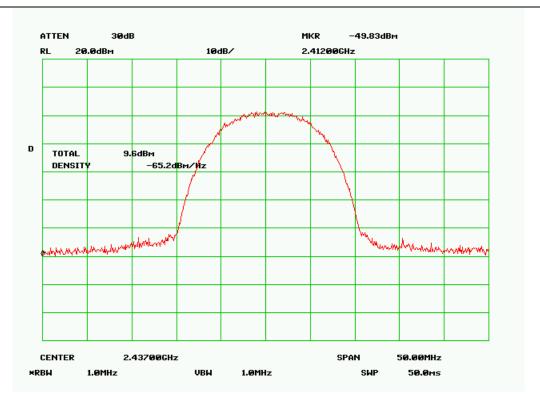

Output Power Mid Channel (RFID)


 Serial#
 \$L08041104-ZBR-024(15.247) (P4T with RFID and WLAN)

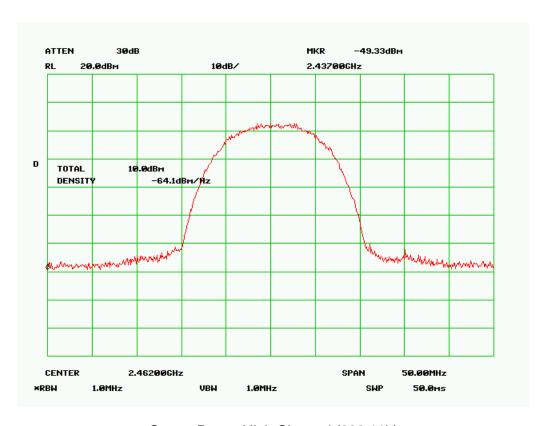
 Issue Date
 28 August 2008

 Page
 40 of 85

Output Power High Channel (RFID)



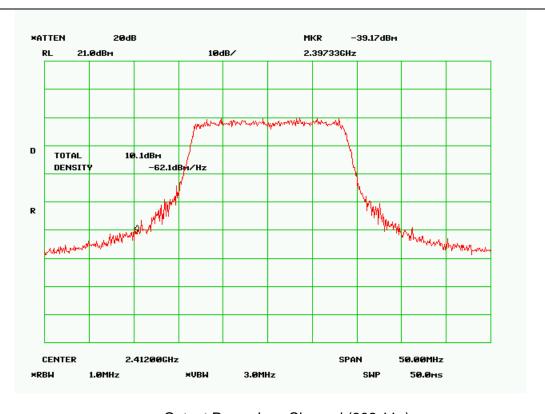
Output Power Low Channel (802.11b)


 Serial#
 SL08041104-ZBR-024(15.247) (P4T with RFID and WLAN)

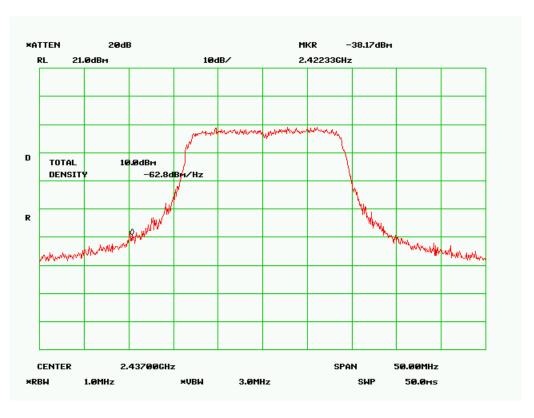
 Issue Date
 28 August 2008

 Page
 41 of 85

Output Power Mid Channel (802.11b)

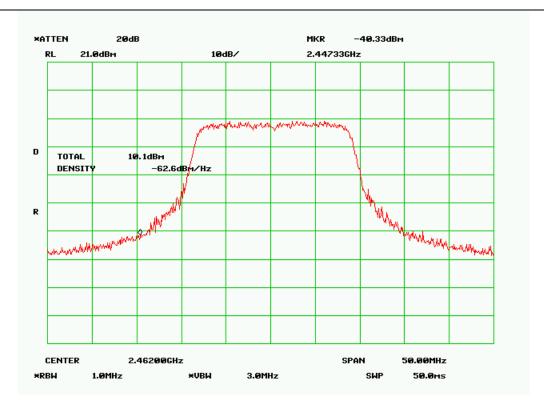


Output Power High Channel (802.11b)


 Serial#
 SL08041104-ZBR-024(15.247) (P4T with RFID and WLAN)

 Issue Date
 28 August 2008

 Page
 42 of 85


Output Power Low Channel (802.11g)

 Serial#
 \$L08041104-ZBR-024(15.247) (P4T with RFID and WLAN)

 Issue Date
 28 August 2008

 Page
 43 of 85

Output Power High Channel (802.11g)

5.8 100 kHz Bandwidth of Frequency Band Edge

1. Conducted Measurement

EUT was set for low, mid, high channel with modulated mode and highest RF output power.

The spectrum analyzer was connected to the antenna terminal.

2 Conducted Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the

range 30MHz - 20GHz is $\pm 1.5dB$.

Environmental Conditions
Temperature
Relative Humidity
50%
Atmospheric Pressure
1019mbar

4 Test Date : July 14- August 25 2008

Tested By : Choon Sian Ooi

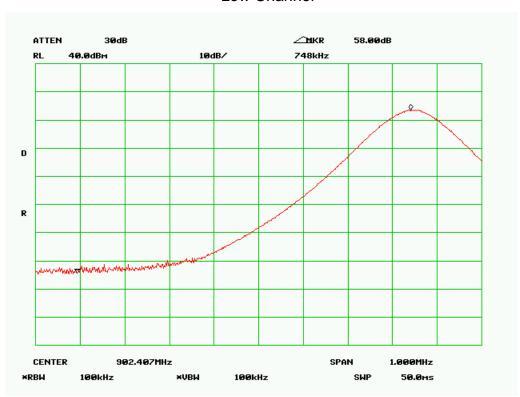
Standard Requirement : 47 CFR §15.247(b)

Procedures: in any 100 kHz bandwidth outside the frequency band in which the spread spectrum

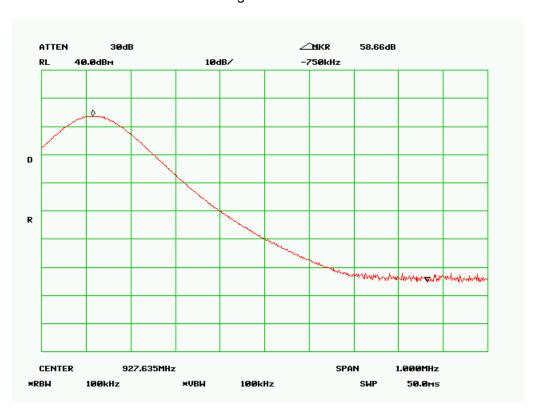
intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in §15.209(a) is not

required.

Test Result:


3

 Serial#
 \$L08041104-ZBR-024(15.247) (P4T with RFID and WLAN)


 Issue Date
 28 August 2008

 Page
 45 of 85

Low Channel

High Channel

Serial# Issue Date 28 August 2008 Page

SL08041104-ZBR-024(15.247) (P4T with RFID and WLAN)

6dB & 99% Occupied Bandwidth

1. Conducted Measurement

EUT was set for low, mid, high channel with modulated mode and highest RF output power.

The spectrum analyzer was connected to the antenna terminal.

2 **Environmental Conditions** 23°C Temperature 50%

Relative Humidity Atmospheric Pressure 1019mbar

3 Conducted Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are

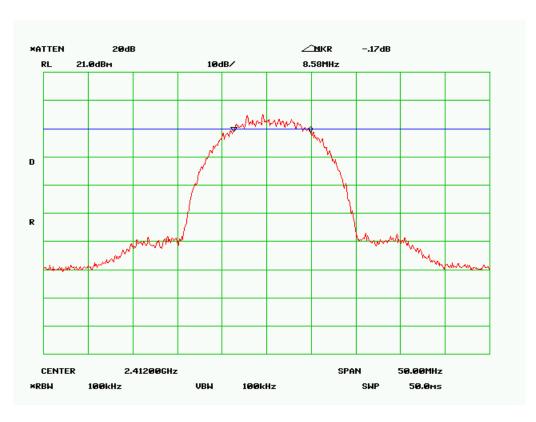
normal), with a coverage factor of 2, in the range 30MHz - 40GHz is ±1.5dB.

4 Test Date: July 14- August 25 2008

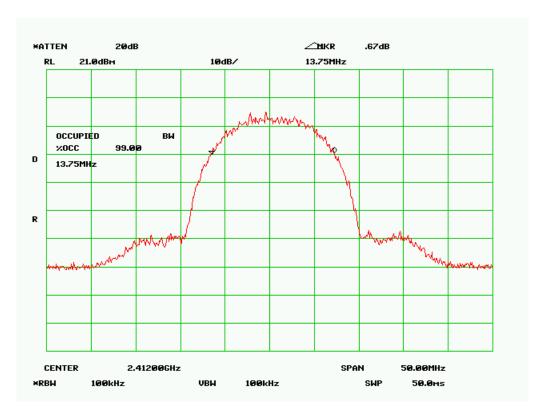
Tested By: Choon Sian Ooi

Requirement(s): 47 CFR §15.247(a)(1)

Procedures: The 6dB bandwidths were measured conducted using a spectrum analyzer at low, mid, and hi channels. 6 dB Bandwidth Limit: > 500 kHz.

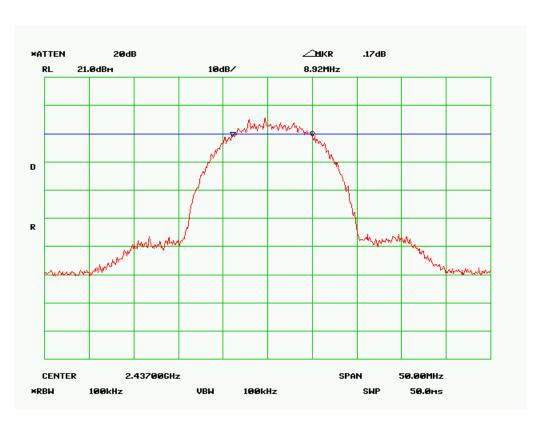

Protocol	Channel	Channel Frequency (MHz)	6 dB Channel Bandwidth (MHz)	99% Channel Bandwidth (MHz)	6 dB Occupied Bandwidth Limit (MHz)
802.11b	Low	2412	8.58	13.75	0.5
802.11b	Mid	2437	8.92	13.75	0.5
802.11b	High	2462	8.92	13.75	0.5
802.11g	Low	2412	16.75	16.65	0.5
802.11g	Mid	2437	16.75	16.75	0.5
802.11g	High	2462	16.67	16.67	0.5

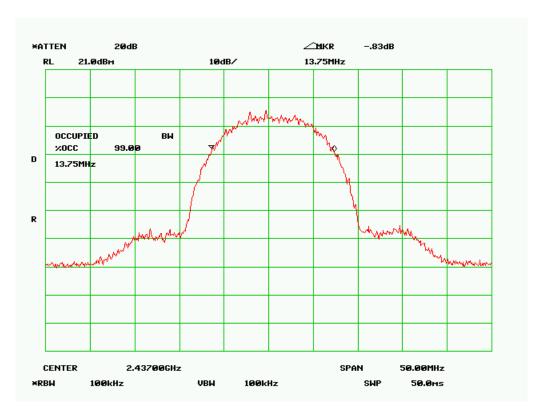
Refer to the attached plots.


 Serial#
 SL08041104-ZBR-024(15.247) (P4T with RFID and WLAN)

 Issue Date
 28 August 2008

 Page
 47 of State Sta

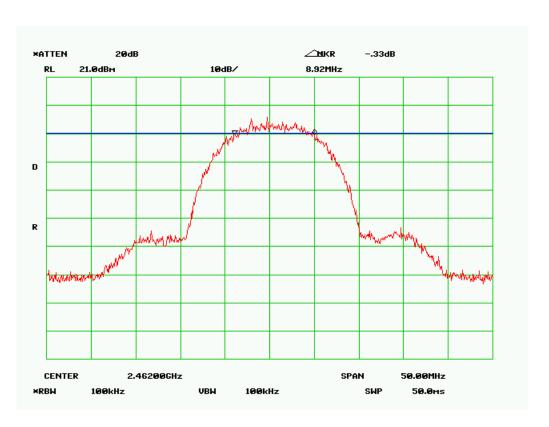

6 dB Bandwidth - Low Channel (802.11b)


99% Bandwidth - Low Channel (802.11b)

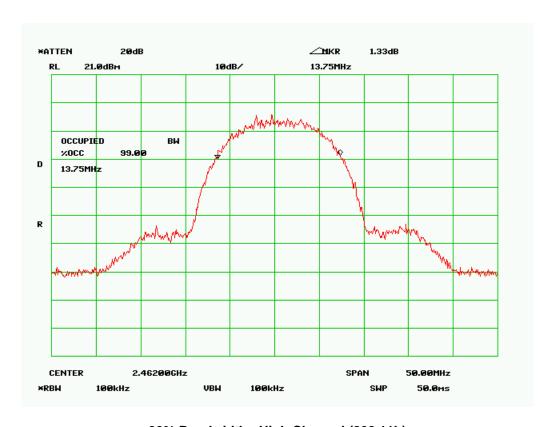
Serial# SL08041104-ZBR-024(15.247) (P4T with RFID and WLAN)
Issue Date Page 48 of 85

WMM Signific com

6 dB Bandwidth - Mid Channel (802.11b)



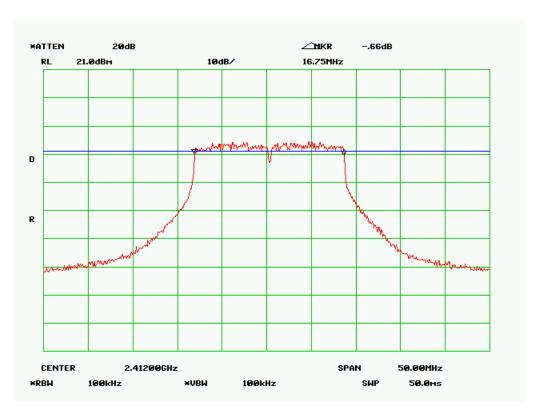
99% Bandwidth - Mid Channel (802.11b)


 Serial#
 SL08041104-ZBR-024(15.247) (P4T with RFID and WLAN)

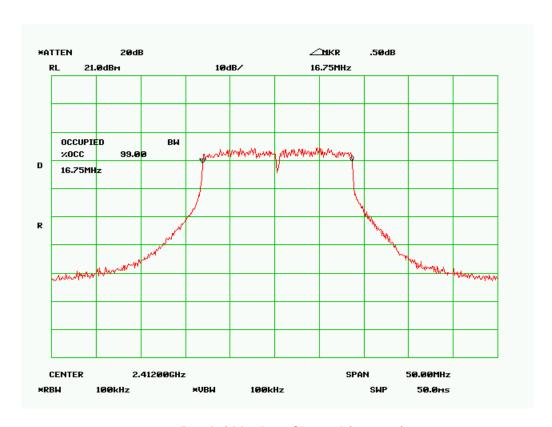
 Issue Date
 28 August 2008

 Page
 490 f85

6 dB Bandwidth - High Channel (802.11b)



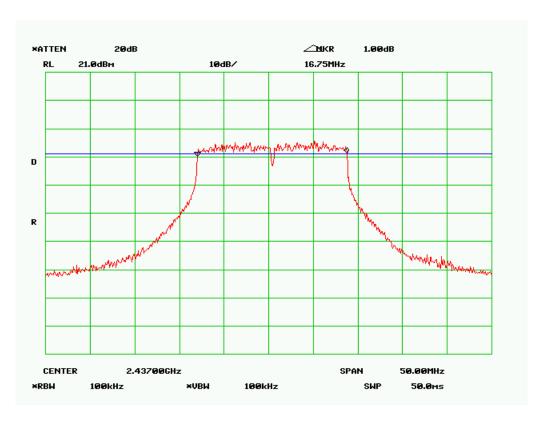
99% Bandwidth - High Channel (802.11b)


 Serial#
 SL08041104-ZBR-024(15.247) (P4T with RFID and WLAN)

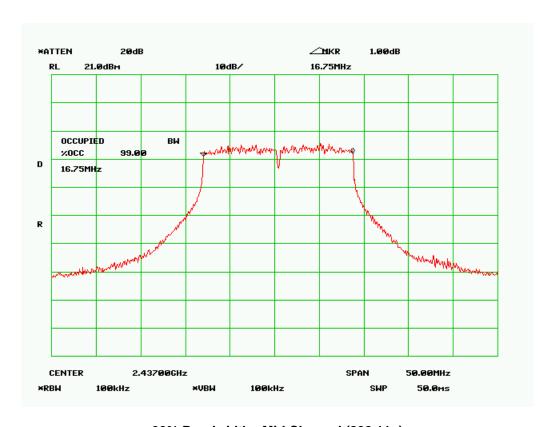
 Issue Date Page
 28 August 2008

 50 of 85
 .

6 dB Bandwidth - Low Channel (802.11g)



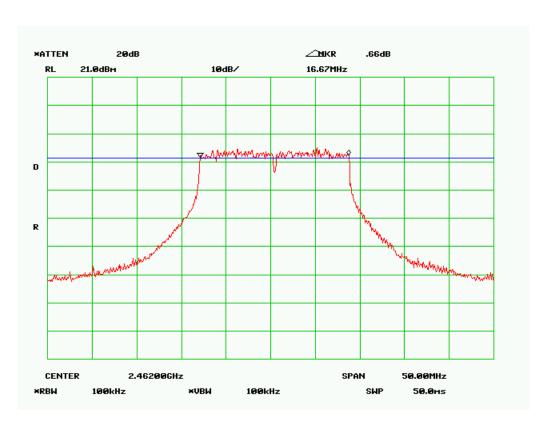
99% Bandwidth - Low Channel (802.11g)


 Serial#
 SL08041104-ZBR-024(15.247) (P4T with RFID and WLAN)

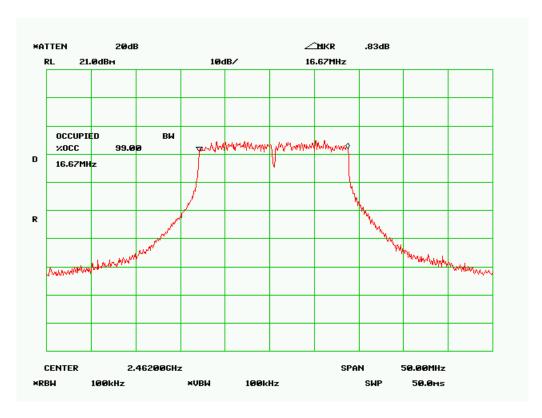
 Issue Date
 28 August 2008

 Page
 51 65 5

6 dB Bandwidth - Mid Channel (802.11g)



99% Bandwidth - Mid Channel (802.11g)


 Serial#
 SL08041104-ZBR-024(15.247) (P4T with RFID and WLAN)

 Issue Date
 28 August 2008

 Page
 52 of 85

6 dB Bandwidth - High Channel (802.11g)

99% Bandwidth - High Channel (802.11g)

Issue Date 28 August 2008 Page

SL08041104-ZBR-024(15.247) (P4T with RFID and WLAN)

1019mbar

5.10 Peak Spectral Density

1. Conducted Measurement

EUT was set for low, mid, high channel with modulated mode and highest RF output power.

The spectrum analyzer was connected to the antenna terminal.

2 Conducted Emissions Measurement Uncertainty

> All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are

> > Atmospheric Pressure

normal), with a coverage factor of 2, in the range 30MHz - 40GHz is ±1.5dB. **Environmental Conditions**

Temperature 23°C Relative Humidity 50%

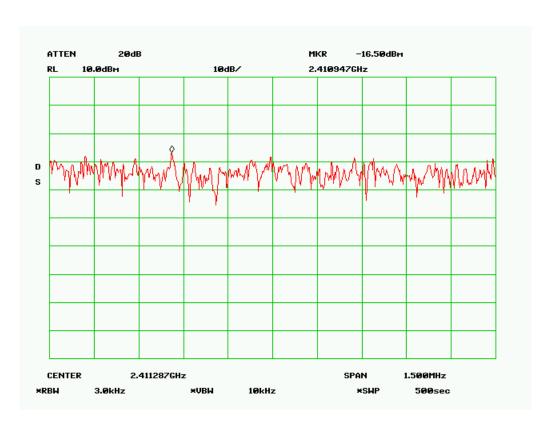
4 Test Date: July 14- August 25 2008 Tested By: Choon Sian Ooi

Standard Requirement: 47 CFR §15.247(e)

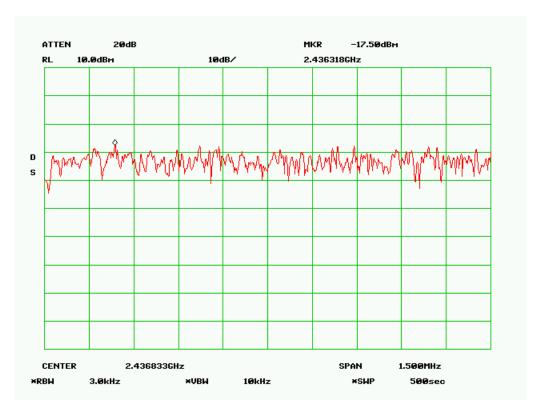
For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission

Procedures: The Peak Spectral density measurement was taken conducted using a spectrum analyzer.

RBW=3KHz, VBW > RBW, Sweep time to SPAN/RBW (sec)


Test Result:

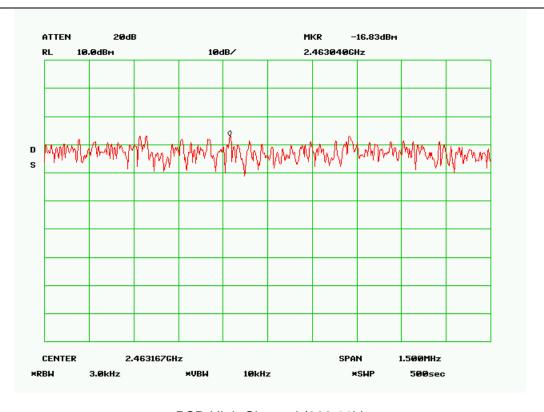
3


Protocol	Channel	Channel Frequency (MHz)	Peak Spectral Density Limit (dBm/3KHz)	Peak Spectral Density (dBm/3KHz)
802.11b	Low	2412	8	-16.50
802.11b	Mid	2437	8	-17.50
802.11b	High	2462	8	-16.83
802.11g	Low	2412	8	-18.67
802.11g	Mid	2437	8	-17.83
802.11g	High	2462	8	-16.83

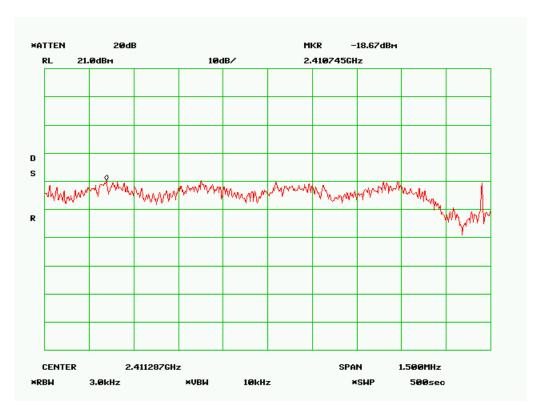
Refer to the attached plots.

SL08041104-ZBR-024(15.247) (P4T with RFID and WLAN) Issue Date 28 August 2008
Page 54 of 85

PSD Low Channel (802.11b)



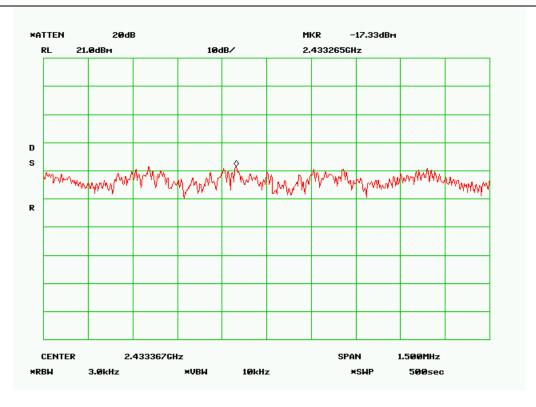
PSD Mid Channel (802.11b)


 Serial#
 SL08041104-ZBR-024(15.247) (P4T with RFID and WLAN)

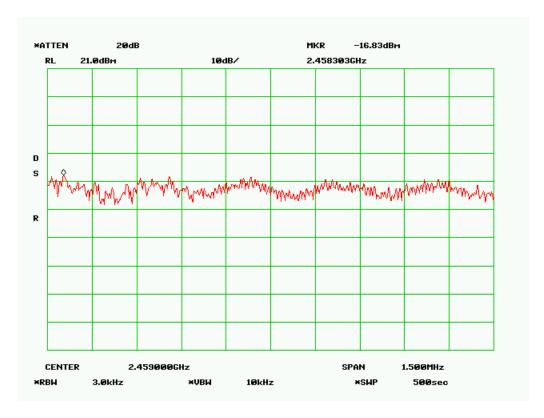
 Issue Date
 28 August 2008

 Page
 55 of 85

PSD High Channel (802.11b)



PSD Low Channel (802.11g)


 Serial#
 \$L08041104-ZBR-024(15.247) (P4T with RFID and WLAN)

 Issue Date
 28 August 2008

 Page
 56 of 85

PSD Mid Channel (802.11g)

PSD High Channel (802.11g)

 Serial#
 SL08041104-ZBR-024(15.247) (P4T with RFID and WLAN)

 Issue Date
 28 August 2008

57 of 85

5.11 Antenna Port Emission

1. Conducted Measurement

EUT was set for low, mid, high channel with modulated mode and highest RF output power.

The spectrum analyzer was connected to the antenna terminal.

2 <u>Conducted Emissions Measurement Uncertainty</u>

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the

range 30MHz - 20GHz is $\pm 1.5dB$.

3 Environmental Conditions Temperature 23°C - 25°C

Relative Humidity 50% Atmospheric Pressure 1019mbar

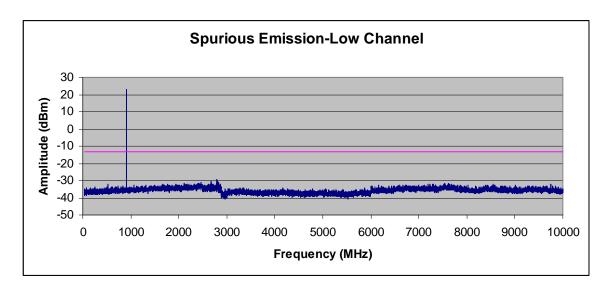
Page

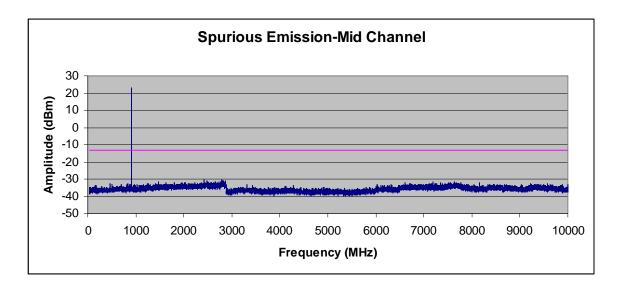
4 Test Date : July 14- August 25 2008

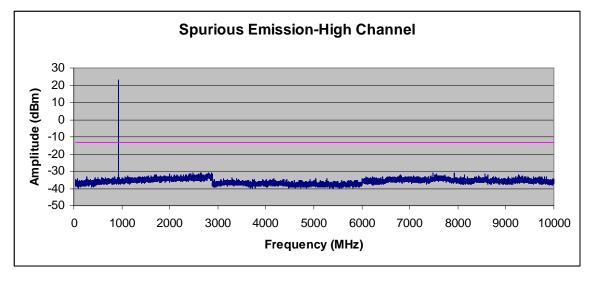
Tested By: Choon Sian Ooi

Standard Requirement: 47 CFR §15.247(c)

Procedures: The conducted spurious emissions were measured conducted using a spectrum analyzer at low, mid, and hi channels. The limit was determined by attenuating 20 dB of the RF peak power output

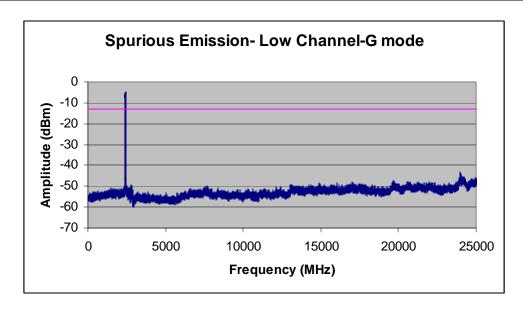

Test Result:

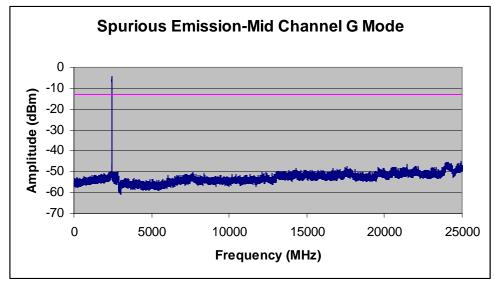

 Serial#
 SL08041104-ZBR-024(15.247) (P4T with RFID and WLAN)

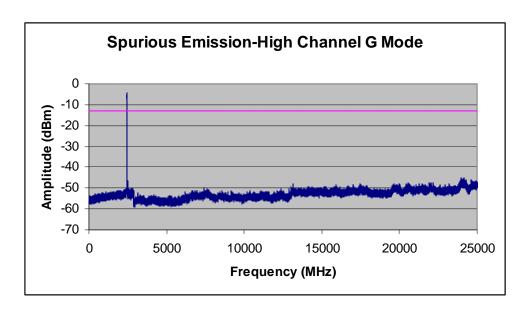

 Issue Date
 28 August 2008

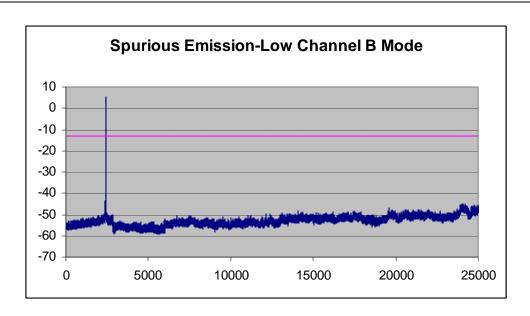
 Page
 58 of 85

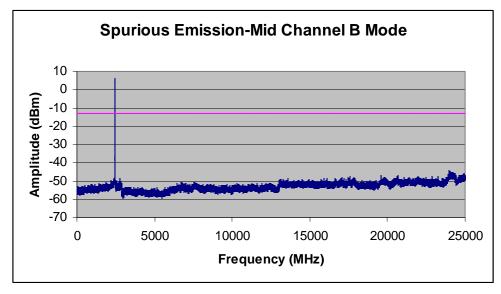
RFID

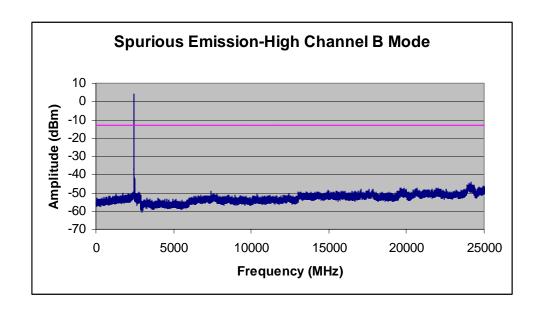



 Serial#
 SL08041104-ZBR-024(15.247) (P4T with RFID and WLAN)


 Issue Date
 28 August 2008


 Page
 559 685


802.11b/g



SL08041104-ZBR-024(15.247) (P4T with RFID and WLAN) Serial# Issue Date 28 August 2008 Page

5.12 Radiated Spurious Emission < 1GHz

1. All possible modes of operation were investigated. Only the 6 worst case emissions measured, using the correct CISPR detectors, are reported. All other emissions were relatively insignificant.

A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency. 2.

3. Radiated Emissions Measurement Uncertainty

> All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz - 1GHz (QP only @ 3m & 10m) is +5.6dB/-4.5dB (for EUTs < 0.5m X 0.5m X 0.5m).

Environmental Conditions 23°C - 25°C Temperature 4

Relative Humidity 50% Atmospheric Pressure 1019mbar

Test Date: July 14- August 25 2008

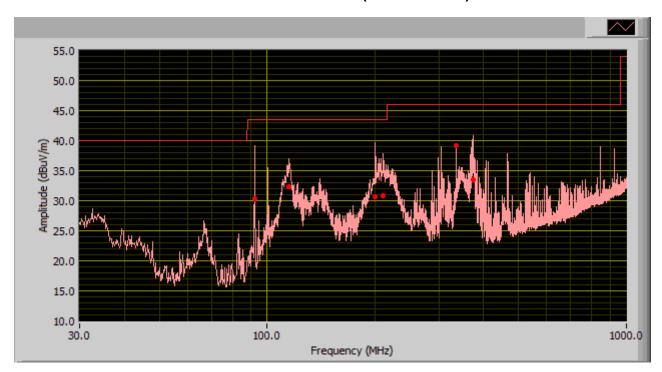
Tested By: Choon Sian Ooi

Standard Requirement: 47 CFR §15.247(c)

Procedures: Radiated emissions were measured according to ANSI C63.4. The EUT was set to transmit

at the highest output power. The EUT was set to transmit at mid channel. Note that setting

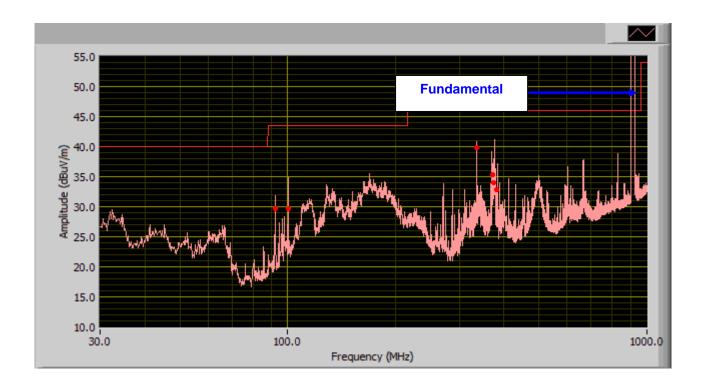
the channel other than mid, the spurious emissions are the same.


The limit is converted from microvolts/meter to decibel microvolts/meter.

Sample Calculation: Corrected Amplitude = Raw Amplitude (dBµV/m) + ACF(dB) + Cable Loss(dB)

NOTE: The entire test was done when both radios was turn on to simulate the worst case.

Test Result:


Radiated Emission Plot (Receive mode)

Test Data

Frequency (MHz)	Quasi-Peak (dBμV/m)	Antenna height (cm)	Polarity	Turntable position (deg)	Limit (dBµV/m)	Margin (dB)
200.01	30.63	103.00	Н	107.00	43.50	-12.87
92.35	30.31	110.00	V	203.00	43.50	-13.19
374.07	33.48	253.00	V	155.00	46.00	-12.52
209.58	30.88	153.00	Н	127.00	43.50	-12.62
114.60	32.38	167.00	Н	93.00	43.50	-11.12
335.99	39.18	100.00	Н	145.00	46.00	-6.82

Radiated Emission Plot (Transmit mode)

Test Data

Frequency (MHz)	Quasi-Peak (dBμV/m)	Antenna height (cm)	Polarity	Turntable position (deg)	Limit (dBµV/m)	Margin (dB)
100.25	29.62	104.00	V	31.00	43.50	-13.88
92.31	29.70	105.00	V	31.00	43.50	-13.80
375.98	32.83	165.00	V	210.00	46.00	-13.17
388.59	34.01	235.00	Н	21.00	46.00	-11.99
376.11	30.34	243.00	V	164.00	46.00	-15.66
335.99	39.90	101.00	Н	128.00	46.00	-6.10

5.12 Radiated Spurious Emissions > 1GHz

- 1. <u>All possible modes of operation were investigated. Only the 6 worst case emissions measured, using the correct CISPR detectors, are reported. All other emissions were relatively insignificant.</u>
- 2. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
- 3. Radiated Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the

range 1GHz - 20GH is +5.6dB/-4.5dB (for $EUTs < 0.5m \times 0.5m \times 0.5m$).

4. Environmental Conditions Temperature 23°C - 25°C Relative Humidity 50% Atmospheric Pressure 1019mbar

Test Date : July 14- August 25 2008 Tested By :Choon Sian Ooi

Standard Requirement: 47 CFR §15.247(d)

Procedures: Equipment was setup in a semi-anechoic chamber. For measurements above 1 GHz an average measurement was taken with a 10Hz video bandwidth. The EUT was tested at low, mid and high with the highest output power. Investigated up to 10th harmonics of the operating frequency.

Sample Calculation:

EUT Field Strength = Raw Amplitude(dBμV/m) – Amplifier Gain(dB) + Antenna Factor(dB) + Cable Loss(dB) + Filter Attenuation(dB, if used)

NOTE: A Separate test was done when both radios was turn on for IM and not presented in this report. But available upon request.

Test Result:

RFID

@ 902.750MHz @ 3 Meter

Frequency	Reading	Direction	Height	Polar	Antenna Loss	Cable loss	Amplifier	Corrected Reading	Limit	Margin	
1.81	48.01	150.00	105.00	V	26.40	2.16	31.98	44.59	74.00	-29.41	Peak
1.81	42.32	180.00	155.00	h	26.40	2.16	31.98	38.90	74.00	-35.10	Peak
1.81	39.41	150.00	105.00	V	26.40	2.16	31.98	35.99	54.00	-18.01	Ave
1.81	32.47	180.00	155.00	h	26.40	2.16	31.98	29.05	54.00	-24.95	Ave
2.71	54.17	145.00	115.00	V	29.80	2.72	32.08	54.61	74.00	-19.39	Peak
2.71	39.56	180.00	155.00	h	29.80	2.72	32.08	40.00	74.00	-34.00	Peak
2.71	45.55	145.00	115.00	V	29.80	2.72	32.08	45.99	54.00	-8.01	Ave
2.71	25.52	190.00	155.00	h	29.80	2.72	32.08	25.96	54.00	-28.04	Ave
3.61	40.46	200.00	105.00	V	32.50	3.44	32.37	44.03	74.00	-29.98	Peak
3.61	41.21	190.00	155.00	h	32.50	3.44	32.37	44.78	74.00	-29.23	Peak
3.61	25.01	200.00	105.00	V	32.50	3.44	32.37	28.58	54.00	-25.43	Ave
3.61	29.63	190.00	155.00	h	32.50	3.44	32.37	33.20	54.00	-20.81	Ave

Emission was scanned up to 10GHz.

@ 915.250MHz @ 3Meter

Frequency	Reading	Direction	Height	Polar	Antenna Loss	Cable loss	Amplifier	Corrected Reading	Limit	Margin	
1.83	46.85	150.00	100.00	V	26.40	2.16	31.98	43.43	74.00	-30.57	Peak
1.83	39.38	170.00	155.00	h	26.40	2.16	31.98	35.96	74.00	-38.04	Peak
1.83	39.02	150.00	100.00	V	26.40	2.16	31.98	35.60	54.00	-18.40	Ave
1.83	27.80	170.00	155.00	h	26.40	2.16	31.98	24.38	54.00	-29.62	Ave
2.75	52.09	145.00	110.00	V	29.80	2.72	32.08	52.53	74.00	-21.47	Peak
2.75	38.93	180.00	165.00	h	29.80	2.72	32.08	39.37	74.00	-34.63	Peak
2.75	42.89	145.00	110.00	V	29.80	2.72	32.08	43.33	54.00	-10.67	Ave
2.75	26.78	190.00	165.00	h	29.80	2.72	32.08	27.22	54.00	-26.78	Ave
3.66	38.92	200.00	105.00	V	32.50	3.44	32.37	42.49	74.00	-31.52	Peak
3.66	40.49	185.00	165.00	h	32.50	3.44	32.37	44.06	74.00	-29.95	Peak
3.66	25.90	200.00	105.00	V	32.50	3.44	32.37	29.47	54.00	-24.54	Ave
3.66	26.38	185.00	165.00	h	32.50	3.44	32.37	29.95	54.00	-24.06	Ave

Emission was scanned up to 10GHz.

 Serial#
 \$L08041104-ZBR-024(15.247) (P4T with RFID and WLAN)

 Issue Date
 28 August 2008

 Page
 66 of 85

@ 927.250MHz @ 3Meter

Frequency	Reading	Direction	Height	Polar	Antenna Loss	Cable loss	Amplifier	Corrected Reading	Limit	Margin	
1.85	42.27	150.00	100.00	V	26.40	2.16	31.98	38.85	74.00	-35.15	Peak
1.85	41.84	170.00	155.00	h	26.40	2.16	31.98	38.42	74.00	-35.58	Peak
1.85	30.72	150.00	100.00	V	26.40	2.16	31.98	27.30	54.00	-26.70	Ave
1.85	26.04	170.00	155.00	h	26.40	2.16	31.98	22.62	54.00	-31.38	Ave
2.78	47.41	145.00	110.00	V	29.80	2.72	32.08	47.85	74.00	-26.15	Peak
2.78	41.17	180.00	165.00	h	29.80	2.72	32.08	41.61	74.00	-32.39	Peak
2.78	38.06	145.00	110.00	V	29.80	2.72	32.08	38.50	54.00	-15.50	Ave
2.78	31.55	190.00	165.00	h	29.80	2.72	32.08	31.99	54.00	-22.01	Ave
3.71	40.11	200.00	105.00	V	32.50	3.44	32.37	43.68	74.00	-30.33	Peak
3.71	39.96	185.00	165.00	h	32.50	3.44	32.37	43.53	74.00	-30.48	Peak
3.71	25.54	200.00	105.00	V	32.50	3.44	32.37	29.11	54.00	-24.90	Ave
3.71	29.50	185.00	165.00	h	32.50	3.44	32.37	33.07	54.00	-20.94	Ave

Emission was scanned up to 10GHz.

Emission was scanned up to 25GHz.

 Serial#
 \$L08041104-ZBR-024(15.247) (P4T with RFID and WLAN)

 Issue Date
 28 August 2008

 Page
 67 of 85

WLAN

B-Mode @ 2412MHz @ 3 Meter

Frequency	Reading	Direction	Height	Polar	Antenna Loss	Cable loss	Amplifier	Corrected Reading	15.247/15.209	15.247/15.209	
GHz	(dBuV/m)	Degree	Meter	H/V	(dB)	(dB)	(dB)	(dBuV/m)	Limit (dBuV/m)	Margin	Comments
4.82	40.30	150.00	100.00	V	33.00	4.13	32.49	44.94	74.00	-29.07	Peak
4.82	41.00	175.00	155.00	h	33.00	4.13	32.49	45.64	74.00	-28.37	Peak
4.82	32.00	150.00	100.00	V	33.00	4.13	32.49	36.64	54.00	-17.37	Ave
4.82	33.00	175.00	155.00	h	33.00	4.13	32.49	37.64	54.00	-16.37	Ave
7.24	46.17	155.00	110.00	V	35.50	5.22	32.39	54.50	74.00	-19.50	Peak
7.24	46.23	180.00	165.00	h	35.50	5.22	32.39	54.56	74.00	-19.44	Peak
7.24	32.56	155.00	110.00	V	35.50	5.22	32.39	40.89	54.00	-13.11	Ave
7.24	33.45	190.00	165.00	h	35.50	5.22	32.39	41.78	54.00	-12.22	Ave
9.65	45.34	185.00	115.00	V	39.20	6.26	32.32	58.48	74.00	-15.53	Peak
9.65	44.87	175.00	165.00	h	39.20	6.26	32.32	58.01	74.00	-16.00	Peak
9.65	33.13	185.00	115.00	V	39.20	6.26	32.32	46.27	54.00	-7.73	Ave
9.65	32.19	175.00	165.00	h	39.20	6.26	32.32	45.33	54.00	-8.68	Ave

Emission was scanned up to 25GHz.

@ 2437MHz @ 3Meter

	(W 243 / WILL)											
Frequency	Reading	Direction	Height	Polar	Antenna Loss	Cable loss	Amplifier	Corrected Reading	15.247/15.209	15.247/15.209		
GHz	(dBuV/m)	Degree	Meter	H/V	(dB)	(dB)	(dB)	(dBuV/m)	Limit (dBuV/m)	Margin	Comments	
4.87	49.33	156.00	100.00	٧	33.00	4.13	32.49	53.97	74.00	-20.04	Peak	
4.87	49.12	177.00	155.00	h	33.00	4.13	32.49	53.76	74.00	-20.25	Peak	
4.87	36.16	156.00	100.00	٧	33.00	4.13	32.49	40.80	54.00	-13.21	Ave	
4.87	36.55	177.00	155.00	h	33.00	4.13	32.49	41.19	54.00	-12.82	Ave	
7.31	45.23	155.00	110.00	٧	35.50	5.22	32.39	53.56	74.00	-20.44	Peak	
7.31	44.67	188.00	165.00	h	35.50	5.22	32.39	53.00	74.00	-21.00	Peak	
7.31	33.92	155.00	110.00	٧	35.50	5.22	32.39	42.25	54.00	-11.75	Ave	
7.31	32.14	188.00	165.00	h	35.50	5.22	32.39	40.47	54.00	-13.53	Ave	
9.74	45.71	185.00	115.00	٧	39.20	6.26	32.32	58.85	74.00	-15.16	Peak	
9.74	45.22	175.00	165.00	h	39.20	6.26	32.32	58.36	74.00	-15.65	Peak	
9.74	33.45	185.00	115.00	٧	39.20	6.26	32.32	46.59	54.00	-7.42	Ave	
9.74	32.92	175.00	165.00	h	39.20	6.26	32.32	46.06	54.00	-7.95	Ave	

Emission was scanned up to 25GHz.

@ 2462MHz @ 3Meter

	W 2402WITZ W SWIETER												
Frequency	Reading	Direction	Height	Polar	Antenna Loss	Cable loss	Amplifier	Corrected Reading	15.247/15.209	15.247/15.209			
GHz	(dBuV/m)	Degree	Meter	H/V	(dB)	(dB)	(dB)	(dBuV/m)	Limit (dBuV/m)	Margin	Comments		
4.93	47.83	145.00	100.00	V	33.00	4.13	32.49	52.47	74.00	-21.54	Peak		
4.93	48.17	173.00	155.00	h	33.00	4.13	32.49	52.81	74.00	-21.20	Peak		
4.93	35.33	145.00	100.00	V	33.00	4.13	32.49	39.97	54.00	-14.04	Ave		
4.93	35.17	173.00	155.00	h	33.00	4.13	32.49	39.81	54.00	-14.20	Ave		
7.40	45.34	156.00	110.00	V	35.50	5.22	32.39	53.67	74.00	-20.33	Peak		
7.40	44.78	180.00	165.00	h	35.50	5.22	32.39	53.11	74.00	-20.89	Peak		
7.40	32.78	156.00	110.00	V	35.50	5.22	32.39	41.11	54.00	-12.89	Ave		
7.40	32.56	180.00	165.00	h	35.50	5.22	32.39	40.89	54.00	-13.11	Ave		
9.86	45.23	188.00	115.00	V	39.20	6.26	32.32	58.37	74.00	-15.64	Peak		
9.86	45.12	175.00	165.00	h	39.20	6.26	32.32	58.26	74.00	-15.75	Peak		
9.86	32.56	188.00	115.00	V	39.20	6.26	32.32	45.70	54.00	-8.31	Ave		
9.86	32.21	175.00	165.00	h	39.20	6.26	32.32	45.35	54.00	-8.66	Ave		

 Serial#
 \$L08041104-ZBR-024(15.247) (P4T with RFID and WLAN)

 Issue Date
 28 August 2008

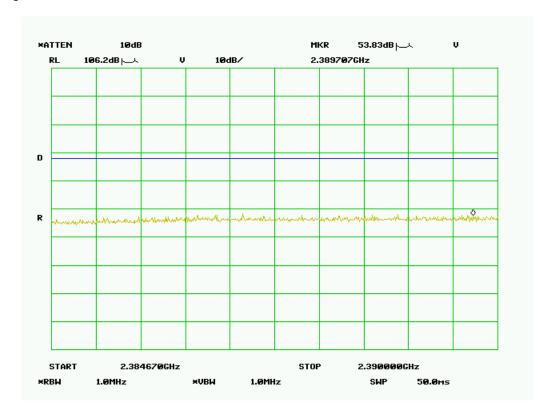
 Page
 68 of 85

G-Mode @ 2412MHz @ 3 Meter

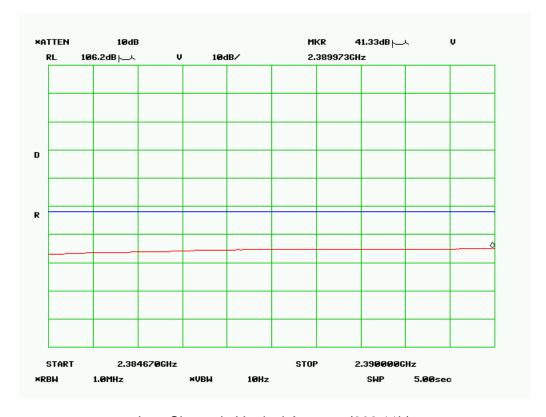
Frequency	Reading	Direction	Height	Polar	Antenna Loss	Cable loss	Amplifier	Corrected Reading	15.247/15.209	15.247/15.209	
GHz	(dBuV/m)	Degree	Meter	H/V	(dB)	(dB)	(dB)	(dBuV/m)	Limit (dBuV/m)	Margin	Comments
4.82	45.21	160.00	100.00	V	33.00	4.13	32.49	49.85	74.00	-24.16	Peak
4.82	47.17	186.00	155.00	h	33.00	4.13	32.49	51.81	74.00	-22.20	Peak
4.82	31.23	160.00	100.00	V	33.00	4.13	32.49	35.87	54.00	-18.14	Ave
4.82	33.50	186.00	155.00	h	33.00	4.13	32.49	38.14	54.00	-15.87	Ave
7.24	43.56	160.00	110.00	V	35.50	5.22	32.39	51.89	74.00	-22.11	Peak
7.24	44.12	175.00	165.00	h	35.50	5.22	32.39	52.45	74.00	-21.55	Peak
7.24	32.71	160.00	110.00	V	35.50	5.22	32.39	41.04	54.00	-12.96	Ave
7.24	32.92	175.00	165.00	h	35.50	5.22	32.39	41.25	54.00	-12.75	Ave
9.65	46.12	182.00	115.00	V	39.20	6.26	32.32	59.26	74.00	-14.75	Peak
9.65	46.21	190.00	165.00	h	39.20	6.26	32.32	59.35	74.00	-14.66	Peak
9.65	32.83	182.00	115.00	V	39.20	6.26	32.32	45.97	54.00	-8.04	Ave
9.65	32.91	190.00	165.00	h	39.20	6.26	32.32	46.05	54.00	-7.96	Ave

Emission was scanned up to 25GHz.

@ 2437MHz @ 3Meter


Frequency	Reading	Direction	Height	Polar	Antenna Loss	Cable loss	Amplifier	Corrected Reading	15.247/15.209	15.247/15.209	
GHz	(dBuV/m)	Degree	Meter	H/V	(dB)	(dB)	(dB)	(dBuV/m)	Limit (dBuV/m)	Margin	Comments
4.87	44.50	260.00	100.00	V	33.00	4.13	32.49	49.14	74.00	-24.87	Peak
4.87	46.47	186.00	155.00	h	33.00	4.13	32.49	51.11	74.00	-22.90	Peak
4.87	30.33	260.00	100.00	V	33.00	4.13	32.49	34.97	54.00	-19.04	Ave
4.87	33.33	186.00	155.00	h	33.00	4.13	32.49	37.97	54.00	-16.04	Ave
7.31	46.17	160.00	110.00	V	35.50	5.22	32.39	54.50	74.00	-19.50	Peak
7.31	46.12	275.00	165.00	h	35.50	5.22	32.39	54.45	74.00	-19.55	Peak
7.31	33.00	160.00	110.00	V	35.50	5.22	32.39	41.33	54.00	-12.67	Ave
7.31	33.21	275.00	165.00	h	35.50	5.22	32.39	41.54	54.00	-12.46	Ave
9.74	45.45	182.00	115.00	V	39.20	6.26	32.32	58.59	74.00	-15.42	Peak
9.74	45.17	190.00	165.00	h	39.20	6.26	32.32	58.31	74.00	-15.70	Peak
9.74	32.67	182.00	115.00	V	39.20	6.26	32.32	45.81	54.00	-8.20	Ave
9.74	32.17	190.00	165.00	h	39.20	6.26	32.32	45.31	54.00	-8.70	Ave

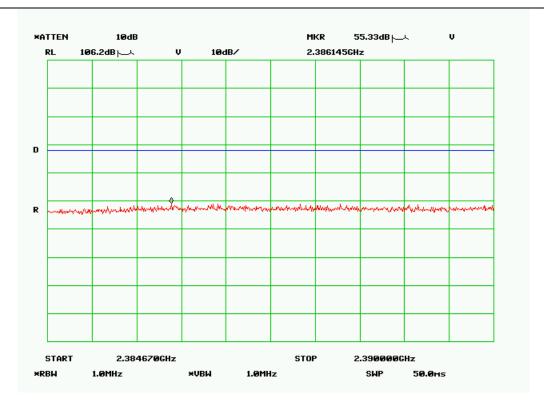
Emission was scanned up to 25GHz.


@ 2462MHz @ 3Meter

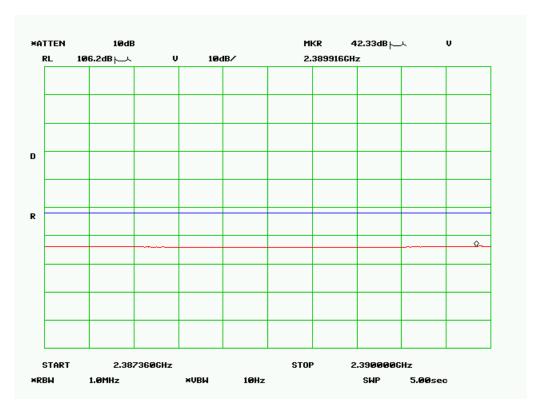
Frequency	Reading	Direction	Height	Polar	Antenna Loss	Cable loss	Amplifier	Corrected Reading	15.247/15.209	15.247/15.209	
GHz	(dBuV/m)	Degree	Meter	H/V	(dB)	(dB)	(dB)	(dBuV/m)	Limit (dBuV/m)	Margin	Comments
4.93	44.00	215.00	100.00	٧	33.00	4.13	32.49	48.64	74.00	-25.37	Peak
4.93	43.21	220.00	155.00	h	33.00	4.13	32.49	47.85	74.00	-26.16	Peak
4.93	30.93	215.00	100.00	٧	33.00	4.13	32.49	35.57	54.00	-18.44	Ave
4.93	31.00	220.00	155.00	h	33.00	4.13	32.49	35.64	54.00	-18.37	Ave
7.40	46.32	130.00	110.00	٧	35.50	5.22	32.39	54.65	74.00	-19.35	Peak
7.40	46.17	175.00	165.00	h	35.50	5.22	32.39	54.50	74.00	-19.50	Peak
7.40	33.56	130.00	110.00	٧	35.50	5.22	32.39	41.89	54.00	-12.11	Ave
7.40	33.11	175.00	165.00	h	35.50	5.22	32.39	41.44	54.00	-12.56	Ave
9.86	45.81	182.00	115.00	٧	39.20	6.26	32.32	58.95	74.00	-15.06	Peak
9.86	45.22	190.00	165.00	h	39.20	6.26	32.32	58.36	74.00	-15.65	Peak
9.86	32.13	182.00	115.00	V	39.20	6.26	32.32	45.27	54.00	-8.73	Ave
9.86	32.11	190.00	165.00	h	39.20	6.26	32.32	45.25	54.00	-8.76	Ave

Band Edge Plots

Low Channel -Vertical-Peak (802.11b)



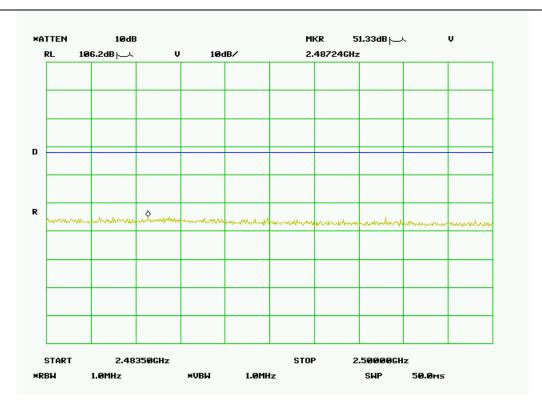
Low Channel -Vertical-Average (802.11b)


 Serial#
 \$L08041104-ZBR-024(15.247) (P4T with RFID and WLAN)

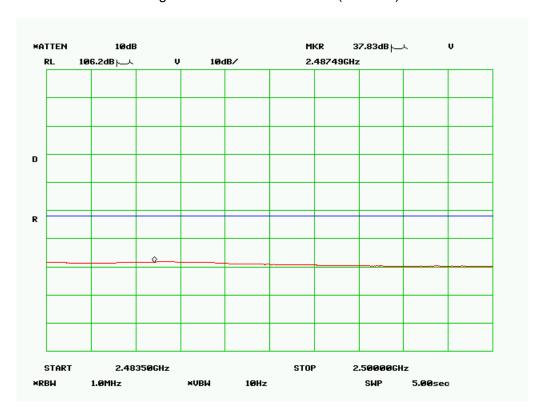
 Issue Date
 28 August 2008

 Page
 70 of 85

Low Channel -Horizontal-Peak (802.11b)



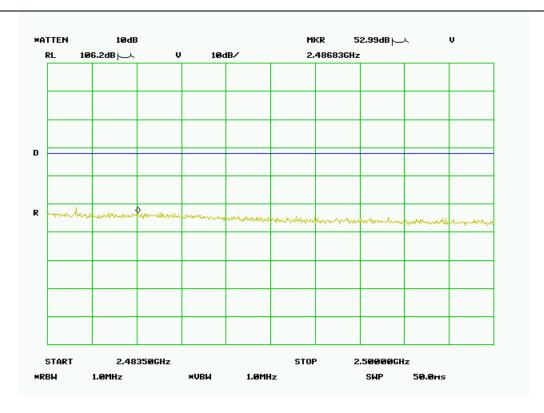
Low Channel –Horizontal-Average (802.11b)


 Serial#
 \$L08041104-ZBR-024(15.247) (P4T with RFID and WLAN)

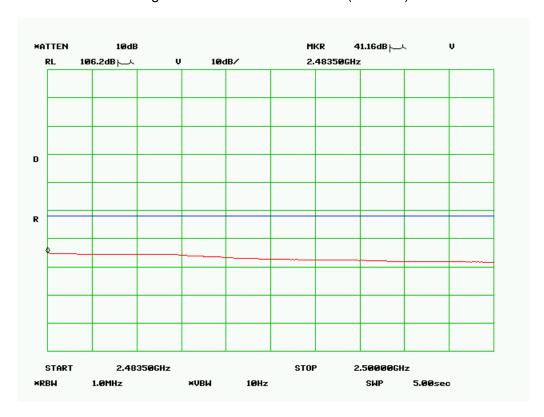
 Issue Date
 28 August 2008

 Page
 71 of 85

High Channel -Vertical-Peak (802.11b)



High Channel –Vertical-Average (802.11b)

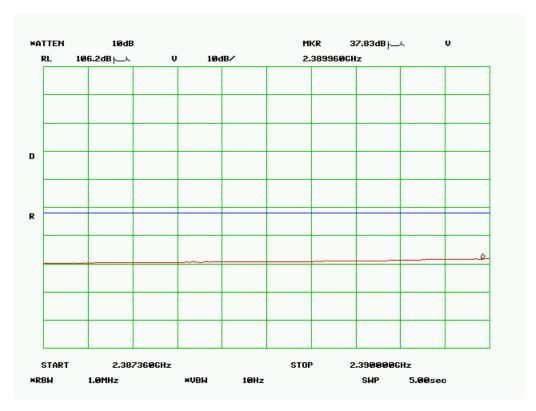

 Serial#
 \$L08041104-ZBR-024(15.247) (P4T with RFID and WLAN)

 Issue Date
 28 August 2008

 Page
 72 of 85

High Channel -Horizontal-Peak (802.11b)

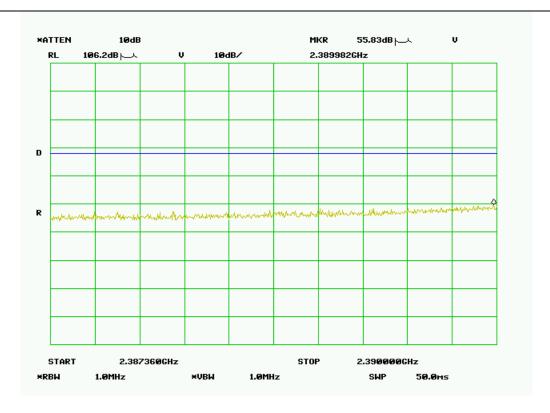
High Channel -Horizontal-Average (802.11b)


 Serial#
 \$L08041104-ZBR-024(15.247) (P4T with RFID and WLAN)

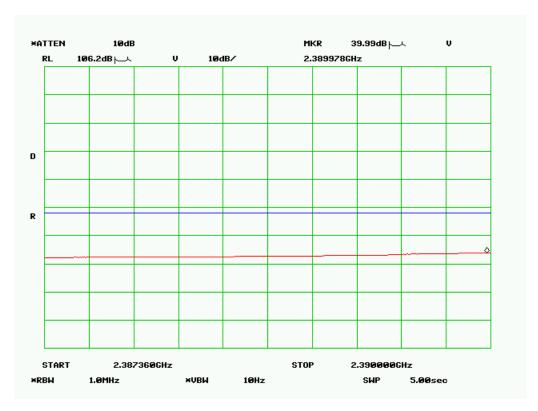
 Issue Date
 28 August 2008

 Page
 73 of 85

Low Channel -Vertical-Peak (802.11g)



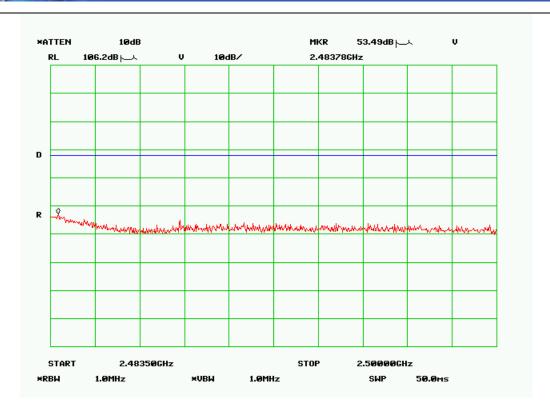
Low Channel -Vertical-Average (802.11g)


 Serial#
 \$L08041104-ZBR-024(15.247) (P4T with RFID and WLAN)

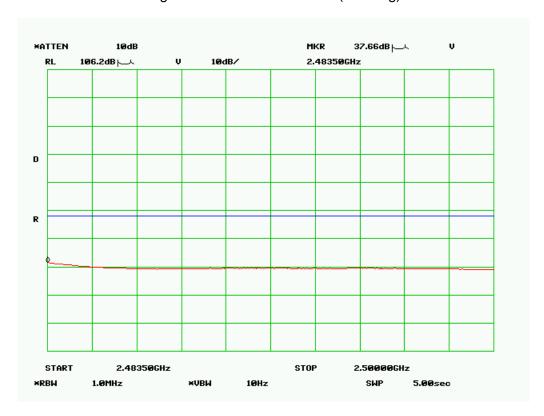
 Issue Date
 28 August 2008

 Page
 74 of 85

Low Channel -Horizontal-Peak (802.11g)



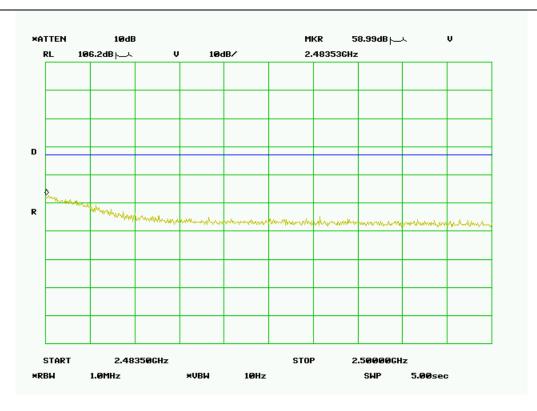
Low Channel –Horizontal-Average (802.11g)


 Serial#
 \$L08041104-ZBR-024(15.247) (P4T with RFID and WLAN)

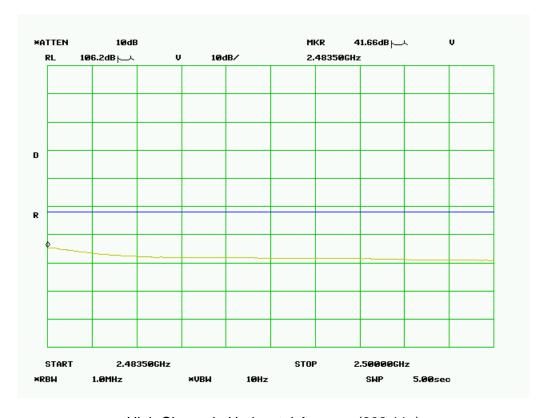
 Issue Date
 28 August 2008

 Page
 75 of 85

High Channel -Vertical-Peak (802.11g)



High Channel -Vertical-Average (802.11g)


 Serial#
 \$L08041104-ZBR-024(15.247) (P4T with RFID and WLAN)

 Issue Date
 28 August 2008

 Page
 76 of 85

High Channel -Horizontal-Peak (802.11g)

High Channel -Horizontal-Average (802.11g)

Annex A. TEST INSTRUMENT & METHOD

Annex A.i. TEST INSTRUMENTATION & GENERAL PROCEDURES

Instrument	Manufacturer	Model	CAL Due Date
Spectrum Analyzer	HP	8564E	04/26/2009
EMI Receiver	Rohde & Schwarz	ESIB 40	4/25/2009
R&S LISN	R&S	ESH2-Z5	04/24/2009
CHASE LISN	Chase	MN2050B	04/24/2009
Antenna(1 ~18GHz)	Emco	3115	10/04/2008
Antenna (30MHz~2GHz)	Sunol Sciences	JB1	10/04/2008
Chamber	Lingren	3m	04/18/2009
Pre-Amplifier(1 ~ 26GHz)	HP	8449	04/24/2009
Horn Antenna (18~40GHz)	Com Power	AH-840	5/21/2009
Microwave Pre-Amp (18~40GHz)	Com Power	PA-840	5/21/2009

Note: No calibration required.

Annex A.ii. CONDUCTED EMISSIONS TEST DESCRIPTION

Test Set-up

- 1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m x 1m x 0.8m high, non-metallic table, as shown in <u>Annex B</u>.
- 2. The power supply for the EUT was fed through a $50\Omega/50\mu H$ EUT LISN, connected to filtered mains.
- 3. The RF OUT of the EUT LISN was connected to the EMI test receiver via a low-loss coaxial cable.
- 4. All other supporting equipments were powered separately from another main supply.

Test Method

- 1. The EUT was switched on and allowed to warm up to its normal operating condition.
- 2. A scan was made on the NEUTRAL line (for AC mains) or Earth line (for DC power) over the required frequency range using an EMI test receiver.
- 3. High peaks, relative to the limit line, were then selected.
- 4. The EMI test receiver was then tuned to the selected frequencies and the necessary measurements made with a receiver bandwidth setting of 10 KHz. For FCC tests, only Quasi-peak measurements were made; while for CISPR/EN tests, both Quasi-peak and Average measurements were made.
- 5. Steps 2 to 4 were then repeated for the LIVE line (for AC mains) or DC line (for DC power).

Sample Calculation Example

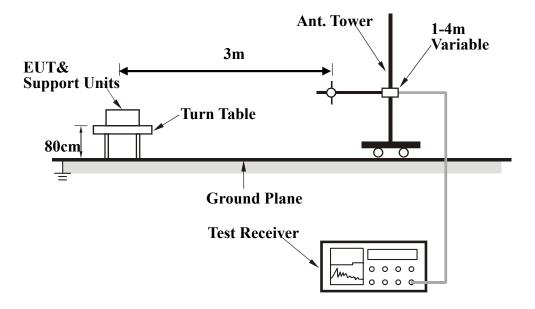
At 20 MHz $limit = 250 \mu V = 47.96 dB\mu V$

Transducer factor of LISN, pulse limiter & cable loss at 20 MHz = 11.20 dB

Q-P reading obtained directly from EMI Receiver = $40.00 \text{ dB}_{\mu}\text{V}$ (Calibrated for system losses)

Therefore, Q-P margin = 47.96 - 40.00 = 7.96 i.e. **7.96 dB below limit**

Annex A. iii RADIATED EMISSIONS TEST DESCRIPTION


EUT Characterisation

EUT characterisation, over the frequency range from 30MHz to 10th Harmonic, was done in order to minimise radiated emissions testing time while still maintaining high confidence in the test results.

The EUT was placed in the chamber, at a height of about 0.8m on a turntable. Its radiated emissions frequency profile was observed, using a spectrum analyzer /receiver with the appropriate broadband antenna placed 3m away from the EUT. Radiated emissions from the EUT were maximised by rotating the turntable manually, changing the antenna polarisation and manipulating the EUT cables while observing the frequency profile on the spectrum analyzer / receiver. Frequency points at which maximum emissions occurred, clock frequencies and operating frequencies were then noted for the formal radiated emissions test at the Open Area Test Site (OATS).

Test Set-up

- 1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m X 1.0m X 0.8m high, non-metallic table.
- 2. The filtered power supply for the EUT and supporting equipment were tapped from the appropriate power sockets located on the turntable.
- The relevant broadband antenna was set at the required test distance away from the EUT and supporting equipment boundary.

 Serial#
 \$1.08041104-ZBR-024(15.247) (P4T with RFID and WLAN)

 Issue Date
 28 August 2008

 Page
 80 of 85

Test Method

The following procedure was performed to determine the maximum emission axis of EUT:

- 1. With the receiving antenna is H polarization, rotate the EUT in turns with three orthogonal axes to determine the axis of maximum emission.
- 2. With the receiving antenna is V polarization, rotate the EUT in turns with three orthogonal axes to determine the axis of maximum emission.
- 3. Compare the results derived from above two steps. So, the axis of maximum emission from EUT was determined and the configuration was used to perform the final measurement.

Final Radiated Emission Measurement

- 1. Setup the configuration according to figure 1. Turn on EUT and make sure that it is in normal function.
- 2. For emission frequencies measured below 1 GHz, a pre-scan is performed in a shielded chamber to determine the accurate frequencies of higher emissions will be checked on a open test site. As the same purpose, for emission frequencies measured above 1 GHz, a pre-scan also be performed with a 1 meter measuring distance before final test.
- 3. For emission frequencies measured below and above 1 GHz, set the spectrum analyzer on a 100 kHz and 1 MHz resolution bandwidth respectively for each frequency measured in step 2.
- 4. The search antenna is to be raised and lowered over a range from 1 to 4 meters in horizontally polarized orientation. Position the highness when the highest value is indicated on spectrum analyzer, then change the orientation of EUT on test table over a range from 0_o to 360_o with a speed as slow as possible, and keep the azimuth that highest emission is indicated on the spectrum analyzer. Vary the antenna position again and record the highest value as a final reading.
- 5. Repeat step 4 until all frequencies need to be measured were complete.
- 6. Repeat step 5 with search antenna in vertical polarized orientations.

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	Peak	100 kHz	100 kHz
Above 1000	Peak	1 MHz	1 MHz
	Average	1 MHz	10 Hz

Sample Calculation Example

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. For the limit is employed average value, therefore the peak value can be transferred to average value by subtracting the duty factor. The basic equation with a sample calculation is as follows:

Peak = Reading + Corrected Factor

where

Corr. Factor = Antenna Factor + Cable Factor - Amplifier Gain (if any)
And the average value is

Average = Peak Value + Duty Factor or Set RBW = 1MHz, VBW = 10Hz.

Note:

If the measured frequencies are fall in the restricted frequency band, the limit employed must be quasi peak value when frequencies are below or equal to 1 GHz. And the measuring instrument is set to quasi peak detector function.

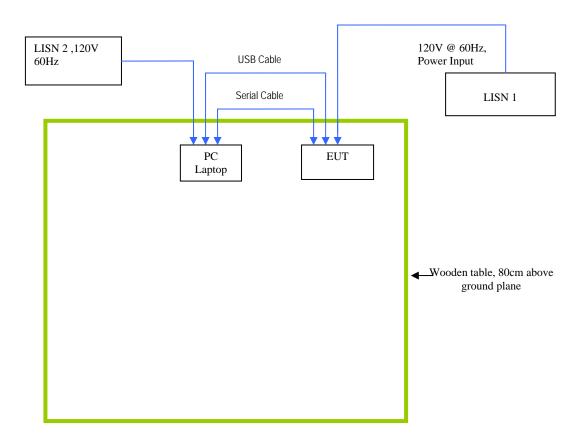
Annex B EUT AND TEST SETUP PHOTOGRAPHS

Please see the attachment

Annex C. TEST SETUP AND SUPPORTING EQUIPMENT


EUT TEST CONDITIONS

Annex C. i. SUPPORTING EQUIPMENT DESCRIPTION


The following is a description of supporting equipment and details of cables used with the EUT.

Equipment Description (Including Brand Name)	Model & Serial Number	Cable Description (List Length, Type & Purpose)
PC Laptop / DELL	Latitude DS520	Serial Cable , 1meter From PC Laptop to EUT

Block Configuration Diagram for Radiated Emission

Block Configuration Diagram for Conducted Emission

Annex C.ii. **EUT OPERATING CONDITIONS**

The following is the description of how the EUT is exercised during testing.

Test	Description Of Operation
Emissions Testing	The EUT was controlled via PC Laptop using Agency Testing Program provided by applicant.
Others Testing	The EUT was controlled via PC Laptop using Agency Testing Program provided by applicant.

 Serial#
 \$L08041104-ZBR-024(15.247) (P4T with RFID and WLAN)

 Issue Date
 28 August 2008

 Page
 85 of 85

Annex D USER MANUAL, BLOCK & CIRCUIT DIAGRAM

Please see attachment