

1250 Peterson Dr., Wheeling, IL 60090

FCC Rules and Regulations / Intentional Radiators

Operational in the Band 13.553-13.567 MHz

Part 15, Subpart C, Section 15.225

THE FOLLOWING **<u>"MEETS"</u>** THE ABOVE TEST SPECIFICATION

Formal Name:	Zebra M2
Kind of Equipment:	RFID Encoder for use in Zebra printers
Test Configuration:	Limited Modular Approval (Tested at 120 vac, 60 Hz)
Model Number(s):	M2
Model(s) Tested:	M2

Model(s) Tested: M2

Serial Number(s): NA

Date of Tests: June 30 and July 5 & 6, 2006

Test Conducted For:Zebra Technologies Corporation333 Corporate Woods ParkwayVernon Hills, Illinois 60061

NOTICE: "This report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government". Please see the "Additional Description of Equipment Under Test" page listed inside of this report. This report must not be reproduced (except in full), without the approval of D.L.S. Electronic Systems.

1250 Peterson Dr., Wheeling, IL 60090

SIGNATURE PAGE

Report By:

anna C Rove

Arnom C. Rowe Test Engineer EMC-001375-NE

Reviewed By:

William M.S.

William Stumpf OATS Manager

Approved By:

Brian J. Math

Brian Mattson General Manager

Company Official:

Zebra Technologies Corporation

1250 Peterson Dr., Wheeling, IL 60090

TABLE OF CONTENTS

i.	Cover Page	1
ii.	Signature Page	2
iii. T	able of Contents	3
iv.	NVLAP Certificate of Accreditation	5
1.0	Summary of Test Report	б
2.0	Introduction	б
3.0	Object	б
4.0	Test Set-Up	7
5.0	Test Equipment	8
6.0	Ambient Measurements	9
7.0	Description of Test Sample1	0
8.0	Additional Description of Test Sample1	1
9.0	Photo Information and Test Set-Up 1	2
10.0	Radiated Photos Taken During Testing1	3
10.0	Power Line Conducted Photos Taken During Testing1	б
11.0	Results of Tests 1'	7
12.0	Conclusion 1	7
TAB	LE 1 – EQUIPMENT LIST	8

TABLE OF CONTENTS

Apper	ndix A – Electric Field Radiated Emissions Test
1.0	Conducted Emission Measurements
1.0	Conducted Data and Charts aken during testing
2.0	Field Strength of Spurious Emission Measurements
2.0	Radiated Data and Charts taken of the Fundamental Emissions (Antenna #1 / Without Cutter). 28
2.0	Radiated Data and Charts taken of the Fundamental Emissions (Antenna #2 / Without Cutter). 32
2.0	Radiated Data and Charts taken of the Fundamental Emissions (Antenna #1 / With Cutter) 36
2.0	Radiated Data and Charts taken of the Fundamental Emissions (Antenna #2 / With Cutter) 40
2.0	Radiated Data and Charts for Spurious Emissions (Antenna #1 / Without Cutter)
2.0	Radiated Data and Charts for Spurious Emissions (Antenna #2 / Without Cutter)
2.0	Radiated Data and Charts for Spurious Emissions (Antenna #1 / With Cutter)
2.0	Radiated Data and Charts for Spurious Emissions (Antenna #2 / With Cutter)
3.0	ISO 15693 Emission Mask Frequency Stability – PART 2.1055a Temperature
3.0	ISO15693 Emission Mask Graphs for Frequency Stability when varying the Temperature 73
8.0	ISO 15693 Emission Mask – Voltage Variation (PART 2.1055d)
8.0	ISO15693 Emission Mask Graph(s) Taken for Frequency Stability (Voltage Variation)
9.0	MIFARE Emission Mask Frequency Stability – Temperature (PART 2.1055a)
9.0	MIFARE Emission Mask Graph(s) Taken for Frequency Stability (Temperature)
10.0	MIFARE Emission Mask – Voltage Variation (PART 2.1055d)96
10.0	MIFARE Emission Mask Graph(s) Taken for Frequency Stability (Voltage Variation)97
11.0	Frequency Stability – Temperature (PART 2.1055a)
11.0	Frequency Stability Graph(s) taken for during Testing (Temperature)101
12.0	Frequency Stability – Voltage Variation (PART 2.1055d)
12.0	Frequency Stability Graph(s) taken for during Testing (Voltage Variation)

1250 Peterson Dr., Wheeling, IL 60090

Company:

Model Tested:

Report Number: 12350

M2

Zebra Technologies Corporation

1.0 SUMMARY OF TEST REPORT

It was found that the Zebra M2, Model Number(s) M2, "<u>meets</u>" the radio interference conducted and radiated emission requirements of the FCC "Rules and Regulations", Part 15, Subpart C, Section 15.225 for operational in the 13.553-13.567 MHz Band.

This test report relates only to the items tested and contains the following number of pages.

Text: 113

2.0 INTRODUCTION

On June 30 and July 5 & 6, 2006, a series of radio frequency interference measurements was performed on Zebra M2, Model Number(s) M2, Serial Number: NA. The tests were performed according to the procedures of the FCC as stated in the "Methods of Measurement of Radio-Noise Emissions for Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz" found in the American National Standards Institute, ANSI C63.4-2003. Tests were performed by personnel of D.L.S. Electronic Systems, Inc. who are responsible to Donald L. Sweeney, Senior EMC Engineer.

D.L.S. Electronic Systems, Inc. is a full service EMC/Safety Testing Laboratory accredited to ISO 17025. NVLAP Certificate and Scope can be viewed at <u>http://www.dlsemc.com/certificate</u>. Our facilities are registered with the FCC, Industry Canada, and VCCI.

3.0 OBJECT

The purpose of this series of tests was to determine if the test sample could meet the radio frequency interference emission requirements of the FCC "Rules and Regulations", Part 15, Subpart C, Sections 15.209 & 15.225 for Intentional Radiators operating in the Band 13.553-13.567 MHz.

4.0 TEST SET-UP

All emission tests were performed at D.L.S. Electronic Systems, Inc. and set up according to the American National Standards Institute, ANSI C63.4-2003, Section 8, (Figures 11a and 11b).

All emissions tests were performed with the test item placed on a 80 cm high rotating non-conductive table, located in the test room. Equipment normally operated on the floor was placed on a metal covered turntable which is flush with the surrounding conducting ground plane. The ground plane has an electrical isolation layer over its surface approximately 7 mm thick. The EUT is separated from the turntable ground plane by a non-conductive layer. The equipment under test was set up according to ANSI C63.4-2003, Sections 6, 7 and 8.

5.0 TEST EQUIPMENT (Bandwidths and Detector Function)

All preliminary data below 1000 MHz was automatically plotted using the HP Spectrum Analyzer or ESI 26/40 Fixed Tuned Receiver. The data was taken using Peak, Quasi-Peak or the Average Detector Functions as required. This information was then used to determine the frequencies of maximum emissions. Above 1000 MHz, final data was taken using the Average Detector.

Below 1000 MHz, final data was taken using the HP Spectrum Analyzer and/or ESI 26/40 Fixed Tuned Receiver. These plots were made using the Peak or Quasi-Peak Detector functions, with manual measurements performed on the questionable frequencies using the Quasi-Peak or the Average Detector Function of the Analyzer or ESI 26/40 Fixed Tuned Receiver as required. Above 1000 MHz, final data was taken using the Average Detector on the Spectrum Analyzer.

The bandwidths shown below are specified by ANSI C63.4-2003, Section 4.2.

Frequency Range	Bandwidth (-6 dB)
10 to 150 kHz	200 Hz
150 kHz to 30 MHz	9 kHz
30 MHz to 1 GHz	120 kHz
Above 1 GHz	1 MHz

A list of the equipment used can be found in Table 1. All primary equipment was calibrated against known reference standards with a verified traceable path to NIST.

1250 Peterson Dr., Wheeling, IL 60090

6.0 AMBIENT MEASUREMENTS

For emissions measurements, broadband antennas and an EMI Test Receiver with a panoramic spectrum display are used. First the frequency range is scanned and displayed on the test receiver display. Next the scanned frequency range is divided into smaller ranges, and then it is manually tuned through to determine the emissions from the EUT. A headset or loudspeaker is connected to the test receiver's AM/FM demodulated output as an aid in detecting ambient signals and finding frequencies of significant emission from the EUT. If there is any doubt as to the source of the emission, it is further investigated by rotating the EUT, or by disconnecting the power from the EUT.

The EUT is set up in its typical configuration and operated in its various modes. For tabletop systems, cables are manipulated within the range of likely configurations. For floor-standing equipment, the cables are located in the same manner as the user would install them and no further manipulation is made. If the manner of cable installation is not known, or if it changes with each installation, cables or wires for floor-standing equipment shall be manipulated to the extent possible to produce the maximum level of emissions. For each mode of operation, the frequency spectrum is monitored. Variations in antenna height, antenna polarization, EUT azimuth, and cable or wire placement (each variable within bounds specified elsewhere) are explored to produce the emissions that have the highest amplitude relative to the limit. These methods are performed to the specifications in MP-5 or ANSI C63.4-2003, as appropriate.

7.0 DESCRIPTION OF TEST SAMPLE: (See also Paragraph 8.0)

7.1 Description:

Zebra M2 is a RFID encoder used for encoding RFID tags. The encoder is installed in Zebra printers. The RFID encoder operates at 13.56 MHz. It has the ability to switch between two magnetic loop antennas, depending on the tag type used.

7.2 PHYSICAL DIMENSIONS OF EQUIPMENT UNDER TEST

Length: 2 inches x Width: 2.7 inches x Height: .06 inches

7.3 LINE FILTER USED:

5 Volts DC Powered Device

7.4 INTERNAL CLOCK FREQUENCIES:

Switching Power Supply Frequencies:

NA

Clock Frequencies:

RFID Reader: 13.56 MHz & 12 MHz

7.5 DESCRIPTION OF ALL CIRCUIT BOARDS:

1. MP UHF RFID Encoder RF Board

PN: M2-MH

8.0 ADDITIONAL DESCRIPTION OF TEST SAMPLE: (See also Paragraph 7.0)

1: There were no additional descriptions noted at the time of test.

This Zebra M2 was tested with two different sized Magnetic Loop Antennas. The printer was tested with the "Cutter Option" and tested without the "Cutter Option". The Zebra M2 was tested in "Continuous Transmit", "Continuous Receive/Standby" and "Printing".

I certify that the above, as described in paragraph 7.0, describes the equipment tested and will be manufactured as stated.

By:

Signature

Title

For:

Company

Date

Zebra Technologies Corporation M2 12350

1250 Peterson Dr., Wheeling, IL 60090

9.0 PHOTO INFORMATION AND TEST SET-UP

- Item 0 Zebra M2 Model Number: M2 Serial Number: NA
- Item 1 Dell Latitude D610 PC
- Model Number: PP11L; Serial Number: 0M7181-48643-644-2052
- Item 2 Non-shielded AC Power Line Cord. 2m
- Item 3 Non-shielded Ethernet Cable with Plastic Shells. 7'
- Item 4 Shielded USB Cable with Metal Shells. 1.5m
- Item 5 Shielded Serial Cable with Metal Shells. 1.5m

Zebra Technologies Corporation M2 12350

1250 Peterson Dr., Wheeling, IL 60090

10.0 RADIATED PHOTOS TAKEN DURING TESTING

Zebra Technologies Corporation M2 12350

1250 Peterson Dr., Wheeling, IL 60090

10.0 RADIATED PHOTOS TAKEN DURING TESTING (CON'T)

Zebra Technologies Corporation M2 12350

1250 Peterson Dr., Wheeling, IL 60090

10.0 RADIATED PHOTOS TAKEN DURING TESTING (CON'T)

Zebra Technologies Corporation M2 12350

1250 Peterson Dr., Wheeling, IL 60090

10.0 POWER LINE CONDUCTED PHOTOS TAKEN DURING TESTING

Zebra Technologies Corporation M2 12350

1250 Peterson Dr., Wheeling, IL 60090

11.0 RESULTS OF TESTS

The radio interference emission charts results can be seen on the pages at the end of this report. Data sheets indicating the test measurements taken during testing can also be found at the end of this report. Points on the emission charts shown with a yellow mark are background frequencies that were verified during testing.

12.0 CONCLUSION

It was found that the Zebra M2, Model Number(s) M2 "<u>meets</u>" the radio interference conducted and radiated emission requirements of the FCC "Rules and Regulations", Part 15, Subpart C, Section 15.225 for operational in the 13.553-13.567 MHz Band.

Zebra Technologies Corporation M2 12350

1250 Peterson Dr., Wheeling, IL 60090

	Model	Serial	Frequency	Cal Due
Manufacturer	Number	Number	Range	Dates
Rohde &	ESI 26	837491/010	20 Hz – 26 GHz	11/06
Schwarz				
Rohde &	ESI 40	837808/006	20 Hz - 40 GHz	12/06
Schwarz				
Rohde &	ESI 40	837808/005	20 Hz – 40 GHz	12/06
Schwarz				
EMCO	3104C	00054891	20 MHz – 200 MHz	2/07
211100	010.0	00001091		_,
Electrometrics	LPA-25	1114	200 MHz – 1 GHz	3/07
	2111 20			
EMCO	3104C	00054892	20 MHz – 200 MHz	3/07
211100	010.0	0000.072		
Electrometrics	3146	1205	200 MHz – 1 GHz	3/07
	0110	1200		
EMCO	3104C	97014785	20 MHz – 200 MHz	2/07
211100	01010	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		_,
EMCO	3146	97024895	200 MHz – 1 GHz	3/07
EMCO	3115	2479	1 GHz – 18 GHz	8/06
		,		
EMCO	3115	99035731	1 GHz – 18 GHz	4/07
				• •
Rohde &	HUF-Z1	829381001	20 MHz – 1 GHz	2/07
Schwarz				_,
Rohde &	HUF-Z1	829381005	20 MHz – 1 GHz	8/06
Schwarz		02/001000		0,00
	ManufacturerRohde & SchwarzRohde & SchwarzRohde & SchwarzRohde & SchwarzEMCOElectrometricsEMCOElectrometricsEMCO </td <td>Model ManufacturerModel NumberRohde & SchwarzESI 26SchwarzESI 40Rohde & SchwarzESI 40Rohde & SchwarzESI 40EMCO3104CElectrometricsLPA-25EMCO3104CElectrometrics3146EMCO3104CEMCO3104CEMCO3115EMCO3115EMCO3115EMCO3115EMCO3115EMCO3115EMCO3115EMCO3115Rohde & SchwarzHUF-Z1 SchwarzRohde & SchwarzHUF-Z1</td> <td>ManufacturerModel NumberSerial NumberRohde & SchwarzESI 26837491/010Rohde & SchwarzESI 40837808/006Rohde & SchwarzESI 40837808/005Rohde & SchwarzESI 40837808/005EMCO3104C00054891ElectrometricsLPA-251114EMCO3104C00054892Electrometrics3104C97014785EMCO3104C97014785EMCO314697024895EMCO31152479EMCO311599035731Rohde & SchwarzHUF-Z1829381001SchwarzHUF-Z1829381005SchwarzHUF-Z1829381005</td> <td>Model Manufacturer Model Number Serial Number Frequency Range Rohde & Schwarz ESI 26 837491/010 20 Hz – 26 GHz Rohde & Schwarz ESI 40 837808/006 20 Hz – 40 GHz Rohde & Schwarz ESI 40 837808/005 20 Hz – 40 GHz Rohde & Schwarz ESI 40 837808/005 20 Hz – 40 GHz EMCO 3104C 00054891 20 MHz – 200 MHz Electrometrics LPA-25 1114 200 MHz – 1 GHz EMCO 3104C 00054892 20 MHz – 200 MHz Electrometrics 3146 1205 200 MHz – 1 GHz EMCO 3104C 97014785 20 MHz – 200 MHz EMCO 3104C 97014785 200 MHz – 1 GHz EMCO 3115 2479 1 GHz – 18 GHz EMCO 3115 99035731 1 GHz – 18 GHz Rohde & Schwarz HUF-Z1 829381001 20 MHz – 1 GHz Rohde & Schwarz HUF-Z1 829381005 20 MHz – 1 GHz</td>	Model ManufacturerModel NumberRohde & SchwarzESI 26SchwarzESI 40Rohde & SchwarzESI 40Rohde & SchwarzESI 40EMCO3104CElectrometricsLPA-25EMCO3104CElectrometrics3146EMCO3104CEMCO3104CEMCO3115EMCO3115EMCO3115EMCO3115EMCO3115EMCO3115EMCO3115EMCO3115Rohde & SchwarzHUF-Z1 SchwarzRohde & SchwarzHUF-Z1	ManufacturerModel NumberSerial NumberRohde & SchwarzESI 26837491/010Rohde & SchwarzESI 40837808/006Rohde & SchwarzESI 40837808/005Rohde & SchwarzESI 40837808/005EMCO3104C00054891ElectrometricsLPA-251114EMCO3104C00054892Electrometrics3104C97014785EMCO3104C97014785EMCO314697024895EMCO31152479EMCO311599035731Rohde & SchwarzHUF-Z1829381001SchwarzHUF-Z1829381005SchwarzHUF-Z1829381005	Model Manufacturer Model Number Serial Number Frequency Range Rohde & Schwarz ESI 26 837491/010 20 Hz – 26 GHz Rohde & Schwarz ESI 40 837808/006 20 Hz – 40 GHz Rohde & Schwarz ESI 40 837808/005 20 Hz – 40 GHz Rohde & Schwarz ESI 40 837808/005 20 Hz – 40 GHz EMCO 3104C 00054891 20 MHz – 200 MHz Electrometrics LPA-25 1114 200 MHz – 1 GHz EMCO 3104C 00054892 20 MHz – 200 MHz Electrometrics 3146 1205 200 MHz – 1 GHz EMCO 3104C 97014785 20 MHz – 200 MHz EMCO 3104C 97014785 200 MHz – 1 GHz EMCO 3115 2479 1 GHz – 18 GHz EMCO 3115 99035731 1 GHz – 18 GHz Rohde & Schwarz HUF-Z1 829381001 20 MHz – 1 GHz Rohde & Schwarz HUF-Z1 829381005 20 MHz – 1 GHz

TABLE 1 – EQUIPMENT LIST

All primary equipment is calibrated against known reference standards with a verified traceable path to NIST.

Zebra Technologies Corporation M2 12350

1250 Peterson Dr., Wheeling, IL 60090

TABLE 1 – EQUIPMENT LIST

Test		Model	Serial	Frequency	Cal Due
Equipment	Manufacturer	Number	Number	Range	Dates
LISN	Solar	8012-50-R-	8305116	10 MHz – 30 MHz	8/06
		24-BNC			
LISN	Solar	8012-50-R-	814548	10 MHz – 30 MHz	8/06
		24-BNC			
LISN	Solar	9252-50-R-	961019	10 MHz – 30 MHz	12/06
		24-BNC			
LISN	Solar	9252-50-R-	971612	10 MHz – 30 MHz	10/06
		24-BNC			
LISN	Solar	9252-50-R-	92710620	10 MHz – 30 MHz	7/07
		24-BNC			

All primary equipment is calibrated against known reference standards with a verified traceable path to NIST.

Zebra Technologies Corporation M2 12350

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

TEST PROCEDURE

Part 15, Subpart C, Section 15.225a-c

OPERATION WITHIN THE BAND 13.553-13.567 MHz

Zebra Technologies Corporation M2 12350

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

1.0 CONDUCTED EMISSION MEASUREMENTS

The conducted emissions were measured over the frequency range from 150 kHz to 30 MHz in accordance with the power line measurements, as specified in ANSI C63.4-2003. Since the device is operated from the public utility lines, the 120 Vac, 60 Hz power leads, high and low sides were measured by connecting the measuring equipment to the appropriate meter terminal of the LISN. All signals were then recorded. The allowed levels for Intentional Radiators cannot exceed 250 uV (47.96 dBuV) at any frequency between 150 kHz and 30 MHz, as stated in Section 15.207a.

Zebra Technologies Corporation M2 12350

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

CONDUCTED DATA AND GRAPHS

TAKEN DURING TESTING

PART 15.207

FCC Part 15 Class B

Voltage Mains Test

EUT:	Model 110XiIII
Manufacturer:	Zebra
Operating Condition:	72 deg. F, 51% R.H.
Test Site:	DLS O.F. Site 1 (Screenroom)
Operator:	Craig Brandt
Test Specification:	120 V 60 Hz Line 1
Comment:	Continuous Transmit and Printing
	Date: 07-06-2006

SCAN TABLE: "Line Cond Scrn RmFin"

Short Desc	ription:	I	ine Conduct	ed Emissi	ons	
Start	Stop	Step	Detector	Meas.	IF	Transducer
Frequency	Frequency	Width		Time	Bandw.	
150.0 kHz	30.0 MHz	4.0 kHz	QuasiPeak	10.0 s	9 kHz	LISN DLS#128
			CISPR AV			

MEASUREMENT RESULT: "7061FL1_fin"

7/6/2006 Frequ	8:45A ency MHz	M Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Note	
0.15	0000	39.50	11.5	66	26.5	QP		
0.23	0000	45.40	10.7	62	17.0	QP		
0.35	0000	31.80	10.4	59	27.2	QP		
0.49	0000	21.50	10.2	56	34.7	QP		
13.56	2000	54.10	10.9	60	5.9	QP	Fundam	nental
14.15	0000	30.20	11.0	60	29.8	QP		
14.21	4000	30.30	11.0	60	29.7	QP		
14.27	4000	30.30	11.0	60	29.7	QP		

MEASUREMENT RESULT: "7061FL1_fin2"

7/6/2006	8:45AM						
Frequen	cy Level	. Transd	Limit	Margin	Detector	Note	
M	IHz dBµV	dB dB	dBµV	dB			
0.1500	00 34.90) 11.5	56	21.1	CAV		
0.2100	00 36.40	10.8	53	16.8	CAV		
0.2300	00 42.00	10.7	52	10.4	CAV		
0.3460	00 28.70	10.4	49	20.4	CAV		
13.5620	00 53.30	10.9	50	-3.3	CAV	Fundam	nental
14.1540	00 26.80	11.0	50	23.2	CAV		
14.2140	00 28.30	11.0	50	21.7	CAV		
14.2740	00 28.30	11.0	50	21.7	CAV		

FCC Part 15 Class B

Voltage Mains Test

EUT:	Model 110XiIII
Manufacturer:	Zebra
Operating Condition:	72 deg. F, 51% R.H.
Test Site:	DLS O.F. Site 1 (Screenroom)
Operator:	Craig Brandt
Test Specification:	120 V 60 Hz Line 2
Comment:	Continuous Transmit and Printing
	Date: 07-06-2006

SCAN TABLE: "Line Cond Scrn RmFin"

Short Desc	ription:]	Line Conduct	ed Emissi	ons		
Start	Stop	Step	Detector	Meas.	IF	Transducer	
Frequency	Frequency	Width		Time	Bandw.		
150.0 kHz	30.0 MHz	4.0 kHz	QuasiPeak	10.0 s	9 kHz	LISN DLS#128	
			CISPR AV				

MEASUREMENT RESULT: "7061FL2_fin"

5/2006 8: Frequency MHz	55AM Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Note	
0.230000	32.20	10.7	62	30.2	QP		
0.346000	28.10	10.4	59	31.0	QP		
0.462000	26.50	10.2	57	30.2	QP		
0.578000	23.60	10.2	56	32.4	QP		
3.966000	17.20	10.3	56	38.8	QP		
3.978000	17.90	10.4	56	38.1	QP		
4.622000	20.40	10.4	56	35.6	QP		
13.562000	52.40	10.9	60	7.6	QP	Fundam	ental
	5/2006 8:3 Frequency MHz 0.230000 0.346000 0.462000 0.578000 3.966000 3.978000 4.622000 13.562000	5/2006 8:55AM Frequency Level MHz dBμV 0.230000 32.20 0.346000 28.10 0.462000 26.50 0.578000 23.60 3.966000 17.20 3.978000 17.90 4.622000 20.40 13.562000 52.40	5/2006 8:55AM Frequency Level Transd MHz dBµV dB 0.230000 32.20 10.7 0.346000 28.10 10.4 0.462000 26.50 10.2 0.578000 23.60 10.2 3.966000 17.20 10.3 3.978000 17.90 10.4 4.622000 20.40 10.4 13.562000 52.40 10.9	5/2006 8:55AM Frequency Level Transd Limit MHz dBµV dB dBµV 0.230000 32.20 10.7 62 0.346000 28.10 10.4 59 0.462000 26.50 10.2 57 0.578000 23.60 10.2 56 3.966000 17.20 10.3 56 3.978000 17.90 10.4 56 4.622000 20.40 10.4 56 13.562000 52.40 10.9 60	5/2006 8:55AM Frequency Level Transd Limit Margin MHz dBμV dB dBμV dB 0.230000 32.20 10.7 62 30.2 0.346000 28.10 10.4 59 31.0 0.462000 26.50 10.2 57 30.2 0.578000 23.60 10.2 56 32.4 3.966000 17.20 10.3 56 38.8 3.978000 17.90 10.4 56 38.1 4.622000 20.40 10.4 56 35.6 13.562000 52.40 10.9 60 7.6	5/2006 8:55AM Frequency Level Transd Limit Margin Detector MHz dBμV dB dBμV dB 0.230000 32.20 10.7 62 30.2 QP 0.346000 28.10 10.4 59 31.0 QP 0.462000 26.50 10.2 57 30.2 QP 0.578000 23.60 10.2 56 32.4 QP 3.966000 17.20 10.3 56 38.8 QP 3.978000 17.90 10.4 56 38.1 QP 4.622000 20.40 10.4 56 35.6 QP 13.562000 52.40 10.9 60 7.6 QP	5/2006 8:55AM Frequency Level Transd Limit Margin Detector Note MHz dBµV dB dBµV dB 0.230000 32.20 10.7 62 30.2 QP 0.346000 28.10 10.4 59 31.0 QP 0.462000 26.50 10.2 57 30.2 QP 0.578000 23.60 10.2 56 32.4 QP 3.966000 17.20 10.3 56 38.8 QP 3.978000 17.90 10.4 56 38.1 QP 4.622000 20.40 10.4 56 35.6 QP 13.562000 52.40 10.9 60 7.6 QP Fundam

MEASUREMENT RESULT: "7061FL2_fin2"

						5AM	7/6/2006 8:5
		Detector	Margin	Limit	Transd	Level	Frequency
	Note		dB	dBµV	dB	dBµV	MHz
		CAV	24.6	52	10.7	27.80	0.230000
		CAV	25.7	49	10.4	23.40	0.346000
		CAV	23.4	47	10.2	23.30	0.462000
		CAV	26.6	46	10.2	19.40	0.578000
nental	Fundam	CAV	-1.1	50	10.9	51.10	13.562000
		CAV	22.9	50	11.0	27.10	14.154000
		CAV	21.4	50	11.0	28.60	14.214000
		CAV	21.5	50	11.0	28.50	14.274000

Zebra Technologies Corporation M2 12350

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

2.0 FIELD STRENGTH OF SPURIOUS EMISSION MEASUREMENTS (SECTION 15.225a & b)

The radiated measurements made at D.L.S. Electronic Systems, Inc., for the Zebra M2, Model Number: M2, are shown in tabulated and graph form. Preliminary radiation measurements were performed at a 3 meter test distance with the limits adjusted linearly when required. The frequency range from 9 kHz to over 960 MHz, depending upon the fundamental frequency as stated in Part 15.33a, was automatically scanned and plotted at various angles.

Measurements for the Zebra M2 were made up to 1000 MHz, in accordance with Section 15.33a for Intentional Radiators with a fundamental frequency of 13.56 MHz. For intentional radiators, the frequency range to be investigated is determined by the lowest radio frequency generated by the device without going below 9 kHz, up to at least the tenth harmonic of the highest fundamental frequency or 1000 MHz, whichever is lower. At those frequencies where significant signals were detected, measurements were made at an open field test site, located at Genoa City, Wisconsin, FCC file number **31040/SIT**, to determine the actual radiation levels.

All signals in the frequency range of 9 kHz to 30 MHz were measured with a low frequency Loop Antenna as a pickup device. From 30 to 200 MHz, a Biconical Antenna or tuned dipoles were used and from 200 MHz to 1000 MHz, a Log Periodic or Tuned Dipoles were used. During the test the equipment was rotated and the antenna was raised and lowered from 1 meter to 4 meters to find the maximum level. In order to find maximum emissions, the cables were moved through all the positions the equipment would be expected to experience in the field. Tests were made in the vertical polarization with the Loop Antenna, rotated 360° around its vertical axis. Tests were also made in both the horizontal and vertical planes of polarization with the Biconical and Log Periodic. In each case, the table was rotated to find the maximum emissions.

When the equipment is out of limit at 3 meters, and the signals from the equipment at 30 meters cannot be recorded due to the background, a representative sample of these frequencies were remeasured at various distances such as 4, 5, 6, 8, 15 meters and the greatest distance that can be measured to demonstrate graphically that the emissions are dropping off and will be under the limit at the specified distance. All signals were then recorded. The allowed levels for Intentional Radiators in the 13.553 MHz to 13.567 MHz band shall not exceed 10,000 uV measured at 30 meters. The field strength of any emissions appearing outside of this band shall not exceed the radiated emissions limits shown in Section 15.209.

Zebra Technologies Corporation M2 12350

1250 Peterson Dr., Wheeling, IL 60090

RADIATED <u>DATA</u>

AND <u>CHARTS</u> TAKEN OF THE

FUNDAMENTAL EMISSIONS

PART 15.225

Antenna #1 / Without Cutter

FCC Part 15.225

Radiated Emissions

EUT:Model 110XiIII with Antenna 1Manufacturer:ZebraOperating Condition:68 degF ; 59%R.H.Test Site:D.L.S. O.F. Site 2Operator:Craig BrandtTest Specification:120 VAC; 60 HzComment:Tx Freq 13.56 MHzDate:06/30/2006

TEXT: "Site 2 LowH 3M Act"

Short Description: Test Set-up 9kHz to 30MHz H TEST EQUIPMENT: Receiver --- Rohde&Schwarz ESI 40 SN: 837808/005

Antennas --- EMCO Active Loop Model: 6502 SN: 1027

TEST SET-UP: EuT Measured at 3 Meters with Loop Antenna

MEASUREMENT RESULT: "A6307_sv_Final"

6/30/2006 11:	12AM									
Frequency	Level	Antenna Factor	System Loss	Total Level	Limit	Margin	Height Ant.	EuT Angle	Final Detector	Comment
MHz	dBµV	dBµV/m	dB	dBµV/m	dBµV/m	dB	m	deg	Decestor	
13.560000	36.10	10.41	0.7	47.3	124.0	76.7	1.00	180	QUASI-PEAK	Fundamental

Zebra Technologies Corporation M2 12350

1250 Peterson Dr., Wheeling, IL 60090

RADIATED <u>DATA</u>

AND <u>CHARTS</u> TAKEN OF THE

FUNDAMENTAL EMISSIONS

PART 15.225

Antenna #2 / Without Cutter

FCC Part 15.225

Radiated Emissions

EUT:Model 110XiIII with Antenna 2Manufacturer:ZebraOperating Condition:66 degF ; 60%R.H.Test Site:D.L.S. O.F. Site 2Operator:Craig BrandtTest Specification:120 VAC; 60 HzComment:Tx Freq 13.56 MHzDate:07/05/2006

TEXT: "Site 2 LowH 3M Act"

Short Description: Test Set-up 9kHz to 30MHz H TEST EQUIPMENT: Receiver --- Rohde&Schwarz ESI 40 SN: 837808/005

Antennas --- EMCO Active Loop Model: 6502 SN: 1027

TEST SET-UP: EuT Measured at 3 Meters with Loop Antenna

MEASUREMENT RESULT: "A6308_sv_Final"

7/7/2006	1:52P	М									
Freque	ency	Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
			Factor	Loss	Level			Ant.	Angle	Detector	
	MHz	dBµV	dBµV/m	dB	dBµV/m	dBµV/m	dB	m	deg		
13.560	000	30.23	10.41	0.7	41.4	124.0	82.6	1.00	180	QUASI-PEAK	Fundamental

Zebra Technologies Corporation M2 12350

1250 Peterson Dr., Wheeling, IL 60090

RADIATED <u>DATA</u>

AND CHARTS TAKEN OF THE

FUNDAMENTAL EMISSIONS

PART 15.225

Antenna #1 / With Cutter
Radiated Emissions

EUT:	Model 110XiIII with cutter
Manufacturer:	Zebra
Operating Condition:	68 degF ; 59%R.H.
Test Site:	D.L.S. O.F. Site 2
Operator:	Craig Brandt
Test Specification:	120 VAC; 60 Hz
Comment:	Tx Freq 13.56 MHz
	Date: 06/30/2006

TEXT: "Site 2 LowH 3M Act"

Short Description: Test Set-up 9kHz to 30MHz H TEST EQUIPMENT: Receiver --- Rohde&Schwarz ESI 40 SN: 837808/005

Antennas --- EMCO Active Loop Model: 6502 SN: 1027

TEST SET-UP: EuT Measured at 3 Meters with Loop Antenna

MEASUREMENT RESULT: "A6301_sv_Final"

6/30/2006 9:13	3AM									
Frequency	Level	Antenna Factor	System	Total Level	Limit	Margin	Height Ant	EuT Angle	Final Detector	Comment
MHz	dBµV	dBµV/m	dB	dBµV/m	dBµV/m	dB	m	deg	Deceetor	
13.560000	26.60	10.41	0.7	37.8	124.0	86.2	1.00	150	QUASI-PEAK	Fundamental

Company: Model Tested: Report Number: Zebra Technologies Corporation M2 12350

1250 Peterson Dr., Wheeling, IL 60090

RADIATED <u>DATA</u>

AND <u>CHARTS</u> TAKEN OF THE

FUNDAMENTAL EMISSIONS

PART 15.225

Antenna #2 / With Cutter

Radiated Emissions

EUT:Model 110XiIII with cutter and Antenna 2Manufacturer:ZebraOperating Condition:68 degF ; 59%R.H.Test Site:D.L.S. O.F. Site 2Operator:Craig BrandtTest Specification:120 VAC; 60 HzComment:Tx Freq 13.56 MHzDate:06/30/2006

TEXT: "Site 2 LowH 3M Act"

Short Description: Test Set-up 9kHz to 30MHz H TEST EQUIPMENT: Receiver --- Rohde&Schwarz ESI 40 SN: 837808/005

Antennas --- EMCO Active Loop Model: 6502 SN: 1027

TEST SET-UP: EuT Measured at 3 Meters with Loop Antenna

MEASUREMENT RESULT: "A6302_sv_Final"

6/30/2006 9:23	3AM									
Frequency	Level	Antenna Factor	System Loss	Total Level	Limit	Margin	Height Ant.	EuT Angle	Final Detector	Comment
MHz	dBµV	dBµV/m	dB	dBµV/m	dBµV/m	dB	m	deg		
13.560000	20.74	10.41	0.7	31.9	124.0	92.1	1.00	150	QUASI-PEAK	Fundamental

Company: Model Tested: Report Number: Zebra Technologies Corporation M2 12350

1250 Peterson Dr., Wheeling, IL 60090

RADIATED DATA AND CHARTS TAKEN

DURING TESTING FOR FIELD STRENGTH

SPURIOUS EMISSION MEASUREMENTS

PART 15.209

Antenna #1 / Without Cutter

Radiated Emissions

EUT:	Model 110XiIII with Antenna	L	
Manufacturer:	Zebra		
Operating Condition:	68 degF ; 59%R.H.		
Test Site:	D.L.S. O.F. Site 2		
Operator:	Craig Brandt		
Test Specification:	120 VAC; 60 Hz		
Comment:	Continuous Transmit, Continuou Date: 06/30/2006	us Receive,	Freq 13.56 MHz

TEXT: "Site 2 MidV 3M"

Short Description: Test Set-up Vert30-1000MHz TEST EQUIPMENT: Receiver --- Rohde&Schwarz ESI 26 SN: 837460/002 Antennas ---Biconical -- EMCO 3104C SN: 0005-4892 Log Periodic -- Electro Metrics LPA-25 SN: 1205 Pre-Amp --- Rohde&Schwarz TS-PR10 SN: 032001/004 TEST SET-UP: EUT Measured at 3 Meters with VERTICAL Antenna Polarization

MEASUREMENT RESULT: "A6305_F1V_Final"

6/30/2006 1:28PM

Frequency	Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
		Factor	Loss	Level			Ant.	Angle	Detector	
MHz	dBµV	dBµV/m	dB	dBµV/m	dBµV/m	dB	m	deg		
87.805000	45.11	7.87	-23.4	29.6	39.5	9.9	1.00	300	OUASI-PEAK	Broadband
798.010000	33.22	21.04	-18.0	36.2	47.0	10.8	1.00	270	QUASI-PEAK	None
41.610000	39.15	11.42	-24.1	26.4	39.5	13.1	1.00	45	QUASI-PEAK	Broadband
249.990000	42.49	11.59	-21.9	32.1	47.0	14.9	1.00	225	QUASI-PEAK	None
211.670000	40.08	11.16	-22.4	28.9	44.0	15.1	1.00	225	QUASI-PEAK	Broadband
374.980000	37.48	14.59	-21.3	30.8	47.0	16.2	1.00	180	QUASI-PEAK	None
399.980000	36.40	15.50	-21.1	30.8	47.0	16.2	1.00	225	QUASI-PEAK	None
143.215000	38.59	11.92	-22.9	27.6	44.0	16.4	1.00	45	QUASI-PEAK	Broadband
528.000000	30.82	17.59	-20.3	28.1	47.0	18.9	1.00	270	QUASI-PEAK	None
244.050000	38.30	11.45	-22.0	27.8	47.0	19.2	1.00	45	QUASI-PEAK	18th harm.
623.980000	26.50	19.22	-19.7	26.0	47.0	21.0	1.00	135	QUASI-PEAK	46th harm.
333.310000	33.62	13.82	-21.8	25.7	47.0	21.3	1.40	225	QUASI-PEAK	None
257.640000	34.79	12.03	-21.9	24.9	47.0	22.1	1.00	45	QUASI-PEAK	19th harm.

Radiated Emissions

EUT:	Model 110XiIII with Antenna	L	
Manufacturer:	Zebra		
Operating Condition:	68 degF ; 59%R.H.		
Test Site:	D.L.S. O.F. Site 2		
Operator:	Craig Brandt		
Test Specification:	120 VAC; 60 Hz		
Comment:	Continuous Transmit, Continuou Date: 06/30/2006	us Receive,	Freq 13.56 MHz

TEXT: "Site 2 MidH 3M"

Short Description: Test Set-up Horz30-1000MHz TEST EQUIPMENT: Receiver --- Rohde&Schwarz ESI 26 SN: 837460/002 Antennas ---Biconical -- EMCO 3104C SN: 0005-4892 Log Periodic -- Electro Metrics LPA-25 SN: 1205 Pre-Amp --- Rohde&Schwarz TS-PR10 SN: 032001/004 TEST SET-UP: EUT Measured at 3 Meters with HORIZONTAL Antenna Polarization

MEASUREMENT RESULT: "A6305_F1H_Final"

6/30/2006 1:17PM

Frequency	Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
		Factor	Loss	Level			Ant.	Angle	Detector	
MHz	dBµV	dBµV/m	dB	dBµV/m	dBµV/m	dB	m	deg		
249.970000	52.82	11.59	-21.9	42.5	47.0	4.5	1.50	225	QUASI-PEAK	None
333.310000	50.01	13.82	-21.8	42.1	47.0	4.9	1.00	180	QUASI-PEAK	None
299.980000	45.46	14.23	-21.8	37.9	47.0	9.1	1.00	180	QUASI-PEAK	None
215.750000	45.56	11.04	-22.4	34.2	44.0	9.8	1.00	225	QUASI-PEAK	Broadband
199.985000	40.01	15.75	-22.2	33.6	44.0	10.4	1.40	270	QUASI-PEAK	None
244.050000	45.99	11.45	-22.0	35.5	47.0	11.5	1.20	180	QUASI-PEAK	18th harm.
81.170000	44.82	6.50	-23.4	27.9	39.5	11.6	2.20	135	QUASI-PEAK	Broadband
798.010000	32.11	21.04	-18.0	35.1	47.0	11.9	2.30	250	QUASI-PEAK	None
399.970000	40.34	15.50	-21.1	34.7	47.0	12.3	1.00	180	QUASI-PEAK	None
374.970000	38.10	14.59	-21.3	31.4	47.0	15.6	1.00	180	QUASI-PEAK	None
266.650000	39.63	12.32	-22.0	30.0	47.0	17.0	1.00	300	QUASI-PEAK	None
527.980000	30.25	17.59	-20.3	27.5	47.0	19.5	2.30	180	QUASI-PEAK	None
257.610000	36.08	12.03	-21.9	26.2	47.0	20.8	1.00	270	QUASI-PEAK	19th harm.
151.540000	31.25	12.39	-22.9	20.8	44.0	23.2	2.60	90	QUASI-PEAK	None

Company: Model Tested: Report Number: Zebra Technologies Corporation M2 12350

1250 Peterson Dr., Wheeling, IL 60090

RADIATED DATA AND CHARTS TAKEN

DURING TESTING FOR FIELD STRENGTH

SPURIOUS EMISSION MEASUREMENTS

PART 15.209

Antenna #2 / Without Cutter

Radiated Emissions

EUT:	Model 110XiIII with	Antenna 2				
Manufacturer:	Zebra					
Operating Condition:	68 degF ; 59%R.H.					
Test Site:	D.L.S. O.F. Site 2					
Operator:	Craig Brandt					
Test Specification:	120 VAC; 60 Hz					
Comment:	Continuous Transmit, Date: 06/30/2006	Continuous	Receive,	Freq	13.56	MHz

TEXT: "Site 2 MidV 3M"

Short Description: Test Set-up Vert30-1000MHz TEST EQUIPMENT: Receiver --- Rohde&Schwarz ESI 26 SN: 837460/002 Antennas ---Biconical -- EMCO 3104C SN: 0005-4892 Log Periodic -- Electro Metrics LPA-25 SN: 1205 Pre-Amp --- Rohde&Schwarz TS-PR10 SN: 032001/004 TEST SET-UP: EUT Measured at 3 Meters with VERTICAL Antenna Polarization

MEASUREMENT RESULT: "A6309_F1V_Final"

6/30/2006 4:02PM

Frequency	Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
		Factor	Loss	Level			Ant.	Angle	Detector	
MHz	dBµV	dBµV/m	dB	dBµV/m	dBµV/m	dB	m	deg		
798.010000	37.34	21.04	-18.0	40.4	47.0	6.6	1.00	80	QUASI-PEAK	None
87.805000	45.26	7.87	-23.4	29.8	39.5	9.7	1.00	90	QUASI-PEAK	Broadband
365.610000	43.43	14.55	-21.3	36.6	47.0	10.4	1.60	190	QUASI-PEAK	27th harm.
249.990000	45.16	11.59	-21.9	34.8	47.0	12.2	1.00	180	QUASI-PEAK	None
41.610000	39.65	11.42	-24.1	26.9	39.5	12.6	1.00	60	QUASI-PEAK	Broadband
211.670000	39.86	11.16	-22.4	28.7	44.0	15.3	1.00	225	QUASI-PEAK	Broadband
399.980000	36.10	15.50	-21.1	30.5	47.0	16.5	1.00	225	QUASI-PEAK	None
143.215000	37.94	11.92	-22.9	27.0	44.0	17.0	1.00	45	QUASI-PEAK	Broadband
528.000000	31.60	17.59	-20.3	28.9	47.0	18.1	1.10	225	QUASI-PEAK	None
374.980000	33.99	14.59	-21.3	27.3	47.0	19.7	1.00	180	QUASI-PEAK	None
244.050000	37.60	11.45	-22.0	27.1	47.0	19.9	1.00	45	QUASI-PEAK	18th harm.
623.980000	26.15	19.22	-19.7	25.7	47.0	21.3	1.10	350	QUASI-PEAK	46th harm.
333.310000	33.37	13.82	-21.8	25.4	47.0	21.6	1.00	225	QUASI-PEAK	None
257.640000	31.03	12.03	-21.9	21.1	47.0	25.9	1.00	45	QUASI-PEAK	19th harm.

Radiated Emissions

EUT:	Model 110XiIII with	Antenna 2				
Manufacturer:	Zebra					
Operating Condition:	68 degF ; 59%R.H.					
Test Site:	D.L.S. O.F. Site 2					
Operator:	Craig Brandt					
Test Specification:	120 VAC; 60 Hz					
Comment:	Continuous Transmit, Date: 06/30/2006	Continuous	Receive,	Freq	13.56	MHz

TEXT: "Site 2 MidH 3M"

Short Description: Test Set-up Horz30-1000MHz TEST EQUIPMENT: Receiver --- Rohde&Schwarz ESI 26 SN: 837460/002 Antennas ---Biconical -- EMCO 3104C SN: 0005-4892 Log Periodic -- Electro Metrics LPA-25 SN: 1205 Pre-Amp --- Rohde&Schwarz TS-PR10 SN: 032001/004 TEST SET-UP: EUT Measured at 3 Meters with HORIZONTAL Antenna Polarization

MEASUREMENT RESULT: "A6309_F1H_Final"

6/30/2006 2:44PM

Frequency	Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
		Factor	Loss	Level			Ant.	Angle	Detector	
MHz	dBµV	dBµV/m	dB	dBµV/m	dBµV/m	dB	m	deg		
249.970000	51.92	11.59	-21.9	41.6	47.0	5.4	1.10	135	QUASI-PEAK	None
333.310000	49.41	13.82	-21.8	41.5	47.0	5.5	1.00	180	QUASI-PEAK	None
798.010000	36.32	21.04	-18.0	39.3	47.0	7.7	1.20	170	QUASI-PEAK	None
299.980000	45.99	14.23	-21.8	38.4	47.0	8.6	1.00	180	QUASI-PEAK	None
199.985000	40.70	15.75	-22.2	34.3	44.0	9.7	1.60	270	QUASI-PEAK	None
215.750000	45.14	11.04	-22.4	33.8	44.0	10.2	1.00	225	QUASI-PEAK	Broadband
244.050000	46.48	11.45	-22.0	36.0	47.0	11.0	1.00	180	QUASI-PEAK	18th harm.
81.170000	44.86	6.50	-23.4	27.9	39.5	11.6	3.00	160	QUASI-PEAK	Broadband
365.480000	41.02	14.55	-21.3	34.2	47.0	12.8	1.00	180	QUASI-PEAK	27th harm.
399.970000	39.51	15.50	-21.1	33.9	47.0	13.1	1.00	200	QUASI-PEAK	None
374.970000	39.18	14.59	-21.3	32.5	47.0	14.5	1.00	315	QUASI-PEAK	None
266.650000	39.81	12.32	-22.0	30.1	47.0	16.9	1.10	270	QUASI-PEAK	None
527.980000	29.89	17.59	-20.3	27.2	47.0	19.8	1.70	225	QUASI-PEAK	None
257.610000	35.50	12.03	-21.9	25.6	47.0	21.4	1.00	270	QUASI-PEAK	19th harm.
151.540000	32.06	12.39	-22.9	21.6	44.0	22.4	2.20	90	QUASI-PEAK	None

Company: Model Tested: Report Number: Zebra Technologies Corporation M2 12350

1250 Peterson Dr., Wheeling, IL 60090

RADIATED DATA AND CHARTS TAKEN

DURING TESTING FOR FIELD STRENGTH

SPURIOUS EMISSION MEASUREMENTS

PART 15.209

Antenna #1 / With Cutter

Radiated Emissions

EUT:Model 110XiIII with Cutter and Antenna 1Manufacturer:ZebraOperating Condition:68 degF ; 59%R.H.Test Site:D.L.S. O.F. Site 2Operator:Craig BrandtTest Specification:120 VAC; 60 HzComment:Continuous Transmit, Continuous Receive, Freq 13.56 MHzDate:06/30/2006

TEXT: "Site 2 MidV 3M"

Short Description: Test Set-up Vert30-1000MHz TEST EQUIPMENT: Receiver --- Rohde&Schwarz ESI 26 SN: 837460/002 Antennas ---

Biconical -- EMCO 3104C SN: 0005-4892 Log Periodic -- Electro Metrics LPA-25 SN: 1205

Pre-Amp --- Rohde&Schwarz TS-PR10 SN: 032001/004

TEST SET-UP: EUT Measured at 3 Meters with VERTICAL Antenna Polarization

MEASUREMENT RESULT: "A6304_F1V_Final"

6/30/2006 4:00PM

Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
	Factor	Loss	Level			Ant.	Angle	Detector	
dBμV	dBµV/m	dB	dBµV/m	dBµV/m	dB	m	deg		
34.63	21.04	-18.0	37.6	47.0	9.4	1.50	0	QUASI-PEAK	None
44.90	7.80	-23.4	29.3	39.5	10.2	1.00	270	QUASI-PEAK	Broadband
40.43	11.42	-24.1	27.7	39.5	11.8	1.00	100	QUASI-PEAK	Broadband
37.74	15.99	-22.4	31.3	44.0	12.7	1.00	225	QUASI-PEAK	Broadband
43.79	11.59	-21.9	33.4	47.0	13.6	1.00	180	QUASI-PEAK	None
37.81	15.75	-20.8	32.7	47.0	14.3	1.10	180	QUASI-PEAK	None
39.85	11.10	-22.2	28.7	44.0	15.3	1.00	225	QUASI-PEAK	Broadband
39.25	11.64	-22.9	28.0	44.0	16.0	1.00	135	QUASI-PEAK	Broadband
34.57	15.50	-21.1	28.9	47.0	18.1	1.00	280	QUASI-PEAK	None
31.57	17.59	-20.3	28.8	47.0	18.2	1.50	260	QUASI-PEAK	None
25.58	19.22	-19.7	25.1	47.0	21.9	1.50	260	QUASI-PEAK	46th harm.
	Level dBµV 34.63 44.90 40.43 37.74 43.79 37.81 39.85 39.25 34.57 31.57 25.58	Level Antenna Factor dBµV dBµV/m 34.63 21.04 44.90 7.80 40.43 11.42 37.74 15.99 43.79 11.59 37.81 15.75 39.85 11.10 39.25 11.64 34.57 15.50 31.57 17.59 25.58 19.22	Level Antenna System Factor Loss dBµV dBµV/m dB 34.63 21.04 -18.0 44.90 7.80 -23.4 40.43 11.42 -24.1 37.74 15.99 -22.4 43.79 11.59 -21.9 37.81 15.75 -20.8 39.85 11.10 -22.2 39.25 11.64 -22.9 34.57 15.50 -21.1 31.57 17.59 -20.3 25.58 19.22 -19.7	Level Antenna System Total Factor Loss Level dBµV dBµV/m dB dBµV/m 34.63 21.04 -18.0 37.6 44.90 7.80 -23.4 29.3 40.43 11.42 -24.1 27.7 37.74 15.99 -22.4 31.3 43.79 11.59 -21.9 33.4 37.81 15.75 -20.8 32.7 39.85 11.10 -22.2 28.7 39.25 11.64 -22.9 28.0 34.57 15.50 -21.1 28.9 31.57 17.59 -20.3 28.8 25.58 19.22 -19.7 25.1	Level Antenna System Total Limit Factor Loss Level dBµV dBµV/m dB dBµV/m dBµV/m 34.63 21.04 -18.0 37.6 47.0 44.90 7.80 -23.4 29.3 39.5 40.43 11.42 -24.1 27.7 39.5 37.74 15.99 -22.4 31.3 44.0 43.79 11.59 -21.9 33.4 47.0 37.81 15.75 -20.8 32.7 47.0 39.85 11.10 -22.2 28.7 44.0 39.25 11.64 -22.9 28.0 44.0 34.57 15.50 -21.1 28.9 47.0 31.57 17.59 -20.3 28.8 47.0 25.58 19.22 -19.7 25.1 47.0	Level Antenna System Total Limit Margin Factor Loss Level dBµV dBµV/m dB dBµV/m dBµV/m dB 34.63 21.04 -18.0 37.6 47.0 9.4 44.90 7.80 -23.4 29.3 39.5 10.2 40.43 11.42 -24.1 27.7 39.5 11.8 37.74 15.99 -22.4 31.3 44.0 12.7 43.79 11.59 -21.9 33.4 47.0 13.6 37.81 15.75 -20.8 32.7 47.0 14.3 39.85 11.10 -22.2 28.7 44.0 15.3 39.25 11.64 -22.9 28.0 44.0 16.0 34.57 15.50 -21.1 28.9 47.0 18.1 31.57 17.59 -20.3 28.8 47.0 18.2 25.58 19.22 -19.7 25.1 47.0 21.9	LevelAntennaSystemTotalLimitMarginHeight $B\mu V$ $B\mu V/m$ $B\mu V/m$ $B\mu V/m$ $B\mu V/m$ $B\mu V/m$ $Ant.$ 34.63 21.04 -18.0 37.6 47.0 9.4 1.50 44.90 7.80 -23.4 29.3 39.5 10.2 1.00 40.43 11.42 -24.1 27.7 39.5 11.8 1.00 37.74 15.99 -22.4 31.3 44.0 12.7 1.00 43.79 11.59 -21.9 33.4 47.0 13.6 1.00 37.81 15.75 -20.8 32.7 47.0 14.3 1.10 39.85 11.10 -22.2 28.7 44.0 15.3 1.00 39.25 11.64 -22.9 28.0 44.0 16.0 1.00 34.57 15.50 -21.1 28.9 47.0 18.1 1.00 31.57 17.59 -20.3 28.8 47.0 18.2 1.50 25.58 19.22 -19.7 25.1 47.0 21.9 1.50	LevelAntennaSystemTotalLimitMarginHeightEuTFactorLossLevelAnt.AngledB μ VdB μ V/mdBdB μ V/mdBmdeg34.6321.04-18.037.647.09.41.50044.907.80-23.429.339.510.21.0027040.4311.42-24.127.739.511.81.0010037.7415.99-22.431.344.012.71.0022543.7911.59-21.933.447.013.61.0018037.8115.75-20.832.747.014.31.1018039.8511.10-22.228.744.015.31.0022539.2511.64-22.928.044.016.01.0013534.5715.50-21.128.947.018.11.0028031.5717.59-20.328.847.018.21.5026025.5819.22-19.725.147.021.91.50260	LevelAntennaSystemTotalLimitMarginHeightEuTFinalFactorLossLevelAnt.AngleDetectordB μV dB $\mu V/m$ dBdB $\mu V/m$ dBmdeg34.6321.04-18.037.647.09.41.500QUASI-PEAK44.907.80-23.429.339.510.21.00270QUASI-PEAK40.4311.42-24.127.739.511.81.00100QUASI-PEAK37.7415.99-22.431.344.012.71.00225QUASI-PEAK43.7911.59-21.933.447.013.61.00180QUASI-PEAK37.8115.75-20.832.747.014.31.10180QUASI-PEAK39.8511.10-22.228.744.015.31.00225QUASI-PEAK39.2511.64-22.928.044.016.01.00135QUASI-PEAK34.5715.50-21.128.947.018.11.00280QUASI-PEAK31.5717.59-20.328.847.018.21.50260QUASI-PEAK25.5819.22-19.725.147.021.91.50260QUASI-PEAK

Radiated Emissions

EUT:Model 110XiIII with Cutter and Antenna 1Manufacturer:ZebraOperating Condition:68 degF ; 59%R.H.Test Site:D.L.S. O.F. Site 2Operator:Craig BrandtTest Specification:120 VAC; 60 HzComment:Continuous Transmit, Continuous Receive, Freq 13.56 MHzDate:06/30/2006

TEXT: "Site 2 MidH 3M"

Short Description: Test Set-up Horz30-1000MHz TEST EQUIPMENT: Receiver --- Rohde&Schwarz ESI 26 SN: 837460/002 Antennas ---

> Biconical -- EMCO 3104C SN: 0005-4892 Log Periodic -- Electro Metrics LPA-25 SN: 1205

Pre-Amp --- Rohde&Schwarz TS-PR10 SN: 032001/004

TEST SET-UP: EUT Measured at 3 Meters with HORIZONTAL Antenna Polarization

MEASUREMENT RESULT: "A6304_F1H_Final"

6/30/2006 3:53PM

Frequency	Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
		Factor	Loss	Level			Ant.	Angle	Detector	
MHz	dBµV	dBµV/m	dB	dBµV/m	dBµV/m	dB	m	deg		
250.000000	51.43	11.59	-21.9	41.1	47.0	5.9	1.60	180	QUASI-PEAK	None
212.590000	46.33	11.17	-22.4	35.1	44.0	8.9	1.30	225	QUASI-PEAK	Broadband
798.110000	33.57	21.05	-18.0	36.6	47.0	10.4	1.10	170	QUASI-PEAK	None
81.200000	45.99	6.51	-23.4	29.1	39.5	10.4	2.50	135	QUASI-PEAK	Broadband
399.990000	41.87	15.50	-21.1	36.2	47.0	10.8	3.20	160	QUASI-PEAK	None
723.360000	32.63	21.10	-19.2	34.5	47.0	12.5	1.00	135	QUASI-PEAK	BB Cutter
199.980000	37.67	15.75	-22.2	31.3	44.0	12.7	2.10	135	QUASI-PEAK	None
374.990000	38.14	14.59	-21.3	31.4	47.0	15.6	1.00	315	QUASI-PEAK	None
274.990000	39.18	12.94	-22.0	30.1	47.0	16.9	2.20	135	QUASI-PEAK	None
432.000000	34.75	15.75	-20.8	29.7	47.0	17.3	1.00	0	QUASI-PEAK	None
533.370000	30.67	17.64	-20.3	28.0	47.0	19.0	1.00	170	QUASI-PEAK	None
623.980000	27.70	19.22	-19.7	27.2	47.0	19.8	1.40	200	OUASI-PEAK	46th harm.

Company: Model Tested: Report Number: Zebra Technologies Corporation M2 12350

1250 Peterson Dr., Wheeling, IL 60090

RADIATED DATA AND CHARTS TAKEN

DURING TESTING FOR FIELD STRENGTH

SPURIOUS EMISSION MEASUREMENTS

PART 15.209

Antenna #2 / With Cutter

Radiated Emissions

EUT:Model 110XiIII with Cutter and Antenna 2Manufacturer:ZebraOperating Condition:66 degF ; 60%R.H.Test Site:D.L.S. O.F. Site 2Operator:Craig BrandtTest Specification:120 VAC; 60 HzComment:Continuous Transmit, Continuous Receive, Freq 13.56 MHzDate:07/05/2006

TEXT: "Site 2 MidV 3M"

Short Description: Test Set-up Vert30-1000MHz TEST EQUIPMENT: Receiver --- Rohde&Schwarz ESI 26 SN: 837460/002

> Antennas ---Biconical -- EMCO 3104C SN: 0005-4892 Log Periodic -- Electro Metrics LPA-25 SN: 1205

Pre-Amp --- Rohde&Schwarz TS-PR10 SN: 032001/004

TEST SET-UP: EUT Measured at 3 Meters with VERTICAL Antenna Polarization

MEASUREMENT RESULT: "A6303_F1V_Final"

7/5/2006 8:47AM

Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
	Factor	Loss	Level			Ant.	Angle	Detector	
dBµV	dBµV/m	dB	dBµV/m	dBµV/m	dB	m	deg		
40.98	21.04	-18.0	44.0	47.0	3.0	1.00	90	QUASI-PEAK	None
45.04	7.80	-23.4	29.5	39.5	10.0	1.00	180	QUASI-PEAK	Broadband
41.47	11.42	-24.1	28.8	39.5	10.7	1.00	90	QUASI-PEAK	Broadband
38.39	15.99	-22.4	31.9	44.0	12.1	1.00	225	QUASI-PEAK	Broadband
39.48	15.75	-20.8	34.4	47.0	12.6	1.50	180	QUASI-PEAK	None
42.16	11.10	-22.2	31.1	44.0	12.9	1.00	225	QUASI-PEAK	Broadband
44.39	11.59	-21.9	34.0	47.0	13.0	1.50	180	QUASI-PEAK	None
35.78	15.50	-21.1	30.1	47.0	16.9	1.00	225	QUASI-PEAK	None
38.22	11.64	-22.9	27.0	44.0	17.0	1.00	135	QUASI-PEAK	Broadband
32.14	17.59	-20.3	29.4	47.0	17.6	1.10	270	QUASI-PEAK	None
26.89	19.22	-19.7	26.4	47.0	20.6	1.00	225	QUASI-PEAK	46th harm.
	Level dBµV 40.98 45.04 41.47 38.39 39.48 42.16 44.39 35.78 38.22 32.14 26.89	Level Antenna Factor dBµV dBµV/m 40.98 21.04 45.04 7.80 41.47 11.42 38.39 15.99 39.48 15.75 42.16 11.10 44.39 11.59 35.78 15.50 38.22 11.64 32.14 17.59 26.89 19.22	Level Antenna System Factor Loss dBµV dBµV/m dB 40.98 21.04 -18.0 45.04 7.80 -23.4 41.47 11.42 -24.1 38.39 15.99 -22.4 39.48 15.75 -20.8 42.16 11.10 -22.2 44.39 11.59 -21.9 35.78 15.50 -21.1 38.22 11.64 -22.9 32.14 17.59 -20.3 26.89 19.22 -19.7	Level Antenna System Total Factor Loss Level dBµV dBµV/m dB dBµV/m 40.98 21.04 -18.0 44.0 45.04 7.80 -23.4 29.5 41.47 11.42 -24.1 28.8 38.39 15.99 -22.4 31.9 39.48 15.75 -20.8 34.4 42.16 11.10 -22.2 31.1 44.39 11.59 -21.9 34.0 35.78 15.50 -21.1 30.1 38.22 11.64 -22.9 27.0 32.14 17.59 -20.3 29.4 26.89 19.22 -19.7 26.4	Level Antenna System Total Limit Factor Loss Level dB μ V dB μ V/m dB dB μ V/m dB μ V/m dB μ V/m 40.98 21.04 -18.0 44.0 47.0 45.04 7.80 -23.4 29.5 39.5 41.47 11.42 -24.1 28.8 39.5 38.39 15.99 -22.4 31.9 44.0 39.48 15.75 -20.8 34.4 47.0 42.16 11.10 -22.2 31.1 44.0 44.39 11.59 -21.9 34.0 47.0 35.78 15.50 -21.1 30.1 47.0 38.22 11.64 -22.9 27.0 44.0 32.14 17.59 -20.3 29.4 47.0 26.89 19.22 -19.7 26.4 47.0	Level Antenna System Total Limit Margin Factor Loss Level dB μ V dB μ V/m dB dB μ V/m dB μ V/m dB 40.98 21.04 -18.0 44.0 47.0 3.0 45.04 7.80 -23.4 29.5 39.5 10.0 41.47 11.42 -24.1 28.8 39.5 10.7 38.39 15.99 -22.4 31.9 44.0 12.1 39.48 15.75 -20.8 34.4 47.0 12.6 42.16 11.10 -22.2 31.1 44.0 12.9 44.39 11.59 -21.9 34.0 47.0 13.0 35.78 15.50 -21.1 30.1 47.0 16.9 38.22 11.64 -22.9 27.0 44.0 17.0 32.14 17.59 -20.3 29.4 47.0 17.6 26.89 19.22 -19.7 26.4 47.0 20.6	LevelAntennaSystemTotalLimitMarginHeight $FactorLossLevelAnt.dB\mu VdB\mu V/mdBdB\mu V/mdBm40.9821.04-18.044.047.03.01.0045.047.80-23.429.539.510.01.0041.4711.42-24.128.839.510.71.0038.3915.99-22.431.944.012.11.0039.4815.75-20.834.447.012.61.5042.1611.10-22.231.144.012.91.0044.3911.59-21.934.047.013.01.5035.7815.50-21.130.147.016.91.0038.2211.64-22.927.044.017.01.0032.1417.59-20.329.447.017.61.1026.8919.22-19.726.447.020.61.00$	LevelAntennaSystemTotalLimitMarginHeightEuTFactorLossLevelAnt.AngledB μV dB $\mu V/m$ dBdB $\mu V/m$ dBmdeg40.9821.04-18.044.047.03.01.009045.047.80-23.429.539.510.01.0018041.4711.42-24.128.839.510.71.009038.3915.99-22.431.944.012.11.0022539.4815.75-20.834.447.012.61.5018042.1611.10-22.231.144.012.91.0022544.3911.59-21.934.047.013.01.5018035.7815.50-21.130.147.016.91.0022538.2211.64-22.927.044.017.01.0013532.1417.59-20.329.447.017.61.1027026.8919.22-19.726.447.020.61.00225	Level Antenna System Total Limit Margin Height EuT Final BµV dBµV/m Loss Level Ant. Angle Detector dBµV dBµV/m dB dBµV/m dB m deg 40.98 21.04 -18.0 44.0 47.0 3.0 1.00 90 QUASI-PEAK 45.04 7.80 -23.4 29.5 39.5 10.0 1.00 180 QUASI-PEAK 41.47 11.42 -24.1 28.8 39.5 10.7 1.00 90 QUASI-PEAK 38.39 15.99 -22.4 31.9 44.0 12.1 1.00 225 QUASI-PEAK 39.48 15.75 -20.8 34.4 47.0 12.6 1.50 180 QUASI-PEAK 44.39 11.59 -21.9 34.0 47.0 12.6 1.50 180 QUASI-PEAK 35.78 15.50 -21.1 30.1 47.0 13.0 1.50 180 QUASI-PEAK 38.22 11.64

Radiated Emissions

EUT:Model 110XiIII with Cutter and Antenna 2Manufacturer:ZebraOperating Condition:66 degF ; 60%R.H.Test Site:D.L.S. O.F. Site 2Operator:Craig BrandtTest Specification:120 VAC; 60 HzComment:Continuous Transmit, Continuous Receive, Freq 13.56 MHzDate:07/05/2006

TEXT: "Site 2 MidH 3M"

Short Description: Test Set-up Horz30-1000MHz TEST EQUIPMENT: Receiver --- Rohde&Schwarz ESI 26 SN: 837460/002 Antennas ---

> Biconical -- EMCO 3104C SN: 0005-4892 Log Periodic -- Electro Metrics LPA-25 SN: 1205

Pre-Amp --- Rohde&Schwarz TS-PR10 SN: 032001/004

TEST SET-UP: EUT Measured at 3 Meters with HORIZONTAL Antenna Polarization

MEASUREMENT RESULT: "A6303_F1H_Final"

7/5/2006 8:43AM

Frequency	Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
		Factor	Loss	Level			Ant.	Angle	Detector	
MHz	dBμV	dBµV/m	dB	dBµV/m	dBµV/m	dB	m	deg		
798.110000	41.73	21.05	-18.0	44.8	47.0	2.2	1.30	180	QUASI-PEAK	From PC;not EUT
212.590000	50.37	11.17	-22.4	39.2	44.0	4.8	1.50	250	QUASI-PEAK	Broadband
250.000000	52.46	11.59	-21.9	42.1	47.0	4.9	1.50	135	QUASI-PEAK	None
199.980000	44.09	15.75	-22.2	37.7	44.0	6.3	1.60	270	QUASI-PEAK	None
399.990000	41.62	15.50	-21.1	36.0	47.0	11.0	2.80	170	QUASI-PEAK	None
81.200000	45.40	6.51	-23.4	28.5	39.5	11.0	2.80	125	QUASI-PEAK	Broadband
723.360000	32.94	21.10	-19.2	34.9	47.0	12.1	1.00	135	QUASI-PEAK	BB cutter
374.990000	39.52	14.59	-21.3	32.8	47.0	14.2	1.00	180	QUASI-PEAK	None
432.000000	36.02	15.75	-20.8	30.9	47.0	16.1	1.00	135	QUASI-PEAK	None
274.990000	39.82	12.94	-22.0	30.8	47.0	16.2	1.60	135	QUASI-PEAK	None
533.370000	30.86	17.64	-20.3	28.2	47.0	18.8	1.30	180	QUASI-PEAK	None
623.980000	27.22	19.22	-19.7	26.7	47.0	20.3	1.70	225	QUASI-PEAK	46th harm.

Company:ZebraModel Tested:M2Report Number:12352

Zebra Technologies Corporation M2 12352

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

3.0 FREQUENCY STABILITY (Temperature) - (PART 2.1055a)

The frequency stability was measured from -20° to $+50^{\circ}$ centigrade at intervals of 10° centigrade throughout the range. Prior to each frequency measurement, the equipment was left alone for a sufficient period of time (approximately 30 minutes or more) to allow the components of the Zebra M2 oscillator circuitry to stabilize. The following information was taken:

ISO15693 EMISSION MASK

FREQUENCY STABILITY FOR TEMPERATURE VARIATION IN MHz (Section 4.5):

 $\begin{array}{rrrr} -20^{\circ} & 13.5609018 \\ -10^{\circ} & 13.5609018 \\ 0^{\circ} & 13.5609018 \\ +10^{\circ} & 13.5609018 \\ +20^{\circ} & 13.5609018 \\ +30^{\circ} & 13.56078557 \\ +40^{\circ} & 13.56078557 \\ +50^{\circ} & 13.56078557 \end{array}$

Worst Case Variance: = 116.23 Hz

As stated in RSS-GEN, Issue 1, Section 4.5, the Frequency Tolerance for this frequency range are as follows:

Frequency Tolerance:	=	.01%
Ambient Frequency:	=	13.5609018 MHz
Limit = 13560901.8 * . <u>01%</u>	=	<u>1356.1 Hz</u>

This is well within the specified limits.

NOTE:

See the following page(s) for the graph(s) of the actual measurement made:

Zebra Technologies Corporation M2 12350

1250 Peterson Dr., Wheeling, IL 60090

GRAPHS TAKEN FOR FREQUENCY

STABILITY WHEN VARYING THE

TEMPERATURE

PART 2.1055a

ISO15693 EMISSION MASK

Zebra Technologies Corporation M2 12350

Test Date:	07-07-2006		
Company:	Zebra		
EUT:	110XiIII		
Test:	Bandwidth / Band Edges		
Operator:	Craig Brandt		
Comment:	Modulation: ISO 15693		
Comment:	-20 deg. C		
Comment:	120 V		

Zebra Technologies Corporation M2 12350

Test Date:	07-07-2006		
Company:	Zebra		
EUT:	110XiIII		
Test:	Bandwidth / Band Edges		
Operator:	Craig Brandt		
Comment:	Modulation: ISO 15693		
Comment:	-10 deg. C		
Comment:	120 V		

Zebra Technologies Corporation M2 12350

Test Date:	07-07-2006
Company:	Zebra
EUT:	110XiIII
Test:	Bandwidth / Band Edges
Operator:	Craig Brandt
Comment:	Modulation: ISO 15693
Comment:	0 deg. C
Comment:	120 V

Zebra Technologies Corporation M2 12350

Test Date:	07-07-2006		
Company:	Zebra		
EUT:	110XiIII		
Test:	Bandwidth / Band Edges		
Operator:	Craig Brandt		
Comment:	Modulation: ISO 15693		
Comment:	+10 deg. C		
Comment:	120 V		

Zebra Technologies Corporation M2 12350

Test Date:	07-07-2006
Company:	Zebra
EUT:	110XiIII
Test:	Bandwidth / Band Edges
Operator:	Craig Brandt
Comment:	Modulation: ISO 15693
Comment:	+20 deg. C
Comment:	120 V

Zebra Technologies Corporation M2 12350

Test Date:	07-07-2006		
Company:	Zebra		
EUT:	110XiIII		
Test:	Bandwidth / Band Edges		
Operator:	Craig Brandt		
Comment:	Modulation: ISO 15693		
Comment:	+30 deg. C		
Comment:	120 V		

Zebra Technologies Corporation M2 12350

Test Date:	07-07-2006		
Company:	Zebra		
EUT:	110XiIII		
Test:	Bandwidth / Band Edges		
Operator:	Craig Brandt		
Comment:	Modulation: ISO 15693		
Comment:	+40 deg. C		
Comment:	120 V		

Zebra Technologies Corporation M2 12350

Test Date:	07-07-2006		
Company:	Zebra		
EUT:	110XiIII		
Test:	Bandwidth / Band Edges		
Operator:	Craig Brandt		
Comment:	Modulation: ISO 15693		
Comment:	+50 deg. C		
Comment:	120 V		

Zebra Technologies Corporation M2 12350

1250 Peterson Dr., Wheeling, IL 60090

8.0 FREQUENCY STABILITY (Voltage Variation) – (PART 2.1055d)

The frequency stability was measured at $+20^{\circ}$ centigrade by varying the primary supply voltage from 85% to 115% of nominal value for all equipment other than hand carried battery equipment.

ISO15693 EMISSION MASK

FREQUENCY STABILITY FOR VOLTAGE VARIATION (Section 4.5):

85% 13.5609018 100% 115% 13.5609018

This is well within the specified limits.

FREQUENCY STABILITY FOR HAND HELD DEVICES:

For handheld battery operated equipment (cannot be plugged into the power mains), the frequency stability tests were made using a new battery, eliminating the need to vary the power supply by $\pm 15\%$.

Fresh Battery verses Battery end point:

Frequency #1 NA Frequency #2 NA Frequency #3 NA

NOTE:

This test as not performed.

Zebra Technologies Corporation M2 12350

1250 Peterson Dr., Wheeling, IL 60090

GRAPH(S) TAKEN FOR FREQUENCY

STABILITY WHEN VARYING THE

PRIMARY SUPPLY VOLTAGE

(PART 2.1055d)

ISO15693 EMISSION MASK

Zebra Technologies Corporation M2 12350

Test Date:	07-07-2006	
Company:	Zebra	
EUT:	110XiIII	
Test:	Bandwidth / B	and Edges
Operator:	Craig Brandt	
Comment:	Modulation:	ISO 15693
Comment:	+30 deg. C	
Comment:	102 V	

Zebra Technologies Corporation M2 12350

Test Date:	07-07-2006	
Company:	Zebra	
EUT:	110XiIII	
Test:	Bandwidth / E	Band Edges
Operator:	Craig Brandt	
Comment:	Modulation:	ISO 15693
Comment:	+30 deg. C	
Comment:	138 V	

Zebra Technologies Corporation M2 12350

1250 Peterson Dr., Wheeling, IL 60090

9.0 FREQUENCY STABILITY (Temperature) - (PART 2.1055a)

The frequency stability was measured from -20° to $+50^{\circ}$ centigrade at intervals of 10° centigrade throughout the range. Prior to each frequency measurement, the equipment was left alone for a sufficient period of time (approximately 30 minutes or more) to allow the components of the Zebra M2 oscillator circuitry to stabilize. The following information was taken:

MIFARE EMISSION MASK

FREQUENCY STABILITY FOR TEMPERATURE VARIATION IN MHz (Section 4.5):

-20°	13.5609018
-10°	13.5609018
0°	13.5609018
$+10^{\circ}$	13.5609018
$+20^{\circ}$	13.5609018
$+30^{\circ}$	13.5609018
$+40^{\circ}$	13.56078557
$+50^{\circ}$	13.56078557

Worst Case Variance: = <u>116.23 Hz</u>

As stated in RSS-GEN, Issue 1, Section 4.5, the Frequency Tolerance for this frequency range are as follows:

Frequency Tolerance:	=	. <u>01%</u>
Ambient Frequency:	=	13.5609018 MHz
Limit = 13560901.8 * . <u>01%</u>	=	<u>1356.1 Hz</u>

This is well within the specified limits.

NOTE:

See the following page(s) for the graph(s) of the actual measurement made:

Zebra Technologies Corporation M2 12350

1250 Peterson Dr., Wheeling, IL 60090

GRAPH(S) TAKEN FOR FREQUENCY

STABILITY WHEN VARYING THE TEMPERATURE

(PART 2.1055a)

MIFARE EMISSION MASK

Zebra Technologies Corporation M2 12350

Test Date:	07-07-2006	
Company:	Zebra	
EUT:	110XiIII	
Test:	Bandwidth / I	Band Edges
Operator:	Craig Brandt	-
Comment:	Modulation:	MIFAREULTRALIGHT
Comment:	-20 deg. C	
Comment:	120 V	

Zebra Technologies Corporation M2 12350

Test Date:	07-07-2006	
Company:	Zebra	
EUT:	110XiIII	
Test:	Bandwidth / I	Band Edges
Operator:	Craig Brandt	2
Comment:	Modulation:	MIFAREULTRALIGHT
Comment:	-10 deg. C	
Comment:	120 V	

Zebra Technologies Corporation M2 12350

Test Date:	07-07-2006	
Company:	Zebra	
EUT:	110XiIII	
Test:	Bandwidth / I	Band Edges
Operator:	Craig Brandt	-
Comment:	Modulation:	MIFAREULTRALIGHT
Comment:	0 deg. C	
Comment:	120 V	

Zebra Technologies Corporation M2 12350

Test Date:	07-07-2006	
Company:	Zebra	
EUT:	110XiIII	
Test:	Bandwidth / I	Band Edges
Operator:	Craig Brandt	-
Comment:	Modulation:	MIFAREULTRALIGHT
Comment:	+10 deg. C	
Comment:	120 V	

Zebra Technologies Corporation M2 12350

Test Date:	07-07-2006	
Company:	Zebra	
EUT:	110XiIII	
Test:	Bandwidth / I	Band Edges
Operator:	Craig Brandt	-
Comment:	Modulation:	MIFAREULTRALIGHT
Comment:	+20 deg. C	
Comment:	120 V	

Zebra Technologies Corporation M2 12350

Test Date:	07-07-2006	
Company:	Zebra	
EUT:	110XiIII	
Test:	Bandwidth / I	Band Edges
Operator:	Craig Brandt	-
Comment:	Modulation:	MIFAREULTRALIGHT
Comment:	+30 deg. C	
Comment:	120 V	

Zebra Technologies Corporation M2 12350

Test Date:	07-07-2006	
Company:	Zebra	
EUT:	110XiIII	
Test:	Bandwidth / I	Band Edges
Operator:	Craig Brandt	-
Comment:	Modulation:	MIFAREULTRALIGHT
Comment:	+40 deg. C	
Comment:	120 V	

Zebra Technologies Corporation M2 12350

Test Date:	07-07-2006	
Company:	Zebra	
EUT:	110XiIII	
Test:	Bandwidth / I	Band Edges
Operator:	Craig Brandt	-
Comment:	Modulation:	MIFAREULTRALIGHT
Comment:	+50 deg. C	
Comment:	120 V	

Zebra Technologies Corporation M2 12350

1250 Peterson Dr., Wheeling, IL 60090

10.0 FREQUENCY STABILITY (Voltage Variation) – (PART 2.1055d)

The frequency stability was measured at $+20^{\circ}$ centigrade by varying the primary supply voltage from 85% to 115% of nominal value for all equipment other than hand carried battery equipment.

MIFARE EMISSION MASK

FREQUENCY STABILITY FOR VOLTAGE VARIATION (Section 4.5):

85% 13.5609018 100% 115% 13.5609018

This is well within the specified limits.

FREQUENCY STABILITY FOR HAND HELD DEVICES:

For handheld battery operated equipment (cannot be plugged into the power mains), the frequency stability tests were made using a new battery, eliminating the need to vary the power supply by $\pm 15\%$.

Fresh Battery verses Battery end point:

Frequency #1 NA Frequency #2 NA Frequency #3 NA

NOTE:

This test as not performed.

Zebra Technologies Corporation M2 12350

1250 Peterson Dr., Wheeling, IL 60090

GRAPH(S) TAKEN FOR FREQUENCY

STABILITY WHEN VARYING THE

PRIMARY SUPPLY VOLTAGE

(PART 2.1055d)

MIFARE EMISSION MASK

Zebra Technologies Corporation M2 12350

Test Date:	07-07-2006	
Company:	Zebra	
EUT:	110XiIII	
Test:	Bandwidth / I	Band Edges
Operator:	Craig Brandt	
Comment:	Modulation:	MIFAREULTRALIGHT
Comment:	+30 deg. C	
Comment:	102 V	

Zebra Technologies Corporation M2 12350

Test Date:	07-07-2006	
Company:	Zebra	
EUT:	110XiIII	
Test:	Bandwidth / I	Band Edges
Operator:	Craig Brandt	
Comment:	Modulation:	MIFAREULTRALIGHT
Comment:	+30 deg. C	
Comment:	138 V	

Zebra Technologies Corporation M2 12350

1250 Peterson Dr., Wheeling, IL 60090

11.0 FREQUENCY STABILITY (Temperature) - (PART 2.1055a)

The frequency stability was measured from -20° to $+50^{\circ}$ centigrade at intervals of 10° centigrade throughout the range. Prior to each frequency measurement, the equipment was left alone for a sufficient period of time (approximately 30 minutes or more) to allow the components of the Zebra M2 oscillator circuitry to stabilize. The following information was taken:

FREQUENCY STABILITY

FREQUENCY STABILITY FOR TEMPERATURE VARIATION IN MHz (Section 4.5):

-20°	13.560403
-10°	13.560427
0°	13.560423
$+10^{\circ}$	13.560391
$+20^{\circ}$	13.560331
$+30^{\circ}$	13.560287
$+40^{\circ}$	13.560267
$+50^{\circ}$	13.560210

Worst Case Variance: = 217 Hz

As stated in RSS-GEN, Issue 1, Section 4.5, the Frequency Tolerance for this frequency range are as follows:

Frequency Tolerance:	=	. <u>01%</u>
Ambient Frequency:	=	13.560330.55 MHz
Limit = $13560330.55 * .01\%$	=	<u>1356.03 Hz</u>

This is well within the specified limits.

NOTE:

See the following page(s) for the graph(s) of the actual measurement made:

Zebra Technologies Corporation M2 12350

1250 Peterson Dr., Wheeling, IL 60090

GRAPH(S) TAKEN FOR FREQUENCY

STABILITY WHEN VARYING THE TEMPERATURE

(PART 2.1055a)

FREQUENCY STABILITY

Zebra Technologies Corporation M2 12350

07-07-2006
Zebra
110XiIII
Frequency Stability
Craig Brandt
Limit: + or - 1,356 Hz
-20 deg. C
120 V

Zebra Technologies Corporation M2 12350

Test Date:	07-07-2006
Company:	Zebra
EUT:	110XiIII
Test:	Frequency Stability
Operator:	Craig Brandt
Comment:	Limit: + or – 1,356 Hz
Comment:	-10 deg. C
Comment:	120 V

Zebra Technologies Corporation M2 12350

Test Date:	07-07-2006
Company:	Zebra
EUT:	110XiIII
Test:	Frequency Stability
Operator:	Craig Brandt
Comment:	Limit: + or – 1,356 Hz
Comment:	0 deg. C
Comment:	120 V

Zebra Technologies Corporation M2 12350

07-07-2006
Zebra
110XiIII
Frequency Stability
Craig Brandt
Limit: + or - 1,356 Hz
+10 deg. C
120 V

Zebra Technologies Corporation M2 12350

07-07-2006
Zebra
110XiIII
Frequency Stability
Craig Brandt
Limit: + or - 1,356 Hz
+20 deg. C
120 V

Zebra Technologies Corporation M2 12350

Test Date:	07-07-2006
Company:	Zebra
EUT:	110XiIII
Test:	Frequency Stability
Operator:	Craig Brandt
Comment:	Limit: + or - 1,356 Hz
Comment:	+30 deg. C
Comment:	120 V
comment.	120 1

Zebra Technologies Corporation M2 12350

Test Date:	07-07-2006
Company:	Zebra
EUT:	110XiIII
Test:	Frequency Stability
Operator:	Craig Brandt
Comment:	Limit: + or – 1,356 Hz
Comment:	+40 deg. C
Comment:	120 V
Test: Operator: Comment: Comment: Comment:	Frequency Stability Craig Brandt Limit: + or – 1,356 Hz +40 deg. C 120 V

Zebra Technologies Corporation M2 12350

1250 Peterson Dr., Wheeling, IL 60090

Test Date:	07-07-2006
Company:	Zebra
EUT:	110XiIII
Test:	Frequency Stability
Operator:	Craig Brandt
Comment:	Limit: + or – 1,356 Hz
Comment:	+50 deg. C
Comment:	120 V

Zebra Technologies Corporation M2 12350

1250 Peterson Dr., Wheeling, IL 60090

12.0 FREQUENCY STABILITY (Voltage Variation) – (PART 2.1055d)

The frequency stability was measured at $+20^{\circ}$ centigrade by varying the primary supply voltage from 85% to 115% of nominal value for all equipment other than hand carried battery equipment.

FREQUENCY STABILITY

FREQUENCY STABILITY FOR VOLTAGE VARIATION (Section 4.5):

85% 13.56030261 100% 115% 13.56030261

This is well within the specified limits.

FREQUENCY STABILITY FOR HAND HELD DEVICES:

For handheld battery operated equipment (cannot be plugged into the power mains), the frequency stability tests were made using a new battery, eliminating the need to vary the power supply by $\pm 15\%$.

Fresh Battery verses Battery end point:

Frequency #1 NA Frequency #2 NA Frequency #3 NA

NOTE:

This test as not performed.

Zebra Technologies Corporation M2 12350

1250 Peterson Dr., Wheeling, IL 60090

GRAPH(S) TAKEN FOR FREQUENCY

STABILITY WHEN VARYING THE

PRIMARY SUPPLY VOLTAGE

(PART 2.1055d)

FREQUENCY STABILITY

Zebra Technologies Corporation M2 12350

1250 Peterson Dr., Wheeling, IL 60090

Test Date:	07-07-2006
Company:	Zebra
EUT:	110XiIII
Test:	Frequency Stability
Operator:	Craig Brandt
Comment:	Limit: + or – 1,356 Hz
Comment:	+30 deg. C
Comment:	102 V

Zebra Technologies Corporation M2 12350

1250 Peterson Dr., Wheeling, IL 60090

Test Date:	07-07-2006
Company:	Zebra
EUT:	110XiIII
Test:	Frequency Stability
Operator:	Craig Brandt
Comment:	Limit: + or – 1,356 Hz
Comment:	+30 deg. C
Comment:	138 V

