ZEBRA TECHNOLOGIES CORP

WRISTBAND PRINTER WITH RADIO 802.11B/G Model: HC100

20 May 2008 Report No.: SL08021101-ZBR-011 (15.247)(HC100) (This report supersedes NONE)

So C Part 1

C, INC.

EM

Modifications made to the product : None

This Test Report is Issued Under the Authority of:					
Allocui	Bie				
Dan Coronia	Leslie Bai				
Test Engineer	Engineering Reviewer				

This test report may be reproduced in full only. Test result presented in this test report is applicable to the representative sample only.

 Serial#
 SL08021101-ZBR-011 (15.247)(H0

 Issue Date
 20 May 2008

 Page
 2 of 50

SIEMIC ACREDITATION DETAILS: NVLAP Lab Code: 200729-0

NVLAP-01C (REV, 2006-09-13)

SIEMIC, INC. Accessing global markets

Title: To RF Test Report Zebra Technologies Corp ,Model : HC100 FCC 15.247 2007, RSS 210 Issue 7: 2007
 Serial#
 SL08021101-ZBR-011 (15.247)(HC100)

 Issue Date
 20 May 2008

 Page
 3 of 50

 wwww stemic com

SIEMIC ACREDITATION DETAILS: FCC Registration No. 783147

	FEDERAL COMMUNICATIONS COMMISSION Laboratory Division 7435 Oakland Mills Road Columbia, MD 21046
	December 20, 2007
SIEMIC Lab 2206 Ringwo San Jose, CA	oratories od Avenue, 95131
Attention:	Leslie Bai
le:	Measurement facility located at San Jose 3 & 10 meter site Date of Renewal: December 20, 2007
Dear Sir or M	Aadam:
Certification hanges made	under Parts 15 or 18 of the Commission's Rules. Please note that the file must be updated for any e to the facility and the registration must be renewed at least every three years.
Certification changes made Measurement t fee basis ma Electronic Fil	under Parts 15 or 18 of the Commission's Rules. Please note that the file must be updated for any e to the facility and the registration must be renewed at least every three years. t facilities that have indicated that they are available to the public to perform measurement services on ay be found on the FCC website <u>www.fcc.gov</u> under E-Filing, OET Equipment Authorization ling, Test Firms. Sincerely,
Certification hanges made Aeasurement fee basis ma Electronic Fil	under Parts 15 or 18 of the Commission's Rules. Please note that the file must be updated for any e to the facility and the registration must be renewed at least every three years. t facilities that have indicated that they are available to the public to perform measurement services on ay be found on the FCC website <u>www.fcc.gov</u> under E-Filing, OET Equipment Authorization ling, Test Firms. Sincerely,
Certification changes made Measurement i fee basis ma Electronic Fil	under Parts 15 or 18 of the Commission's Rules. Please note that the file must be updated for any e to the facility and the registration must be renewed at least every three years. t facilities that have indicated that they are available to the public to perform measurement services on ay be found on the FCC website <u>www.fcc.gov</u> under E-Filing, OET Equipment Authorization ling, Test Firms. Sincerely, Phyllis Parrish Industry Analyst
Certification changes made Measurement a fee basis m Electronic Fil	under Parts 15 or 18 of the Commission's Rules. Please note that the file must be updated for any e to the facility and the registration must be renewed at least every three years. t facilities that have indicated that they are available to the public to perform measurement services on ay be found on the FCC website <u>www.fcc.gov</u> under E-Filing, OET Equipment Authorization ling, Test Firms. Sincerely, Phyllis Parrish Industry Analyst
Certification changes made Measurement a fee basis ma Electronic Fil	under Parts 15 or 18 of the Commission's Rules. Please note that the file must be updated for any e to the facility and the registration must be renewed at least every three years. t facilities that have indicated that they are available to the public to perform measurement services on ay be found on the FCC website <u>www.fcc.gov</u> under E-Filing, OET Equipment Authorization ling, Test Firms. Sincerely, Phyllis Parrish Industry Analyst
Certification changes made Measurement a fee basis ma Electronic Fil	under Parts 15 or 18 of the Commission's Rules. Please note that the file must be updated for any e to the facility and the registration must be renewed at least every three years. t facilities that have indicated that they are available to the public to perform measurement services on ay be found on the FCC website <u>www.fcc.gov</u> under E-Filing, OET Equipment Authorization ling, Test Firms. Sincerely, Phyllis Parrish Industry Analyst
Certification changes made Measurement a fee basis ma Electronic Fil	under Parts 15 or 18 of the Commission's Rules. Please note that the file must be updated for any e to the facility and the registration must be renewed at least every three years. t facilities that have indicated that they are available to the public to perform measurement services on ay be found on the FCC website <u>www.fcc.gov</u> under E-Filing, OET Equipment Authorization ling, Test Firms. Sincerely, Phyllis Parrish Industry Analyst
Certification changes made Measurement a fee basis ma Electronic Fil	under Parts 15 or 18 of the Commission's Rules. Please note that the file must be updated for any e to the facility and the registration must be renewed at least every three years. t facilities that have indicated that they are available to the public to perform measurement services on ay be found on the FCC website <u>www.fcc.gov</u> under E-Filing, OET Equipment Authorization ling, Test Firms. Sincerely, Phyllis Parrish Industry Analyst

 Serial#
 SL08021101-ZBR-011 (15.247)(HC100)

 Issue Date
 20 May 2008

 Page
 4 of 50

SIEMIC ACREDITATION DETAILS: Industry of Canada Registration No. 4842-1

Canada Canada

April 28, 2006

OUR FILE: 46405-4842 Submission No: 114591

Siemic Inc. 2206 Ringwood Ave., San Jose, CA 95131

Dear Sir/Madame:

The Bureau has received your application for the Alternate Test Site and the filing is satisfactory to Industry Canada.

Please reference to the file number (4842-1) in the body of all test reports containing measurements performed on the site.

Renewal of the filing is required every two years.

If you have any questions, you may contact the Bureau at the telephone number below or by e-mail at <u>certification bureau@ic.gc.ca</u>. Please reference our file number above for all correspondence.

Yours sincerely,

Robert Corey Manager Certification Certification and Engineering Bureau 3701 Carling Ave., Building 94 Ottawa, Ontario K2H 832 Tel. No. (613) 990-3869

 Serial#
 SL08021101-ZBR-011 (15.247)(HC100)

 Issue Date
 20 May 2008

 Page
 5 of 50

SIEMIC ACREDITATION DETAILS: Japan VCCI Registration No. 2195

Voluntary Control Council for Interference by Information Technology Equipment 7F NOA Bldg, 2-3-5, Azabudai, Minato-Ku, Tokyo, Japan, 105-0041 Tet+81-3-5575-3138 Fax+81-3-5575-3138 Fax+81-3-5575-3137 http://www.vociarjp

February 12 , 2004

TO: SIEMIC, INC.

Membership NO: 2195

We confirmed your payment for annual membership fee and admission fee. Thank you very much for your remitting.

Please find enclosed VCCI documents. As admission fee and annual membership fee were confirmed, your company registered as VCCI official member.

From now on, it is possible for your company to submit conformity verification report or/and application for registration of measurement facilities.

Please find necessary forms for your submission from VCCI web-site. www.vcci.or.jp

When you submit conformity verification report, please submit to Ms. Yoko Inagaki / inagaki@vcci.or.jp and application for registration of measurement facilities, please submit to Mr. Masaru Denda / denda@vcci.or.jp

Their address, phone and fax number are absolutly same as L. Please refer address indicated on top right-hand corner of this page.

If you have any other questions regarding membership, feel free to contact me. Thank you very much.

Best Regards,

Naoko Hori (Ms.) VCCI hori®vcci.or.jp

Enclosure

RF Test Report Zebra Technologies Corp ,Model : HC100 FCC 15.247 2007, RSS 210 Issue 7: 2007

sing global markets

SL08021101-ZBR-011 (15.247)(HC100) Serial# Page

SIEMIC ACREDITATION DETAILS: Japan RF Technologies Accreditation No. MRF050927

 Serial#
 SL08021101-ZBR-011 (15.247)(HC100)

 Issue Date
 20 May 2008

 Page
 7 of 50

 www.siemic.com

SIEMIC ACREDITATION DETAILS: Korea MIC Lab Code: KR0032

 Serial#
 SL08021101-ZBR-011 (15.247)(HC100)

 Issue Date
 20 May 2008

 Page
 8 of 50

SIEMIC ACREDITATION DETAILS: Korea CAB ID: US0160

		UNITED STATES DEPARTN National Institute of Stand Gaithersburg, Maryland 20889	MENT OF COMMERCE dards and Technology
April 17, 2006			
Mr. Leslie Bai SIEMIC Laboratories 2206 Ringwood Avenue San Jose, CA. 95131			
Dear Mr. Bai:			
Conformity Assessment Body (C The pertinent information about y CAB Name: SIEMIC Laborato Identification No.: US0160	angement (MRA). Ye AB) under Appendix your laboratory's desi pries	B. Phase I Procedures, of the AP gnation is as follows:	EC Tel MRA.
Scope:			
Scope: Coverage		Standards	Date of Recognition
Scope: Coverage Electro Magnetic Interference	1. RRL Notice No Requirements f 2. Annex 8(KN-2: Conformity As Electromagneti	Standards 2005-82: Technical or Electromagnetic Interference 2), RRL Notice No. 2005-131: sessment Procedure for c Interference	Date of Recognition April 13, 2006
Electro Magnetic Susceptibility	RRL Notice No Requirements f Annex 8(KN-2) Conformity As Electromagneti RRL Notice No Requirements f Susceptibility Annex 1–7(KN -4-6, -4-8, -4-1 Conformity As Electromagneti	Standards 2005-82: Technical or Electromagnetic Interference 2), RRL Notice No. 2005-131: sessment Procedure for c Interference 2005-130: Technical or Electromagnetic -61000-4-2, -4-3, -4-4, -4-5, 1), RRL Notice No. 2005-132: sessment Procedure for a Susceptibility	Date of Recognition April 13, 2006 April 13, 2006
Electro Magnetic Interference Electro Magnetic Interference Electro Magnetic Susceptibility You may submit test data to RRL applicable requirements. The des accreditation for the designated s The names of all recognized CAB have any questions please contact continued interest in our internati Sincerely, David F. Alderman Group Leader, Standards Coordin	I. RRL Notice No Requirements f Conformity As Electromagneti I. RRL Notice No Requirements f Susceptibility Z. Annex 1–7(KN -4-6, -4-8, -4-1 Conformity As Electromagneti to verify that the equi ignation of your orgat cope remains valid an a will be posted on th t Mr. Jogindar (Joe) D onal conformity assess	Standards 2005-82: Technical or Electromagnetic Interference (), RRL Notice No. 2005-131: sessment Procedure for c Interference 2005-130: Technical or Electromagnetic -61000-4-2, -4-3, -4-4, -4-5, (), RRL Notice No. 2005-132: sessment Procedure for c Susceptibility ipment to be imported into Korea nization will remain in force as k d comply with the designation re- we NIST website at http://ts.nist.go hillon at (301) 975-5521. We ap sment activities.	Date of Recognition April 13, 2006 April 13, 2006 a satisfies the mg as its quirements. ov/mra. If you preciate your

 Serial#
 SL08021101-ZBR-011 (15.247)(HC100)

 Issue Date
 20 May 2008

 Page
 9 of 50

 www.siemic.com

SIEMIC ACREDITATION DETAILS: Taiwan BSMI Accreditation No. SL2-IN-E-1130R

UNITED STATES DEPARTMENT OF COMMERCE National Institute of Standards and Technology Geithersburg, Maryland 20898-May 3, 2006 Mr. Leslie Bai SIEMIC Laboratories 2206 Ringwood Avenue San Jose, CA 95131 Dear Mr. Bai: I am pleased to inform you that your laboratory has been recognized by the Chinese Taipei's Bureau of Standards, Metrology, and Inspection (BSMI) under the Asia Pacific Economic Cooperation (APEC) Mutual Recognition Arrangement (MRA). Your laboratory is now designated to act as a Conformity Assessment Body (CAB) under Appendix B, Phase I Procedures, of the APEC Tel MRA. You may submit test data to BSMI to verify that the equipment to be imported into Chinese Taipei satisfies the applicable requirements. The designation of your organization will remain in force as long as its accreditation for the designated scope remains valid and comply with the designation requirements. The pertinent designation information is as follows: BSMI number: SL2-IN-E-1130R (Must be applied to the test reports) 10 U.S Identification No: US0160 CNS 13438 Scope of Designation: Mr. Leslie Bai Authorized signatory: The names of all recognized CABs will be posted on the NIST website at http://ts.nist.gov/mra. If you have any questions, please contact Mr. Dhillon at 301-975-5521. We appreciate your continued interest in our international conformity assessment activities. Sincerely, 2 ach de David F. Alderman Group Leader, Standards Coordination and Conformity Group Jogindar Dhillon OUT. NIC

Serial# 20 May 2008 10 of 50 Issue Date Page

SL08021101-ZBR-011 (15.247)(HC100) www.siemic.com

SIEMIC ACREDITATION DETAILS: Taiwan NCC CAB ID: US0160

UNITED STATES DEPARTMENT OF COMMERCE National Institute of Standards and Technology Gethersburg, Maryland 20899-August 8, 2006 Mr. Leslie Bai SIEMIC Laboratories 2206 Ringwood Avenue San Jose, CA 95131 Dear Mr. Bai: I am pleased to inform you that SIEMIC Laboratories has been recognized by the Chinese Taipei's National Communications Commission (NCC) under the Asia Pacific Economic Cooperation for Telecommunications and Information, Mutual Recognition Arrangement (APEC Tel MRA). Your laboratory is now designated to act as a Conformity Assessment Body (CAB) under Appendix B, Phase I Procedures, of the APEC Tel MRA. You may submit test data to NCC to verify that the equipment to be imported into Chinese Taipei satisfies their applicable requirements using the following guidelines: Your laboratory's assigned 6-digit U.S. identification number is US0160. You should reference this number in your correspondence. The scope of designation is limited to LP0002. Your designation will remain in force as long as your accreditation remains valid for the scope of designation. If you have any questions please contact Mr. Jogindar Dhillon via email at dhillon@nist.gov or via fax at 301-975-5414. The names of all recognized laboratories will be posted on the NIST website at http://ts.nist.gov/mra. We appreciate your continued interest in our international conformity assessment activities. Sincerely, 2 ach David F. Alderman Group Leader, Standards Coordination and Conformity Group Jogindar Dhillon 000 NIST

Serial# SL08021101-Z I: HC100 Issue Date 20 May 2008 Page 11 of 50

\$
 \$\$\$ SL08021101-ZBR-011 (15.247)(HC100)\$

 Date 20 May 2008
 11 of 50
 \$\$\$ www siemic com

SIEMIC ACREDITATION DETAILS: Mexico NOM Recognition

Laboratorio Valentín V. Rivero CANIETI CAMARA NACIONAL BE LA INDUSTRIA ELECTRONICA, DE TELECOMUNICACIONES E INFORMATICA México D.F. a 16 de octubre de 2006. LESLIE BAI DIRECTOR OF CERTIFICATION SIEMIC LABORATORIES, INC. ACCESSING GLOBAL MARKETS PRESENTE En contestación a su escrito de fecha 5 de septiembre del año en curso, le comento que estamos muy interesados en su intención de firmar un Acuerdo de Reconocimiento Mutuo, para lo cual adjunto a este escrito encontrara el Acuerdo en Idioma ingles y español pretenado de los cuales le pido sea revisado y en su caso corregido, para que si esta de ecuerdo poder firmarlo para mandarlo con las autoridades Mexicanas para su visto bueno y así poder ejercer dicho ecuerdo. Aprovecho este escrito para mencionarle que nuestro intermediario gestor será la empresa Isatel de México. S. A. de C. V., empresa que ha colaborado durante mucho tiempo con nosotros en lo refacionado a la evaluación de la conformidad y que cuenta con amplia experiencia en la gestoria de la cartificación de cumplimiento con Normas Oficiales Mexicanas de producto en México. Me despido de ustad enviêndole un cordial saludo y esperando sus comentarios al Acuerdo que nos soupa Atentamente: Ing. Fausting-Bornez González Gerente Terrico del Laboratorio de GANIER. Callande Pr Hasterotria Condesa Sento Maleon, D.F. 5254-0308 con 12 linees Fax 5264-0488

Serial# SL08021101-ZBR-011 (15.247)(HC100) Issue Date 20 May 2008 Page 12 of 50

SIEMIC ACREDITATION DETAILS: Hong Kong OFTA Recognition No. D23/16V

OFTA 電訊管理局	Your Ref 來商檔號: Our Ref 本面檔號: 223/16 V Telephone 電話: (852) 2961 6320 (852) 2838 5004 E-mail 電郵地址: 20 July 2005
	Mr. Leslie Bai Director of Certification, SIEMIC Laboratories 2206 Ringwood Avenue San Jose, California 95131 USA
	Dear Mr. Bai,
	Application of Recognised Testing Agency (RTA)
	Referring your submission of 28 June 2005 in relation to the application of RTA, 1 am pleased to inform you that OFTA has appointed SIEMIC Laboratories (SIEMIC) as a Recognised Testing Agency (RTA) :
	Please note that, under the Hong Kong Telecommunications Equipment Evaluation and Certification (HKTEC) Scheme, SIEMIC is authorized to conduct evaluation tests on telecommunications equipment against the following HKTA specifications:
	Scope of recognition (HKTA Specifications) : 1001, 1002, 1004, 1006, 1007, 1008 1010, 1015, 1016 1022, 1026, 1027, 1029 1030, 1031, 1032, 1033, 1034, 1035, 1039 1041, 1042, 1043, 1045, 1047, 1048 2001
	You are requested to refer to and comply with the code of practice and guidelines for RTA as given in the Information Note OFTA I 411 "Recognised Testing Agency (RTA) for Conducting Evaluation Test of Telecommunications Equipment", which can be downloaded from OFTA's homepage at <u>http://www.ofta.gov.hk/tec/information-notes.html</u> .
	If you have any queries, please do not hesitate to contact me.
	Yours sincerely,
	lellini
	(K K Sin) for Director-General of Telecommunications
	Office of the Telecommunications Authority http://www.ofta.gov.hk 29/F Wu Chung House 213 Queen's Road East Wan Chai Hong Kong
	電 訊 管 理 局 香港湾仔皇后大道東 213 號胡忠大慶 29 字樓

This page has been left blank intentionally.

 Serial#
 SL08021101-ZBR-011 (15.247)(HC100)

 Issue Date
 20 May 2008

 Page
 14 of 50

CONTENTS

1	EXECUTIVE SUMMARY & EUT INFORMATION	.16
2	TECHNICAL DETAILS	.17
3	MODIFICATION	.18
4	TEST SUMMARY	.19
5	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS	.20
ANNE	EX A. TEST INSTRUMENT & METHOD	.42
ANNE	EX B EUT AND TEST SETUP PHOTOGRAPHS	.46
ANNE	EX C. TEST SETUP AND SUPPORTING EQUIPMENT	.46
ANNE	EX D USER MANUAL, BLOCK & CIRCUIT DIAGRAM	.50

This page has been left blank intentionally.

SIEMIC, INC. Accessing global markets

Title

RF Test Report Zebra Technologies Corp ,Model : HC100 FCC 15.247 2007, RSS 210 Issue 7: 2007 Serial# SL08021101-ZBR-011 (15.247)(HC100 Issue Date 20 May 2008 Page 16 of 50

1 Executive Summary & EUT information

The purpose of this test programme was PCII application and to demonstrate compliance of the Zebra Technologies Corp , WristBand Printer with Radio 802.11b/g Model: HC100 against the current Stipulated Standards. The WristBand Printer with Radio 802.11b/g have demonstrated compliance with the FCC 15.247 2007 and RSS 210 Issue 7 2007.

EUT Information

EUT Description	:	The HC100 is a Zebra product that integrates a Printer/Media Cartridge solution for printing on- demand patient identification wristbands. The value to the end user is significantly improved easy-of-use and high reliability in correctly identifying patients through high quality barcodes. The HC100 is a Direct Spread Spectrum device that is operation within the band of 2400- 2483.5MHz.
Model No	:	HC100
Serial No	:	0010-00-75
Input Power	:	100~240 VAC, 50~60Hz 24 VDC , 2.92A
		Power Supply - Model : FSP070-RDBM
Classification Per Stipulated Test Standard	:	Spread Spectrum System / Device

RF Test Report Zebra Technologies Corp ,Model : HC100 FCC 15.247 2007, RSS 210 Issue 7: 2007 Serial# SL08021101-ZBR-011 (15.247)(HC100) Issue Date 20 May 2008 Page 17 of 50 www.siemic.com

:	2 <u>TECHNICAL DETAILS</u>
Purpose	Compliance testing of Wristband Printer 802.11b/g with stipulated standard
Applicant / Client	Zebra Technologies Corp
Manufacturer	Zebra Technologies Corp 333 Corporate Woods Parkway. Vernon Hills, IL 60061
Laboratory performing the tests	SIEMIC Laboratories
Test report reference number	SL08021101-ZBR-011 (15.247)(HC100)
Date EUT received	21 March 2008
Standard applied	47 CFR §15.247 (2007) and RSS 210 Issue 7: 2007
Dates of test (from – to)	22 March 2008 - 25 March 2008
No of Units:	1
Equipment Category:	DTS
Trade Name:	Zebra Technologies Corp
Model :	HC100
RF Operating Frequency (ies)	2412 to 2462 MHz
Number of Channels :	11
Modulation :	CCK & OFDM
FCC ID :	I28MD-ZLAN11G
IC ID :	3798A- ZLAN11G

 Serial#
 SL08021101-ZBR-011 (15.247)(HC100)

 Issue Date
 20 May 2008

 Page
 18 of 50

 www.siemic.com

3 MODIFICATION

NONE

 Serial#
 SL08021101-ZBR-011 (15.247)(HC100)

 Issue Date
 20 May 2008

 Page
 19 of 50

4 TEST SUMMARY

The product was tested in accordance with the following specifications. All Testing has been performed according to below product classification:

Spread Spectrum System / Device

Test Results Summa	arv
--------------------	-----

Test Standard		Description	Pass / Fail		
CFR 47 Part 15.247: 2007	RSS 210 Issue 7: 2007				
15.203		Antenna Requirement	Pass		
15.205	RSS210(A8.5)	Restricted Band of Operation	Pass		
15.207(a)	RSSGen(7.2.2)	Conducted Emissions Voltage	Pass		
15.247(a)(1)	RSS210(A8.1)	Channel Separation	N/A		
15.247(a)(1)	RSS210(A8.1)	Occupied Bandwidth	Pass - Refer to RTL report no.: 2006029		
15.247(a)(2)	RSS210 (A8.2)	Bandwidth	Pass - Refer to RTL report no.: 2006029		
15.247(a)(1)	RSS210(A8.1)	Number of Hopping Channels	N/A		
15.247(a)(1)	RSS210(A8.1)	Time of Occupancy	N/A		
15.247(b)	RSS210(A8.4)	Output Power	Pass - Refer to RTL report no.: 2006029		
15.247(c)	RSS210(A8.4)	Antenna Gain > 6 dBi	Pass		
15.247(d)	RSS210(A8.5)	Conducted Spurious Emissions	Pass - Refer to RTL report no.: 2006029		
15.209; 15.247(d)	RSS210(A8.5)	Radiated Spurious Emissions	Pass		
15.247(e)	RSS210(A8.3)	Power Spectral Density	Pass - Refer to RTL report no.: 2006029		
15.247(f)	RSS210(A8.3)	Hybrid System Requirement	N/A		
15.247(g)	RSS210(A8.1)	Hopping Capability	N/A		
15.247(h)	RSS210(A8.1)	Hopping Coordination Requirement	N/A		
15.247(i)	RSSGen(5.5)	RF Exposure requirement	Pass		
	RSSGen(4.8)	Receiver Spurious Emissions	Pass		

ANSI C63.4: 2003/ RSS-Gen Issue 2: 2007

PS: All measurement uncertainties are not taken into consideration for all presented test result.

 Serial#
 SL08021101-ZBR-011 (15.247)(HC10

 Issue Date
 20 May 2008

 Page
 20 of 50

5 MEASUREMENTS, EXAMINATION AND DERIVED RESULTS

5.1 Antenna Requirement

Requirement(s): 47 CFR §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna requirement must meet at least one of the following:

- a) Antenna must be permanently attached to the device.
- b) Antenna must use a unique type of connector to attach to the device.
- c) Device must be professionally installed. Installer shall be responsible for ensuring that the correct antenna is employed with the device.

The antenna connector is SMA Reverse SMA connector type. Antenna maximum gain is -9.49dBi for 2.412–2.462 GHz band.

 Serial#
 SL08021101-ZBR-011 (15.247)(HC10

 Issue Date
 20 May 2008

 Page
 21 of 50

5.2 Conducted Emissions Voltage

Requirement :

	Conducted limit (dBµV)			
Frequency of emission (MHz)	Quasi-peak	Average		
0.15–0.5	66 to 56*	56 to 46*		
0.5–5	56	46		
5–30	60	50		

*Decreases with the logarithm of the frequency.

Procedures:

- 1. All possible modes of operation were investigated. Only the 6 worst case emissions measured, using the correct CISPR and Average detectors, are reported. All other emissions were relatively insignificant.
- 2. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
- <u>Conducted Emissions Measurement Uncertainty</u> All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 9kHz – 30MHz (Average & Quasi-peak) is ±3.86dB.
 Environmental Conditions

4.	Environmental Conditions	Temperature	25°C
		Relative Humidity	50%
		Atmospheric Pressure	1019mbar
	Test Date : March 22-25 2008		

Test Date : March 22-25 200 Tested By :Dan Coronia

Results:

 Serial#
 SL08021101-ZBR-011 (15.247)(HC100)

 Issue Date
 20 May 2008

 Page
 22 of 50

Quasi-Peak Limit

Average Limit

Frequency (MHz)	QP Value (dBµV)	Class B Limit (dB)	Pass / Fail	Margin (dB)	Avg Value (dBµV)	Class B Limit (dB)	Pass / Fail	Margin (dB)	Line
1.25	45.63	56.00	PASS	-10.37	22.99	46.00	PASS	-23.01	Neutral
0.96	45.34	56.00	PASS	-10.66	23.80	46.00	PASS	-22.20	Neutral
0.69	45.79	56.00	PASS	-10.21	26.01	46.00	PASS	-19.99	Neutral
1.20	44.03	56.00	PASS	-11.97	20.54	46.00	PASS	-25.46	Neutral
1.51	44.37	56.00	PASS	-11.63	20.54	46.00	PASS	-25.46	Neutral
1.48	43.66	56.00	PASS	-12.34	18.92	46.00	PASS	-27.08	Neutral

120V, 60Hz, Neutral Line

 Serial#
 SL08021101-ZBR-011 (15.247)(HC100)

 Issue Date
 20 May 2008

 Page
 23 of 50

Quasi-Peak Limit

Average Limit

Frequency (MHz)	QP Value (dBµV)	Class B Limit (dB)	Pass / Fail	Margin (dB)	Avg Value (dBµV)	Class B Limit (dB)	Pass / Fail	Margin (dB)	Line
1.24	45.92	56.00	PASS	-10.08	23.56	46.00	PASS	-22.44	Phase
2.05	44.14	56.00	PASS	-11.86	21.01	46.00	PASS	-24.99	Phase
2.07	43.91	56.00	PASS	-12.09	20.92	46.00	PASS	-25.08	Phase
0.96	45.75	56.00	PASS	-10.25	23.92	46.00	PASS	-22.08	Phase
0.69	46.08	56.00	PASS	-9.92	26.39	46.00	PASS	-19.61	Phase
1.50	44.88	56.00	PASS	-11.12	21.30	46.00	PASS	-24.70	Phase

120V, 60Hz, Phase Line

 Serial#
 SL08021101-ZBR-011 (15.247)(HC100)

 Issue Date
 20 May 2008

 Page
 24 of 50

5.3 6dB & 99% Occupied Bandwidth

- 1. Conducted Measurement EUT was set for low, mid, high channel with modulated mode and highest RF output power. The spectrum analyzer was connected to the antenna terminal. 2 25⁰C **Environmental Conditions** Temperature **Relative Humidity** 50% Atmospheric Pressure 1019mbar 3 Conducted Emissions Measurement Uncertainty All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz - 40GHz is ±1.5dB. 4 Test Date : March 22-25 2008
- Tested By :Dan Coronia

Requirement(s): 47 CFR §15.247(a)(1)

Procedures: The 6dB bandwidths were measured conducted using a spectrum analyzer at low, mid, and hi channels. 6 dB Bandwidth Limit: > 500 kHz.

Test Result:

 Serial#
 SL08021101-ZBR-011 (15.247)(HC100

 Issue Date
 20 May 2008

 Page
 25 of 50

5.4 Peak Spectral Density

1.	Conducted Measurement		
	EUT was set for low , mid, higl	h channel with modulated mod	e and highest RF output power.
	The spectrum analyzer was co	onnected to the antenna termin	al.
2	Conducted Emissions Measur	ement Uncertainty	
	All test measurements carried	out are traceable to national st	andards. The uncertainty of the
	measurement at a confidence	level of approximately 95% (in	the case where distributions are
	normal), with a coverage facto	r of 2, in the range 30MHz - 40)GHz is ±1.5dB.
3	Environmental Conditions	Temperature	25°C
		Relative Humidity	50%
		Atmospheric Pressure	1019mbar
4	Test Date : March 22-25 2008		
	Tested By :Dan Coronia		

Standard Requirement: 47 CFR §15.247(e)

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission

Procedures: The Peak Spectral density measurement was taken conducted using a spectrum analyzer.

RBW=3KHz, VBW > RBW, Sweep time to SPAN/RBW (sec)

Test Result:

 Serial#
 SL08021101-ZBR-011 (15.247)(HC100)

 Issue Date
 20 May 2008

 Page
 26 of 50

5.10 Peak Output Power

1. Conducted Measurement EUT was set for low, mid, high channel with modulated mode and highest RF output power. The spectrum analyzer was connected to the antenna terminal. 2 Conducted Emissions Measurement Uncertainty All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz - 40GHz is $\pm 1.5dB$. 3 **Environmental Conditions** Temperature 25°C **Relative Humidity** 50% Atmospheric Pressure 1019mbar 4 Test Date : March 22-25 2008 Tested By :Dan Coronia

Standard Requirement : 47 CFR §15.247(b)

Procedures: The peak output power was measured conducted using a spectrum analyzer at low, mid, and hi channels. Peak detector was set to measure the power output. The power is converted from watt to dBm, therefore, 1 watt = 30 dBm. The highest antenna gain that will be used is -9.49 dBi.

Test Result:

 Serial#
 SL08021101-ZBR-011 (15.247)(HC100)

 Issue Date
 20 May 2008

 Page
 27 of 50

5.10 Antenna Port Emission

1.	Conducted Measurement								
	EUT was set for low , mid, high	channel with modulated mode a	and highest RF output power.						
	The spectrum analyzer was con	nnected to the antenna terminal.							
2	Conducted Emissions Measurement Uncertainty								
	All test measurements carried of	out are traceable to national stan	dards. The uncertainty of the						
	measurement at a confidence l	evel of approximately 95% (in the	e case where distributions are						
	normal), with a coverage factor	of 2, in the range 30MHz - 40G	<u>Hz_is ±1.2dB.</u>						
3	Environmental Conditions	Temperature	25°C						
		Relative Humidity	50%						
		Atmospheric Pressure	1019mbar						
4	Test Date : March 22-25 2008								
	Tested By :Dan Coronia								

Standard Requirement : 47 CFR §15.247(d)

Procedures: The conducted spurious emissions were measured conducted using a spectrum analyzer at low, mid, and hi channels. The limit was determined by attenuating 20 dB of the RF peak power output

Test Result:

 Serial#
 SL08021101-ZBR-011 (15.247)(HC100)

 Issue Date
 20 May 2008

 Page
 28 of 50 www.siemic.com

5.10 Radiated Spurious Emission < 1GHz

1. All possible modes of operation were investigated. Only the 6 worst case emissions measured, using the correct CISPR detectors, are reported. All other emissions were relatively insignificant. 2. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency. 3. Radiated Emissions Measurement Uncertainty All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz - 1GHz (QP only @ 3m) is +6.0dB (for EUTs < 0.5m X 0.5m X 0.5m). 25°C 4 **Environmental Conditions** Temperature Relative Humidity 50% Atmospheric Pressure 1019mbar Test Date : March 22-25 2008 Tested By :Dan Coronia

Standard Requirement: 47 CFR §15.247(d)

Procedures: Radiated emissions were measured according to ANSI C63.4. The EUT was set to transmit at the highest output power. The EUT was set to transmit at mid channel. Note that setting the channel other than mid, the spurious emissions are the same.

The limit is converted from microvolts/meter to decibel microvolts/meter.

Sample Calculation: Corrected Amplitude = Raw Amplitude (dBµV/m) + ACF(dB) + Cable Loss(dB)

Test Result:

Radiated Emission Plot (Transmit Mode)

Test Data

Limit

Test Data

Frequency (MHz)	Quasi-Peak (dBµV/m) @ 3m	Antenna height (cm)	Turntable position (deg)	Polarity	Distance Factor (dB)	Corrected Amplitude @ 3m	Limit (dBµV/m)	Margin (dB)
30.03	31.42	205.00	38.00	V	0	29.02	40.00	-8.58
288.01	43.56	107.00	139.00	Н	0	30.37	46.00	-2.44
40.92	27.56	190.00	36.00	V	0	27.59	40.00	-12.44
56.30	23.24	181.00	103.00	V	0	37.04	40.00	-16.76
81.85	32.47	128.00	293.00	V	0	38.68	40.00	-7.53
59.17	26.31	212.00	32.00	V	0	35.52	40.00	-13.69

Radiated Emission Plot (Receive Mode)

Test Data

Limit

Test Data

Frequency (MHz)	Quasi-Peak (dBµV/m) @ 3m	Antenna height (cm)	Turntable position (deg)	Polarity	Distance Factor (dB)	Corrected Amplitude @ 3m	Limit (dBµV/m)	Margin (dB)
37.79	29.02	104	48	V	0	29.02	40	-10.98
33.74	30.37	114	138	V	0	30.37	40	-9.63
39.76	27.59	111	35	V	0	27.59	40	-12.41
192.0	37.04	126	264	Н	0	37.04	43.5	-6.46
287.98	38.68	104	118	Н	0	38.68	46	-7.32
188.61	35.52	121	248	Н	0	35.52	43.5	-7.98

 Serial#
 SL08021101-ZBR-011 (15.247)(HC100)

 Issue Date
 20 May 2008

 Page
 31 of 50 www.siemic.com

50%

1019mbar

5.10 Radiated Spurious Emissions > 1GHz & Band Edge

- 1. <u>All possible modes of operation were investigated</u>. Only the 6 worst case emissions measured, using the correct CISPR detectors, are reported. All other emissions were relatively insignificant.
- 2. <u>A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the</u> particular frequency.
- Radiated Emissions Measurement Uncertainty All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 1GHz – 40GH is +6.0dB (for EUTs < 0.5m X 0.5m X 0.5m).
 Environmental Conditions Temperature 25°C

Relative Humidity Atmospheric Pressure Test Date : March 22-25 2008

Tested By : Dan Coronia

Standard Requirement: 47 CFR §15.247(d)

Procedures: Equipment was setup in a semi-anechoic chamber. For measurements above 1 GHz an average measurement was taken with a 10Hz video bandwidth. The EUT was tested at low, mid and high with the highest output power. Investigated up to 10th harmonic of the operating frequency.

Sample Calculation:

EUT Field Strength = Raw Amplitude(dBµV/m) – Amplifier Gain(dB) + Antenna Factor(dB) + Cable Loss(dB) + Filter Attenuation(dB, if used)

Test Result:

SIEMIC, INC. Accessing global markets RF Test Report Zebra Technologies Corp ,Model : HC100 FCC 15.247 2007, RSS 210 Issue 7: 2007

 Serial#
 SL08021101-ZBR-011 (15.247)(HC100)

 Issue Date
 20 May 2008

 Page
 32 of 50

802.11b @ 2412MHz @ 3 Meter

Frequency (GHz)	Azimuth (Degrees)	Antenna Polarity (H/V)	Height (m)	Raw Amp. @ 1m (dBuV)	Pre Amp. (dB)	Ant .Corr. Factor (dB)	Cable Loss (dB)	EUT Final Field Strength (dBuV/m)	Limit @ 3m (dBuV/m)	Delta (dBuV/m)	Detector (pk/avg)
4.824	148	V	1.6	50.60	32.49	33	4.125	55.235	74	-18.765	Peak
4.824	281	Н	1.3	52.93	32.49	33	4.125	57.565	74	-16.435	Peak
4.824	148	V	1.6	32.90	32.49	33	4.125	37.535	54	-16.465	Ave
4.824	281	Н	1.3	40.33	32.49	33	4.125	44.965	54	-9.035	Ave

Emission was scanned up to 25GHz.

Title

802.11b @ 2437MHz @ 3 Meter

Frequency (GHz)	Azimuth (Degrees)	Antenna Polarity (H/V)	Height (m)	Raw Amp. @ 1m (dBuV)	Pre Amp. (dB)	Ant .Corr. Factor (dB)	Cable Loss (dB)	EUT Final Field Strength (dBuV/m)	Limit @ 3m (dBuV/m)	Delta (dBuV/m)	Detector (pk/avg)
4.874	218	V	1.0	50.12	32.49	33	4.125	54.755	74	-19.245	Peak
4.874	272	Н	1.3	49.65	32.49	33	4.125	54.285	74	-19.715	Peak
4.874	218	V	1.0	43.84	32.49	33	4.125	48.475	54	-5.525	Ave
4.874	272	Н	1.3	46.61	32.49	33	4.125	51.245	54	-2.755	Ave

Emission was scanned up to 25GHz.

Frequency (GHz)	Azimuth (Degrees)	Antenna Polarity (H/V)	Height (m)	Raw Amp. @ 1m (dBuV)	Pre Amp. (dB)	Ant .Corr. Factor (dB)	Cable Loss (dB)	EUT Final Field Strength (dBuV/m)	Limit @ 3m (dBuV/m)	Delta (dBuV/m)	Detector (pk/avg)
4.924	221	V	1.3	50.23	32.49	33	4.125	54.865	74	-19.135	Peak
4.924	262	Н	1.2	49.75	32.49	33	4.125	54.385	74	-19.615	Peak
4.924	221	V	1.3	46.49	32.49	33	4.125	51.125	54	-2.875	Ave
4.924	262	Н	1.2	47.11	32.49	33	4.125	51.745	54	-2.255	Ave

802.11b @ 2462MHz @ 3 Meter

Emission was scanned up to 25GHz.

Note: No more emissions were found for the succeeding harmonics only noise floor.

 Serial#
 SL08021101-ZBR-011 (15.247)(HC100)

 Issue Date
 20 May 2008

 Page
 33 of 50

802.11g @ 2412MHz @ 3 Meter

Frequency (GHz)	Azimuth (Degrees)	Antenna Polarity (H/V)	Height (m)	Raw Amp. @ 1m (dBuV)	Pre Amp. (dB)	Ant .Corr. Factor (dB)	Cable Loss (dB)	EUT Final Field Strength (dBuV/m)	Limit @ 3m (dBuV/m)	Delta (dBuV/m)	Detector (pk/avg)
4.824	248	V	1.3	43.79	32.49	33	4.125	48.425	74	-25.575	Peak
4.824	258	Н	1.2	50.70	32.49	33	4.125	55.335	74	-18.665	Peak
4.824	248	V	1.3	31.19	32.49	33	4.125	35.825	54	-18.175	Ave
4.824	258	Н	1.2	37.86	32.49	33	4.125	42.495	54	-11.505	Ave

Emission was scanned up to 25GHz.

802.11g @ 2437MHz @ 3 Meter

Frequency (GHz)	Azimuth (Degrees)	Antenna Polarity (H/V)	Height (m)	Raw Amp. @ 1m (dBuV)	Pre Amp. (dB)	Ant .Corr. Factor (dB)	Cable Loss (dB)	EUT Final Field Strength (dBuV/m)	Limit @ 3m (dBuV/m)	Delta (dBuV/m)	Detector (pk/avg)
4.874	213	V	1.3	45.61	32.49	33	4.125	50.245	74	-23.755	Peak
4.874	257	Н	1.2	51.27	32.49	33	4.125	55.905	74	-18.095	Peak
4.874	213	V	1.3	37.76	32.49	33	4.125	42.395	54	-11.605	Ave
4.874	257	Н	1.2	38.34	32.49	33	4.125	42.975	54	-11.025	Ave

Emission was scanned up to 25GHz.

802.11g @ 2462MHz @ 3 Meter

Frequency (GHz)	Azimuth (Degrees)	Antenna Polarity (H/V)	Height (m)	Raw Amp. @ 1m (dBuV)	Pre Amp. (dB)	Ant .Corr. Factor (dB)	Cable Loss (dB)	EUT Final Field Strength (dBuV/m)	Limit @ 3m (dBuV/m)	Delta (dBuV/m)	Detector (pk/avg)
4.924	164	V	1.3	51.84	32.49	33	4.125	56.475	74	-17.525	Peak
4.924	243	Н	1.3	53.15	32.49	33	4.125	57.785	74	-16.215	Peak
4.924	164	V	1.3	38.83	32.49	33	4.125	43.465	54	-10.535	Ave
4.924	243	Н	1.3	40.13	32.49	33	4.125	44.765	54	-9.235	Ave

Emission was scanned up to 25GHz.

Note: No more emissions were found for the succeeding harmonics only noise floor.

Band Edge Plots

802.11b Low Channel-Vertical Polarity -Peak

802.11b Low Channel-Vertical Polarity – Average

802.11b Low Channel-Horizontal Polarity -Average

802.11b High Channel-Vertical Polarity - Average

802.11b High Channel-Horizontal Polarity -Average

802.11g Low Channel-Vertical Polarity – Average

802.11g Low Channel-Horizontal Polarity –Average

802.11g High Channel-Vertical Polarity -average

802.11g High Channel-Horizontal Polarity –Average

 Serial#
 SL08021101-ZBR-011 (15.247)(HC100)

 Issue Date
 20 May 2008

 Page
 42 of 50

Annex A. TEST INSTRUMENT & METHOD

Annex A.i. TEST INSTRUMENTATION & GENERAL PROCEDURES

Instrument	Manufacturer	Model	CAL Due Date
Spectrum Analyzer	HP	8564E	04/26/2009
EMI Receiver	Rohde & Schwarz	ESIB 40	04/25/2009
R&S LISN	R&S	ESH2-Z5	04/24/2009
CHASE LISN	Chase	MN2050B	04/24/2009
Antenna(1 ~18GHz)	Emco	3115	10/04/2008
Antenna (30MHz~2GHz)	Sunol Sciences	JB1	10/04/2008
Chamber	Lingren	3m	04/18/2009
Pre-Amplifier(1 ~ 26GHz)	HP	8449	04/24/2009
DMM	Fluke	73111	04/25/2009
Variac	KRM	AEEC-2090	See Note
DMM	Fluke	5111	See Note
Horn Antenna (18~40GHz)	Com Power	AH-840	03/19/2010
Microwave Pre-Amp (18~40GHz)	Com Power	PA-840	5/21/2010

Note: No calibration required.

 Serial#
 SL08021101-ZBR-011 (15.247)(HC100)

 Issue Date
 20 May 2008

 Page
 43 of 50 www.siemic.com

Annex A.ii. CONDUCTED EMISSIONS TEST DESCRIPTION

Test Set-up

- 1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m x 1m x 0.8m high, non-metallic table, as shown in <u>Annex B</u>.
- 2. The power supply for the EUT was fed through a $50\Omega/50\mu$ H EUT LISN, connected to filtered mains.
- 3. The RF OUT of the EUT LISN was connected to the EMI test receiver via a low-loss coaxial cable.
- 4. All other supporting equipments were powered separately from another main supply.

Test Method

- 1. The EUT was switched on and allowed to warm up to its normal operating condition.
- 2. A scan was made on the NEUTRAL line (for AC mains) or Earth line (for DC power) over the required frequency range using an EMI test receiver.
- 3. High peaks, relative to the limit line, were then selected.
- 4. The EMI test receiver was then tuned to the selected frequencies and the necessary measurements made with a receiver bandwidth setting of 10 KHz. For FCC tests, only Quasi-peak measurements were made; while for CISPR/EN tests, both Quasi-peak and Average measurements were made.
- 5. Steps 2 to 4 were then repeated for the LIVE line (for AC mains) or DC line (for DC power).

Sample Calculation Example

At 20 MHz	limit = 250 μ V = 47.96 dB μ V	
Transducer factor of LISN, pulse limiter & cable loss at 20 MHz = 11.20 dB		
Q-P reading obtained directly from EMI Receiver = 40.00 dB μ V (Calibrated for system losses)		
Therefore, Q-P margin = 47.96 - 40.00 = 7.96	i.e. 7.96 dB below limit	

 Serial#
 SL08021101-ZBR-011 (15.247)(HC100)

 Issue Date
 20 May 2008

 Page
 44 of 50 www.siemic.com

Annex A. iii RADIATED EMISSIONS TEST DESCRIPTION

EUT Characterisation

EUT characterisation, over the frequency range from 30MHz to 10th Harmonic , was done in order to minimise radiated emissions testing time while still maintaining high confidence in the test results.

The EUT was placed in the chamber, at a height of about 0.8m on a turntable. Its radiated emissions frequency profile was observed, using a spectrum analyzer /receiver with the appropriate broadband antenna placed 3m away from the EUT. Radiated emissions from the EUT were maximised by rotating the turntable manually, changing the antenna polarisation and manipulating the EUT cables while observing the frequency profile on the spectrum analyzer / receiver. Frequency points at which maximum emissions occurred, clock frequencies and operating frequencies were then noted for the formal radiated emissions test at the Open Area Test Site (OATS).

Test Set-up

- 1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m X 1.0m X 0.8m high, non-metallic table.
- 2. The filtered power supply for the EUT and supporting equipment were tapped from the appropriate power sockets located on the turntable.
- 3. The relevant broadband antenna was set at the required test distance away from the EUT and supporting equipment boundary.

 Serial#
 SL08021101-ZBR-011 (15.247)(HC100)

 Issue Date
 20 May 2008

 Page
 45 of 50 www.siemic.com

Test Method

The following procedure was performed to determine the maximum emission axis of EUT:

1. With the receiving antenna is H polarization, rotate the EUT in turns with three orthogonal axes to determine the axis of maximum emission.

2. With the receiving antenna is V polarization, rotate the EUT in turns with three orthogonal axes to determine the axis of maximum emission.

3. Compare the results derived from above two steps. So, the axis of maximum emission from EUT was determined and the configuration was used to perform the final measurement.

Final Radiated Emission Measurement

1. Setup the configuration according to figure 1. Turn on EUT and make sure that it is in normal function.

2. For emission frequencies measured below 1 GHz, a pre-scan is performed in a shielded chamber to determine the accurate frequencies of higher emissions will be checked on a open test site. As the same purpose, for emission frequencies measured above 1 GHz, a pre-scan also be performed with a 1 meter measuring distance before final test.

3. For emission frequencies measured below and above 1 GHz, set the spectrum analyzer on a 100 kHz and 1 MHz resolution bandwidth respectively for each frequency measured in step 2.

4. The search antenna is to be raised and lowered over a range from 1 to 4 meters in horizontally polarized orientation. Position the highness when the highest value is indicated on spectrum analyzer, then change the orientation of EUT on test table over a range from $0 \circ to 360 \circ$ with a speed as slow as possible, and keep the azimuth that highest emission is indicated on the spectrum analyzer. Vary the antenna position again and record the highest value as a final reading.

5. Repeat step 4 until all frequencies need to be measured were complete.

6. Repeat step 5 with search antenna in vertical polarized orientations.

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	Peak	100 kHz	100 kHz
Above 1000	Peak	1 MHz	1 MHz
	Average	1 MHz	10 Hz

Sample Calculation Example

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. For the limit is employed average value, therefore the peak value can be transferred to average value by subtracting the duty factor. The basic equation with a sample calculation is as follows: Peak = Reading + Corrected Factor

where

Corr. Factor = Antenna Factor + Cable Factor - Amplifier Gain (if any) And the average value is Average = Peak Value + Duty Factor or

Set RBW = 1MHz, VBW = 10Hz.

Note :

If the measured frequencies are fall in the restricted frequency band, the limit employed must be quasi peak value when frequencies are below or equal to 1 GHz. And the measuring instrument is set to quasi peak detector function.

 Serial#
 SL08021101-ZBR-011 (15.247)(HC100)

 Issue Date
 20 May 2008

 Page
 46 of 50

 www.siemic.com

Annex B EUT AND TEST SETUP PHOTOGRAPHS

Please see the attachment

Annex C. TEST SETUP AND SUPPORTING EQUIPMENT

EUT TEST CONDITIONS

Annex C. i. SUPPORTING EQUIPMENT DESCRIPTION

The following is a description of supporting equipment and details of cables used with the EUT.

Equipment Description (Including Brand Name)	Model & Serial Number	Cable Description (List Length, Type & Purpose)
PC Laptop / DELL	Latitude DS520	USB & Serial Cable , 1meter
		From PC Laptop to EUT

Block Configuration Diagram for Radiated Emission

Block Configuration Diagram for Conducted Emission

 Serial#
 SL08021101-ZBR-011 (15.247)(HC100)

 Issue Date
 20 May 2008

 Page
 49 of 50

Annex C.ii. EUT OPERATING CONDITIONS

The following is the description of how the EUT was exercised during testing.

Test	Description Of Operation
Emissions Testing	The EUT was connected to PC and configured using manufacturer's program for continuous printing to simulate the worst case.
Others Testing	The EUT was connected to PC and configured using manufacturer's program for TX mode with full power to simulate the worst case.

 Serial#
 SL08021101-ZBR-011 (15.247)(HC100)

 Issue Date
 20 May 2008

 Page
 50 of 50

 WHAT Science com

Annex D USER MANUAL, BLOCK & CIRCUIT DIAGRAM

Please see attachment