

Model Tested: 110PAX3 Report Number: 11000

1250 Peterson Dr., Wheeling, IL 60090

FCC Rules and Regulations / Intentional Radiators

Operational in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz, Bands

Part 15, Subpart C, Section 15.247

THE FOLLOWING "MEETS" THE ABOVE TEST SPECIFICATION

Formal Name: R110PAX3

Kind of Equipment: On Demand RFID\Thermal Bar Code Print Engine

Test Configuration: Alien (Tested at 120 vac, 60 Hz)

Model Number(s): 110PAX3

Model(s) Tested: 110PAX3

Serial Number(s): NA

Date of Tests: August 23 & September 1, 2004

Test Conducted For: Zebra Technologies Corporation

333 Corporate Woods Parkway Vernon Hills, Illinois 60061

NOTICE: "This report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government". Please see the "Additional Description of Equipment Under Test" page listed inside of this report. This report must not be reproduced (except in full), without the approval of D.L.S. Electronic Systems.

Zebra Technologies Corporation

l: 110PAX3 ber: 11000

1250 Peterson Dr., Wheeling, IL 60090

SIGNATURE PAGE

Report By:

Arnom C. Rowe Test Engineer

EMC-001375-NE

Reviewed By:

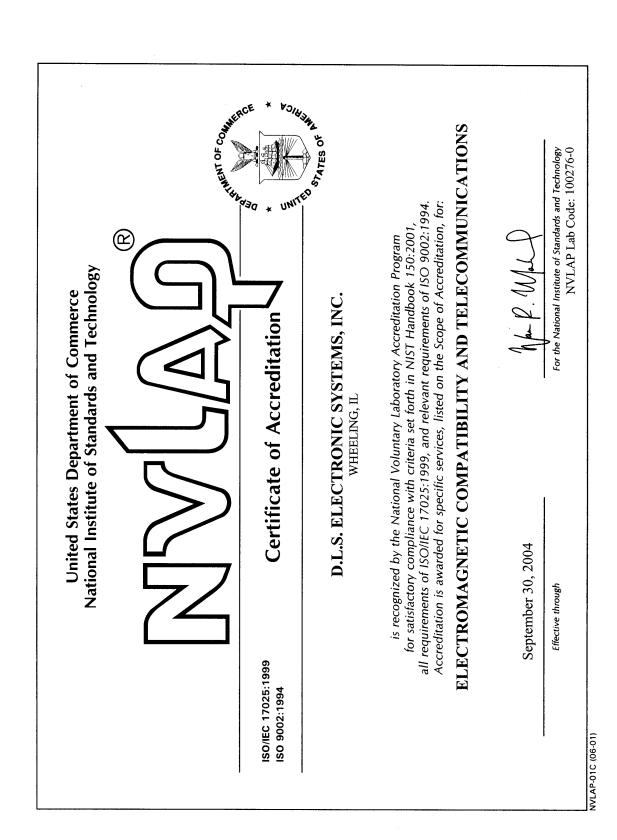
William Stumpf OATS Manager

Approved By:

Brian Mattson

General Manager

Company Official:


Zebra Technologies Corporation

Zebra Technologies Corporation

110PAX3 11000

1250 Peterson Dr., Wheeling, IL 6009

Zebra Technologies Corporation

Model Tested: 110PAX3 Report Number: 11000

1250 Peterson Dr., Wheeling, IL 6009

National Voluntary Laboratory Accreditation Program

ISO/IEC 17025:1999 ISO 9002:1994

Scope of Accreditation

S_{747ES} OF Page: 1 of 9

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

NVLAP LAB CODE 100276-0

D.L.S. ELECTRONIC SYSTEMS, INC.

1250 Peterson Drive Wheeling, IL 60090-6454 Mr. Brian J. Mattson

Phone: 847-537-6400 Fax: 847-537-6488 E-Mail: bmattson@dlsemc.com

URL: http://www.dlsemc.com

NVLAP Code Designation / Description

Emissions Test Methods:

12/160D21 RTCA/DO-160D (1997): Environmental Conditions and Test Procedures for

Airborne Equipment - Section 21 - Emission of Radio Frequency Energy

12/300220a EN 300 220-1 V1.3.1 (2000-09): Electromagnetic compatibility and Radio spectrum

Matters; Short Range Devices; Radio equipment to be used in the 25 MHz to 1000 MHz frequency range with power levels ranging up to 500 mW; Part 1: Technical

characteristics and test methods

12/300386a EN 300 386 V.1.2.1: Electromagnetic compatibility and radio spectrum matter

(ERM); Telecommunication network equipment; Electromagnetic compatibility

(EMC) requirements

12/C63.17 ANSI C63.17-1998: American National Standard for Methods of Measurement of the

Electromagnetic and Operational Compatibility of Unlicensed Personal

Communications Services (UPCS) Devices

September 30, 2004

Effective through

For the National Institute of Standards and Technology

Zebra Technologies Corporation

Model Tested: 110PAX3 Report Number: 11000

1250 Peterson Dr., Wheeling, IL 6009

National Voluntary Laboratory Accreditation Program

ISO/IEC 17025:1999 ISO 9002:1994

Scope of Accreditation

Page: 2 of 9

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

NVLAP LAB CODE 100276-0

D.L.S. ELECTRONIC SYSTEMS, INC.

NVLAP Code	Designation / Description
12/C6317a	ANSI C63.17-1998: American National Standard for Methods of Measurement of the Electromagnetic and Operational Compatibility of Unlicensed Personal Communications Services (UPCS) Devices
12/CIS11	IEC/CISPR 11 + A1 (1997), EN 55011 (1998), AS/NZS 2064 (1997), and CNS 137803 (1997): Limits and Methods of Measurement of Electromagnetic Disturbance Characteristics of Industrial, Scientific, and Medical Radio-Frequency Equipment
12/CIS13	IEC/CISPR 13 (2001-04), EN 55013 (2001), AS/NZS 1053 (2001), and CNS 13439 (2001): Sound and television broadcast receivers and associated equipment - Radio disturbance characteristics - Limits and methods of measurement
12/CIS14	CISPR 14-1 (March 30, 2000): Limits and methods of measurement of radio interference characteristics of household electrical appliances, portable tools and similar electrical apparatus - Part 1: Emissions
12/CIS14a	EN 55014-1 (1993) with Amendments A1 (1997) & A2 (1999)
12/CIS14d	IEC/CISPR 14-1 (2001) and A1 (2001): Electromagnetic Compatibility - Requirements for household appliances, electric tools and similar apparatus - Part 1: Emissions
12/CIS14e	EN 55014-1 (2001) and A1 (2001): Electromagnetic Compatibility - Requirements for household appliances, electric tools and similar apparatus - Part 1: Emission

September 30, 2004

Effective through

-1/----

For the National Institute of Standards and Technology

Company: Model Tested: Zebra Technologies Corporation

Model Tested: 110PAX3 Report Number: 11000

1250 Peterson Dr., Wheeling, IL 6009

National Voluntary Laboratory Accreditation Program

ISO/IEC 17025:1999 ISO 9002:1994

Scope of Accreditation

Page: 3 of 9

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

NVLAP LAB CODE 100276-0

D.L.S. ELECTRONIC SYSTEMS, INC.

NVLAP Cod	de Designation / Description
12/CIS14f	AS/NZS 1044 (2001) and A1 (2001): Electromagnetic Compatibility - Requirements for household appliances, electric tools and similar apparatus - Part 1: Emission
12/CIS14g	CNS 13783-1 (2001) and A1 (2001): Electromagnetic Compatibility - Requirements for household appliances, electric tools and similar apparatus - Part 1: Emission
12/CIS15	IEC/CISPR 15 (2000) + A1 (2001): Limits and methods of measurements of radio disturbance characteristics of electrical lighting and similar equipment
12/CIS15a	AS/NZS CISPR (2002): Limits and methods of measurements of radio disturbance characteristics of electrical lighting and similar equipment
12/CIS15b	CNS 13439 (2000) + A1 (2001): Limits and methods of measurement of radio disturbance characteristics of electrical lighting and similar equipment
12/CIS15c	EN 55015 (2000) + A1 (2001): Limits and methods of measurement of radio disturbance characteristics of electrical lighting and similar equipment
12/CIS22	IEC/CISPR 22 (1997) and EN 55022 (1998): Limits and methods of measurement of radio disturbance characteristics of information technology equipment
12/CIS22a	IEC/CISPR 22 (1993): Limits and methods of measurement of radio disturbance characteristics of information technology equipment, Amendment 1:1995, and Amendment 2:1996.

September 30, 2004

Effective through

The proof of

For the National Institute of Standards and Technology

Zebra Technologies Corporation

Model Tested: 1 Report Number: 1

110PAX3 11000

1250 Peterson Dr., Wheeling, IL 6009

National Voluntary Laboratory Accreditation Program

ISO/IEC 17025:1999 ISO 9002:1994

Scope of Accreditation

Page: 4 of 9

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

NVLAP LAB CODE 100276-0

D.L.S. ELECTRONIC SYSTEMS, INC.

NVLAP Code Designation / Description 12/CIS22b CNS 13438 (1997): Limits and Methods of Measurement of Radio Interference Characteristics of Information Technology Equipment IEC 61000-3-2, Edition 2.1 (2001-10), EN 61000-3-2 (2000), and AS/NZS 2279.1 12/EM02a (2000): Electromagnetic compatibility (EMC) Part 3-2: Limits - Limits for harmonic current emissions (equipment input current <= 16 A) 12/EM03 EN 61000-3-3 (1995), IEC 61000-3-3 (1995), and AS/NZS 2279.3 (1995): EMC -Part 3: Limits - Section 3. Limitation of voltage fluctuations and flicker in low-voltage supply systems for equipment with rated current up to 16A FCC OST/MP-5 (1986): FCC Methods of Measurement of Radio Noise Emissions 12/F18 for ISM Equipment (cited in FCC Method 47 CFR Part 18 - Industrial, Scientific, and Medical Equipment) 12/FCC15b ANSI C63.4 (2001) with FCC Method - 47 CFR Part 15, Subpart B: Unintentional Radiators 12/FCC15c ANSI C63.4 (2001) with FCC Method - 47 CFR Part 15, Subpart C: Intentional Radiators 12/FCC15d ANSI C63.4 (2001) with FCC Method - 47 CFR Part 15, Subpart D: Unlicensed Personal Communications Service Devices

September 30, 2004

Effective through

For the National Institute of Standards and Technology

Zebra Technologies Corporation

Model Tested: 110PAX3 Report Number: 11000

1250 Peterson Dr., Wheeling, IL 6009

National Voluntary Laboratory Accreditation Program

ISO/IEC 17025:1999 ISO 9002:1994

Scope of Accreditation

Page: 5 of 9

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

NVLAP LAB CODE 100276-0

D.L.S. ELECTRONIC SYSTEMS, INC.

NVLAP Code Designation / Description

12/FCC15e ANSI C63.4 (2001) with FCC Method - CFR Part 15, Subpart E: Unlicensed

National Information Infrastructure Service Devices

12/T51 AS/NZS CISPR 22 (2002) and AS/NZS 3548 (1997): Electromagnetic Interference -

Limits and Methods of Measurement of Information Technology Equipment

12/VCCIa Agreement of Voluntary Control Council for Interference by Information Technology

Equipment - Technical Requirements: V-3/02.04

Immunity Test Methods:

12/1089a GR-1089-CORE, Issue 3, October 2002: Electromagnetic Compatibility and

Electrical Safety - Generic Criteria for Network Telecommunications Equipment

(sections 2, 3.3, and 3.5)

12/160D16 RTCA/DO-160D (1997): Environmental Conditions and Test Procedures for

Airborne Equipment - Section 16 - Power Input

12/160D17 RTCA/DO-160D (1997): Environmental Conditions and Test Procedures for

Airborne Equipment - Section 17 - Voltage Spike

12/160D18 RTCA/DO-160D (1997): Environmental Conditions and Test Procedures for

Airborne Equipment - Section 18 - Audio Frequency Conducted Susceptibility -

Power Inputs

September 30, 2004

Effective through

Man K. WIN

For the National Institute of Standards and Technology

Zebra Technologies Corporation 110PAX3

Model Tested: Report Number:

1250 Peterson Dr., Wheeling, IL 6009

11000

National Voluntary Laboratory Accreditation Program

ISO/IEC 17025:1999 ISO 9002:1994

Scope of Accreditation

Page: 6 of 9

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

NVLAP LAB CODE 100276-0

D.L.S. ELECTRONIC SYSTEMS, INC.

NVLAP Code	Designation / Description
12/160D19	RTCA/DO-160D (1997): Environmental Conditions and Test Procedures for Airborne Equipment - Section 19 - Induced Signal Susceptibility
12/160D20	RTCA/DO-160D (1997): Environmental Conditions and Test Procedures for Airborne Equipment - Section 20 - Radio Frequency Susceptibility (Radiated and Conducted)
12/160D22	RTCA/DO-160D (1997): Environmental Conditions and Test Procedures for Airborne Equipment - Section 22 - Lightning Induced Transient Susceptibility
12/160D25	RTCA/DO-160D (1997): Environmental Conditions and Test Procedures for Airborne Equipment - Section 25 - Electrostatic Dischare (ESD)
12/I01	IEC 61000-4-2 (1995) and Amendment 1 (1998) and EN 61000-4-2: Electrostatic Discharge Immunity Test
12/I02	IEC 61000-4-3 (1995) and Amendment 1 (1998) and EN 61000-4-3: Radiated, Radio-Frequency Electromagnetic Field Immunity Test
12/I03	IEC 61000-4-4 (1995) and EN 61000-4-4: Electrical Fast Transient/Burst Immunity Test
12/I04	IEC 61000-4-5 (1995) and EN 61000-4-5: Surge Immunity Test

September 30, 2004

Effective through

For the National Institute of Standards and Technology

Zebra Technologies Corporation

Model Tested: Report Number: 110PAX3 11000

1250 Peterson Dr., Wheeling, IL 6009

National Voluntary Laboratory Accreditation Program

ISO/IEC 17025:1999 ISO 9002:1994

Scope of Accreditation

Page: 7 of 9

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

NVLAP LAB CODE 100276-0

D.L.S. ELECTRONIC SYSTEMS, INC.

NVLAP Code	Designation / Description
12/I05	IEC 61000-4-6 (1996) and EN 61000-4-6: Immunity to Conducted Disturbances, Induced Radio-Frequency Fields
12/I06	IEC 61000-4-8 (1993): Power Frequency Magnetic Field Immunity Test
12/I07	IEC 61000-4-11 (1994): Voltage Dips, Short Interruptions and Voltage Variations Immunity Tests
12/J111324	SAE J1113/24: Immunity to radiated electromagnetic fields; 10 kHz to 200 MHz - Crawford TEM cell and 10 kHz to 5 GHz - Wideband TEM cell
12/J111341	SAE J1113/41 (1995-07): Limits and methods of measurement of radio disturbance characteristics of components and modules for the protection of receivers used on board vehicles

Radio Test Methods

12/RSS119	RSS-119, Issue 6 (March 25, 2000): Land Mobile and Fixed Radio Transmitters and Receivers, 27.41 to 960 MHz
12/RSS123	RSS-123, Issue 1, Rev. 2 (November 6, 1999): Low Power Licensed Radiocommunication Devices
12/RSS137	RSS-137, Issue 1, Rev. 1 (September 25, 1999): Location and Monitoring Service (902 - 928 MHz)

September 30, 2004

Effective through

For the National Institute of Standards and Technology

Zebra Technologies Corporation

Model Tested: 1
Report Number: 1

110PAX3 11000

1250 Peterson Dr., Wheeling, IL 6009

National Voluntary Laboratory Accreditation Program

ISO/IEC 17025:1999 ISO 9002:1994

Scope of Accreditation

Page: 8 of 9

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

NVLAP LAB CODE 100276-0

D.L.S. ELECTRONIC SYSTEMS, INC.

NVLAP Code Designation / Description

12/RSS139 RSS-139, Isssue 1 (February 5, 2000): Licensed Radiocommunications Devices in

the Band 2400 - 2483.5 MHz

12/CIS15c EN 55015 (2000) + A1 (2001): Limits and methods of measurement of radio

disturbance characteristics of electrical lighting and similar equipment

MIL-STD-462: Conducted Emissions:

12/A18 MIL-STD-461 Version E Method CE106

MIL-STD-462: Conducted Susceptibility:

12/B12 MIL-STD-462 Version D Method CS101

12/B13 MIL-STD-462 Version D Method CS103

12/B25 MIL-STD-461 Version E Method CS114

12/B26 MIL-STD-461 Version E Method CS115

12/B27 MIL-STD-461 Version E Method CS116

MIL-STD-462: Radiated Emissions:

12/D04 MIL-STD-462 Version D Method RE101

September 30, 2004

Effective through

11/am K. 100/100

For the National Institute of Standards and Technology

Zebra Technologies Corporation

Model Tested: Report Number: 110PAX3 11000

1250 Peterson Dr., Wheeling, IL 6009

National Voluntary Laboratory Accreditation Program

ISO/IEC 17025:1999 ISO 9002:1994

Scope of Accreditation

Page: 9 of 9

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

NVLAP LAB CODE 100276-0

D.L.S. ELECTRONIC SYSTEMS, INC.

NVLAP Code Designation / Description

12/D05

MIL-STD-462 Version D Method RE102

12/D06

MIL-STD-462 Version D Method RE103

MIL-STD-462: Radiated Susceptibility:

12/E08

MIL-STD-462 Version D Method RS101

12/E09

MIL-STD-462 Version D Method RS103

September 30, 2004

Effective through

Man K. WIN

For the National Institute of Standards and Technology

Zebra Technologies Corporation 110PAX3

110PAX3 11000

1250 Peterson Dr., Wheeling, IL 6009

TABLE OF CONTENTS

1.	Cover Page	l
ii.	Signature Page	2
iii.	NVLAP Certificate of Accreditation	3
iv.	NVLAP Scope of Accreditation	∠
V.	Table of Contents	13
1.0	Summary of Test Report	15
2.0	Introduction	15
3.0	Object	15
4.0	Test Set-Up	16
5.0	Test Equipment	17
6.0	Ambient Measurements	18
7.0	Description of Test Sample	19
8.0	Additional Description of Test Sample	22
9.0	Photo Information and Test Set-Up	23
10.0	Radiated Photos Taken During Testing	24
10.0	Conducted Photos Taken During Testing	27
11.0	Results of Tests	28
12.0	Conclusion	28
TABI	LE 1 – EQUIPMENT LIST	29

Zebra Technologies Corporation 110PAX3

110PAX3 11000

1250 Peterson Dr., Wheeling, IL 6009

TABLE OF CONTENTS

Appe	ndix A – Electric Field Radiated Emissions Test	31
1.0	Conducted Emission Measurements	32
1.0	Conducted Data and Graph(s) taken during testing	33
2.0	Spurious Emissions at the Antenna Terminals	40
2.0	Conducted Emission Data and Charts made at the Antenna Terminals	41
4.0	Restricted Bands	58
5.0	Band Edge and Restrict Band Compliance	58
5.0	Data and Graph(s) taken showing the Band Edge and Restrict Band Compliance	59
6.0	Field Strength of Spurious Emission Measurements	64
6.0	Radiated Data and Charts taken of the Fundamental Emissions	66
6.0	Radiated Data and Graph(s) taken for Field Strength Spurious Emission Measurements	73
7.0	20 dB Bandwidth Graphs taken during testing	92
7.0	Carrier Frequency Separation Graph(s) taken during testing	96
7.0	Number of Hopping Frequencies Graph(s) taken during testing	98
7.0	Time of Occupancy Graphs taken during testing	100
7.0	Conducted Peak Output Power Graphs Taken During testing	103

Zebra Technologies Corporation

110PAX3 :: 11000

1250 Peterson Dr., Wheeling, IL 6009

1.0 SUMMARY OF TEST REPORT

It was found that the R110PAX3, Model Number(s) 110PAX3, "meets" the radio interference conducted and radiated emission requirements of the FCC "Rules and Regulations", Part 15, Subpart C, Section 15.247 for operational in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz, Bands.

This test report relates only to the items tested and contains the following number of pages.

Text: 106

2.0 INTRODUCTION

On August 23 & September 1, 2004, a series of radio frequency interference measurements was performed on R110PAX3, Model Number(s) 110PAX3, Serial Number: NA. The tests were performed according to the procedures of the FCC as stated in the "Methods of Measurement of Radio-Noise Emissions for Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz" found in the American National Standards Institute, ANSI C63.4-2001. Tests were performed by personnel of D.L.S. Electronic Systems, Inc. who are responsible to Donald L. Sweeney, Senior EMC Engineer.

3.0 OBJECT

The purpose of this series of tests was to determine if the test sample could meet the radio frequency interference emission requirements of the FCC "Rules and Regulations", Part 15, Subpart C, Sections 15.205, 15.209 & 15.247 for Intentional Radiators operating in the Bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

Model Tested: 110PAX3 Report Number: 11000

1250 Peterson Dr., Wheeling, IL 6009

4.0 TEST SET-UP

All emission tests were performed at D.L.S. Electronic Systems, Inc. and set up according to the American National Standards Institute, ANSI C63.4-2001, Section 8, (Figures 11a and 11b).

All radiated emissions tests were performed with the test item placed on a 80 cm high rotating non-conductive table, located in the test room. Equipment normally operated on the floor was placed on a metal covered turntable which is flush with the surrounding conducting ground plane. The ground plane has an electrical isolation layer over its surface approximately 7 mm thick. The EUT is separated from the turntable ground plane by a non-conductive layer. The equipment under test was set up according to ANSI C63.4-2001, Sections 6 and 8.

Model Tested: 110PAX3 Report Number: 11000

1250 Peterson Dr., Wheeling, IL 6009

5.0 TEST EQUIPMENT (Bandwidths and Detector Function)

All preliminary data below 1000 MHz was automatically plotted using the HP Spectrum Analyzer or ESI 26/40 Fixed Tuned Receiver. The data was taken using Peak, Quasi-Peak or the Average Detector Functions as required. This information was then used to determine the frequencies of maximum emissions. Above 1000 MHz, final data was taken using the Average Detector.

Below 1000 MHz, final data was taken using the HP Spectrum Analyzer and/or ESI 26/40 Fixed Tuned Receiver. These plots were made using the Peak or Quasi-Peak Detector functions, with manual measurements performed on the questionable frequencies using the Quasi-Peak or the Average Detector Function of the Analyzer or ESI 26/40 Fixed Tuned Receiver as required. Above 1000 MHz, final data was taken using the Average Detector on the Spectrum Analyzer.

The bandwidths shown below are specified by ANSI C63.4-2001, Section 4.2.

Frequency Range	Bandwidth (-6 dB)
10 to 150 kHz	200 Hz
150 kHz to 30 MHz	9 kHz
30 MHz to 1 GHz	120 kHz
Above 1 GHz	1 MHz

A list of the equipment used can be found in Table 1. All primary equipment was calibrated against known reference standards with a verified traceable path to NIST.

Zebra Technologies Corporation

110PAX3 11000

1250 Peterson Dr., Wheeling, IL 6009

6.0 AMBIENT MEASUREMENTS

For emissions measurements, broadband antennas and an EMI Test Receiver with a panoramic spectrum display are used. First the frequency range is scanned and displayed on the test receiver display. Next the scanned frequency range is divided into smaller ranges, and then it is manually tuned through to determine the emissions from the EUT. A headset or loudspeaker is connected to the test receiver's AM/FM demodulated output as an aid in detecting ambient signals and finding frequencies of significant emission from the EUT. If there is any doubt as to the source of the emission, it is further investigated by rotating the EUT, or by disconnecting the power from the EUT.

The EUT is set up in its typical configuration and operated in its various modes. For tabletop systems, cables are manipulated within the range of likely configurations. For floor-standing equipment, the cables are located in the same manner as the user would install them and no further manipulation is made. If the manner of cable installation is not known, or if it changes with each installation, cables or wires for floor-standing equipment shall be manipulated to the extent possible to produce the maximum level of emissions. For each mode of operation, the frequency spectrum is monitored. Variations in antenna height, antenna polarization, EUT azimuth, and cable or wire placement (each variable within bounds specified elsewhere) are explored to produce the emissions that have the highest amplitude relative to the limit. These methods are performed to the specifications in ANSI C63.4: 2001.

Model Tested: 110PAX3 Report Number: 11000

1250 Peterson Dr., Wheeling, IL 6009

7.0 DESCRIPTION OF TEST SAMPLE: (See also Paragraph 8.0)

7.1 Description:

The R110PAX3 is a RFID\Thermal Transfer Bar Code on demand printer. It has print capabilities up to 12 IPS. Labels up to 39 inches long, and 4 inches wide. The print engine can operate in either thermal transfer or direct thermal modes. The printer is capable of power from 85 to 265 VAC, 47 thru 63 Hz, via an IEC 320 Connector. It has capabilities of communication via Parallel, serial (RS232 & RS485) and Ethernet.

Model Tested: 110PAX3 Report Number: 11000

1250 Peterson Dr., Wheeling, IL 6009

7.0 DESCRIPTION OF TEST SAMPLE: (CON'T)

7.2 PHYSICAL DIMENSIONS OF EQUIPMENT UNDER TEST

38.75 cm long x 24 cm wide x 30 cm high

7.3 LINE FILTER USED:

Yunpen, YL06T1 High - Low 06SS3-SR-Q

7.4 INTERNAL CLOCK FREQUENCIES:

Switching Power Supply Frequencies:

46 kHz, 56 kHz, & 100 kHz

Clock Frequencies:

66 MHz, 33 MHz, 32 MHz, 25 MHz, 16 MHz, 8 MHz, & 3.6469 MHz

Company: Zebra
Model Tested: 110PA
Report Number: 11000

1250 Peterson Dr., Wheeling, IL 60090

7.0 DESCRIPTION OF TEST SAMPLE: (CON'T)

DESCRIPTION OF ALL CIRCUIT BOARDS: 7.5

1.	CPU Board	PN: 58988
2.	AC Power Supply Board	PN: 43236
3.	DC Power Supply Board	PN: 43239
4.	Control Panel Interface Board	PN: 48754
5.	Ribbon Control Board	PN: 43210
6.	Applicator Interface Board	PN: 43404

Company: Zebra Technologies Corporation Model Tested: 110PAX3 Report Number: 11000

1250 Peterson Dr., Wheeling, IL 60090

8.0	ADDITIONAL DESCRIPTION OF TEST S (See also Paragraph 7.0)	SAMPLE:
1: Th	ere were no additional descriptions noted at the	e time of test.
	ify that the above, as described in paragraph 7. Ifactured as stated.	0, describes the equipment tested and will be
By:		
•	Signature	Title
For:		
-	Company	Date

Model Tested: 110PAX3 Report Number: 11000

1250 Peterson Dr., Wheeling, IL 60090

9.0 PHOTO INFORMATION AND TEST SET-UP

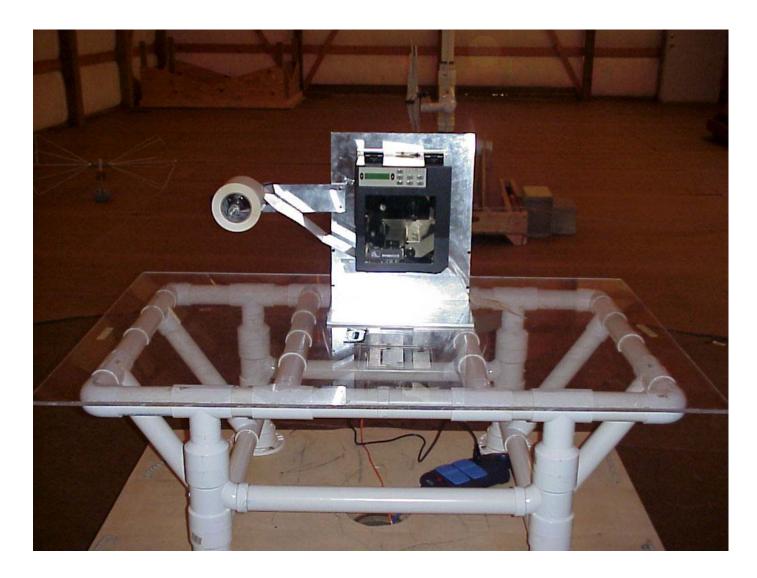
Item 0 R110PAX3

Model Number: 110PAX3 Serial Number: NA

Item 1 Non-Shielded AC Power Line Cord. 2m

Item 2 Non-Shielded Category 5 Ethernet Cable with Metal Shells going to EUT.

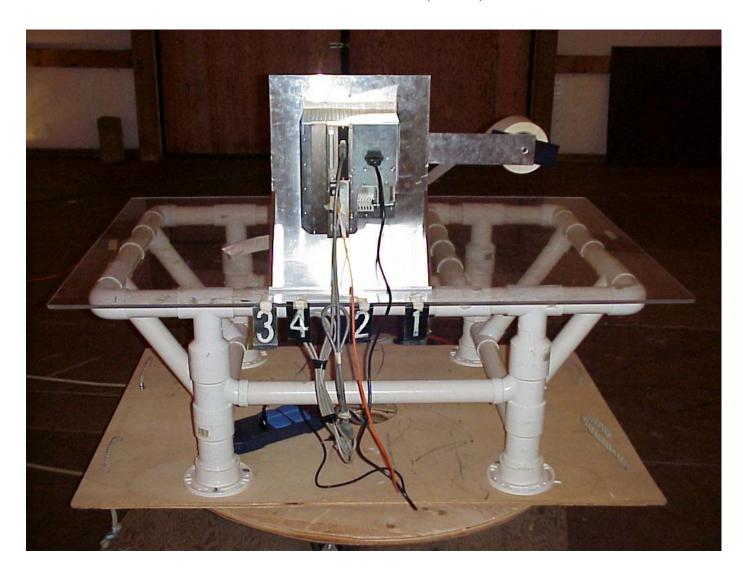
Item 3 Shielded Serial Cable with Metal Shells. 2m


Item 4 Shielded Applicator Cable with Metal Shells. 2m

Company: Model Tested: Report Number: 11000

1250 Peterson Dr., Wheeling, IL 60090

10.0 RADIATED PHOTOS TAKEN DURING TESTING



Company: Model Tested: Report Number: 11000

1250 Peterson Dr., Wheeling, IL 60090

10.0 RADIATED PHOTOS TAKEN DURING TESTING: (CON'T)



Company: Model Tested: Report Number: 11000

1250 Peterson Dr., Wheeling, IL 60090

10.0 RADIATED PHOTOS TAKEN DURING TESTING: (CON'T)

Company: Model Tested: Report Number: 11000

1250 Peterson Dr., Wheeling, IL 60090

10.0 CONDUCTED PHOTOS TAKEN DURING TESTING

Model Tested: 110PAX3 Report Number: 11000

1250 Peterson Dr., Wheeling, IL 60090

11.0 RESULTS OF TESTS

The radio interference emission charts results can be seen on the pages at the end of this report. Data sheets indicating the test measurements taken during testing can also be found at the end of this report. Points on the emission charts shown with a yellow mark are background frequencies that were verified during testing.

12.0 CONCLUSION

It was found that the R110PAX3, Model Number(s) 110PAX3 "meets" the radio interference conducted and radiated emission requirements of the FCC "Rules and Regulations", Part 15, Subpart C, Section 15.247 for operational in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz, Bands.

Model Tested: 110PAX3 Report Number: 11000

1250 Peterson Dr., Wheeling, IL 60090

TABLE 1 – EQUIPMENT LIST

Test	Manufacturer	Model	Serial	Frequency	Cal Due
Equipment		Number	Number	Range	Dates
Spectrum	Hewlett/	8566B	2240A002041	100 Hz – 22 GHz	10/04
Analyzer	Packard				
Quasi-Peak	Hewlett/	85650A	2043A00121	10 kHz – 1 GHz	10/04
Adapter	Packard				
Spectrum	Hewlett/	8566B	2421A00452	100 Hz – 22 GHz	2/05
Analyzer	Packard				
Quasi-Peak	Hewlett/	85650A	2043A00450	10 kHz – 1 GHz	2/05
Adapter	Packard				
Spectrum	Hewlett/	8591A	3009A00700	9 kHz – 1.8 GHz	3/05
Analyzer	Packard				
Receiver	Electrometrics	EMC-30	44168	10 kHz – 1 GHz	9/05
Receiver	Rohde & Schwarz	ESI 26	837491/010	20 Hz – 26 GHz	11/04
Receiver	Rohde & Schwarz	ESI 40	837808/006	20 Hz – 40 GHz	12/04
Receiver	Rohde & Schwarz	ESI 40	837808/005	20 Hz – 40 GHz	12/04
Antenna	EMCO	3104C	00054891	20 MHz – 200 MHz	2/05
Antenna	Electrometrics	LPA-25	1114	200 MHz – 1 GHz	3/05
Antenna	EMCO	3104C	00054892	20 MHz – 200 MHz	3/05

All primary equipment is calibrated against known reference standards with a verified traceable path to NIST.

Model Tested: 110PAX3 Report Number: 11000

1250 Peterson Dr., Wheeling, IL 60090

TABLE 1 – EQUIPMENT LIST

Test	Manufacturer	Model	Serial	Frequency	Cal Due
Equipment		Number	Number	Range	Dates
Antenna	Electrometrics	3146	1205	200 MHz – 1 GHz	3/05
Antenna	EMCO	3104C	97014785	20 MHz – 200 MHz	2/05
Antenna	EMCO	3146	97024895	200 MHz – 1 GHz	3/05
Antenna	EMCO	3115	2479	1 GHz – 18 GHz	8/05
				1000	1/0-
Antenna	EMCO	3115	99035731	1 GHz – 18 GHz	4/05
Antonno	Rohde &	HUF-Z1	829381001	20 MH- 1 CH-	2/05
Antenna	Schwarz	HUF-Z1	829381001	20 MHz – 1 GHz	2/05
A 4		IIIIE 71	020201005	20 MH - 1 CH-	0/05
Antenna	Rohde &	HUF-Z1	829381005	20 MHz – 1 GHz	8/05
	Schwarz		0.0.0.1.1.5	10.7.55	0.40.5
LISN	Solar	8012-50-R-	8305116	10 MHz – 30 MHz	8/05
		24-BNC			
LISN	Solar	8012-50-R-	814548	10 MHz – 30 MHz	8/05
		24-BNC			
LISN	Solar	9252-50-R-	961019	10 MHz – 30 MHz	12/04
		24-BNC			
LISN	Solar	9252-50-R-	971612	10 MHz – 30 MHz	10/04
		24-BNC			
LISN	Solar	9252-50-R-	92710620	10 MHz – 30 MHz	7/05
		24-BNC			

All primary equipment is calibrated against known reference standards with a verified traceable path to NIST.

Model Tested: 110PAX3 Report Number: 11000

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

TEST PROCEDURE

Part 15, Subpart C, Section 15.247 (a-h)

OPERATION WITHIN THE BAND 902-928 MHz, 2400-2483.5 MHz AND 5725-5857 MHz

Model Tested: 110PAX3 Report Number: 11000

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

1.0 CONDUCTED EMISSION MEASUREMENTS

If applicable, the conducted emissions were measured over the frequency range from 150 kHz to 30 MHz in accordance with the power line measurements as specified in the American National Standards Institute, ANSI C63.4-2001, Section 12. Since the device is operated from the public utility lines, the 115 Vac 60 Hz power leads, high and low sides, were to be measured by connecting the measuring equipment to the appropriate meter terminal of the LISN. All signals were then recorded. The allowed levels for Intentional Radiators cannot exceed 250 uV (47.96 dBuV) at any frequency between 150 kHz and 30 MHz, as stated in Section 15.207a.

All conducted emissions measurements were made at a test room temperature of 72°F at 57% relative humidity.

Model Tested: 110PAX3 Report Number: 11000

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

<u>DATA</u> AND GRAPH(S) TAKEN DURING TESTING

PART 15.207

FCC Part 15 Class B

Voltage Mains Test

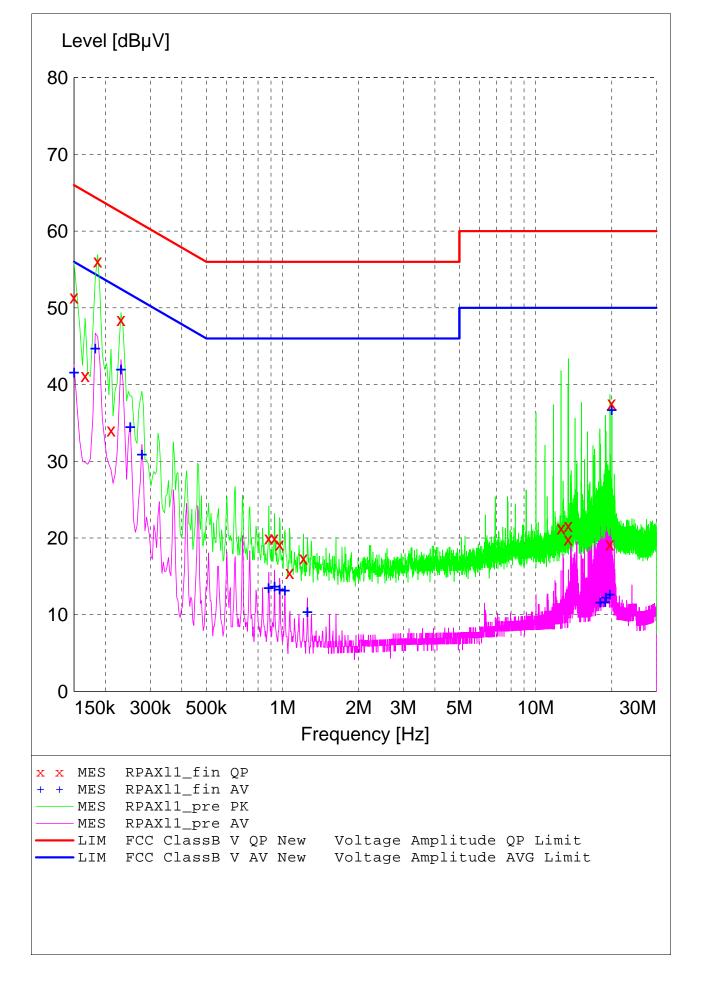
R110PAX3 EUT:

Manufacturer: Zebra Technologies Operating Condition: 72 deg. F, 57% R.H. DLS OF Screenroom Test Site:

Operator: Jason L Test Specification: 120 V; 60 Hz

Comment: Line 1

Date: 08/23/2004


SCAN TABLE: "FCC ClassB Voltage"

Short Description: FCC Class B Voltage

Detector Meas. IF Time Bandw. Step Start Stop Transducer

Frequency Frequency Width Time Bandw.
150.0 kHz 30.0 MHz 4.0 kHz MaxPeak 10.0 ms 9 kHz LISN DLS#128

Average

MEASUREMENT RESULT: "RPAX11_fin QP"

8/23/2004						
Frequen	cy Leve Hz dBu		.sd Limit dB dBuV			e PE
141.	π2 ασμ	V	ав авру	Q.L	,	
0.1500	00 51.4	0 11	.7 66	14.6	5 1	
0.1660	00 41.2	0 11	.5 65	24.0) 1	
0.1860	00 56.1	0 11	.3 64	8.1	. 1	
0.2100	00 34.1	0 11	.1 63	29.1	. 1	
0.2300	00 48.5	0 11	.0 62	14.0) 1	
0.8820	00 20.0	0 10	.5 56	36.0) 1	
0.9300	00 20.0	0 10	.5 56	36.0) 1	
0.9740	00 19.2	0 10	.5 56	36.8	3 1	
1.0660	00 15.5	0 10	.5 56	40.5	5 1	
1.2100	00 17.4	0 10	.5 56	38.6	5 1	
12.6100	00 21.3	0 11	.5 60	38.7	7 1	
13.4420	00 19.9	0 11	.6 60	40.1	. 1	
13.4660	00 21.6	0 11	.6 60	38.4	1	
19.6540	00 19.2	0 11	.9 60	40.8	3 1	
19.9980	00 37.6	0 11	.9 60	22.4	1	

MEASUREMENT RESULT: "RPAX11_fin AV"

8/23/2004 Frequen	- 2	vel Tran				ne PE
М	Hz d	BμV	dB dBµ	ıV (dB	
0.1500	00 41	.70 11	.7 5	56 14	.3 1	
0.1820	00 44	.80 11	.4 5	54 9.	.6 1	
0.2300	00 42	.10 11	.0 5	52 10	.3 1	
0.2500	00 34	.60 10	.9 5	52 17	.1 1	
0.2780	00 31	.00 10	.8 5	19	.9 1	
0.8820	00 13	.60 10	.5	16 32	.4 1	
0.9300	00 13	.80 10	.5	16 32	.2 1	
0.9740	00 13	.40 10	.5	16 32	.6 1	
1.0220	00 13	.30 10	.5	16 32	.7 1	
1.2540	00 10	.50 10	.5	16 35	.5 1	
18.0220	00 11	.70 12	.0 5	38	.3 1	
18.8660	00 11	.80 12	.0 5	38	.2 1	
18.9580	00 12	.40 11	.9 5	37	.6 1	
19.6540	00 12	.80 11	.9 5	37	.2 1	
19.9980	00 36	.80 11	.9 5	50 13	.2 1	

FCC Part 15 Class B

Voltage Mains Test

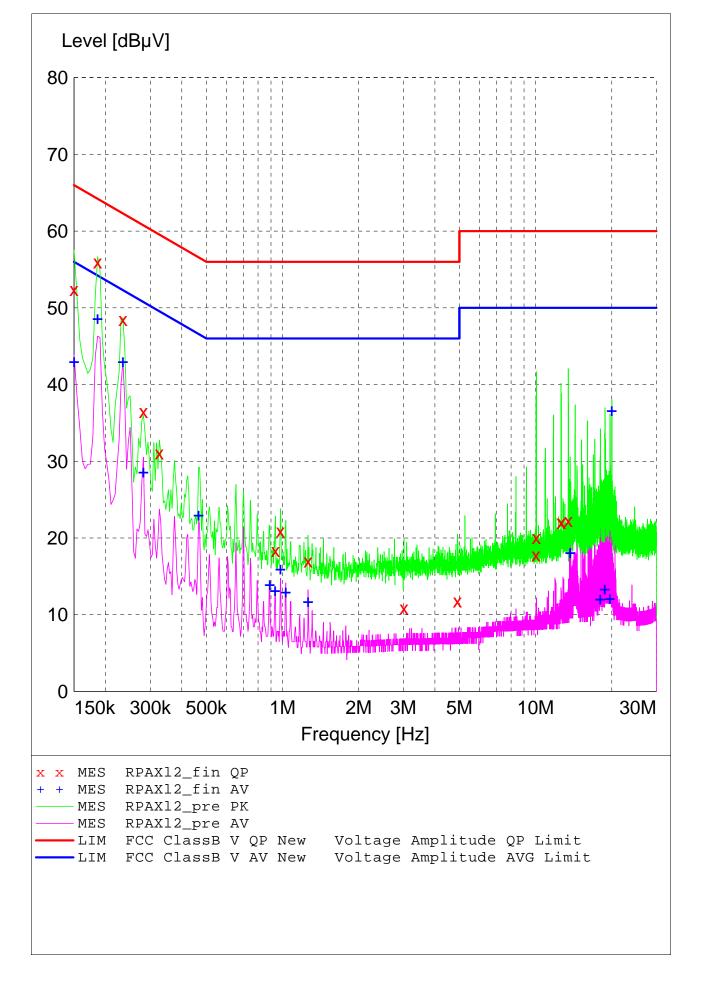
R110PAX3 EUT:

Manufacturer: Zebra Technologies Operating Condition: 72 deg. F, 57% R.H. DLS OF Screenroom Test Site:

Operator: Jason L Test Specification: 120 V; 60 Hz

Comment: Line 2

Date: 08/23/2004


SCAN TABLE: "FCC ClassB Voltage"

Short Description: FCC Class B Voltage

Detector Meas. IF Time Bandw. Step Start Stop Transducer

Frequency Frequency Width Time Bandw.
150.0 kHz 30.0 MHz 4.0 kHz MaxPeak 10.0 ms 9 kHz LISN DLS#128

Average

MEASUREMENT RESULT: "RPAX12_fin QP"

8/23/2004							
Frequen M	- 4	vel Tra BuV		nit Ma BuV	rgin dB	Line	PE
111	1112 U	Δμν	ab ai	υ	αВ		
0.1500	00 52	.40 1	1.7	66	13.6	1	
0.1860	00 56	.00 1	1.3	64	8.2	1	
0.2340	00 48	.50 1	1.0	62	13.8	1	
0.2820	00 36	.50 1	0.8	61	24.2	1	
0.3260	00 31	.10 1	0.6	60	28.5	1	
0.9380	00 18	.40 1	0.5	56	37.6	1	
0.9820	00 20	.90 1	0.5	56	35.1	1	
1.2620	00 17	.00 1	0.5	56	39.0	1	
3.0180	00 10	.90 1	0.9	56	45.1	1	
4.9100	00 11	.80 1	0.9	56	44.2	1	
10.0420	00 17	.80 1	1.3	60	42.2	1	
10.0700	00 20	.10 1	1.3	60	39.9	1	
12.6060	00 22	.00 1	1.5	60	38.0	1	
12.6340	00 22	.10 1	1.5	60	37.9	1	
13.4620	00 22	.30 1	1.6	60	37.7	1	

MEASUREMENT RESULT: "RPAX12_fin AV"

8/23/2004 Frequenc MH	-	Transd dB	Limit dBuV	Margin dB	Line	PE
MII	.Σ ασμν	αь	ασμν	αь		
0.15000	0 43.10	11.7	56	12.9	1	
0.18600	0 48.70	11.3	54	5.5	1	
0.23400	0 43.10	11.0	52	9.2	1	
0.28200	0 28.70	10.8	51	22.1	1	
0.46600	0 23.10	10.6	47	23.5	1	
0.89000	0 14.00	10.5	46	32.0	1	
0.93400	0 13.20	10.5	46	32.8	1	
0.98200	0 16.00	10.5	46	30.0	1	
1.03000	0 13.00	10.5	46	33.0	1	
1.26200	0 11.80	10.5	46	34.2	1	
13.70200	0 18.20	11.6	50	31.8	1	
18.02200	0 12.10	12.0	50	37.9	1	
18.77400	0 13.40	12.0	50	36.6	1	
19.65800	0 12.20	11.9	50	37.8	1	
19.99800	0 36.70	11.9	50	13.3	1	

Model Tested: 110PAX3 Report Number: 11000

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

2.0 SPURIOUS EMISSIONS AT ANTENNA TERMINALS – PART 15.247(c)

Spurious conducted emissions were measured at the antenna terminals. Plots were made showing the amplitude of each harmonic emission with the equipment operated. As shown by the radiated charts there was no reason to believe that there were any spurious emissions other than the harmonics that were than individually investigated when doing the conducted test at the antenna terminals. Measurements were made up to the 10th harmonic of the fundamental.

The allowed emissions for transmitters operating in the 902 MHz to 928 MHz bands for R110PAX3 equipment are found under Part 15, Section 15.247(c). This paragraph states that in any 100 kHz bandwidth outside the frequency band which the spread spectrum intentional radiator is operating, the radio frequency power produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

NOTE: See the following pages for the data ad graphs of the actual measurements made:

Model Tested: 110PAX3 Report Number: 11000

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

CONDUCTED EMISSION <u>DATA</u> AND <u>GRAPH(S)</u> TAKEN FOR

SPURIOUS EMISSION MEASUREMENTS MADE

AT THE ANTENNA TERMINALS

PART 15.247(c)

Model Tested: 110PAX3 Report Number: 11000

1250 Peterson Dr., Wheeling, IL 60090

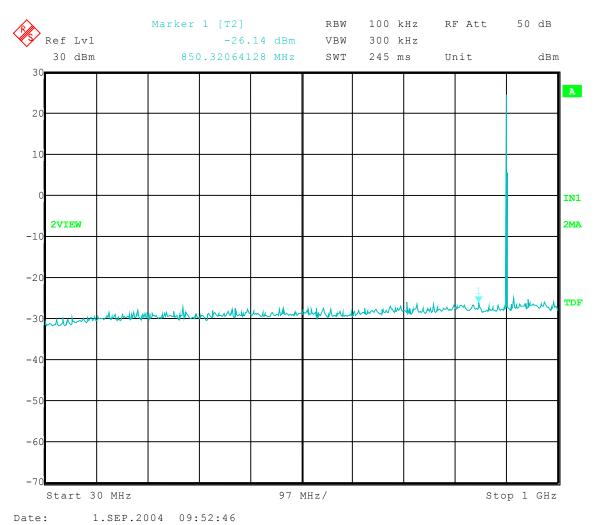
APPENDIX A

Test Date: 9-1-04

Company: Zebra Technologies

EUT: R110PAX3

Test: Spurious Emissions - Conducted


Operator: Jason L.

Comment: Low Channel Transmit = 902.80 MHz

Frequency Range: 30 to 1000 MHz

Limit = 4.46 dBm

All Spurious Emissions at Least 20 dB below Peak Level of In Band Frequency

Page - 42 -

Model Tested: 110PAX3 Report Number: 11000

1250 Peterson Dr., Wheeling, IL 60090

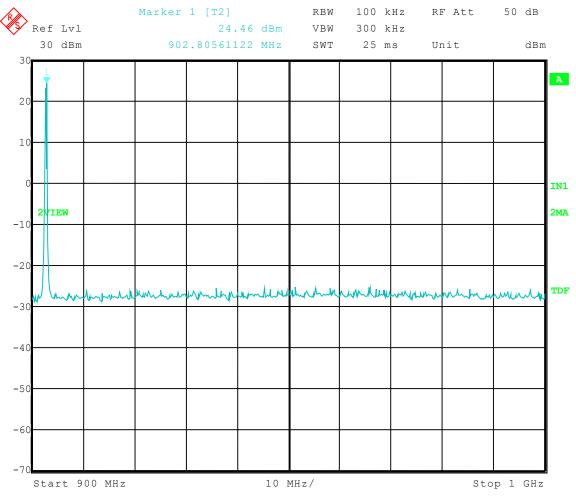
APPENDIX A

Test Date: 9-1-04

Company: Zebra Technologies

EUT: R110PAX3

Test: Spurious Emissions - Conducted


Operator: Jason L.

Comment: Low Channel Transmit = 902.80 MHz

Frequency Range: 900 to 1000 MHz

Limit = 4.46 dBm

All Spurious Emissions at Least 20 dB below Peak Level of In Band Frequency

Date: 1.SEP.2004 09:50:57

Model Tested: 110PAX3 Report Number: 11000

1250 Peterson Dr., Wheeling, IL 60090

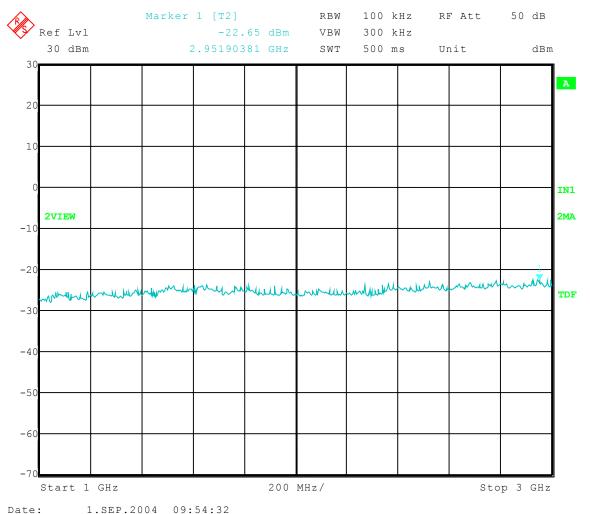
APPENDIX A

Test Date: 9-1-04

Company: Zebra Technologies

EUT: R110PAX3

Test: Spurious Emissions - Conducted


Operator: Jason L.

Comment: Low Channel Transmit = 902.80 MHz

Frequency Range: 1 to 3 GHz

Limit = 4.46 dBm

All Spurious Emissions at Least 20 dB below Peak Level of In Band Frequency

Model Tested: 110PAX3 Report Number: 11000

1250 Peterson Dr., Wheeling, IL 60090

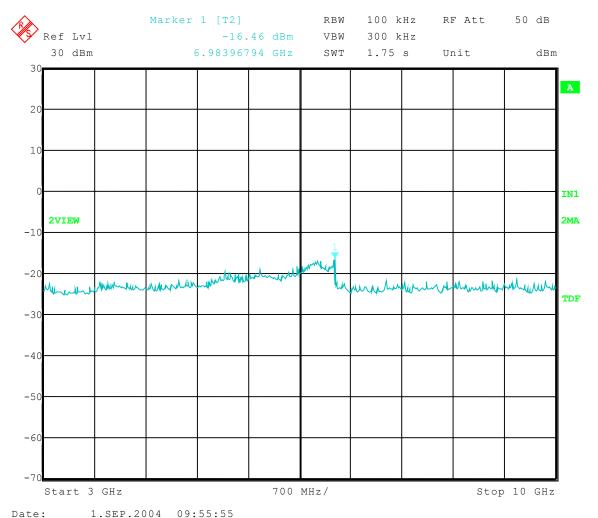
APPENDIX A

Test Date: 9-1-04

Company: Zebra Technologies

EUT: R110PAX3

Test: Spurious Emissions - Conducted


Operator: Jason L.

Comment: Low Channel Transmit = 902.80 MHz

Frequency Range: 3 to 10 GHz

Limit = 4.46 dBm

All Spurious Emissions at Least 20 dB below Peak Level of In Band Frequency

Model Tested: 110PAX3 Report Number: 11000

1250 Peterson Dr., Wheeling, IL 60090

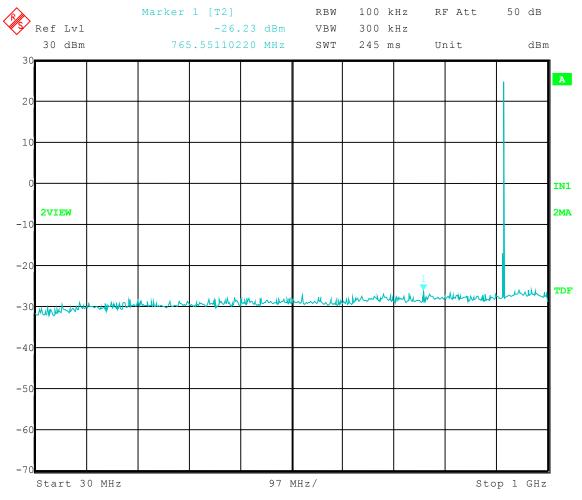
APPENDIX A

Test Date: 9-1-04

Company: Zebra Technologies

EUT: R110PAX3

Test: Spurious Emissions - Conducted


Operator: Jason L.

Comment: Middle Channel Transmit = 915.2 MHz

Frequency Range: 30 to 1000 MHz

Limit = 4.60 dBm

All Spurious Emissions at Least 20 dB below Peak Level of In Band Frequency

Date: 1.SEP.2004 09:59:03

Model Tested: 110PAX3 Report Number: 11000

1250 Peterson Dr., Wheeling, IL 60090

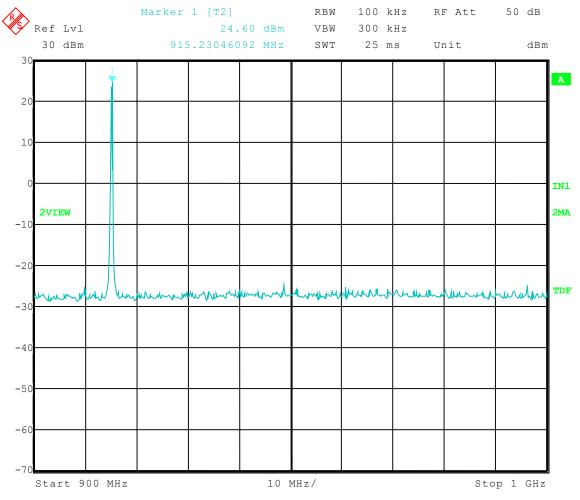
APPENDIX A

Test Date: 9-1-04

Company: Zebra Technologies

EUT: R110PAX3

Test: Spurious Emissions - Conducted


Operator: Jason L.

Comment: Middle Channel Transmit = 915.2 MHz

Frequency Range: 900 to 1000 MHz

Limit = 4.60 dBm

All Spurious Emissions at Least 20 dB below Peak Level of In Band Frequency

Date: 1.SEP.2004 09:57:40

Model Tested: 110PAX3 Report Number: 11000

1250 Peterson Dr., Wheeling, IL 60090

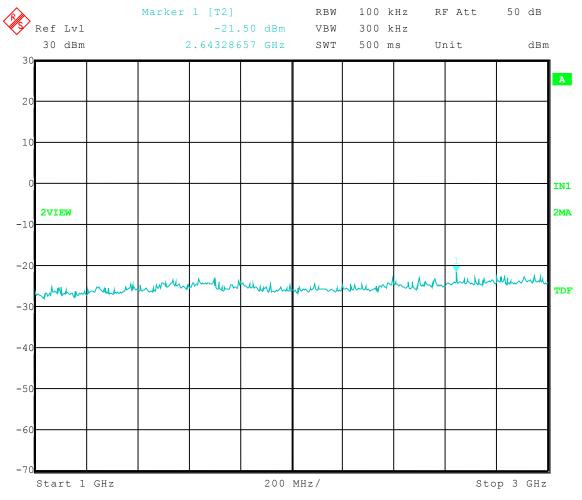
APPENDIX A

Test Date: 9-1-04

Company: Zebra Technologies

EUT: R110PAX3

Test: Spurious Emissions - Conducted


Operator: Jason L.

Comment: Middle Channel Transmit = 915.2 MHz

Frequency Range: 1 to 3 GHz

Limit = 4.60 dBm

All Spurious Emissions at Least 20 dB below Peak Level of In Band Frequency

Date: 1.SEP.2004 10:02:00

Model Tested: 110PAX3 Report Number: 11000

1250 Peterson Dr., Wheeling, IL 60090

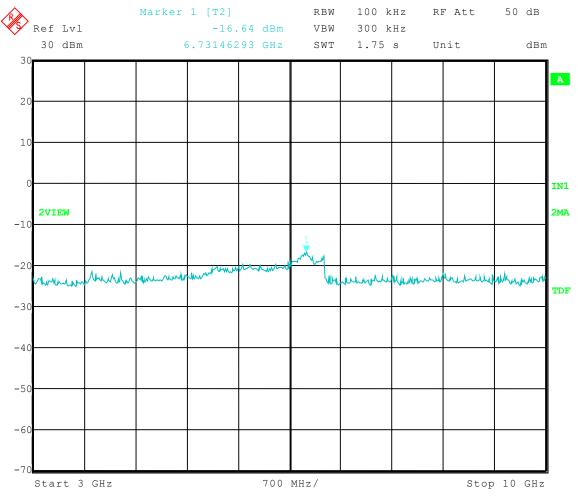
APPENDIX A

Test Date: 9-1-04

Company: Zebra Technologies

EUT: R110PAX3

Test: Spurious Emissions - Conducted


Operator: Jason L.

Comment: Middle Channel Transmit = 915.2 MHz

Frequency Range: 3 to 10 GHz

Limit = 4.60 dBm

All Spurious Emissions at Least 20 dB below Peak Level of In Band Frequency

Date: 1.SEP.2004 10:03:21

Model Tested: 110PAX3 Report Number: 11000

1250 Peterson Dr., Wheeling, IL 60090

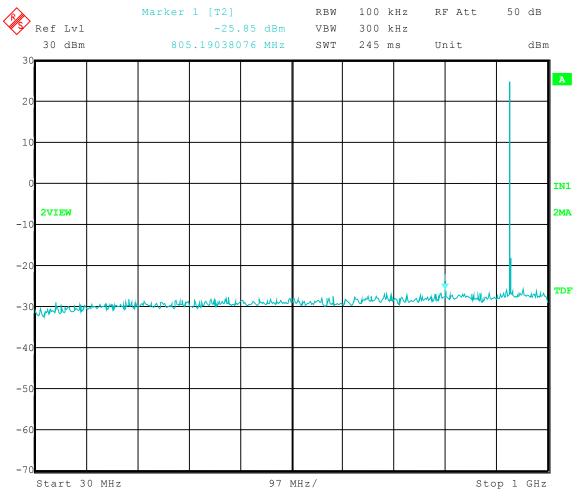
APPENDIX A

Test Date: 9-1-04

Company: Zebra Technologies

EUT: R110PAX3

Test: Spurious Emissions - Conducted


Operator: Jason L.

Comment: High Channel Transmit = 927.6 MHz

Frequency Range: 30 to 1000 MHz

Limit = 4.66 dBm

All Spurious Emissions at Least 20 dB below Peak Level of In Band Frequency

Date: 1.SEP.2004 10:06:48

Model Tested: 110PAX3 Report Number: 11000

1250 Peterson Dr., Wheeling, IL 60090

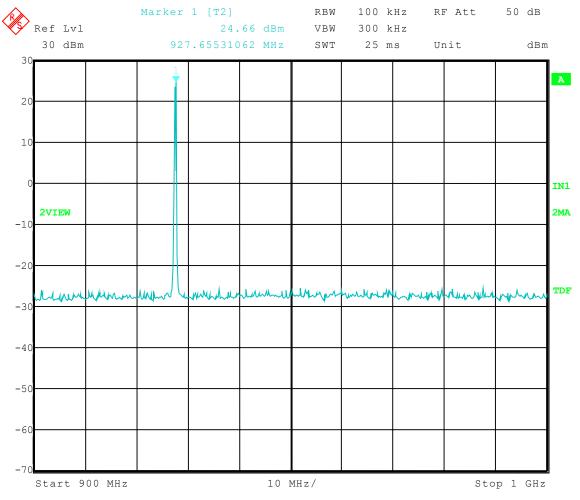
APPENDIX A

Test Date: 9-1-04

Company: Zebra Technologies

EUT: R110PAX3

Test: Spurious Emissions - Conducted


Operator: Jason L.

Comment: High Channel Transmit = 927.6 MHz

Frequency Range: 900 to 1000 MHz

Limit = 4.66 dBm

All Spurious Emissions at Least 20 dB below Peak Level of In Band Frequency

Date: 1.SEP.2004 10:05:24

Model Tested: 110PAX3 Report Number: 11000

1250 Peterson Dr., Wheeling, IL 60090

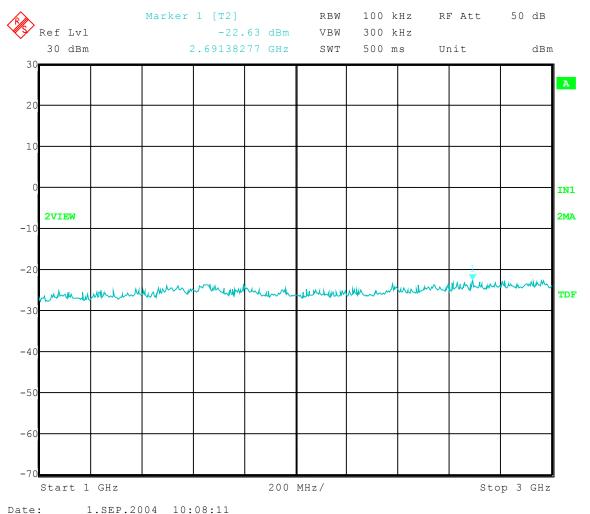
APPENDIX A

Test Date: 9-1-04

Company: Zebra Technologies

EUT: R110PAX3

Test: Spurious Emissions - Conducted


Operator: Jason L.

Comment: High Channel Transmit = 927.6 MHz

Frequency Range: 1 to 3 GHz

Limit = 4.66 dBm

All Spurious Emissions at Least 20 dB below Peak Level of In Band Frequency

Jate: 1.SEP.2004 10:08:11

Model Tested: 110PAX3 Report Number: 11000

1250 Peterson Dr., Wheeling, IL 60090

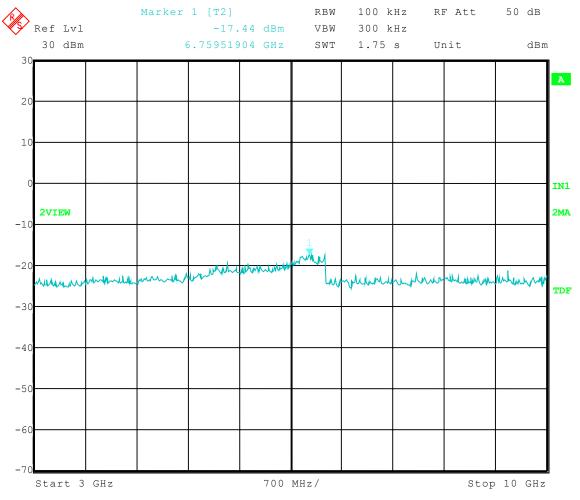
APPENDIX A

Test Date: 9-1-04

Company: Zebra Technologies

EUT: R110PAX3

Test: Spurious Emissions - Conducted


Operator: Jason L.

Comment: High Channel Transmit = 927.6 MHz

Frequency Range: 3 to 10 GHz

Limit = 4.66 dBm

All Spurious Emissions at Least 20 dB below Peak Level of In Band Frequency

Date: 1.SEP.2004 10:09:13

Model Tested: 110PAX3 Report Number: 11000

1250 Peterson Dr., Wheeling, IL 60090

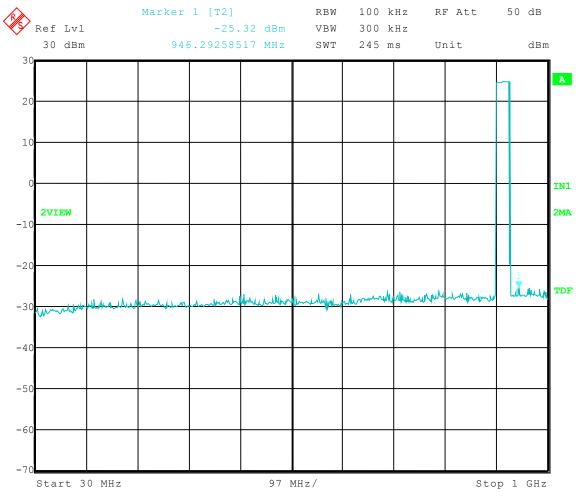
APPENDIX A

Test Date: 9-1-04

Company: Zebra Technologies

EUT: R110PAX3

Test: Spurious Emissions - Conducted


Operator: Jason L.

Comment: Spread Spectrum Hopping On

Frequency Range: 30 to 1000 MHz

Limit = 4.76 dBm

All Spurious Emissions at Least 20 dB below Peak Level of In Band Frequency

Date: 1.SEP.2004 10:16:55

Model Tested: 110PAX3 Report Number: 11000

1250 Peterson Dr., Wheeling, IL 60090

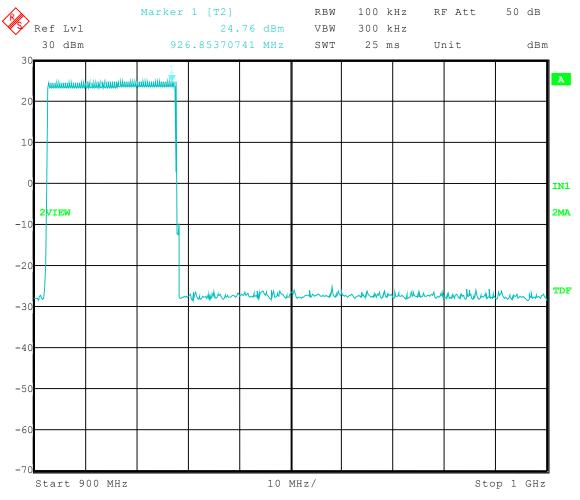
APPENDIX A

Test Date: 9-1-04

Company: Zebra Technologies

EUT: R110PAX3

Test: Spurious Emissions - Conducted


Operator: Jason L.

Comment: Spread Spectrum Hopping On

Frequency Range: 900 to 1000 MHz

Limit = 4.76 dBm

All Spurious Emissions at Least 20 dB below Peak Level of In Band Frequency

Date: 1.SEP.2004 10:15:27

Model Tested: 110PAX3 Report Number: 11000

1250 Peterson Dr., Wheeling, IL 60090

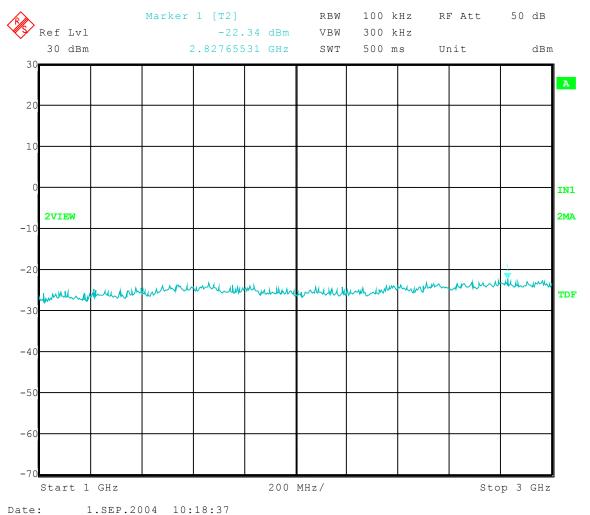
APPENDIX A

Test Date: 9-1-04

Zebra Technologies Company:

EUT: R110PAX3

Spurious Emissions - Conducted Test:


Operator: Jason L.

Comment: Spread Spectrum Hopping On

Frequency Range: 1 to 3 GHz

Limit = 4.76 dBm

All Spurious Emissions at Least 20 dB below Peak Level of In Band Frequency

Model Tested: 110PAX3 Report Number: 11000

1250 Peterson Dr., Wheeling, IL 60090

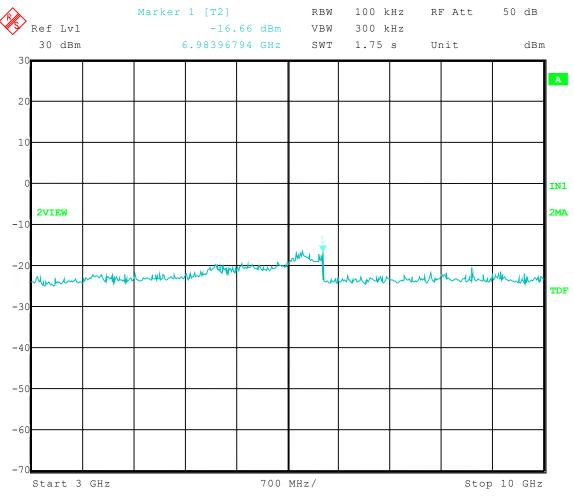
APPENDIX A

Test Date: 9-1-04

Company: Zebra Technologies

EUT: R110PAX3

Test: Spurious Emissions - Conducted


Operator: Jason L.

Comment: Spread Spectrum Hopping On

Frequency Range: 3 to 10 GHz

Limit = 4.76 dBm

All Spurious Emissions at Least 20 dB below Peak Level of In Band Frequency

Date: 1.SEP.2004 10:20:18

Model Tested: 110PAX3 Report Number: 11000

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

4.0 RESTRICTED BANDS

As stated in Section 15.205a, the fundamental emission from the R110PAX3 shall not fall within any of the bands listed below:

Frequency	Frequency	Frequency	Frequency		
in MHz	in MHz	in MHz	in GHz		
.0900 to .1100	162.0125 to 167.17	2310.0 to 2390	9.30 to 9.50		
.4900 to .5100	167.7200 to 173.20	2483.5 to 2500	10.60 to 12.70		
2.1735 to 2.1905	240.000 to 285.00	2655.0 to 2900	13.25 to 13.40		
8.362 to 8.3660	322.200 to 335.40	3260.0 to 3267	14.47 to 14.50		
13.36 to 13.410	399.900 to 410.00	3332.0 to 3339	15.35 to 16.20		
25.50 to 25.670	608.000 to 614.00	3345.8 to 3358	17.70 to 21.40		
37.50 to 38.250	960.000 to 1240.00	3600.0 to 4400	22.01 to 23.13		
73.00 to 75.500	1300.000 to 1427.00	4500.0 to 5250	23.60 to 24.00		
108.00 to 121.94	1435.000 to 1626.50	5350.0 to 5450	31.20 to 31.80		
123.00 to 138.00	1660.000 to 1710.00	7250.0 to 7750	36.43 to 36.50		
149.90 to 150.00	1718.800 to 1722.20	8025.0 to 8500	ABOVE 38.60		
156.70 to 156.90	2200.000 to 2300.00	9000.0 to 9200			

NOTE:

The noise floor within the Restricted Bands for the EMC Receiver and HP Spectrum Analyzer will typically lay 20 dB below the limit.

5.0 BAND EDGE AND RESTRICT BAND COMPLIANCE

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the attenuation below the general limits specified in 15.209 is not required.

The field strength of any **radiated emissions** which fall within the restricted bands shall not exceed the general radiated emissions limits as stated Section 15.209.

NOTE: See the following page(s) for the graph(s) made showing compliance for Band Edge and Restrict Band:

Model Tested: 110PAX3 Report Number: 11000

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

<u>DATA</u> AND <u>GRAPH(S)</u> TAKEN SHOWING THE BAND EDGE AND RESTRICT BAND COMPLIANCE

PART 15.247(c)

Model Tested: 110PAX3 Report Number: 11000

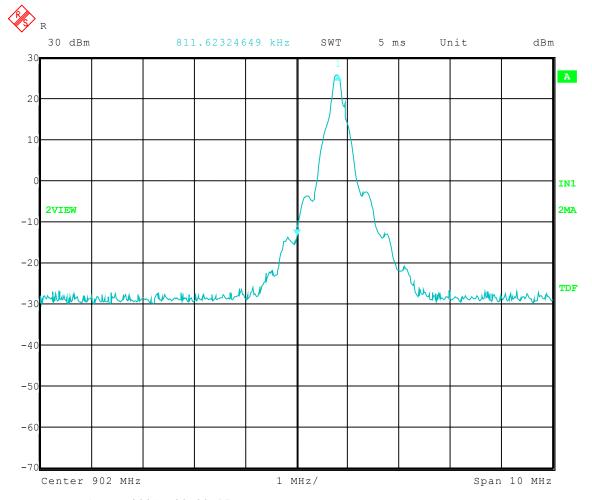
1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

Test Date: 9-1-04

Company: Zebra Technologies

EUT: R110PAX3


Test: Low Band-Edge Compliance - Conducted

Operator: Jason L.

Comment: <u>Low Channel: Frequency – 902.80 MHz</u>

Band-Edge Frequency = 902 MHz

Band-Edge > 20 dB Below Peak In-Band Emission

Model Tested: 110PAX3 Report Number: 11000

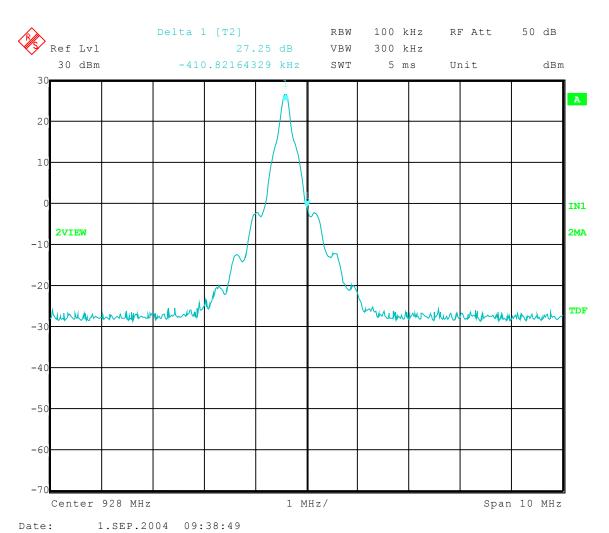
1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

Test Date: 9-1-04

Company: Zebra Technologies

EUT: R110PAX3


Test: High Band-Edge Compliance - Conducted

Operator: Jason L.

Comment: <u>High Channel: Frequency – 927.60 MHz</u>

Band-Edge Frequency = 928 MHz

Band-Edge > 20 dB Below Peak In-Band Emission

Model Tested: 110PAX3 Report Number: 11000

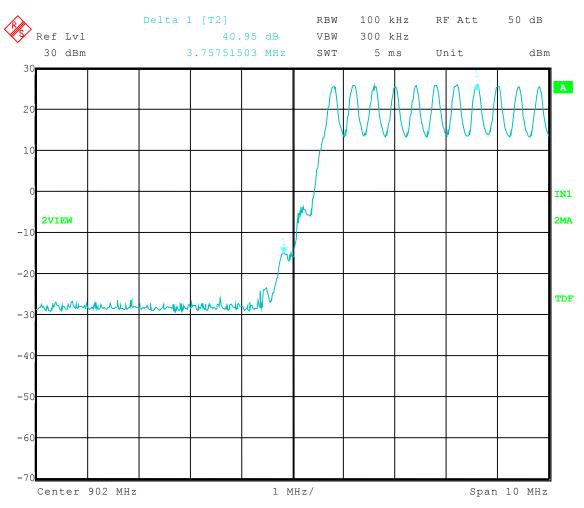
1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

Test Date: 9-1-04

Company: Zebra Technologies

EUT: R110PAX3


Test: Low Band-Edge Compliance - Conducted

Operator: Jason L.

Comment: Spread Spectrum Frequency Hopping On

Band-Edge Frequency = 902 MHz

Band-Edge > 20 dB Below Peak In-Band Emission

Date: 1.SEP.2004 09:33:09

Model Tested: 110PAX3 Report Number: 11000

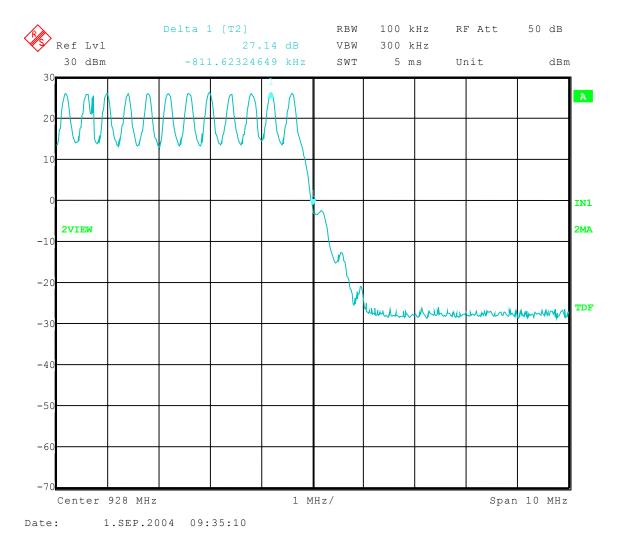
1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

Test Date: 9-1-04

Company: Zebra Technologies

EUT: R110PAX3


Test: High Band-Edge Compliance - Conducted

Operator: Jason L.

Comment: Spread Spectrum Frequency Hopping On

Band-Edge Frequency = 928 MHz

Band-Edge > 20 dB Below Peak In-Band Emission

Model Tested: 110PAX3 Report Number: 11000

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

6.0 FIELD STRENGTH OF SPURIOUS EMISSION MEASUREMENTS

The radiated measurements made at D.L.S. Electronic Systems, Inc., for the R110PAX3, Model Number: 110PAX3, are shown in tabulated and graph form. Preliminary radiation measurements were performed at a 3 meter test distance with the limits adjusted linearly when required. The frequency range from 30 MHz to over 960 MHz, depending upon the fundamental frequency as stated in Part 15.33a, was automatically scanned and plotted at various angles.

Measurements for the R110PAX3 were made up to 10000 MHz, in accordance with Section 15.33a for Intentional Radiators with a fundamental frequency of 927.6 MHz. For intentional radiators, the frequency range to be investigated is determined by the lowest radio frequency generated by the device without going below 30 MHz, up to at least the tenth harmonic of the highest fundamental frequency or 10 GHz, whichever is lower. At those frequencies where significant signals were detected, measurements were made over the entire frequency range specified in FCC Part 15, Subpart C, Section 15.247 at the open field test site, located at Genoa City, Wisconsin, FCC file number 31040/SIT. When required, levels were extrapolated from 10 meters to 3 meters using a linear extrapolation.

All signals in the frequency range of 30 MHz to 2000 MHz were measured with a Biconical Antenna or tuned dipoles and from 200 MHz to 1000 MHz, a Log Periodic or Tuned Dipoles were used. From 1000 MHz to 25 GHz Horn Antennas were used. During the test the equipment was rotated and the antenna was raised and lowered from 1 meter to 4 meters to find the maximum level of emissions. In order to find maximum emissions, the cables were moved through all the positions the equipment would be expected to experience in the field. The EUT, peripheral equipment and cables were configured to meet the conditions in ANSI C63.4-2001, Clauses 6 & 8. Tests were made with the receive antenna(s) in both the horizontal and vertical planes of polarization. In each case, the table was rotated to find the maximum emissions.

Model Tested: 110PAX3 Report Number: 11000

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

6.0 FIELD STRENGTH OF SPURIOUS EMISSION MEASUREMENTS (CON'T)

As stated in Section 15.247(b) the allowed maximum peak output power of the transmitter shall not exceed 1 Watt. In any 100 kHz bandwidth outside these frequency bands (the power that is produced by the modulation products of the spreading sequence), the information sequence and the carrier frequency shall be either at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Attenuation below the general limits specified in 15.209 is not required.

Field strength limits are at a distance of 3 meters. The emission limits shown are based on measurement instrumentation employing an average detector.

Emissions radiated outside of the specified frequency bands, except for harmonics are attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.

Preliminary radiated emission measurements were performed at a 3 meter test distance. The frequency range from 30 MHz to 1000 MHz was automatically scanned and plotted at various angles.

NOTE:

All radiated emissions measurements were made at a test room temperature of 73°F at 66% relative humidity.

Model Tested: 110PAX3 Report Number: 11000

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

RADIATED DATA

AND CHARTS TAKEN OF THE

FUNDAMENTAL SPURIOUS EMISSIONS

Section 6.2.2

FCC Part 15 Class B

Electric Field Strength

EUT: R110PAX3

Manufacturer: Zebra Technologies Operating Condition: 73 deg. F; 66% R.H.

Test Site: DLS OF Site 3

Operator: Jason L

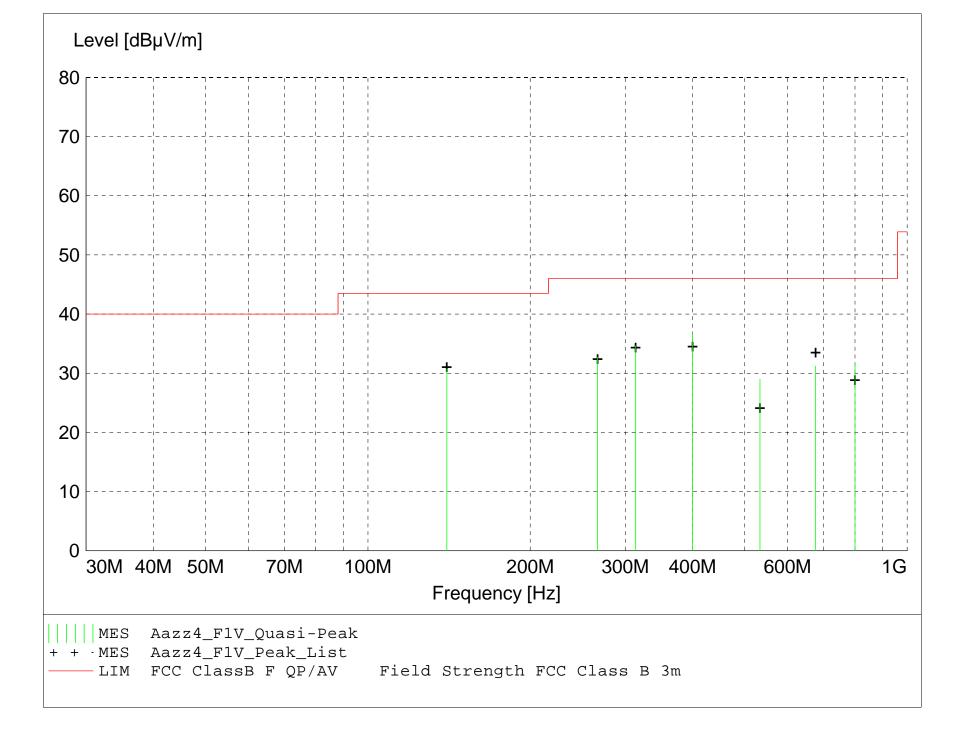
Test Specification: 120 VAC; 60 Hz

Comment: Printer Operating Worst Case

Date: 09/01/04

TEXT: "Site 3 MidV 3M"

Short Description: Test Set-up Vert30-1000MHz


TEST EQUIPMENT: Receiver --- Rohde&Schwarz ESI 26 SN: 837491/010

Antennas ---

Biconical -- EMCO 3104C SN: 9701-4785 Log Periodic -- EMCO 3146 SN: 9702-4895

Pre-Amp --- Rohde&Schwarz TS-PR10 SN: 032001/005

TEST SET-UP: EuT Measured at 3 Meters with VERTICAL Antenna Polarisation

MEASUREMENT RESULT: "Aazz4_F1V_Final"

9	9/1/2004 2:0	00PM									
	Frequency	Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
			Factor	Loss	Level			Ant.	Angle	Detector	
	MHz	dΒμV	dBµV/m	dВ	dBµV/m	dΒμV/m	dВ	m	deg		
	400.010000	42.38	15.85	-21.4	36.8	46.0	9.2	1.00	180	QUASI-PEAK	None
	313.560000	40.09	16.26	-21.7	34.6	46.0	11.4	1.00	270	QUASI-PEAK	None
	140.000000	41.84	11.98	-23.1	30.7	43.5	12.8	1.00	345	QUASI-PEAK	None
	266.660000	41.63	13.16	-22.0	32.8	46.0	13.2	1.00	180	QUASI-PEAK	None
	800.030000	29.82	21.32	-19.4	31.7	46.0	14.3	1.00	200	QUASI-PEAK	None
	676.380000	29.93	21.02	-19.7	31.2	46.0	14.8	2.00	180	QUASI-PEAK	None
	533.360000	31.51	18.33	-20.9	29.0	46.0	17.0	1.00	200	QUASI-PEAK	None

FCC Part 15 Class B

Electric Field Strength

EUT: R110PAX3

Manufacturer: Zebra Technologies Operating Condition: 73 deg. F; 66% R.H.

Test Site: DLS OF Site 3

Operator: Jason L

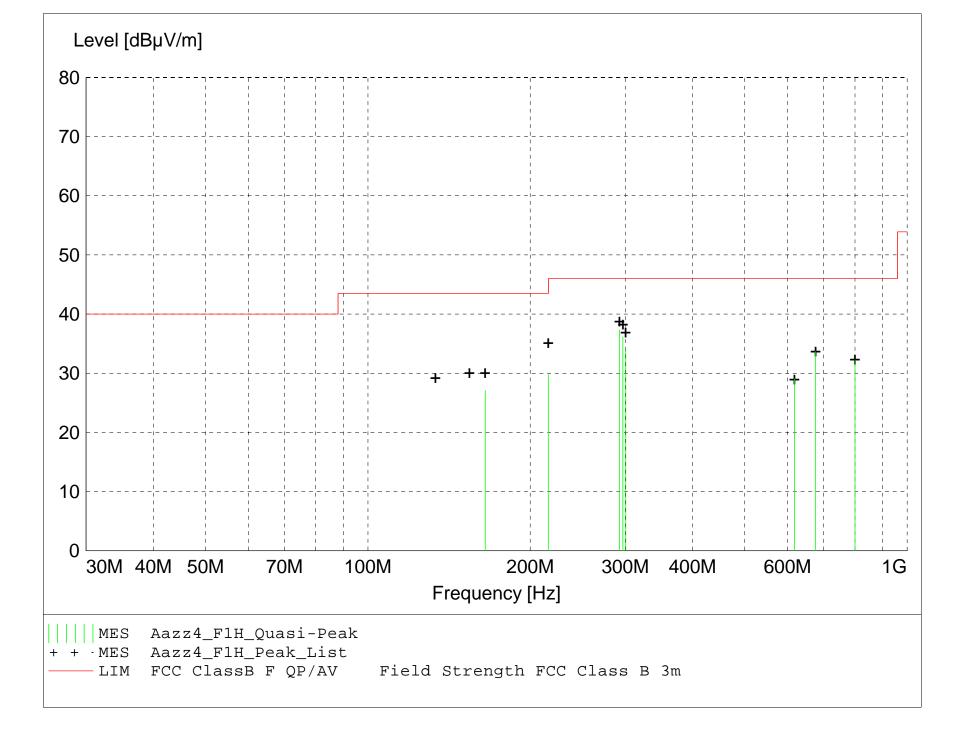
Test Specification: 120 VAC; 60 Hz

Comment: Printer Operating Worst Case

Date: 09/01/04

TEXT: "Site 3 MidH 3M"

Short Description: Test Set-up Horz30-1000MHz


TEST EQUIPMENT: Receiver --- Rohde&Schwarz ESI 40 SN: 837808/006

Antennas ---

Biconical -- EMCO 3104C SN: 9701-4785 Log Periodic -- EMCO 3146 SN: 9702-4895

Pre-Amp --- Rohde&Schwarz TS-PR10 SN: 032001/005

TEST SET-UP: EuT Measured at 3 Meters with HORIZONTAL Antenna Polarisation

MEASUREMENT RESULT: "Aazz4_F1H_Final"

9/1/2004 2	:11PM									
Frequenc	y Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
		Factor	Loss	Level			Ant.	Angle	Detector	
MH	z dBµV	dBµV/m	dВ	dBµV/m	dBμV/m	dВ	m	deg		
292.66000	0 44.59	14.55	-21.9	37.3	46.0	8.7	1.00	45	QUASI-PEAK	None
296.97000	0 43.13	14.81	-21.8	36.1	46.0	9.9	1.00	260	QUASI-PEAK	None
300.60000	0 40.67	14.97	-21.8	33.9	46.0	12.1	1.00	270	QUASI-PEAK	None
676.26000	0 32.38	21.02	-19.7	33.7	46.0	12.3	1.50	125	QUASI-PEAK	None
215.98000	0 40.59	11.61	-22.4	29.8	43.5	13.7	1.00	180	QUASI-PEAK	None
800.03000	0 30.36	21.32	-19.4	32.3	46.0	13.7	1.50	160	QUASI-PEAK	None
164.99000	0 36.10	13.76	-22.7	27.1	43.5	16.4	1.70	60	QUASI-PEAK	None
617.89000	0 30.48	18.95	-20.4	29.1	46.0	16.9	1.70	125	QUASI-PEAK	None

Model Tested: 110PAX3 Report Number: 11000

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

RADIATED DATA AND GRAPH(S) TAKEN FOR

FIELD STRENGTH

SPURIOUS EMISSION MEASUREMENTS

Electric Field Strength

EUT: R110PAX3

Manufacturer: Zebra Technologies Operating Condition: 72 deg F; 65% R.H. Test Site: DLS O.F. Site 3

Operator: Jason L

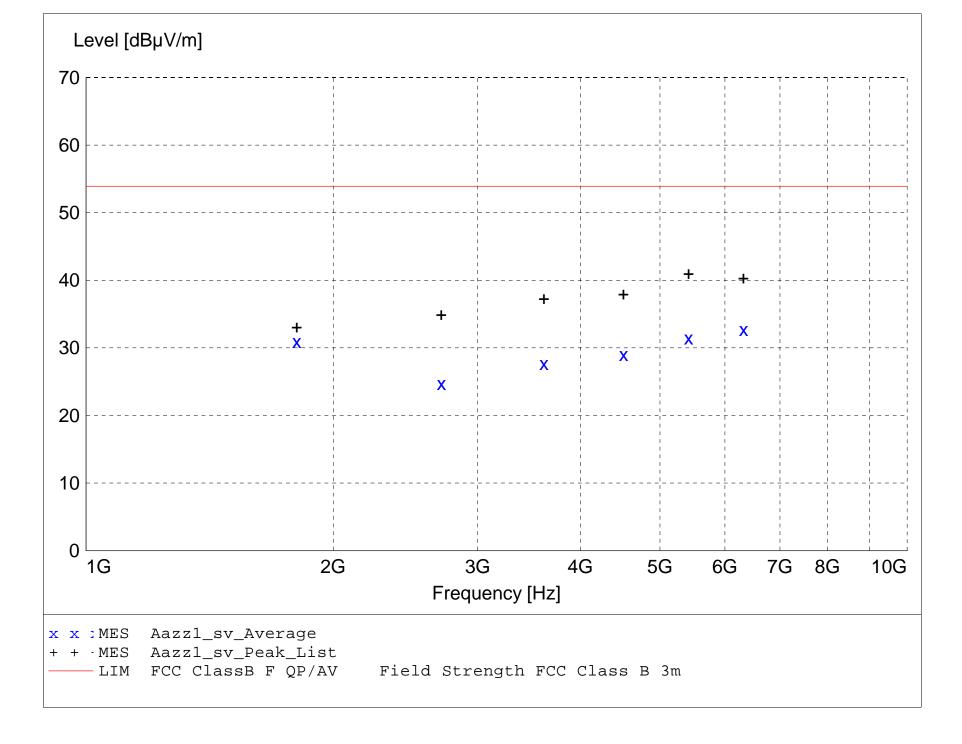
Test Specification: 120 VAC; 60 Hz

Comment: Transmit and Receive @ 902.8 MHz Low Channel

Date: 09/01/04

TEXT: "Site 3 6204&184 V3M"

Short Description: Test Set-up Vert1GHz-


TEST EQUIPMENT: Receiver --- Rohde&Schwarz ESI 40 SN: 837808/006

Horn Antenna --- ETS 3115 SN: 6204

Pre-Amps ---

1 - 10 GHz -- Miteq AMF-6D-010100-50 SN: 682425 10 - 18 GHz -- Miteq AMF-6F-100200-50-10P SN: 668382

TEST SET-UP: EuT Measured at 3 Meters with VERTICAL Antenna Polarisation

MEASUREMENT RESULT: "Aazz1_sv_Final"

9/1/2004 11:2	21AM									
Frequency	Level	Antenna Factor	System Loss	Total Level	Limit	Margin	Height Ant.	EuT Angle	Final Detector	Comment
MHz	dΒμV	dBμV/m	dB	dBµV/m	dBµV/m	dB	m	deg		
6319.600000	35.66	34.40	-37.4	32.7	53.9	21.2	1.00	0	AVERAGE	7th Harmonic
5416.800000	35.04	33.97	-37.6	31.4	53.9	22.5	1.00	0	AVERAGE	6th Harmonic
1805.600000	44.24	26.44	-39.8	30.9	53.9	23.0	1.20	200	AVERAGE	2nd Harmonic
4514.000000	34.24	32.33	-37.6	29.0	53.9	24.9	1.00	0	AVERAGE	5th Harmonic
3611.200000	34.89	31.51	-38.7	27.7	53.9	26.2	1.00	0	AVERAGE	4th Harmonic
2708.400000	35.41	29.21	-39.9	24.7	53.9	29.2	1.00	0	AVERAGE	3rd Harmonic

Electric Field Strength

EUT: R110PAX3

Manufacturer: Zebra Technologies Operating Condition: 72 deg F; 65% R.H. Test Site: DLS O.F. Site 3

Operator: Jason L

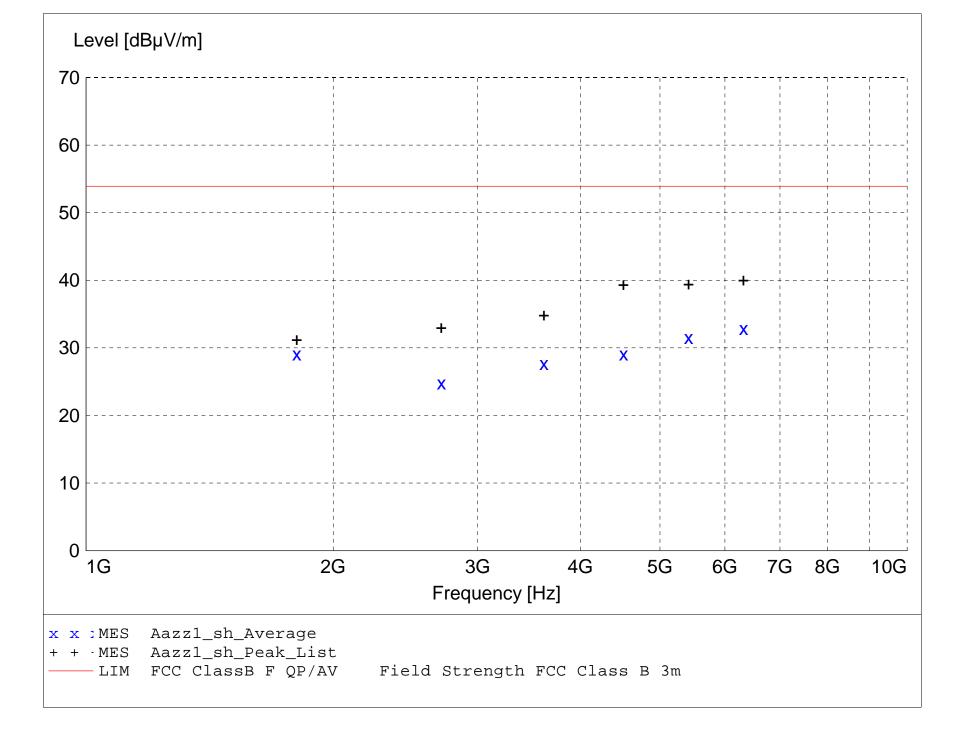
Test Specification: 120 VAC; 60 Hz

Comment: Transmit and Receive @ 902.8 MHz Low Channel

Date: 09/01/04

TEXT: "Site 3 6204&184 H3M"

Short Description: Test Set-up Horz1GHz-


TEST EQUIPMENT: Receiver --- Rohde&Schwarz ESI 40 SN: 837808/006

Horn Antenna --- ETS 3115 SN: 6204

Pre-Amps ---

1 - 10 GHz -- Miteq AMF-6D-010100-50 SN: 682425 10 - 18 GHz -- Miteq AMF-6F-100200-50-10P SN: 668382

TEST SET-UP: EuT Measured at 3 Meters with HORIZONTAL Antenna Polarisation

MEASUREMENT RESULT: "Aazz1_sh_Final"

9/1/2004 12:0	6PM									
Frequency	Level	Antenna Factor	System Loss	Total Level	Limit	Margin	Height Ant.	EuT Angle	Final Detector	Comment
MHz	dΒμV	dBµV/m	dB	dBµV/m	$\text{dB}\mu\text{V/m}$	dB	m	deg		
6319.600000	35.81	34.40	-37.4	32.8	53.9	21.1	1.00	0	AVERAGE	7th Harmonic
5416.800000	35.11	33.97	-37.6	31.5	53.9	22.4	1.00	0	AVERAGE	6th Harmonic
4514.000000	34.31	32.33	-37.6	29.1	53.9	24.8	1.00	0	AVERAGE	5th Harmonic
1805.600000	42.39	26.44	-39.8	29.1	53.9	24.8	1.00	160	AVERAGE	2nd Harmonic
3611.200000	34.93	31.51	-38.7	27.7	53.9	26.2	1.00	0	AVERAGE	4th Harmonic
2708.400000	35.52	29.21	-39.9	24.8	53.9	29.1	1.00	200	AVERAGE	3rd Harmonic

Electric Field Strength

EUT: R110PAX3

Manufacturer: Zebra Technologies Operating Condition: 72 deg F; 65% R.H. Test Site: DLS O.F. Site 3

Operator: Jason L

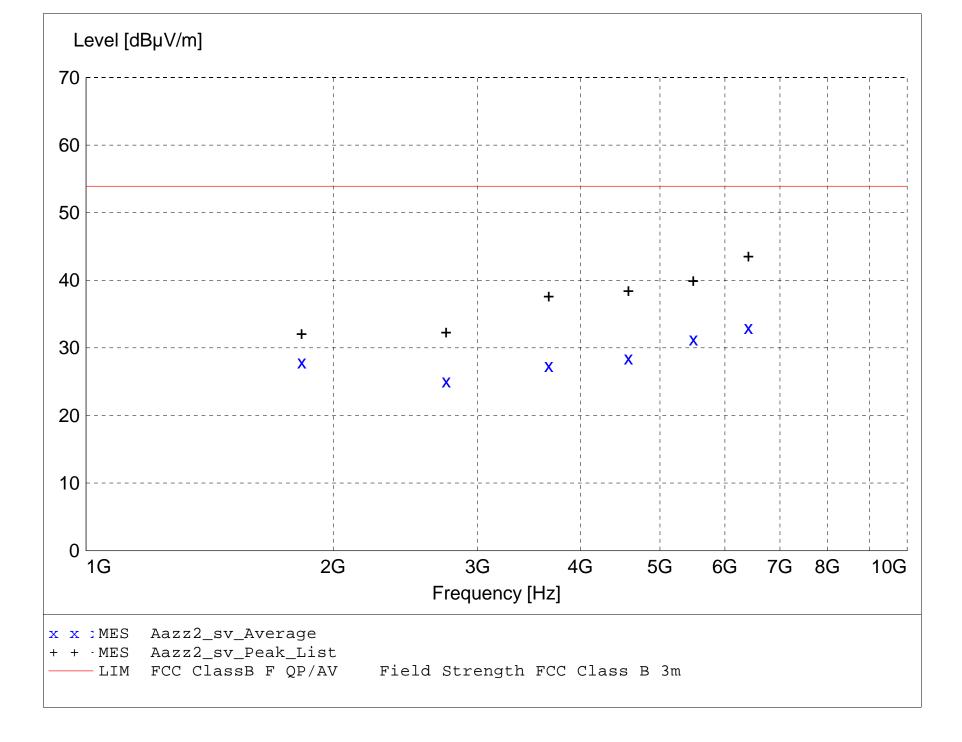
Test Specification: 120 VAC; 60 Hz

Comment: Transmit and Receive @ 915.2 MHz Middle Channel

Date: 09/01/04

TEXT: "Site 3 6204&184 V3M"

Short Description: Test Set-up Vert1GHz-


TEST EQUIPMENT: Receiver --- Rohde&Schwarz ESI 40 SN: 837808/006

Horn Antenna --- ETS 3115 SN: 6204

Pre-Amps ---

1 - 10 GHz -- Miteq AMF-6D-010100-50 SN: 682425 10 - 18 GHz -- Miteq AMF-6F-100200-50-10P SN: 668382

TEST SET-UP: EuT Measured at 3 Meters with VERTICAL Antenna Polarisation

MEASUREMENT RESULT: "Aazz2_sv_Final"

9/1/2004 12:1	L6PM									
Frequency	Level	Antenna Factor	System Loss	Total Level	Limit	Margin	Height Ant.	EuT Angle	Final Detector	Comment
MHz	dBuV	dBuV/m	доss dв	dBuV/m	dBuV/m	dВ	m	dea	Detector	
rmz	αВμν	αΔμν/ιιι	QD.	αυμν/ιιι	αΔμν/ιιι	QD.		acg		
6406.400000	36.01	34.40	-37.4	33.0	53.9	20.9	1.00	0	AVERAGE	7th Harmonic
5491.200000	35.01	34.09	-37.8	31.3	53.9	22.6	1.00	0	AVERAGE	6th Harmonic
4576.000000	33.73	32.45	-37.7	28.5	53.9	25.4	1.00	0	AVERAGE	5th Harmonic
1830.400000	40.90	26.55	-39.6	27.9	53.9	26.0	1.20	45	AVERAGE	2nd Harmonic
3660.800000	34.59	31.65	-38.8	27.4	53.9	26.5	1.00	0	AVERAGE	4th Harmonic
2745.600000	35.46	29.34	-39.7	25.1	53.9	28.8	1.00	0	AVERAGE	3rd Harmonic

Electric Field Strength

EUT: R110PAX3

Manufacturer: Zebra Technologies Operating Condition: 72 deg F; 65% R.H. Test Site: DLS O.F. Site 3

Operator: Jason L

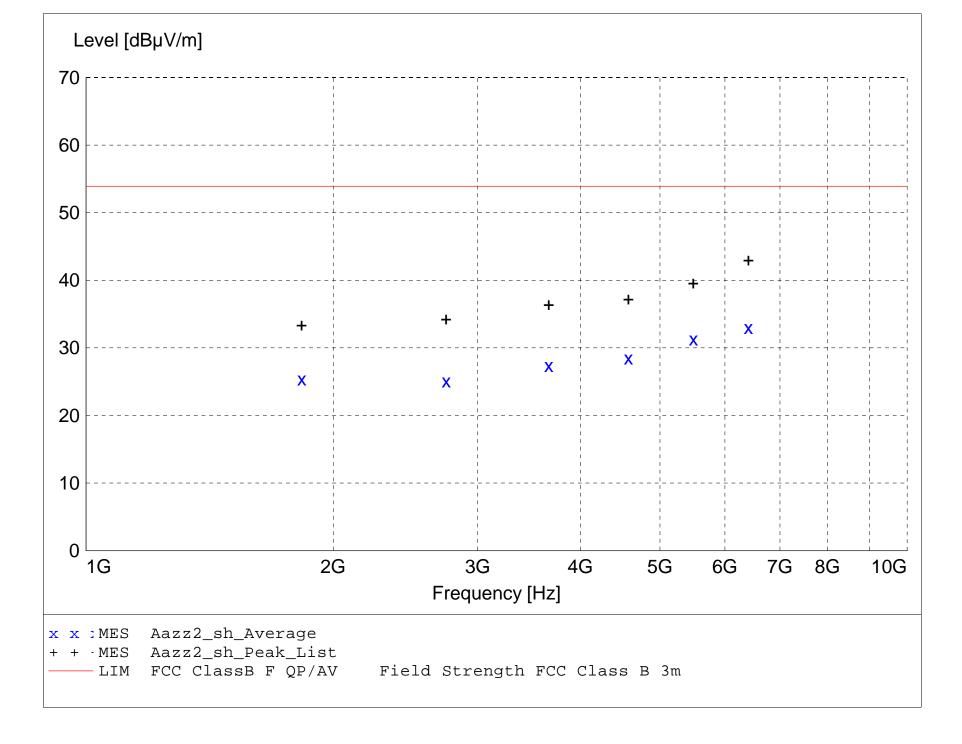
Test Specification: 120 VAC; 60 Hz

Comment: Transmit and Receive @ 915.2 MHz Middle Channel

Date: 09/01/04

TEXT: "Site 3 6204&184 H3M"

Short Description: Test Set-up Horz1GHz-


TEST EQUIPMENT: Receiver --- Rohde&Schwarz ESI 40 SN: 837808/006

Horn Antenna --- ETS 3115 SN: 6204

Pre-Amps ---

1 - 10 GHz -- Miteq AMF-6D-010100-50 SN: 682425 10 - 18 GHz -- Miteq AMF-6F-100200-50-10P SN: 668382

TEST SET-UP: EuT Measured at 3 Meters with HORIZONTAL Antenna Polarisation

MEASUREMENT RESULT: "Aazz2_sh_Final"

9/1/2004 12:2	6PM									
Frequency	Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
		Factor	Loss	Level			Ant.	Angle	Detector	
MHz	dΒμV	dBµV/m	dВ	dΒμV/m	dΒμV/m	dВ	m	deg		
6406.400000	36.02	34.40	-37.4	33.0	53.9	20.9	1.00	0	AVERAGE	7th Harmonic
5491.200000	35.00	34.09	-37.8	31.3	53.9	22.6	1.00	0	AVERAGE	6th Harmonic
4576.000000	33.74	32.45	-37.7	28.5	53.9	25.4	1.00	0	AVERAGE	5th Harmonic
3660.800000	34.56	31.65	-38.8	27.4	53.9	26.5	1.00	0	AVERAGE	4th Harmonic
1830.400000	38.41	26.55	-39.6	25.4	53.9	28.5	1.00	180	AVERAGE	2nd Harmonic
2745.600000	35.45	29.34	-39.7	25.1	53.9	28.8	1.00	0	AVERAGE	3rd Harmonic

Electric Field Strength

EUT: R110PAX3

Manufacturer: Zebra Technologies Operating Condition: 72 deg F; 65% R.H. Test Site: DLS O.F. Site 3

Operator: Jason L

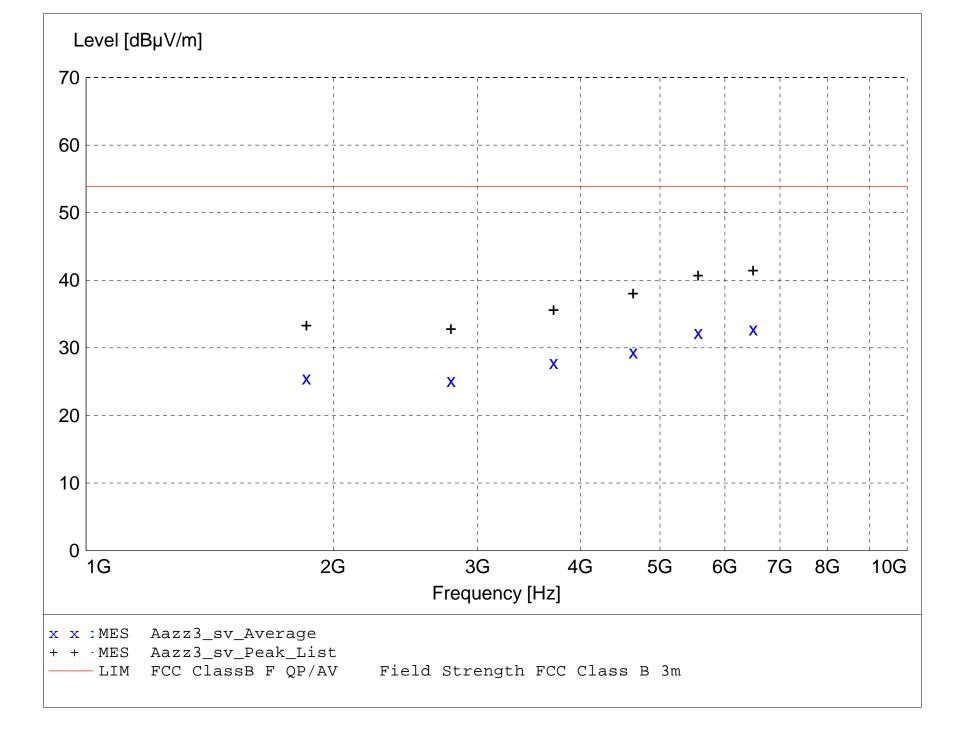
Test Specification: 120 VAC; 60 Hz

Comment: Transmit and Receive @ 927.6 MHz High Channel

Date: 09/01/04

TEXT: "Site 3 6204&184 V3M"

Short Description: Test Set-up Vert1GHz-


TEST EQUIPMENT: Receiver --- Rohde&Schwarz ESI 40 SN: 837808/006

Horn Antenna --- ETS 3115 SN: 6204

Pre-Amps ---

1 - 10 GHz -- Miteq AMF-6D-010100-50 SN: 682425 10 - 18 GHz -- Miteq AMF-6F-100200-50-10P SN: 668382

TEST SET-UP: EuT Measured at 3 Meters with VERTICAL Antenna Polarisation

MEASUREMENT RESULT: "Aazz3_sv_Final"

9/1/2004 12:3	9PM									
Frequency	Level	Antenna Factor	System Loss	Total Level	Limit	Margin	Height Ant.	EuT Angle	Final Detector	Comment
MHz	dΒμV	dBµV/m	dB	dBµV/m	dBµV/m	dB	m	deg		
6493.200000	35.92	34.40	-37.6	32.8	53.9	21.1	1.00	0	AVERAGE	7th Harmonic
5565.600000	35.52	34.14	-37.4	32.2	53.9	21.7	1.00	0	AVERAGE	6th Harmonic
4638.000000	34.47	32.58	-37.7	29.4	53.9	24.5	1.00	0	AVERAGE	5th Harmonic
3710.400000	34.78	31.79	-38.7	27.8	53.9	26.1	1.00	0	AVERAGE	4th Harmonic
1855.200000	38.39	26.66	-39.5	25.5	53.9	28.4	1.00	200	AVERAGE	2nd Harmonic
2782.800000	35.27	29.46	-39.6	25.2	53.9	28.7	1.00	45	AVERAGE	3rd Harmonic

Electric Field Strength

EUT: R110PAX3

Manufacturer: Zebra Technologies Operating Condition: 72 deg F; 65% R.H. Test Site: DLS O.F. Site 3

Operator: Jason L

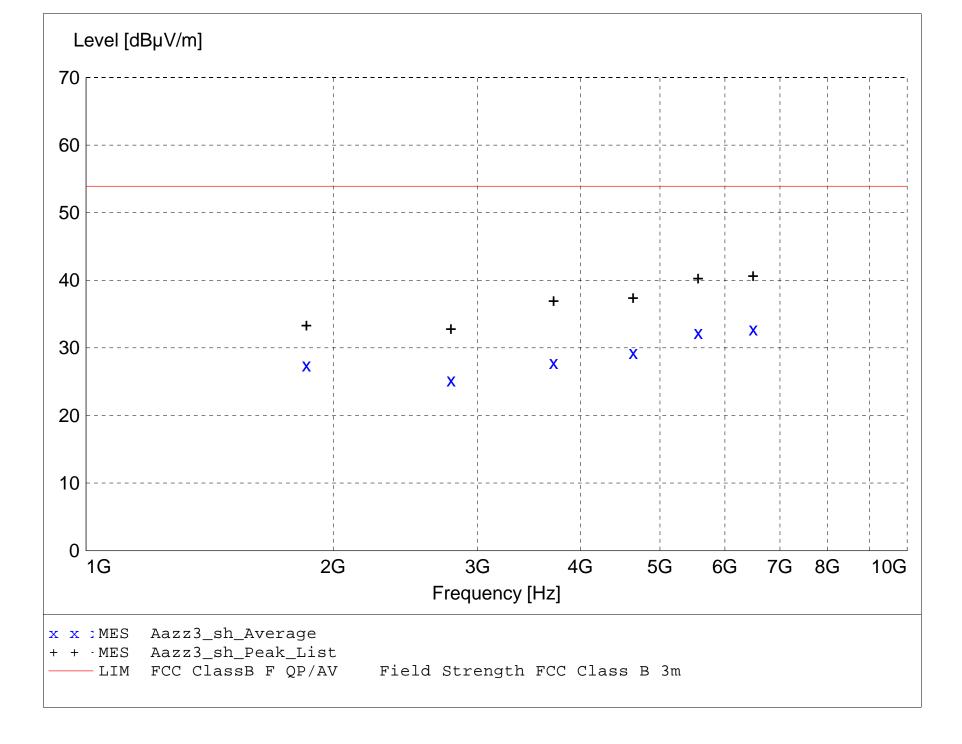
Test Specification: 120 VAC; 60 Hz

Comment: Transmit and Receive @ 927.6 MHz High Channel

Date: 09/01/04

TEXT: "Site 3 6204&184 H3M"

Short Description: Test Set-up Horz1GHz-


TEST EQUIPMENT: Receiver --- Rohde&Schwarz ESI 40 SN: 837808/006

Horn Antenna --- ETS 3115 SN: 6204

Pre-Amps ---

1 - 10 GHz -- Miteq AMF-6D-010100-50 SN: 682425 10 - 18 GHz -- Miteq AMF-6F-100200-50-10P SN: 668382

TEST SET-UP: EuT Measured at 3 Meters with HORIZONTAL Antenna Polarisation

MEASUREMENT RESULT: "Aazz3_sh_Final"

12:46PM										
cy Le	evel	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
		Factor	Loss	Level			Ant.	Angle	Detector	
Hz d	dΒμV	dBµV/m	dВ	$\text{dB}\mu\text{V/m}$	$\text{dB}\mu\text{V/m}$	dB	m	deg		
00 35	5.94	34.40	-37.6	32.8	53.9	21.1	1.00	0	AVERAGE	7th Harmonic
00 35	5.51	34.14	-37.4	32.2	53.9	21.7	1.00	0	AVERAGE	6th Harmonic
00 34	1.45	32.58	-37.7	29.3	53.9	24.6	1.00	0	AVERAGE	5th Harmonic
00 34	1.77	31.79	-38.7	27.8	53.9	26.1	1.00	0	AVERAGE	4th Harmonic
00 40).31	26.66	-39.5	27.5	53.9	26.4	1.00	80	AVERAGE	2nd Harmonic
00 35	5.33	29.46	-39.6	25.2	53.9	28.7	1.00	80	AVERAGE	3rd Harmonic
() () ()	CY Le Hz C 00 35 00 35 00 34 00 34	Level Hz dBμV 00 35.94 00 35.51 00 34.45 00 34.77 00 40.31	Level Antenna Factor Hz dBμV dBμV/m 00 35.94 34.40 00 35.51 34.14 00 34.45 32.58 00 34.77 31.79 00 40.31 26.66	Cy Level Factor Factor ABμV System Loss ABμV/m Loss ABμV/m 00 35.94 34.40 -37.6 00 35.51 34.14 -37.4 00 34.45 32.58 -37.7 00 34.77 31.79 -38.7 00 40.31 26.66 -39.5	Cy Level Factor Antenna Factor Hz System Level Loss Level ABμV/m Total Loss Level ABμV/m 00 35.94 34.40 -37.6 32.8 00 35.51 34.14 -37.4 32.2 00 34.45 32.58 -37.7 29.3 00 34.77 31.79 -38.7 27.8 00 40.31 26.66 -39.5 27.5	Cy Level Factor Factor Hz System Level Loss Level Loss Level ABμV/m Loss ABμV ABμV/m Level ABμV/m Loss ABμV/m<	Cy Level Factor Factor System Level Loss Level Loss Level Level ABμV/m Level ABμV/m Loss ABμV/m Level ABμV/m ABμV/m	Cy Level Antenna Factor Hz System Loss Level Loss Level Ant. Loss Level Ant. Loss Hz Level Ant. Loss Level Ant. Los	Cy Level Antenna Factor Hz System Total Loss Level Ant. Angle Hz Limit Margin Ant. Angle Ant. Angle Ant. Angle MBμV/m MBμV/	Cy Level Antenna Factor System Loss Level Loss Level Ant. Angle Detector Level Ant. Angle Ant. Angle Detector EuT Final Ant. Angle Detector Hz dBμV dBμV/m dB dBμV/m dBμV/m dB μV/m dB

Model Tested: 110PAX3 Report Number: 11000

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

20 dB BANDWIDTH GRAPHS

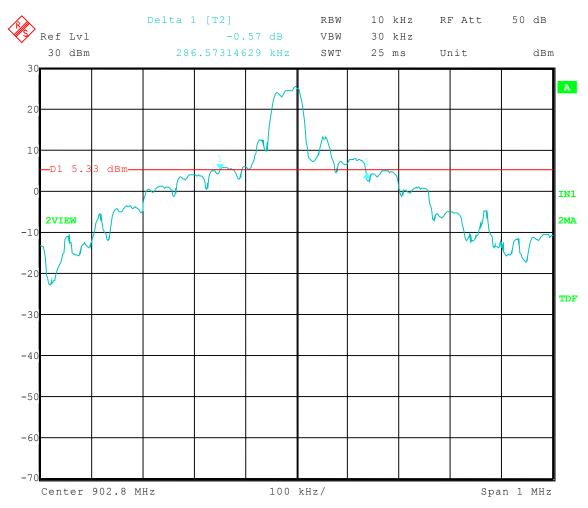
Model Tested: 110PAX3 Report Number: 11000

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

Test Date: 9-1-04

Company: Zebra Technologies


EUT: R110PAX3

Test: 20 dB Bandwidth - Conducted

Operator: Jason L.

Comment: <u>Low Channel</u>: Frequency – 902.80 MHz

20 dB Bandwidth = 286.57 kHz

Date: 1.SEP.2004 09:25:40

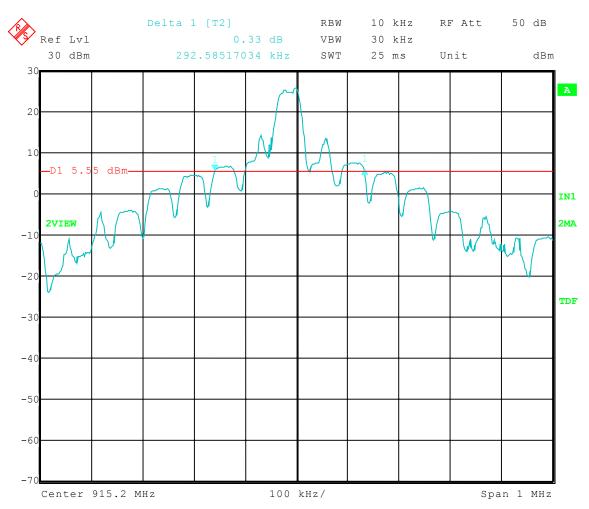
Model Tested: 110PAX3 Report Number: 11000

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

Test Date: 9-1-04

Company: Zebra Technologies


EUT: R110PAX3

Test: 20 dB Bandwidth - Conducted

Operator: Jason L.

Comment: <u>Middle Channel</u>: Frequency – 915.20 MHz

20 dB Bandwidth = 292.59 kHz

Date: 1.SEP.2004 09:18:32

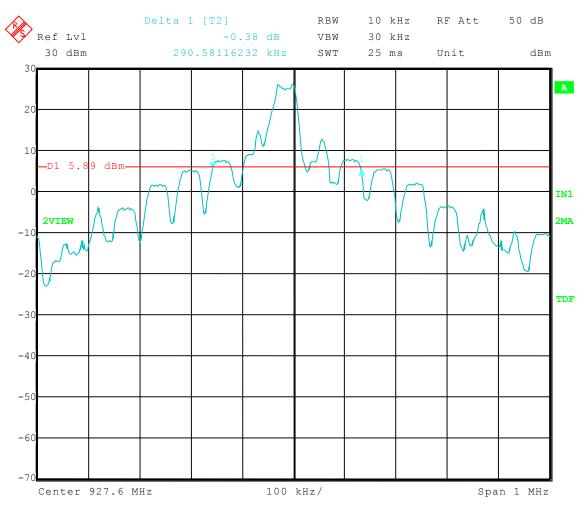
Model Tested: 110PAX3 Report Number: 11000

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

Test Date: 9-1-04

Company: Zebra Technologies


EUT: R110PAX3

Test: 20 dB Bandwidth - Conducted

Operator: Jason L.

Comment: <u>High Channel:</u> Frequency – 927.60 MHz

20 dB Bandwidth = 290.58 kHz

Date: 1.SEP.2004 09:16:22

Model Tested: 110PAX3 Report Number: 11000

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

CARRIER FREQUENCY SEPARATION GRAPH(S)

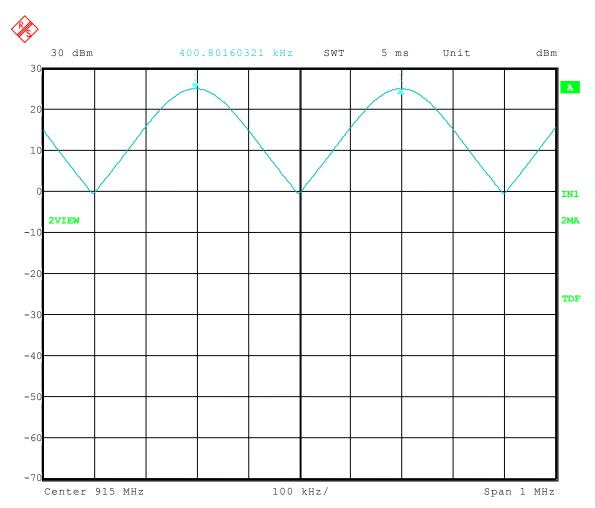
Model Tested: 110PAX3 Report Number: 11000

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

Test Date: 9-1-04

Company: Zebra Technologies


EUT: R110PAX3

Test: Carrier Frequency Separation - Conducted

Operator: Jason L.

Comment: Frequency Hopping On

Carrier Freq Separation = 400.8 kHz

Date: 1.SEP.2004 09:41:18

Model Tested: 110PAX3 Report Number: 11000

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

NUMBER OF HOPPING FREQUENCIES GRAPH(S)

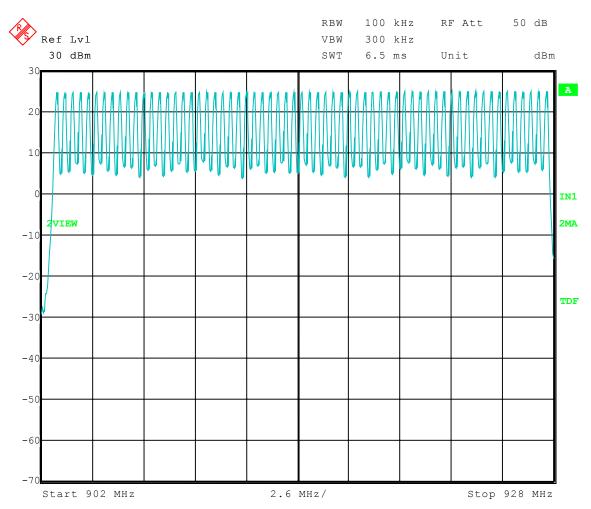
Model Tested: 110PAX3 Report Number: 11000

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

Test Date: 9-1-04

Company: Zebra Technologies


EUT: R110PAX3

Test: Number of Hopping Frequencies - Conducted

Operator: Jason L.

Comment: Hopping Mode

Frequency Range = 902 MHz to 928 MHz Number of Frequencies in Range = 63

Date: 1.SEP.2004 09:42:40

Model Tested: 110PAX3 Report Number: 11000

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

TIME OF OCCUPANCY GRAPHS

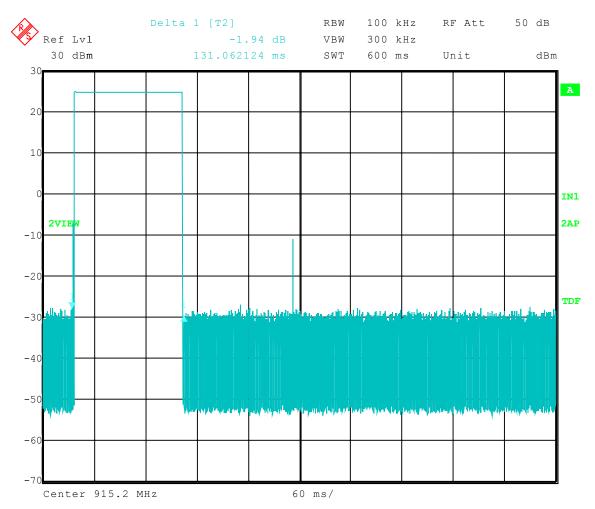
Model Tested: 110PAX3 Report Number: 11000

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

Test Date: 9-1-04

Company: Zebra Technologies


EUT: R110PAX3

Test: Dwell Time - Conducted

Operator: Jason L.

Comment: Middle Channel - <u>Hopping Mode On</u>

Dwell Time = 131.06 mS

Date: 1.SEP.2004 09:45:52

Model Tested: 110PAX3 Report Number: 11000

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

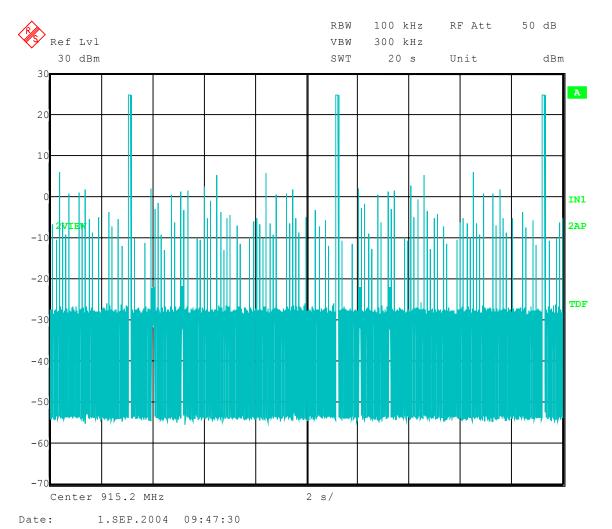
Test Date: 9-1-04

Company: Zebra Technologies

EUT: R110PAX3

Test: Dwell Time in 20 Seconds - Conducted

Operator: Jason L.


Comment: Middle Channel – <u>Hopping Mode On</u>

Dwell Time Limit = 0.4 Seconds in 20 Seconds

Times ON in 20 Sec = 3

Dwell Time in 20 Sec = Time Slot Length X Times On in 20 s

0.393 Seconds = 131.06 ms X 3

Model Tested: 110PAX3 Report Number: 11000

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

CONDUCTED PEAK OUTPUT POWER GRAPHS

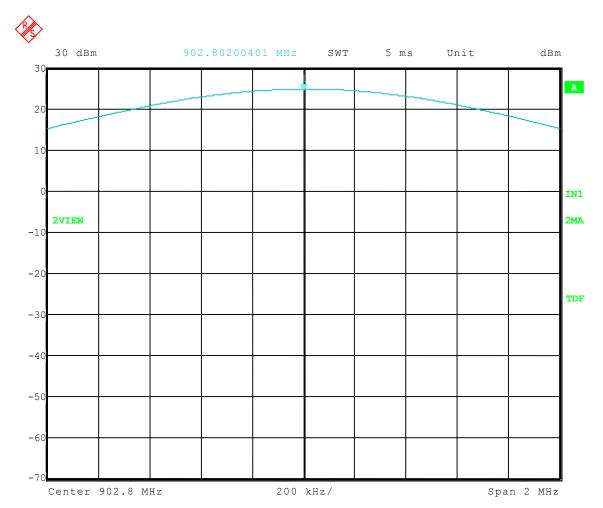
Model Tested: 110PAX3 Report Number: 11000

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

Test Date: 9-1-04

Company: Zebra Technologies


EUT: R110PAX3

Test: Peak Output Power - Conducted

Operator: Jason L.

Comment: <u>Low Channel</u>: Frequency – 902.80 MHz

Peak Output Power = 24.73 dBm = 297.2 mW

Date: 1.SEP.2004 09:09:46

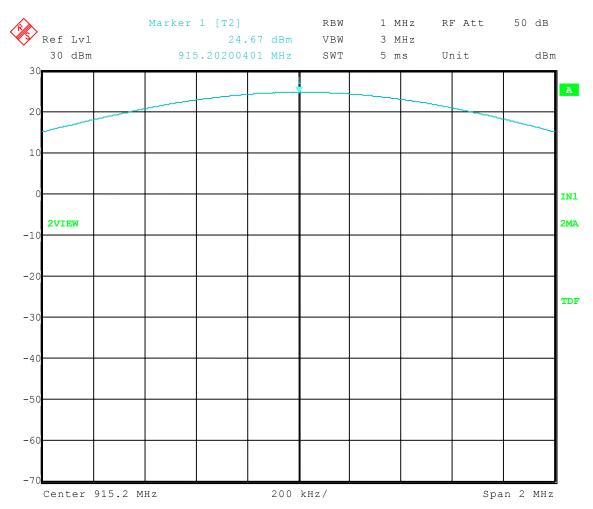
Model Tested: 110PAX3 Report Number: 11000

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

Test Date: 9-1-04

Company: Zebra Technologies


EUT: R110PAX3

Test: Peak Output Power - Conducted

Operator: Jason L.

Comment: Middle Channel: Frequency – 915.20 MHz

Peak Output Power = 24.67 dBm = 293.1 mW

Date: 1.SEP.2004 09:11:37

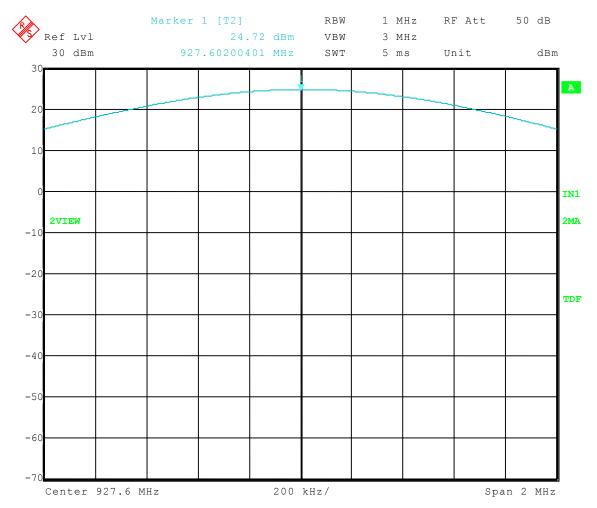
Model Tested: 110PAX3 Report Number: 11000

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

Test Date: 9-1-04

Company: Zebra Technologies


EUT: R110PAX3

Test: Peak Output Power - Conducted

Operator: Jason L.

Comment: <u>High Channel</u>: Frequency – 927.6 MHz

Peak Output Power = 24.72 dBm = 296.5 mW

Date: 1.SEP.2004 09:13:10