

Model Tested: 402931 Report Number: 12921

FCC Rules and Regulations / Intentional Radiators

Operational in the Band 13.553-13.567 MHz

Part 15, Subpart C, Section 15.225

THE FOLLOWING "MEETS" THE ABOVE TEST SPECIFICATION

Formal Name: RFID 402931

Kind of Equipment: RFID Encoder

Test Configuration: Limited Modular Approval - Tested in P330i & P430i (Tested at 120 vac, 60 Hz)

Model Number(s): 402931

Model(s) Tested: 402931

Serial Number(s): NA

Date of Tests: January 18, 19 & 22 & September 24, 2007

Test Conducted For: Zebra Technologies Corporation

333 Corporate Woods Parkway Vernon Hills, Illinois 60061

NOTICE: "This report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government". Please see the "Additional Description of Equipment Under Test" page listed inside of this report.

© Copyright 1983- 2006 D.L.S. Electronic Systems, Inc

COPYRIGHT NOTICE

This report or any portion their of, may not be reproduced or modified in any form without the expressed written consent of D.L.S. Electronic Systems, Inc.

Model Tested: 402931 Report Number: 12921

SIGNATURE PAGE

Report By:

anna C Rowe

Arnom C. Rowe Test Engineer EMC-001375-NE

Reviewed By:

William Stumpf OATS Manager

Approved By:

Brian Mattson General Manager

Company Official:

Zebra Technologies Corporation

Company: Zebra Technologies Corporation Model Tested: 402931

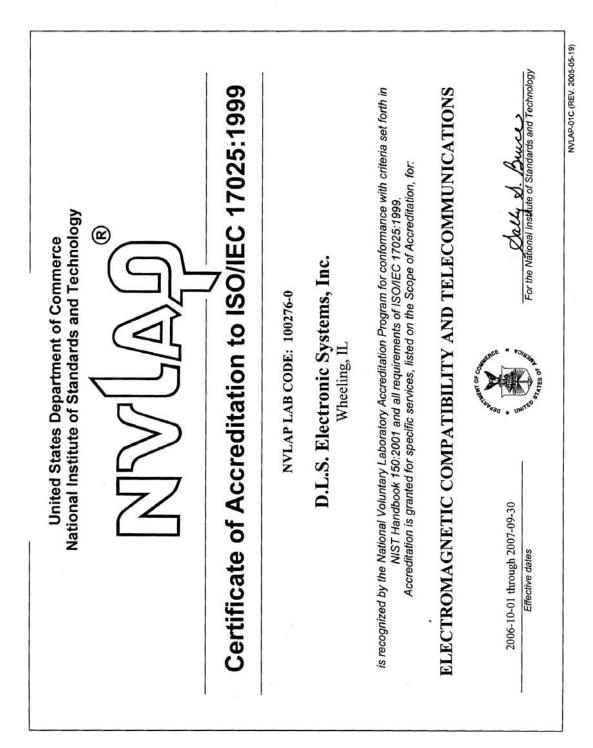
Model Tested: 40293 Report Number: 12921

TABLE OF CONTENTS

i.	Cover Page	1
ii.	Signature Page	2
iii.	Table of Contents	3
iv.	NVLAP Certificate of Accreditation	5
1.0	Summary of Test Report	6
2.0	Introduction	6
3.0	Object	6
4.0	Test Set-Up	7
5.0	Test Equipment	7
6.0	Ambient Measurements	8
7.0	Description of Test Sample	9
8.0	Additional Description of Test Sample	10
9.0	Photo Information and Test Set-Up	11
10.0	Radiated Photos Taken During Testing	12
10.0	Conducted Photos Taken During Testing	16
11.0	Results of Tests	20
12.0	Conclusion	20

Company: Zebra Technologies Corporation Model Tested: 402931

Model Tested: 40293 Report Number: 12921


TABLE OF CONTENTS

TABL	E 1 – EQUIPMENT LIST	21
Appen	ndix A – Electric Field Radiated Emissions Test	22
1.0	Conducted Emission Measurements	23
1.0	P330i Card Printer AC Conducted Data and Charts taken during testing	24
1.0	P430i Card Printer AC Conducted Data and Charts taken during testing	29
2.0	Restricted Bands, Bandwidth and Band Edge Compliance	34
2.0	P330 Printer Graphs showing the Bandwidth and Band Edge Compliance	35
2.0	P430 Printer Graphs showing the Bandwidth and Band Edge Compliance	38
3.0	Field Strength of Fundamental and Spurious Emission Measurements	41
3.0	P330i Printer Radiated Data and Graphs taken for Fundamental Emission Measurements	42
3.0	P430i Printer Radiated Data and Graphs taken for Fundamental Emission Measurements	46
3.0	P330i Radiated Data and Graphs taken for Restricted Band and Spurious Emissions	50
3.0	P430i Radiated Data and Graphs taken for Restricted Band and Spurious Emissions	57
4.0	Frequency Stability (Temperature and Voltage)	64

Company:

Zebra Technologies Corporation

Model Tested: 402931 Report Number: 12921

Model Tested: 402931 Report Number: 12921

1.0 SUMMARY OF TEST REPORT

It was found that the RFID 402931, Model Number(s) 402931, "meets" the radio interference conducted and radiated emission requirements of the FCC "Rules and Regulations", Part 15, Subpart C, Section 15.225 for operational in the 13.553-13.567 MHz Band.

2.0 INTRODUCTION

On January 18, 19 & 22 & September 24, 2007, a series of radio frequency interference measurements was performed on RFID 402931, Model Number(s) 402931, Serial Number: NA. The tests were performed according to the procedures of the FCC as stated in the "Methods of Measurement of Radio-Noise Emissions for Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz" found in the American National Standards Institute, ANSI C63.4-2003. Tests were performed by personnel of D.L.S. Electronic Systems, Inc. who are responsible to Donald L. Sweeney, Senior EMC Engineer.

D.L.S. Electronic Systems, Inc. is a full service EMC/Safety Testing Laboratory accredited to ISO 17025. NVLAP Certificate and Scope can be viewed at http://www.dlsemc.com/certificate. Our facilities are registered with the FCC, Industry Canada, and VCCI.

3.0 OBJECT

The purpose of this series of tests was to determine if the test sample could meet the radio frequency interference emission requirements of the FCC "Rules and Regulations", Part 15, Subpart C, Sections 15.209 & 15.225 for Intentional Radiators operating in the Band 13.553-13.567 MHz.

Model Tested: 402931 Report Number: 12921

4.0 TEST SET-UP

All emission tests were performed at D.L.S. Electronic Systems, Inc. and set up according to the American National Standards Institute, ANSI C63.4-2003, Section 8, (Figures 11a and 11b).

All emissions tests were performed with the test item placed on a 80 cm high rotating non-conductive table, located in the test room. Equipment normally operated on the floor was placed on a metal covered turntable which is flush with the surrounding conducting ground plane. The ground plane has an electrical isolation layer over its surface approximately 7 mm thick. The EUT is separated from the turntable ground plane by a non-conductive layer. The equipment under test was set up according to ANSI C63.4-2003, Sections 6, 7 and 8.

5.0 TEST EQUIPMENT (Bandwidths and Detector Function)

All preliminary data below 1000 MHz was automatically plotted using the HP Spectrum Analyzer or ESI 26/40 Fixed Tuned Receiver. The data was taken using Peak, Quasi-Peak or the Average Detector Functions as required. This information was then used to determine the frequencies of maximum emissions. Above 1000 MHz, final data was taken using the Average Detector.

Below 1000 MHz, final data was taken using the HP Spectrum Analyzer and/or ESI 26/40 Fixed Tuned Receiver. These plots were made using the Peak or Quasi-Peak Detector functions, with manual measurements performed on the questionable frequencies using the Quasi-Peak or the Average Detector Function of the Analyzer or ESI 26/40 Fixed Tuned Receiver as required. Above 1000 MHz, final data was taken using the Average Detector on the Spectrum Analyzer.

The bandwidths shown below are specified by ANSI C63.4-2003, Section 4.2.

Frequency Range	Bandwidth (-6 dB)
10 to 150 kHz	200 Hz
150 kHz to 30 MHz	9 kHz
30 MHz to 1 GHz	120 kHz
Above 1 GHz	1 MHz

A list of the equipment used can be found in Table 1. All primary equipment was calibrated against known reference standards with a verified traceable path to NIST.

1250 Peterson Dr., Wheeling, IL 60090

Company: Zebra Technologies Corporation

Model Tested: 402931 Report Number: 12921

6.0 AMBIENT MEASUREMENTS

For emissions measurements, broadband antennas and an EMI Test Receiver with a panoramic spectrum display are used. First the frequency range is scanned and displayed on the test receiver display. Next the scanned frequency range is divided into smaller ranges, and then it is manually tuned through to determine the emissions from the EUT. A headset or loudspeaker is connected to the test receiver's AM/FM demodulated output as an aid in detecting ambient signals and finding frequencies of significant emission from the EUT. If there is any doubt as to the source of the emission, it is further investigated by rotating the EUT, or by disconnecting the power from the EUT.

The EUT is set up in its typical configuration and operated in its various modes. For tabletop systems, cables are manipulated within the range of likely configurations. For floor-standing equipment, the cables are located in the same manner as the user would install them and no further manipulation is made. If the manner of cable installation is not known, or if it changes with each installation, cables or wires for floor-standing equipment shall be manipulated to the extent possible to produce the maximum level of emissions. For each mode of operation, the frequency spectrum is monitored. Variations in antenna height, antenna polarization, EUT azimuth, and cable or wire placement (each variable within bounds specified elsewhere) are explored to produce the emissions that have the highest amplitude relative to the limit. These methods are performed to the specifications in MP-5 or ANSI C63.4-2003, as appropriate.

Model Tested: 402931 Report Number: 12921

7.0 DESCRIPTION OF TEST SAMPLE: (See also Paragraph 8.0)

7.1 Description:

The RFID 402931 is a radio module used in Zebra printers whose purpose is to detect when a wax ribbon cartridge is present. This is done by interrogating a passive tag on the ribbon cartridge.

7.2 PHYSICAL DIMENSIONS OF EQUIPMENT UNDER TEST

Length: 12 cm x Width: 6 cm

7.3 LINE FILTER USED:

NA

7.4 INTERNAL CLOCK FREQUENCIES:

Switching Power Supply Frequencies:

NA

Clock Frequencies:

13.56 MHz and 10 MHz

7.5 DESCRIPTION OF ALL CIRCUIT BOARDS:

1. RFID PCB Assembly PN: 402932

2. Host Printer PN: P330i

3. Host Printer PN: P430i

Zebra Technologies Corporation 402931 Company: Model Tested:

Report Number: 12921

8.0	ADDITIONAL DESCRIPTION OF TEST SAMPLE	E:
	(See also Paragraph 7.0)	

Company

8.0	(See also Paragraph 7.0)
	1: There were no additional descriptions noted at the time of test.
NOTE):
The R	FID 402931 transmits and receives at the same time. The receiver cannot receive without transmitting.
13.56	MHz transceiver tested installed in the Printers without running the 900 MHz (co-located) transceiver.
Verific	cation of 13.56 MHz and the 900 MHz transceivers transmitting simultaneously.
	fy that the above, as described in paragraph 7.0, describes the equipment tested and will be actured as stated.
By:	Signature Title
	Signature Title
For:	

Date

Model Tested: 402931 Report Number: 12921

1250 Peterson Dr., Wheeling, IL 60090

9.0 PHOTO INFORMATION AND TEST SET-UP

Item 0 RFID 402931

Model Number: 402931; Serial Number: NA

Item 1 Non-shielded AC Power Line Cord. 1.5m

Item 2 Non-shielded Ethernet Cable with Plastic Shells to Remote PC. 10m

Item 3 Shielded USB Cable with Metal Shells. 1.5m

Zebra Technologies Corporation 402931

Company: Model Tested: Report Number: 12921

1250 Peterson Dr., Wheeling, IL 60090

10.0 RADIATED PHOTOS TAKEN DURING TESTING

P330i PRINTER FRONT VIEW

Company: Model Tested: Zebra Technologies Corporation

402931 Report Number: 12921

1250 Peterson Dr., Wheeling, IL 60090

RADIATED PHOTOS TAKEN DURING TESTING (CON'T) 10.0

P330i PRINTER **REAR VIEW**

Company: Model Tested: Zebra Technologies Corporation

402931 Report Number: 12921

1250 Peterson Dr., Wheeling, IL 60090

RADIATED PHOTOS TAKEN DURING TESTING (CON'T) 10.0

P430i PRINTER FRONT VIEW

Company: Model Tested:

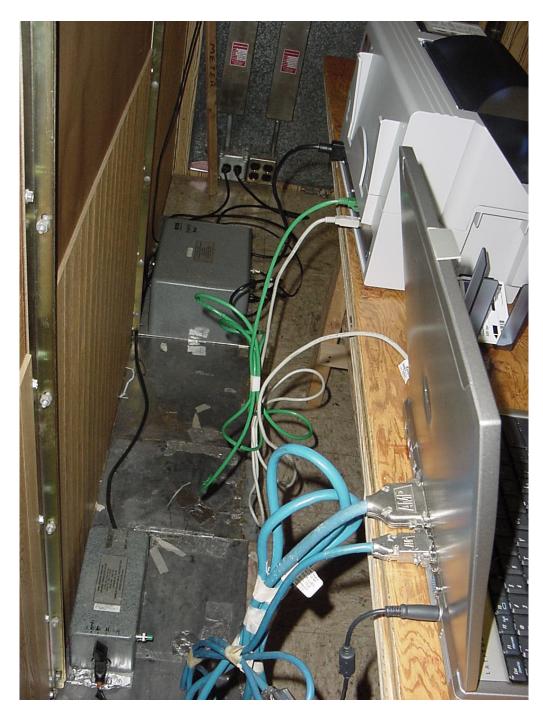
Zebra Technologies Corporation

402931 Report Number: 12921

1250 Peterson Dr., Wheeling, IL 60090

RADIATED PHOTOS TAKEN DURING TESTING (CON'T) 10.0

P430i PRINTER **REAR VIEW**


Company: Model Tested:

Zebra Technologies Corporation 402931

Model Tested: 40293 Report Number: 12921

1250 Peterson Dr., Wheeling, IL 60090

10.0 CONDUCTED PHOTOS TAKEN DURING TESTING

P330i PRINTER

Company: Zebra Technologies Corporation Model Tested: 402931

Report Number: 40293

1250 Peterson Dr., Wheeling, IL 60090

10.0 CONDUCTED PHOTOS TAKEN DURING TESTING

P330i PRINTER

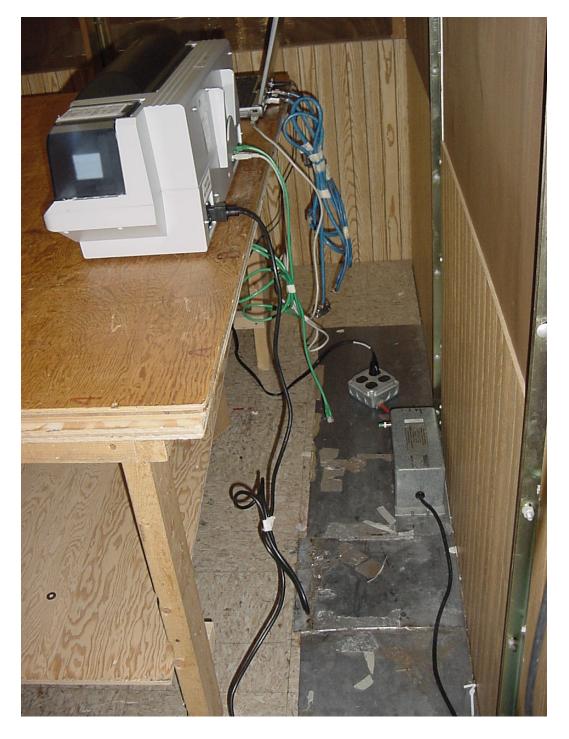
Zebra Technologies Corporation 402931 Company: Model Tested:

Report Number: 12921

1250 Peterson Dr., Wheeling, IL 60090

CONDUCTED PHOTOS TAKEN DURING TESTING (CON'T) 10.0

P430i PRINTER



Company: Model Tested: Zebra Technologies Corporation

402931 Report Number: 12921

1250 Peterson Dr., Wheeling, IL 60090

CONDUCTED PHOTOS TAKEN DURING TESTING (CON'T) 10.0

P430i PRINTER

Model Tested: 402931 Report Number: 12921

1250 Peterson Dr., Wheeling, IL 60090

11.0 RESULTS OF TESTS

The radio interference emission charts results can be seen on the pages at the end of this report. Data sheets indicating the test measurements taken during testing can also be found at the end of this report. Points on the emission charts shown with a yellow mark are background frequencies that were verified during testing.

12.0 CONCLUSION

It was found that the RFID 402931, Model Number(s) 402931 "meets" the radio interference conducted and radiated emission requirements of the FCC "Rules and Regulations", Part 15, Subpart C, Section 15.225 for operational in the 13.553-13.567 MHz Band.

1250 Peterson Dr., Wheeling, IL 60090

Company: Zebra Technologies Corporation

Model Tested: 402931 Report Number: 12921

TABLE 1 – EQUIPMENT LIST

Test	Manufacturer	Model Number	Serial Number	Frequency	Cal Due
Equipment				Range	Dates
Receiver	Rohde &	ESI 26	837491/010	20 Hz – 26 GHz	11/07
D '	Schwarz	EGI 40	027000/006	20 H 40 CH	10/07
Receiver	Rohde &	ESI 40	837808/006	20 Hz – 40 GHz	12/07
	Schwarz	EGT 40	025000/005	20.11 40.011	10/07
Receiver	Rohde &	ESI 40	837808/005	20 Hz – 40 GHz	12/07
	Schwarz	21016	00071001	003577	- 10-
Antenna	EMCO	3104C	00054891	20 MHz – 200 MHz	2/07
Antenna	Electrometrics	LPA-25	1114	200 MHz – 1 GHz	3/07
Antenna	EMCO	3104C	00054892	20 MHz – 200 MHz	3/07
Antenna	Electrometrics	3146	1205	200 MHz – 1 GHz	3/07
Antenna	EMCO	3104C	97014785	20 MHz – 200 MHz	2/07
Antenna	EMCO	3146	97024895	200 MHz – 1 GHz	3/07
Antenna	EMCO	3115	2479	1 GHz – 18 GHz	8/07
Antenna	EMCO	3115	99035731	1 GHz – 18 GHz	4/07
Antenna	Rohde & Schwarz	HUF-Z1	829381001	20 MHz – 1 GHz	2/07
Antenna	Rohde & Schwarz	HUF-Z1	829381005	20 MHz – 1 GHz	8/07
LISN	Solar	8012-50-R- 24-BNC	8305116	10 MHz – 30 MHz	8/07
LISN	Solar	8012-50-R- 24-BNC	814548	10 MHz – 30 MHz	8/07
LISN	Solar	9252-50-R- 24-BNC	961019	10 MHz – 30 MHz	12/07
LISN	Solar	9252-50-R- 24-BNC	971612	10 MHz – 30 MHz	10/07
LISN	Solar	9252-50-R- 24-BNC	92710620	10 MHz – 30 MHz	7/07

All primary equipment is calibrated against known reference standards with a verified traceable path to NIST.

Zebra Technologies Corporation

Model Tested: 402931 Report Number: 12921

APPENDIX A

TEST PROCEDURE

Part 15, Subpart C, Section 15.225a-e

OPERATION WITHIN THE BAND

13.110 MHz - 14.010 MHz

Model Tested: 402931 Report Number: 12921

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

1.0 CONDUCTED EMISSION MEASUREMENTS

The conducted emissions were measured over the frequency range from 150 kHz to 30 MHz in accordance with the power line measurements, as specified in ANSI C63.4-2003. Since the device is operated from the public utility lines, the 120 Vac, 60 Hz power leads, high and low sides were measured by connecting the measuring equipment to the appropriate meter terminal of the LISN. All signals were then recorded. The allowed levels for Intentional Radiators which is designed to connected to the public utility (AC) power line cannot exceed the following:

Frequency of	Conducted Limits (dBuV)				
Emissions (MHz)	Quasi Peak	Average			
.15 to .5	66 to 56	56 to 46			
.5 to 5	56	46			
5 to 30	60	50			

Zebra Technologies Corporation Company: Company: Model Tested:

402931 Report Number: 12921

1250 Peterson Dr., Wheeling, IL 60090

AC POWER LINE CONDUCTED

DATA AND CHARTS

TAKEN DURING TESTING

PART 15.207

P330i CARD PRINTER

FCC Part 15 Class B

Voltage Mains Test

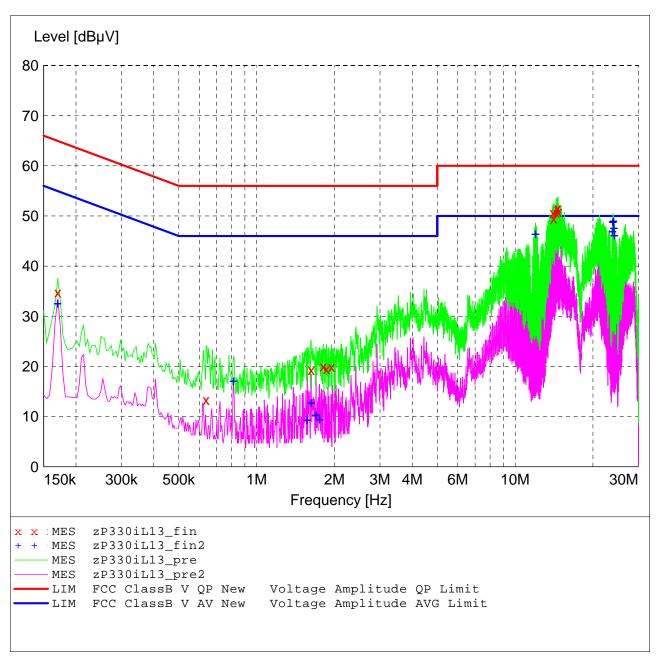
EUT: P330i with RFID 402931 and ZM4e

Manufacturer: Zebra Technologies Operating Condition: 72 deg. F, 46% R.H.

Test Site: DLS O.F. Site 1 (Screenroom)

Operator: Craig B
Test Specification: 120 V 60 Hz

Comment: Line 1


Date: 09-24-2007

SCAN TABLE: "Line Cond Scrn RmFin"

Short Description: Line Conducted Emissions
Start Stop Step Detector Meas. IF Transducer
Frequency Frequency Width Time Bandw.

Frequency Frequency Width Time Bandw.
150.0 kHz 30.0 MHz 4.0 kHz QuasiPeak 4.0 s 9 kHz LISN DLS#128

CISPR AV

MEASUREMENT RESULT: "zP330iL13_fin"

9/24/2	2007	8:50AM	I						
Fre	equenc	y L	⊾evel	Transd	Limit	Margin	Detector	Line	PE
	MF	Iz	dΒμV	dВ	dΒμV	dB			
0 .	.17000	0 3	4.80	11.4	65	30.2	QP		
0.	.63800	0 1	.3.30	10.3	56	42.7	QP		
1.	.62600	0 1	9.30	10.4	56	36.7	QP		
1.	.81000	0 2	20.00	10.4	56	36.0	QP		
1.	.86200	0 1	9.50	10.5	56	36.5	QP		
1.	.95000	0 1	9.90	10.5	56	36.1	QP		
14.	.01800	0 5	0.60	11.6	60	9.4	QP		
14.	.12200	0 4	9.50	11.7	60	10.5	QP		
14.	.42200	0 5	0.70	11.7	60	9.3	QP		
14.	.52200	0 5	1.30	11.7	60	8.7	QP		
14.	.62200	0 5	1.60	11.7	60	8.4	QP		
14.	.72200	0 5	0.80	11.7	60	9.2	QP		

MEASUREMENT RESULT: "zP330iL13_fin2"

9/	24/2007 Frequenc MF	-			Margin dB	Detector	Line	PE
	0.17000	00 32.7	0 11.4	. 55	22.3	CAV		
	0.81400	00 17.2	0 10.3	46	28.8	CAV		
	1.57000	9.4	0 10.4	46	36.6	CAV		
	1.62600	00 12.8	0 10.4	46	33.2	CAV		
	1.69800	00 10.4	0 10.4	46	35.6	CAV		
	1.75000	9.5	0 10.4	46	36.5	CAV		
	12.00200	00 46.5	0 11.4	50	3.5	CAV		
	23.80200	00 47.0	0 11.9	50	3.0	CAV		
	23.90200	00 48.9	0 11.9	50	1.1	CAV		
	24.00200	00 49.1	0 11.9	50	0.9	CAV		
	24.10200	00 47.7	0 11.9	50	2.3	CAV		
	24.20600	00 46.2	0 11.9	50	3.8	CAV		

FCC Part 15 Class B

Voltage Mains Test

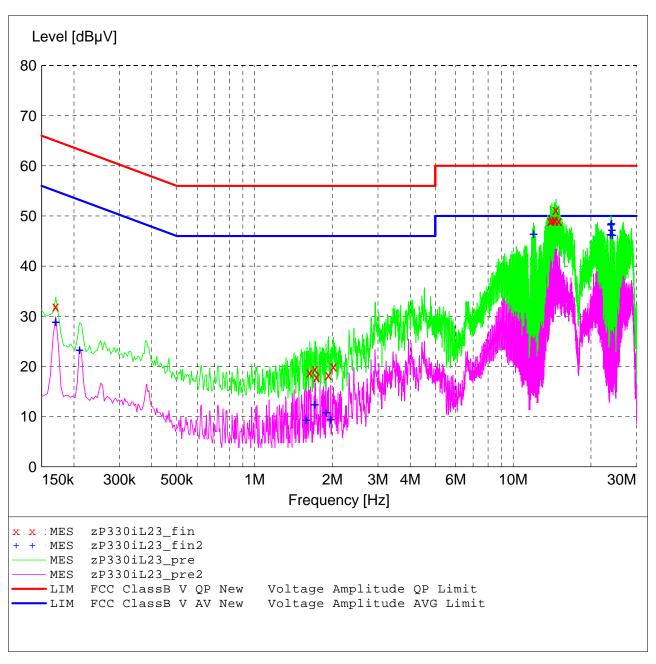
EUT: P330i with RFID 402931 and ZM4e

Manufacturer: Zebra Technologies Operating Condition: 72 deg. F, 46% R.H.

Test Site: DLS O.F. Site 1 (Screenroom)

Operator: Craig B Test Specification: 120 V $$ 60 Hz

Comment: Line 2


Date: 09-24-2007

SCAN TABLE: "Line Cond Scrn RmFin"

Short Description: Line Conducted Emissions
Start Stop Step Detector Meas. IF Transducer
Frequency Frequency Width Time Bandw.

Frequency Frequency Width Time Bandw.
150.0 kHz 30.0 MHz 4.0 kHz QuasiPeak 4.0 s 9 kHz LISN DLS#128

CISPR AV

MEASUREMENT RESULT: "zP330iL23_fin"

9/24/2	2007	9:02A	M						
Fre	equen	су	Level	Transd	Limit	Margin	Detector	Line	PE
	M	Hz	dΒμV	dВ	dΒμV	dВ			
0.	.1700	00	32.00	11.4	65	33.0	QP		
1.	6340	00	18.80	10.4	56	37.2	QP		
1.	.7100	00	19.50	10.4	56	36.5	QP		
1.	.7340	00	17.90	10.4	56	38.1	QP		
1.	.9300	00	18.30	10.5	56	37.7	QP		
2.	.0180	00	20.00	10.5	56	36.0	QP		
13.	.9180	00	49.00	11.6	60	11.0	QP		
14.	.1220	00	49.20	11.7	60	10.8	QP		
14.	.4260	00	49.30	11.7	60	10.7	QP		
14.	.5300	00	49.10	11.7	60	10.9	QP		
14.	6220	00	51.20	11.7	60	8.8	QP		
15.	.0260	00	49.00	11.7	60	11.0	QP		

MEASUREMENT RESULT: "zP330iL23_fin2"

9/	24/2007 S Frequency	•	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
	0.17000	0 29.00	11.4	55	26.0	CAV		
	0.21000	0 23.40	11.0	53	29.8	CAV		
	1.58200	0 9.40	10.4	46	36.6	CAV		
	1.71000	0 12.50	10.4	46	33.5	CAV		
	1.88600	0 10.90	10.5	46	35.1	CAV		
	1.97000	0 9.50	10.5	46	36.5	CAV		
	12.002000	0 46.50	11.4	50	3.5	CAV		
	23.802000	0 46.40	11.9	50	3.6	CAV		
	23.902000	0 48.40	11.9	50	1.6	CAV		
	24.002000	0 48.60	11.9	50	1.4	CAV		
	24.102000	0 47.30	11.9	50	2.7	CAV		
	24.206000	0 46.30	11.9	50	3.7	CAV		

Company: Zebra Technologies Corporation Company: Model Tested:

402931 Report Number: 12921

1250 Peterson Dr., Wheeling, IL 60090

AC POWER LINE CONDUCTED EMISSIONS

DATA AND CHARTS

PART 15.207

P430i CARD PRINTER

FCC Part 15 Class B

Voltage Mains Test

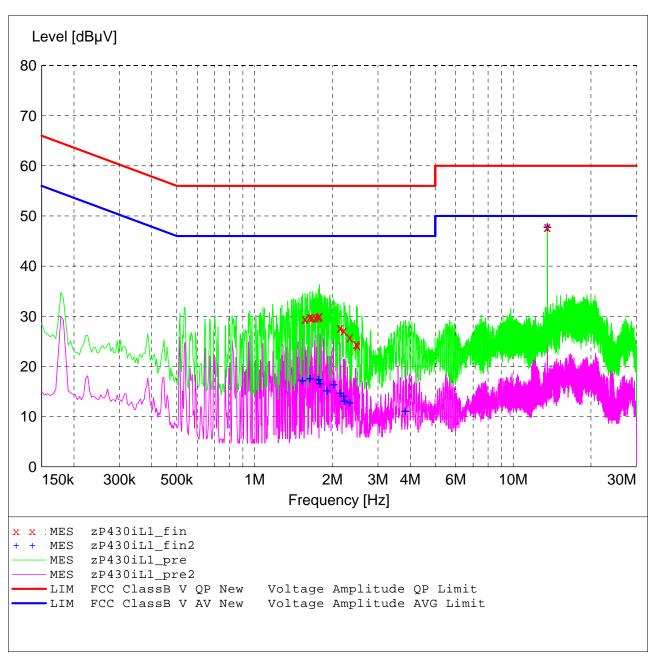
EUT: P430i with RFID 402931 and ZM4e

Manufacturer: Zebra Technologies Operating Condition: 72 deg. F, 46% R.H.

Test Site: DLS O.F. Site 1 (Screenroom)

Operator: Craig B
Test Specification: 120 V 60 Hz

Comment: Line 1


Date: 09-24-2007

SCAN TABLE: "Line Cond Scrn RmFin"

Short Description: Line Conducted Emissions
Start Stop Step Detector Meas. IF Transducer
Frequency Frequency Width Time Bandw.

Frequency Frequency Width Time Bandw.
150.0 kHz 30.0 MHz 4.0 kHz QuasiPeak 4.0 s 9 kHz LISN DLS#128

CISPR AV

MEASUREMENT RESULT: "zP430iL1_fin"

9	/24/2007	9:44AM						
	Frequenc	cy Level	l Transd	Limit	Margin	Detector	Line	PΕ
	MH	Iz dBμ√	7 dB	dΒμV	dB			
	1.56600	00 29.50	10.4	56	26.5	QP		
	1.63800	00 29.90	10.4	56	26.1	QP		
	1.67000	00 29.80	10.4	56	26.2	QP		
	1.72600	00 29.80	10.4	56	26.2	QP		
	1.76600	0 29.90	10.4	56	26.1	QP		
	1.78200	00 30.10	10.4	56	25.9	QP		
	2.14200	00 27.70	10.5	56	28.3	QP		
	2.21400	00 27.20	10.5	56	28.8	QP		
	2.33400	00 25.80	10.5	56	30.2	QP		
	2.47800	00 24.50	10.6	56	31.5	QP		
	2.49400	00 24.20	10.6	56	31.8	QP		
	13.55800	00 47.80	11.6	60	12.2	QP		

MEASUREMENT RESULT: "zP430iL1_fin2"

9/24/2007 Frequenc MF	-	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
1.53000	17.30	10.4	46	28.7	CAV		
1.63800	17.70	10.4	46	28.3	CAV		
1.76600	17.50	10.4	46	28.5	CAV		
1.79000	16.70	10.4	46	29.3	CAV		
1.90600	15.30	10.5	46	30.7	CAV		
2.01800	16.50	10.5	46	29.5	CAV		
2.14200	14.80	10.5	46	31.2	CAV		
2.20600	14.20	10.5	46	31.8	CAV		
2.22200	13.20	10.5	46	32.8	CAV		
2.33400	12.90	10.5	46	33.1	CAV		
3.83000	00 11.20	10.7	46	34.8	CAV		
13.55800	00 47.90	11.6	50	2.1	CAV		

FCC Part 15 Class B

Voltage Mains Test

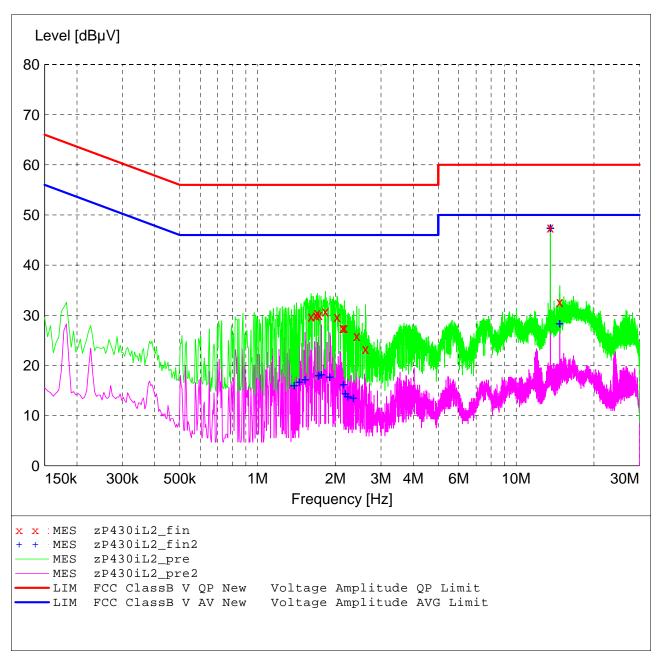
EUT: P430i with RFID 402931 and ZM4e

Manufacturer: Zebra Technologies Operating Condition: 72 deg. F, 46% R.H.

Test Site: DLS O.F. Site 1 (Screenroom)

Operator: Craig B
Test Specification: 120 V 60 Hz

Comment: Line 2


Date: 09-24-2007

SCAN TABLE: "Line Cond Scrn RmFin"

Short Description: Line Conducted Emissions
Start Stop Step Detector Meas. IF Transducer

Frequency Frequency Width Time Bandw.
150.0 kHz 30.0 MHz 4.0 kHz QuasiPeak 4.0 s 9 kHz LISN DLS#128

CISPR AV

MEASUREMENT RESULT: "zP430iL2_fin"

9/24/	2007	9:36AN	N.						
Fr	equend	ey I	Level	Transd	Limit	Margin	Detector	Line	PE
	MF	Ιz	dΒμV	dB	dΒμV	dB			
1	.61000	0 2	29.80	10.4	56	26.2	QP		
1	.68600	00 3	30.00	10.4	56	26.0	QP		
1	.70200	00 3	30.50	10.4	56	25.5	QP		
1	.73000	00 3	30.10	10.4	56	25.9	QP		
1	.83000	00 3	30.80	10.4	56	25.2	QP		
2	.03000	0 2	29.70	10.5	56	26.3	QP		
2	.13400	0 2	27.50	10.5	56	28.5	QP		
2	.16600	0 2	27.50	10.5	56	28.5	QP		
2	.41800	0 2	25.90	10.6	56	30.1	QP		
2	.61400	0 2	23.30	10.6	56	32.7	QP		
13	.55800	00 4	47.50	11.6	60	12.5	QP		
14	.74600	00 3	32.70	11.7	60	27.3	QP		

MEASUREMENT RESULT: "zP430iL2_fin2"

- *	4/2007 Frequen M	9:36 <i>1</i> Cy Hz	AM Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
	1.3860	00	16.10	10.3	46	29.9	CAV		
	1.4500	00	16.80	10.3	46	29.2	CAV		
	1.5260	00	17.30	10.4	46	28.7	CAV		
	1.7220	00	18.10	10.4	46	27.9	CAV		
	1.7660	00	18.30	10.4	46	27.7	CAV		
	1.9020	00	17.80	10.5	46	28.2	CAV		
	2.1500	00	16.30	10.5	46	29.7	CAV		
	2.1820	00	14.50	10.5	46	31.5	CAV		
	2.2340	00	13.90	10.5	46	32.1	CAV		
	2.3460	00	13.60	10.5	46	32.4	CAV		
	13.5580	00	47.50	11.6	50	2.5	CAV		
	14.7460	00	28.50	11.7	50	21.5	CAV		

Model Tested: 402931 Report Number: 12921

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

2.0 RESTRICTED BANDS, BANDWIDTH AND BAND EDGE COMPLIANCE

The field strength of any emissions appearing outside the 13.110 MHz - 14.010 MHz band shall not exceed the general radiated emissions limits as stated Section 15.209. The fundamental 13.56 MHz from the RFID 402931 transmitter shall not be inside the restricted band 13.36 to 13.41 MHz.

NOTE: See pages 50 to 63 of this test report for the Restricted Band measurements and the

following page (s) for the graph (s) made showing compliance for Bandwidth and Band

Edge:

Company: Zebra Technologies Corporation Company: Model Tested:

402931 Report Number: 12921

GRAPH (s) TAKEN SHOWING THE

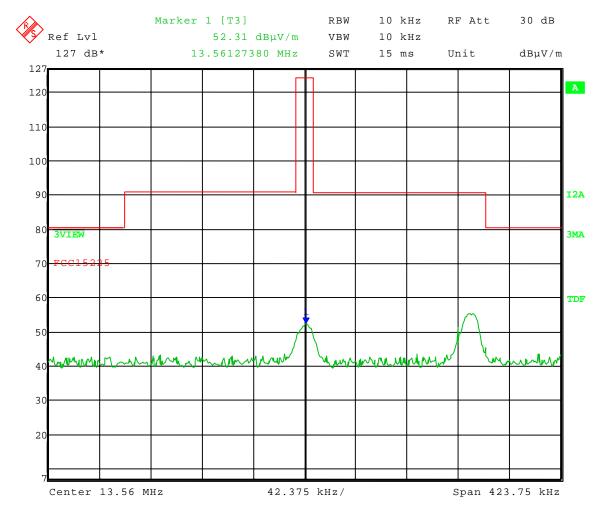
BANDWIDTH AND BAND EDGE COMPLIANCE

PART 15.225 (b)

P330i PRINTER

Model Tested: 402931 Report Number: 12921

1250 Peterson Dr., Wheeling, IL 60090


Test Date: 01-18-2007

Company: Zebra Technologies

EUT: RFID 402931 with P330i printer

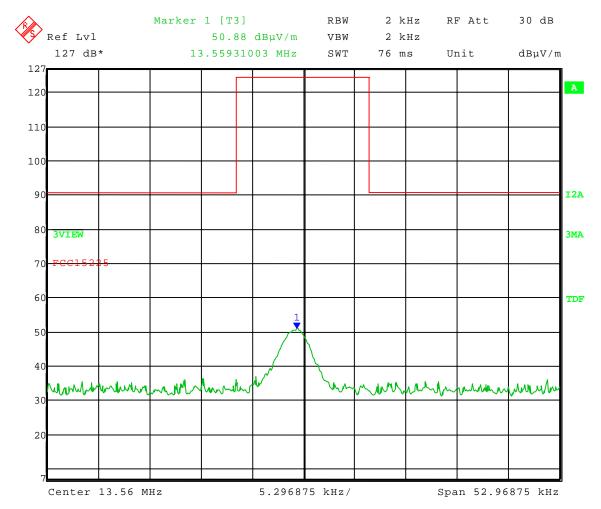
Test: Bandwidth / Band Edges

Operator: Craig Brandt

Date: 18.JAN.2007 12:14:13

Model Tested: 402931 Report Number: 12921

1250 Peterson Dr., Wheeling, IL 60090


Test Date: 01-18-2007

Company: Zebra Technologies

EUT: RFID 402931 with P330i printer

Test: Bandwidth / Band Edges

Operator: Craig Brandt

Date: 18.JAN.2007 12:15:37

Company: Zebra Technologies Corporation Company: Model Tested:

402931 Report Number: 12921

GRAPH (s) TAKEN SHOWING THE

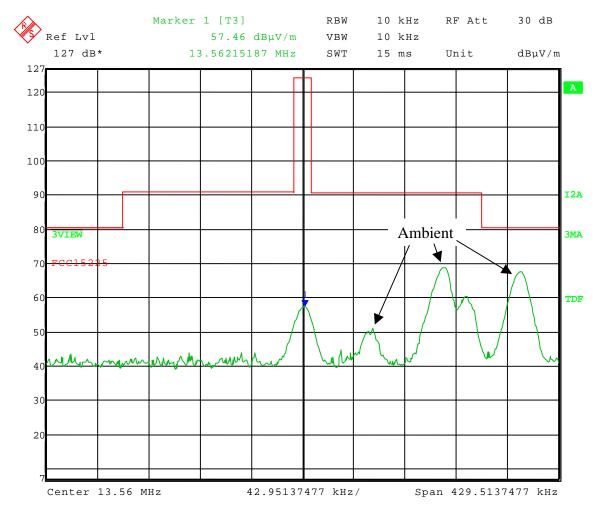
BANDWIDTH AND BAND EDGE COMPLIANCE

PART 15.225 (b)

P430i PRINTER

Model Tested: 402931 Report Number: 12921

1250 Peterson Dr., Wheeling, IL 60090


Test Date: 01-18-2007

Company: Zebra Technologies

EUT: RFID 402931 with P430i printer

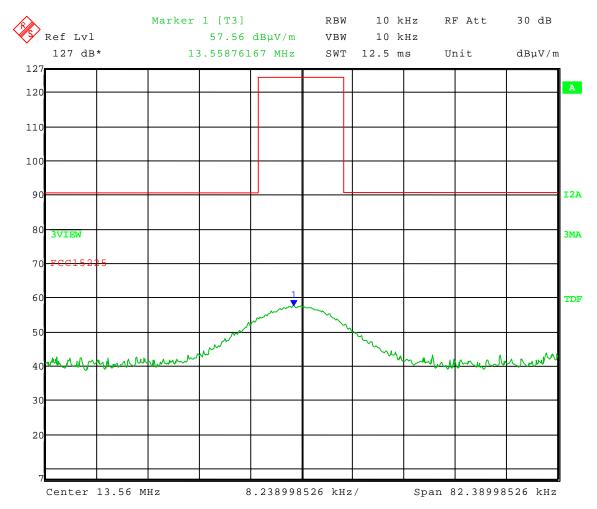
Test: Bandwidth / Band Edges

Operator: Craig Brandt

Date: 18.JAN.2007 10:25:38

Model Tested: 402931 Report Number: 12921

1250 Peterson Dr., Wheeling, IL 60090


Test Date: 01-18-2007

Company: Zebra Technologies

EUT: RFID 402931 with P430i printer

Test: Bandwidth / Band Edges

Operator: Craig Brandt

Date: 18.JAN.2007 10:26:37

Model Tested: 402931 Report Number: 12921

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

3.0 FIELD STRENGTH OF FUNDAMENTAL AND SPURIOUS EMISSION MEASUREMENTS (SECTION 15.225a - d)

The radiated measurements made at D.L.S. Electronic Systems, Inc., for the RFID 402931, Model Number: 402931, are shown in tabulated and graph form. Preliminary radiation measurements were performed at a 3 meter test distance with the limits adjusted linearly when required. The frequency range from 9 kHz to over 960 MHz, depending upon the fundamental frequency as stated in Part 15.33a, was automatically scanned and plotted at various angles.

Measurements for the RFID 402931 were made up to 140 MHz, in accordance with Section 15.33a for Intentional Radiators with a fundamental frequency of 13.56 MHz. For intentional radiators, the frequency range to be investigated is determined by the lowest radio frequency generated by the device without going below 9 kHz, up to at least the tenth harmonic of the highest fundamental frequency or 1000 MHz, whichever is lower. At those frequencies where significant signals were detected, measurements were made at an open field test site, located at Genoa City, Wisconsin, FCC file number 31040/SIT, to determine the actual radiation levels.

All signals in the frequency range of 9 kHz to 30 MHz were measured with a low frequency Loop Antenna as a pickup device. From 30 to 140 MHz, a Biconical Antenna or tuned dipoles were used. During the test the equipment was rotated and the antenna was raised and lowered from 1 meter to 4 meters to find the maximum level. In order to find maximum emissions, the cables were moved through all the positions the equipment would be expected to experience in the field. Tests were made in the vertical polarization with the Loop Antenna, rotated 360° around its vertical axis. Tests were also made in both the horizontal and vertical planes of polarization with the Biconical Antenna. In each case, the table was rotated to find the maximum emissions.

When the equipment is out of limit at 3 meters, and the signals from the equipment at 30 meters cannot be recorded due to the background, a representative sample of these frequencies were remeasured at various distances such as 4, 5, 6, 8, 15 meters and the greatest distance that can be measured to demonstrate graphically that the emissions are dropping off and will be under the limit at the specified distance. All signals were then recorded. The allowed levels for Intentional Radiators in the 13.553 MHz to 13.567 MHz band shall not exceed 15,848 uV measured at 30 meters. The field strength of any emissions appearing outside 13.110 MHz – 14.010 MHz shall not exceed the radiated emissions limits shown in Section 15.209.

Zebra Technologies Corporation

Model Tested: 402931 Report Number: 12921

RADIATED <u>DATA</u> AND <u>GRAPHS</u> TAKEN FOR

FUNDAMENTAL FIELD STRENGTH

EMISSION MEASUREMENTS

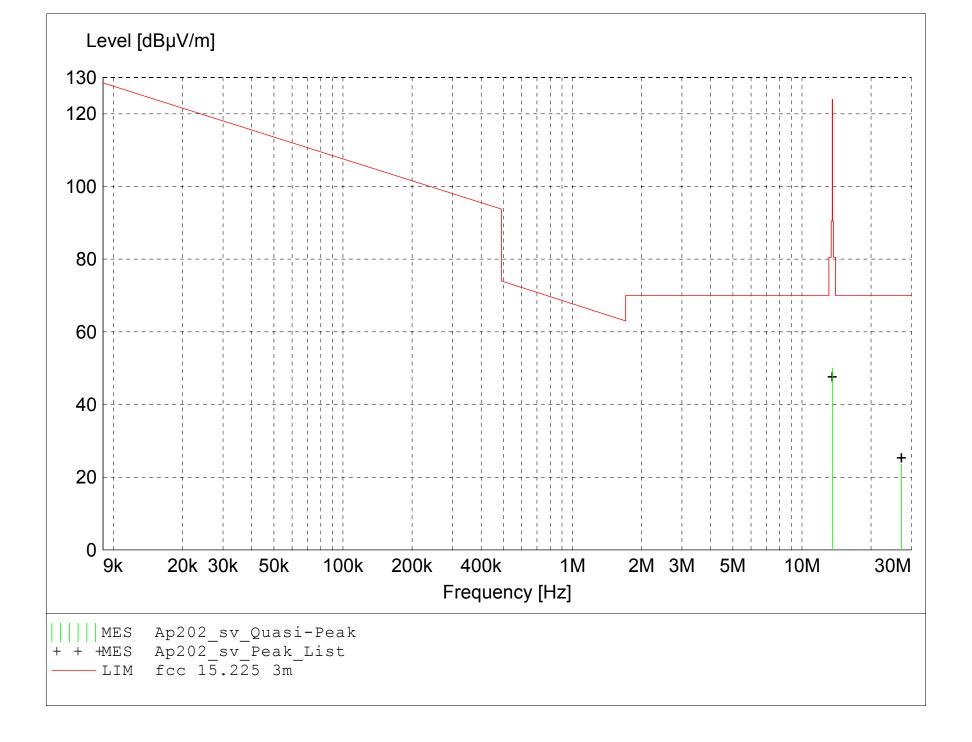
PART 15.225

P330i PRINTER

Electric Field Strength

EUT: RFID 402931 with P330i printer

Manufacturer: Zebra Technologies
Operating Condition: 72 deg. F; 25% R.H.
Test Site: DLS O.F. Site 3
Operator: Craig Brandt
Test Specification: 120 V 60 Hz


Comment: 13.56 MHz transmit Date: 01-18-2007

TEXT: "Site 3 LowH 3M Act"

Short Description: Test Set-up 9kHz to 30MHz H
TEST EQUIPMENT: Receiver --- Rohde&Schwarz ESI40 SN: 837808/005

Antennas --- EMCO Active Loop Model: 6502 SN: 2038

TEST SET-UP: EuT Measured at 3 Meters with H-FIELD Antenna

MEASUREMENT RESULT: "Ap202_sv_final"

1/18/2007 11:0)5AM									
Frequency	Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
		Factor	Loss	Level			Ant.	Angle	Detector	
MHz	dΒμV	dBµV/m	dB	dBµV/m	dBµV/m	dB	m	deg		
27.119500	14.02	8.58	1.1	23.7	70.0	46.3	1.00	135	QUASI-PEAK	None
13.559000	38.81	10.44	0.8	50.0	124.0	74.0	1.00	180	QUASI-PEAK	Fundamental

Zebra Technologies Corporation

Model Tested:
Renort N 402931 Report Number: 12921

RADIATED DATA AND GRAPHS TAKEN FOR

FUNDAMENTAL FIELD STRENGTH

EMISSION MEASUREMENTS

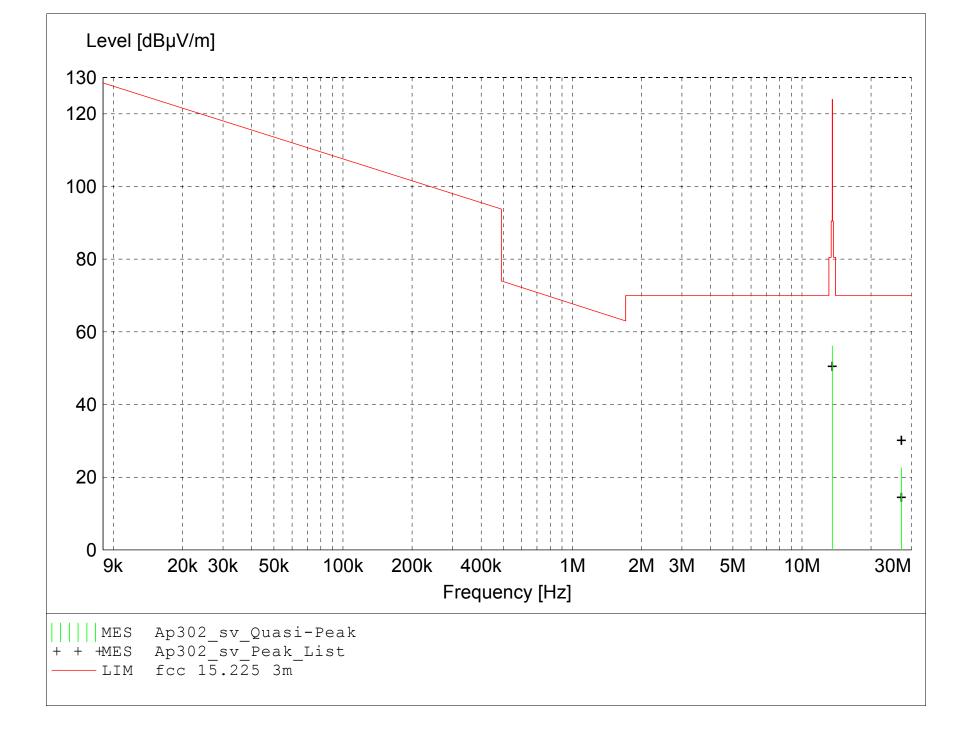
PART 15.225

P430i PRINTER

Electric Field Strength

EUT: RFID 402931 with P430i printer

Manufacturer: Zebra Technologies
Operating Condition: 72 deg. F; 25% R.H.
Test Site: DLS O.F. Site 3
Operator: Craig Brandt
Test Specification: 120 V 60 Hz


Comment: 13.56 MHz transmit Date: 01-18-2007

TEXT: "Site 3 LowH 3M Act"

Short Description: Test Set-up 9kHz to 30MHz H
TEST EQUIPMENT: Receiver --- Rohde&Schwarz ESI40 SN: 837808/005

Antennas --- EMCO Active Loop Model: 6502 SN: 2038

TEST SET-UP: EuT Measured at 3 Meters with H-FIELD Antenna

MEASUREMENT RESULT: "Ap302_sv_Final"

1/18/2007 9:3	0AM									
Frequency	Level	Antenna Factor	System Loss		Limit	_	Height Ant.		Final Detector	Comment
MHz	dΒμV	dBµV/m	dB	dBµV/m	dBµV/m	dB	m	deg		
27.120000 13.560000	12.95 44.91	8.58 10.44	1.1	22.6 56.1		47.4 67.9	1.00		QUASI-PEAK QUASI-PEAK	None Fundamental

Company:
Model Tested: 402931 12921 Report Number:

RADIATED DATA AND GRAPHS TAKEN FOR

RESTRICTED BAND AND

SPURIOUS FIELD STRENGTH

EMISSION MEASUREMENTS

PART 15.209 AND 15.225(d)

P330i PRINTER

Electric Field Strength

EUT: RFID 402931 with P330i printer

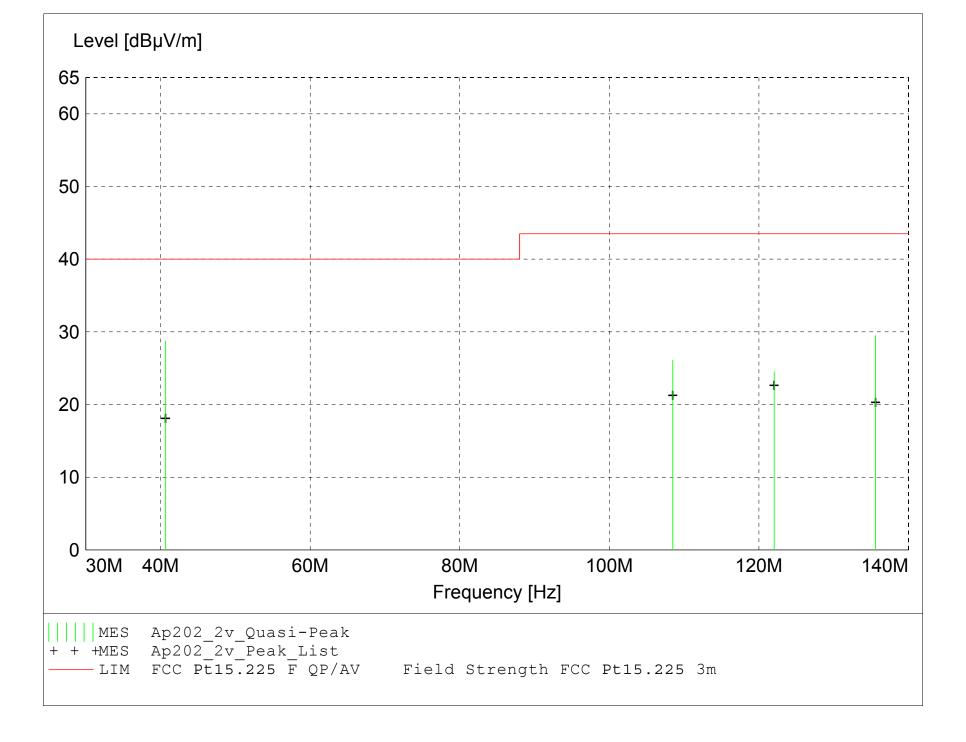
Manufacturer: Zebra Technologies
Operating Condition: 72 deg. F; 25% R.H.
Test Site: DLS O.F. Site 3
Operator: Craig Brandt
Test Specification: 120 V 60 Hz

Comment: 13.56 MHz transmit

Date: 01-18-2007

TEXT: "Site 3 MidV 3M"

Short Description: Test Set-up Vert30-1000MHz


TEST EQUIPMENT: Receiver --- Rohde&Schwarz ESI 40 SN: 837808/005

Antennas ---

Biconical -- EMCO 3104C SN: 9701-4785 Log Periodic -- EMCO 3146 SN: 9702-4895

Pre-Amp --- Rohde&Schwarz TS-PR10 SN: 032001/005

TEST SET-UP: EUT Measured at 3 Meters with VERTICAL Antenna Polarization

${\tt MEASUREMENT\ RESULT:\ "Ap202_2v_Final"}$

1	/18/2007 11:	23AM									
	Frequency	Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
			Factor	Loss	Level			Ant.	Angle	Detector	
	MHz	dΒμV	dBµV/m	dB	dBµV/m	dBμV/m	dB	m	deg		
	40.680000	41.61	11.43	-24.3	28.8	40.0	11.2	1.00	30	QUASI-PEAK	None
	135.595000	40.71	11.89	-23.1	29.5	43.5	14.0	1.00	320	QUASI-PEAK	None
	108.475000	37.61	11.80	-23.3	26.1	43.5	17.4	1.00	320	QUASI-PEAK	None
	122.035000	35.16	12.55	-23.2	24.5	43.5	19.0	1.00	290	QUASI-PEAK	None

Electric Field Strength

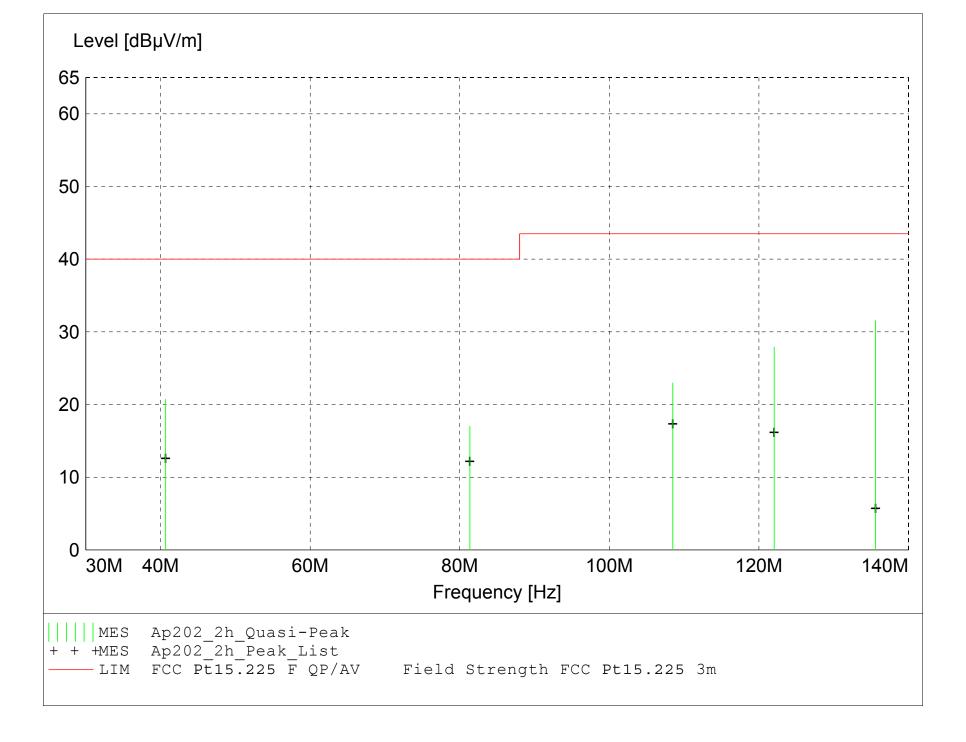
EUT: RFID 402931 with P330i printer

Manufacturer: Zebra Technologies
Operating Condition: 72 deg. F; 25% R.H.
Test Site: DLS O.F. Site 3
Operator: Craig Brandt
Test Specification: 120 V 60 Hz

Comment: 13.56 MHz transmit Date: 01-18-2007

TEXT: "Site 3 MidH 3M"

Short Description: Test Set-up Horz30-1000MHz


TEST EQUIPMENT: Receiver --- Rohde&Schwarz ESI 40 SN: 837808/005

Antennas ---

Biconical -- EMCO 3104C SN: 9701-4785 Log Periodic -- EMCO 3146 SN: 9702-4895

Pre-Amp --- Rohde&Schwarz TS-PR10 SN: 032001/005

TEST SET-UP: EUT Measured at 3 Meters with HORIZONTAL Antenna Polarization

MEASUREMENT RESULT: "Ap202_2h_Final"

1/18/2007 11:3	33AM									
Frequency	Level	Antenna Factor	System Loss	Total Level	Limit	Margin	Height Ant.	EuT Angle	Final Detector	Comment
MHz	dΒμV	dBμV/m	dB	dBµV/m	dBμV/m	dB	m	deg		
135.595000	42.74	11.89	-23.1	31.5	43.5	12.0	1.60	135	QUASI-PEAK	None
122.035000	38.54	12.55	-23.2	27.9	43.5	15.6	2.80	135	QUASI-PEAK	None
40.675000	33.57	11.44	-24.3	20.7	40.0	19.3	3.00	270	QUASI-PEAK	None
108.475000	34.48	11.80	-23.3	23.0	43.5	20.5	2.10	170	QUASI-PEAK	None
81.350000	34.02	6.71	-23.7	17.0	40.0	23.0	2.10	0	QUASI-PEAK	None

Model Tested: Zebra T Model Tested: 402931 Report Number: 12921

RADIATED DATA AND GRAPHS TAKEN FOR

RESTRICTED BAND AND

SPURIOUS FIELD STRENGTH

EMISSION MEASUREMENTS

PART 15.209 AND 15.225(d)

P430i PRINTER

Electric Field Strength

EUT: RFID 402931 with P430i printer

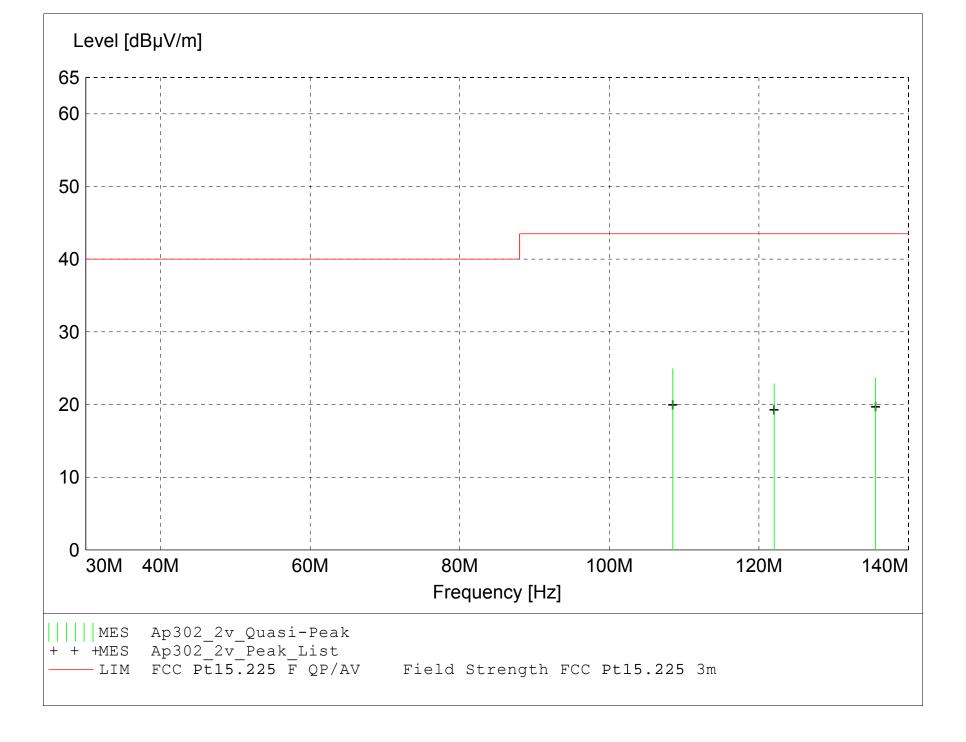
Manufacturer: Zebra Technologies
Operating Condition: 72 deg. F; 25% R.H.
Test Site: DLS O.F. Site 3
Operator: Craig Brandt
Test Specification: 120 V 60 Hz

Comment: 13.56 MHz transmit

Date: 01-18-2007

TEXT: "Site 3 MidV 3M"

Short Description: Test Set-up Vert30-1000MHz


TEST EQUIPMENT: Receiver --- Rohde&Schwarz ESI 40 SN: 837808/005

Antennas ---

Biconical -- EMCO 3104C SN: 9701-4785 Log Periodic -- EMCO 3146 SN: 9702-4895

Pre-Amp --- Rohde&Schwarz TS-PR10 SN: 032001/005

TEST SET-UP: EUT Measured at 3 Meters with VERTICAL Antenna Polarization

${\tt MEASUREMENT\ RESULT:\ "Ap302_2v_Final"}$

1/18/2007 9:4	5AM									
Frequency	Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
		Factor	Loss	Level		-	Ant.	Anale	Detector	
MHz	dΒμV	dBµV/m	dB	dBµV/m	dBµV/m	dB	m	deg		
108.480000	36.45	11.80	-23.3	25.0	43.5	18.5	1.00	320	QUASI-PEAK	None
135.600000	34.93	11.88	-23.1	23.7	43.5	19.8	1.00	270	QUASI-PEAK	None
122.035000	33.50	12.55	-23.2	22.9	43.5	20.6	1.00	225	QUASI-PEAK	None

Electric Field Strength

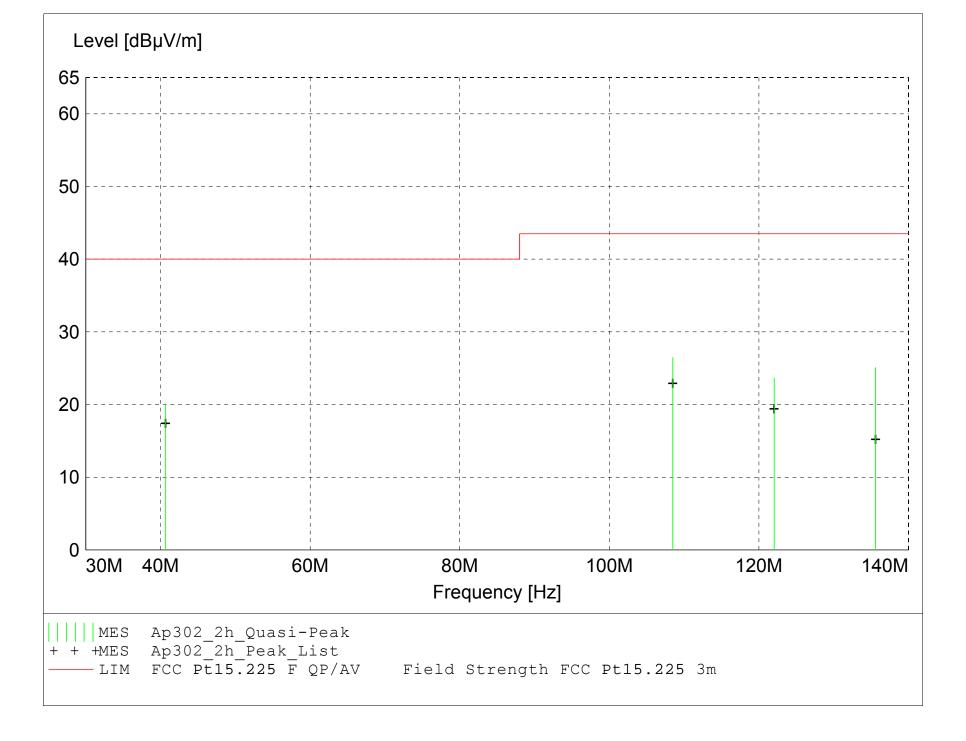
EUT: RFID 402931 with P430i printer

Manufacturer: Zebra Technologies
Operating Condition: 72 deg. F; 25% R.H.
Test Site: DLS O.F. Site 3
Operator: Craig Brandt
Test Specification: 120 V 60 Hz

Comment: 13.56 MHz transmit Date: 01-18-2007

TEXT: "Site 3 MidH 3M"

Short Description: Test Set-up Horz30-1000MHz


TEST EQUIPMENT: Receiver --- Rohde&Schwarz ESI 40 SN: 837808/005

Antennas ---

Biconical -- EMCO 3104C SN: 9701-4785 Log Periodic -- EMCO 3146 SN: 9702-4895

Pre-Amp --- Rohde&Schwarz TS-PR10 SN: 032001/005

TEST SET-UP: EUT Measured at 3 Meters with HORIZONTAL Antenna Polarization

MEASUREMENT RESULT: "Ap302_2h_Final"

1/18/2007 9:5	4AM									
Frequency	Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
		Factor	Loss	Level			Ant.	Angle	Detector	
MHz	dΒμV	dBµV/m	dB	dΒμV/m	dΒμV/m	dB	m	deg		
108.480000	37.95	11.80	-23.3	26.5	43.5	17.0	2.00	190	QUASI-PEAK	None
135.600000	36.31	11.88	-23.1	25.1	43.5	18.4	2.40	0	QUASI-PEAK	None
122.040000	34.31	12.55	-23.2	23.7	43.5	19.8	2.00	180	QUASI-PEAK	None
40.680000	32.96	11.43	-24.3	20.1	40.0	19.9	2.50	225	QUASI-PEAK	None

Zebra Technologies Corporation

Model Tested: 402931 Report Number: 12921

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

FREQUENCY STABILITY

PART 2.1055e

FREQUENCY VS TEMPERATURE

AND

FREQUENCY VS VOLTAGE

Company:

Zebra Technologies Corporation

Model Tested: Report Number: 402931 12921

1250 Peterson Dr., Wheeling, IL 60090

SIEMIC

Title: Zebra Technologies Corp. FCCID: 128-P330I-MIFARE

To: 47 CFR 15.225:2006 & RSS-210 Issue 6:2005

Serial# Issue Date SL07041702-ZBR-022/P330i

Issue Date Page 01 May 2007 22 of 32

www.siemic.com

4.2.5 Frequency Stability

Requirement(s): 47 CFR §15.225(e) & RSS-210 (A2.6)

Procedures:

Frequency Stability was measured according to 47 CFR §2.1055. Measurement was taken

with spectrum analyzer. The spectrum analyzer bandwidth and span was set to read in

hertz. A voltmeter was used to monitor when varying the voltage.

Limit: ±0.01% of 13.56 MHz = 1356 Hz

Results: Mifare is activated

Frequency versus Temperature

Reference Frequency: measured 13.559883 MHz at 20°C

Temperature (Celsius)	Measured Freq. (MHz)	Freq. Drift (Hz)	Freq. Drift (%)			
(Ocidius)	(m, 12)	(112)	(10)			
50	13.559741	-142	-0.00105			
40	13.559756	-127	-0.00094			
30	13.559782	-101	-0.00074			
20	Reference					
10	13.559792	-91	-0.00067			
0	13.559792	-91	-0.00067			
-10	13.559842	-41	-0.00030			
-20	13.559850	-33	-0.00024			
-30	13.559858	-25	-0.00018			

Frequency versus Voltage

Reference Frequency: measured 13.559883 MHz at 20°C with 120 Vac / 60 Hz

Measured Voltage ±15% of nominal (AC)	Measured Freq. (MHz)	Freq. Drift (Hz)	Freq. Drift (%)
138	13.559875	-8	-0.00006
102	13.559883	0	0.00000

Zebra Technologies Corporation Company: Model Tested: 402931

Report Number: 12921

1250 Peterson Dr., Wheeling, IL 60090

Title: Zebra Technologies Corp. FCCID: 128-P3301-MIFARE

47 CFR 15.225:2006 & RSS-210 Issue 6:2005

Serial# Issue Date SL07041702-ZBR-022/P330i

01 May 2007

23 of 32 Page

www.siemic.com

Results: RFID is activated

Frequency versus Temperature

Reference Frequency: measured 13.559083 MHz at 20°C

Temperature (Celsius)	Measured Freq. (MHz)	Freq. Drift (Hz)	Freq. Drift (%)
50	13.558975	-108	-0.00080
40	13.559008	-75	-0.00055
30	13.559025	-58	-0.00043
20		Reference	
10	13.559025	-58	-0.00043
0	13.559017	-66	-0.00049
-10	13.559217	134	0.00099
-20	13.559325	242	0.00178
-30	13.559217	134	0.00099

Frequency versus Voltage

Reference Frequency: measured 13.559083 MHz at 20°C with 120 Vac / 60 Hz

Measured Voltage ±15% of nominal (AC)	Measured Freq. (MHz)	Freq. Drift (Hz)	Freq. Drift (%)
138	13.559083	O O	0.00000
102	13.559083	0	0.00000

Tested By: Kerwinn Corpuz

Date Tested: 30 April 2007

Model Tested: 402931 Report Number: 12921

1250 Peterson Dr., Wheeling, IL 60090

Title: Zebra Technologies Corp. FCCID: I28-P430I-MIFARE

47 CFR 15.225:2006 & RSS-210 Issue 6:2005

Serial# Issue Date Page SL07041702-ZBR-022/P430i

Date 30 April 2007 22 of 32

www.siemic.com

4.2.5 Frequency Stability

Requirement(s): 47 CFR §15.225(e) & RSS-210 (A2.6)

Procedures:

Frequency Stability was measured according to 47 CFR §2.1055. Measurement was taken

with spectrum analyzer. The spectrum analyzer bandwidth and span was set to read in

hertz. A voltmeter was used to monitor when varying the voltage.

Limit: ±0.01% of 13.56 MHz = 1356 Hz

Results: Mifare is activated

Frequency versus Temperature

Reference Frequency: measured 13.559883 MHz at 20°C

Temperature (Celsius)	Measured Freq. (MHz)	Freq. Drift (Hz)	Freq. Drift (%)
TO SECURE AND ADDRESS OF THE PARTY OF THE PA	ACCUST OF THE PERSON OF THE PERSON OF	grant medicine day and	Company of the State of the Sta
50	13.559741	-142	-0.00105
40	13.559756	-127	-0.00094
30	13.559782	-101	-0.00074
20	F	Reference	
10	13.559792	-91	-0.00067
0	13.559792	-91	-0.00067
-10	13.559842	-41	-0.00030
-20	13.559850	-33	-0.00024
-30	13.559858	-25	-0.00018

Frequency versus Voltage

Reference Frequency: measured 13.559883 MHz at 20°C with 120 Vac / 60 Hz

Measured Voltage ±15% of nominal (AC)	Measured Freq. (MHz)	Freq. Drift (Hz)	Freq. Drift (%)
138	13.559875	-8	-0.00006
102	13.559883	0	0.00000

Model Tested: 402931 Report Number: 12921

1250 Peterson Dr., Wheeling, IL 60090

Title: Zebra Technologies Corp. FCCID: 128-P430I-MIFARE

47 CFR 15.225:2006 & RSS-210 Issue 6:2005

Serial# Issue Date SL07041702-ZBR-022/P430i

Issue Date 30 April 2007 Page 23 of 32

www.siemic.com

Results: RFID is activated

Frequency versus Temperature

Reference Frequency: measured 13.559083 MHz at 20°C

Temperature (Celsius)	Measured Freq. (MHz)	Freq. Drift (Hz)	Freq. Drift (%)
50	13.558975	-108	-0.00080
40	13.559008	-75	-0.00055
30	13.559025	-58	-0.00043
20	Reference		
10	13.559025	-58	-0.00043
0	13.559017	-66	-0.00049
-10	13.559217	134	0.00099
-20	13.559325	242	0.00178
-30	13.559217	134	0.00099

Frequency versus Voltage

Reference Frequency: measured 13.559083 MHz at 20°C with 120 Vac / 60 Hz

Measured Voltage ±15% of nominal (AC)	Measured Freq. (MHz)	Freq. Drift (Hz)	Freq. Drift (%)
138	13.559083	0	0.00000
102	13.559083	0	0.00000

Tested By: Kerwinn Corpuz

Date Tested: 30 April 2007