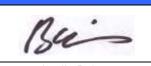

ZEBRA TECHNOLOGIES CORP

BLUETOOTH MODULE

Model: EYSMACAXX

Mar 02 2011 Report No.: SL11012304-ZBR-003(FCC FHSS) rev 1.0 (This report supersedes SL11012304-ZBR-003(FCC FHSS))



Modifications made to the product : None

This Test Report is Issued Under the Authority of:

Choon Sian Ooi Compliance Engineer

(uL

Leslie Bai Director of Certification

This test report may be reproduced in full only. All Test Data Presented in this report is only applicable to presented Test sample.

Title

То

Accessing global markets RF Test Report of Zebra Technologies Corp Model : EYSMACAXX FCC 15.247:2010 & RSS-210 Issue 8 : 2010

 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

 Issue Date
 Mar 02 2011

 Page
 2 of 80 www.siemic.com

Laboratory Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to <u>testing</u> and <u>certification</u>, SIEMIC provides initial design reviews and <u>compliance</u> <u>management</u> through out a project. Our extensive experience with <u>China</u>, <u>Asia Pacific</u>, <u>North America</u>, <u>European</u>, <u>and international</u> compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the global markets.

	Accreditations for comonnity Assessment						
Country/Region	Accreditation Body	Scope					
USA	FCC, A2LA	EMC , RF/Wireless , Telecom					
Canada	IC, A2LA, NIST	EMC, RF/Wireless , Telecom					
Taiwan	BSMI , NCC , NIST	EMC, RF, Telecom , Safety					
Hong Kong	OFTA , NIST	RF/Wireless ,Telecom					
Australia	NATA, NIST	EMC, RF, Telecom , Safety					
Korea	KCC/RRA, NIST	EMI, EMS, RF , Telecom, Safety					
Japan	VCCI, JATE, TELEC, RFT	EMI, RF/Wireless, Telecom					
Mexico	NOM, COFETEL, Caniety	Safety, EMC , RF/Wireless, Telecom					
Europe	A2LA, NIST	EMC, RF, Telecom , Safety					

Accreditations for Conformity Assessment

Accreditations for Product Certifications

Country	Accreditation Body	Scope
USA	FCC TCB, NIST	EMC , RF , Telecom
Canada	IC FCB , NIST	EMC , RF , Telecom
Singapore	iDA, NIST	EMC , RF , Telecom
EU	NB, NIST	EMC,RF,Safety,Telecom

 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

 Issue Date
 Mar 02 2011

 Page
 3 of 80

 www.siemic.com

This page has been left blank intentionally.

<u>CONTENTS</u>

1	EXECUTIVE SUMMARY & EUT INFORMATION	6
2	TECHNICAL DETAILS	7
3	MODIFICATION	8
4	TEST SUMMARY	9
5	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS	.10
ANN	EX A. TEST INSTRUMENT & METHOD	.48
ANN	EX B EUT AND TEST SETUP PHOTOGRAPHS	.52
ANN	EX C. TEST SETUP AND SUPPORTING EQUIPMENT	.52
ANN	EX D USER MANUAL, BLOCK DIAGRAM, CIRCUIT DIAGRAM	.56
ANN	EX E SIEMIC ACCREDITATION	.57

 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

 Issue Date
 Mar 02 2011

 Page
 5 of 80

 www.siemic.com

This page has been left blank intentionally.

Serial# SL11012304-ZBR-003(FCC FHSS) rev 1.0 Issue Date Mar 02 2011 6 of 80 Page www.siemic.com

Executive Summary & EUT information 1

The purpose of this test programmed was to demonstrate compliance of the Zebra Technologies Corp , Zebra Embedded BT radio, Model: EYSMACAXX with host QLn220 and QLn320 against the current Stipulated Standards. The Bluetooth Module have demonstrated compliance with the FCC 15.247:2010 & RSS-210 Issue 8 : 2010.

The test has demonstrated that this unit complies with stipulated standards.

		EUT Information
EUT Description	:	Bluetooth Module
Model No	:	EYSMACAXX
Serial No	:	
Input Power	:	3.3VDC, 42mA
Classification Per Stipulated Test Standard	:	Spread Spectrum System / Device

 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

 Issue Date
 Mar 02 2011

 Page
 7 of 80

 www.siemic.com

2 TECHNICAL DETAILS

Purpose	Compliance testing of Bluetooth Module model EYSMACAXX with stipulated standard
Applicant / Client	Zebra Technologies Corp
Manufacturer	Zebra Technologies Corp 333 Corporate Woods Parkway. Vernon Hills, IL 60061
Laboratory performing the tests	SIEMIC Laboratories
Test report reference number	SL11012304-ZBR-003(FCC FHSS) rev 1.0
Date EUT received	Feb 10th 2011
Standard applied	See Page 9
Dates of test (from – to)	14 Feb 2011 ~ 1 March 2011
No of Units:	1
Equipment Category:	DSS
Trade Name:	Zebra Technologies Corp
Model Name:	EYSMACAXX
RF Operating Frequency (ies)	Bluetooth : 2402MHz - 2480MHz
Number of Channels:	Bluetooth : 79Ch
Modulation:	Bluetooth : FHSS
FCC ID:	I28MD-ZBR5QLN
IC ID:	3798B-ZBR5QLN

 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

 Issue Date
 Mar 02 2011

 Page
 8 of 80

 www.siemic.com

3 MODIFICATION

NONE

 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

 Issue Date
 Mar 02 2011

 Page
 9 of 80

 www.siemic.com

4 TEST SUMMARY

The product was tested in accordance with the following specifications. All testing has been performed according to below product classification:

Spread Spectrum System / Device

Test Results Summary

Test Standard		Description	Pass / Fail
CFR 47 Part 15.247: 2009	RSS 210 Issue 8: 2010		
15.203		Antenna Requirement	Pass
15.205	RSS210(A8.5)	Restricted Band of Operation	Pass
15.207(a)	RSSGen(7.2.2)	Conducted Emissions Voltage	Pass
15.247(a)(1)	RSS210(A8.1)	Channel Separation	Pass
15.247(a)(1)	RSS210(A8.1)	Occupied Bandwidth	N/A
15.247(a)(2)	RSS210 (A8.2)	6 dB&20dB Bandwidth	Pass
15.247(a)(1)	RSS210(A8.1)	Number of Hopping Channels	Pass
15.247(a)(1)	RSS210(A8.1)	Time of Occupancy	Pass
15.247(b)	RSS210(A8.4)	Output Power	Pass
15.247(c)	RSS210(A8.4)	Antenna Gain > 6 dBi	N/A
15.247(d)	RSS210(A8.5)	Conducted Spurious Emissions	Pass
15.209; 15.247(d)	RSS210(A8.5)	Radiated Spurious Emissions	Pass
15.247(e)	RSS210(A8.3)	Power Spectral Density	N/A
15.247(f)	RSS210(A8.3)	Hybrid System Requirement	N/A
15.247(g)	RSS210(A8.1)	Hopping Capability	Pass
15.247(h)	RSS210(A8.1)	Hopping Coordination Requirement	Pass
15.247(i)	RSSGen(5.5)	RF Exposure requirement	Pass
	RSSGen(4.8)	Receiver Spurious Emissions	Pass

ANSI C63.4: 2003/ RSS-Gen Issue 3: 2010

PS: All measurement uncertainties are not taken into consideration for all presented test result.

Note: EUT supports different data rates and multiple channels, only the worse case test result with maximum data rates at Low, Mid, High channels are presented in this report.

 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

 Issue Date
 Mar 02 2011

 Page
 10 of 80

 www.siemic.com

5 MEASUREMENTS, EXAMINATION AND DERIVED RESULTS

5.1 Antenna Requirement

Requirement(s): 47 CFR §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna requirement must meet at least one of the following:

- a) Antenna must be permanently attached to the device.
- b) Antenna must use a unique type of connector to attach to the device.
- c) Device must be professionally installed. Installer shall be responsible for ensuring that the correct antenna is employed with the device.

EUT use a unique type of antenna connector to attach to the device.

Results: PASS

 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

 Issue Date
 Mar 02 2011

 Page
 11 of 80

 www.siemic.com

5.2 Conducted Emissions Voltage

Requirement:

	Conducted limit (dBµV)		
Frequency of emission (MHz)	Quasi-peak	Average	
0.15–0.5	66 to 56*	56 to 46*	
0.5–5	56	46	
5–30	60	50	

*Decreases with the logarithm of the frequency.

Procedures:

- 1. All possible modes of operation were investigated. Only the 6 worst case emissions measured, using the correct CISPR and Average detectors, are reported. All other emissions were relatively insignificant.
- 2. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.

3. <u>Conducted Emissions Measurement Uncertainty</u> All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 9kHz – 30MHz (Average & Quasi-peak) is ±3.86 dB.

4. Environmental Conditions Temperature Relative Humi

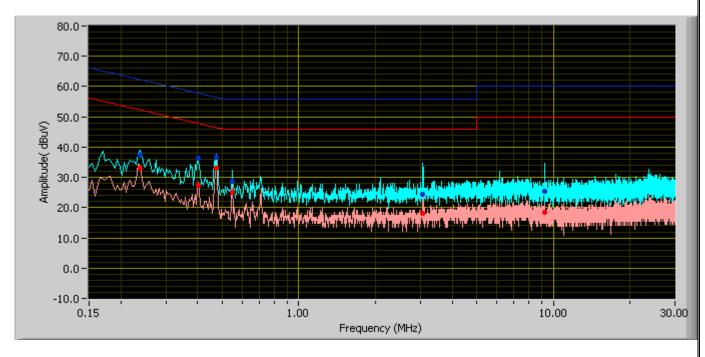
Relative Humidity Atmospheric Pressure 24°C 52% 1019mbar

Test Date : Feb 14-Mar 01 2011 Tested By :Choon Sian Ooi

Results: Pass

SIEMIC, INC.

Title To Accessing global markets RF Test Report of Zebra Technologies Corp Model : EYSMACAXX FCC 15.247:2010 & RSS-210 Issue 8 : 2010


 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

 Issue Date
 Mar 02 2011

 Page
 12 of 80

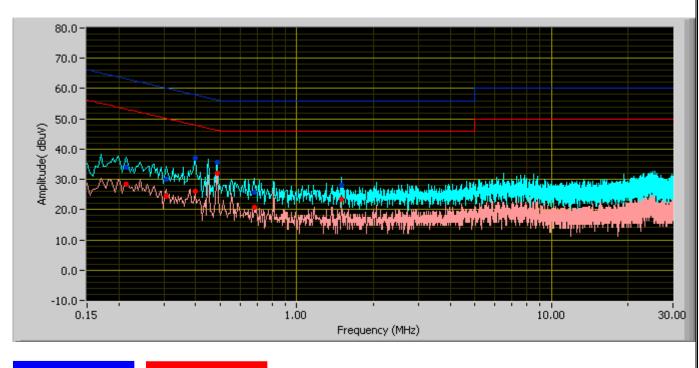
 www.siemic.com

Host: QLn320

Quasi-Peak Limit

Average Limit

Phase Line Plot at 120Vac, 60Hz


Frequency (MHz)	QP Value (dBµV)	Class B Limit (dB)	Margin (dB)	Avg Value (dBµV)	Class B Limit (dB)	Margin (dB)	Line
0.47	36.68	56.45	-19.77	33.03	46.45	-13.42	Phase
3.07	24.30	56.00	-31.70	18.28	46.00	-27.72	Phase
0.40	36.22	57.84	-21.62	27.36	47.84	-20.48	Phase
0.24	37.26	62.28	-25.02	32.96	52.28	-19.33	Phase
0.55	28.84	56.00	-27.16	25.21	46.00	-20.79	Phase
9.22	25.52	60.00	-34.48	18.48	50.00	-31.52	Phase

Title To Accessing global markets RF Test Report of Zebra Technologies Corp Model : EYSMACAXX FCC 15.247:2010 & RSS-210 Issue 8 : 2010
 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

 Issue Date
 Mar 02 2011

 Page
 13 of 80

 www.siemic.com

Quasi-Peak Limit

Average Limit

Frequency (MHz)	QP Value (dBµV)	Class B Limit (dB)	Margin (dB)	Avg Value (dBμV)	Class B Limit (dB)	Margin (dB)	Line
0.49	35.78	56.24	-20.45	32.07	46.24	-14.16	Neutral
0.40	36.82	57.93	-21.11	26.02	47.93	-21.90	Neutral
1.50	28.08	56.00	-27.92	23.57	46.00	-22.43	Neutral
0.68	25.72	56.00	-30.28	20.86	46.00	-25.14	Neutral
0.21	33.93	63.18	-29.25	28.25	53.18	-24.93	Neutral
0.31	29.90	60.15	-30.26	24.41	50.15	-25.74	Neutral

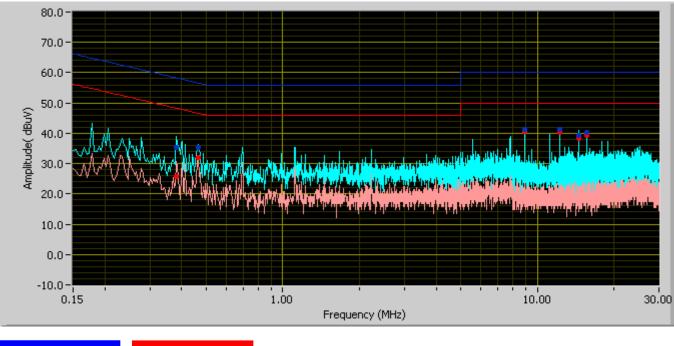
Neutral Line Plot at 120Vac, 60Hz

SIEMIC, INC.

Title

То

Accessing good markets RF Test Report of Zebra Technologies Corp Model : EYSMACAXX FCC 15.247:2010 & RSS-210 Issue 8 : 2010


 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

 Issue Date
 Mar 02 2011

 Page
 14 of 80

 www.siemic.com

Host: QLn220

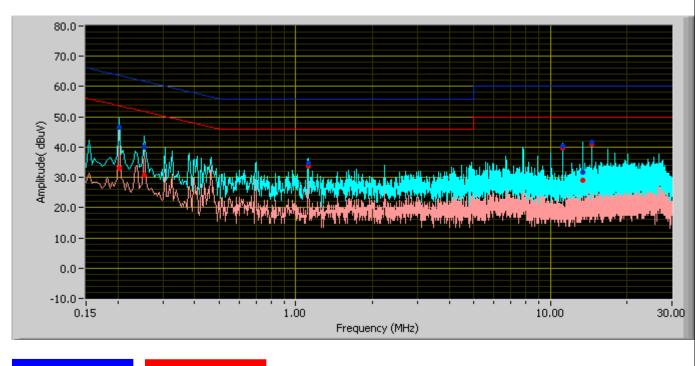
Qua	si-Pea	k L	imit

Average Limit

QP Margin Avg Margin Frequency (MHz) **Class B Limit Class B Limit** Value Value Line (dB) (dB) (dBµV) (dB) (dBµV) (dB) Phase 12.28 41.13 60.00 -18.87 40.45 50.00 -9.55 14.51 39.32 60.00 -20.68 50.00 -11.61 Phase 38.39 0.38 58.28 -23.01 48.28 -22.55 Phase 35.27 25.72 15.63 40.13 60.00 -19.87 39.21 50.00 -10.79 Phase 8.93 41.18 60.00 -18.82 40.57 50.00 -9.43 Phase 0.47 35.29 56.59 -21.30 31.92 46.59 -14.67 Phase

Phase Line Plot at 120Vac, 60Hz

SIEMIC, INC.


Accessing global maritets
Title: RF Test Report of Zebra Technologies Corp
Model : EYSMACAXX
To FCC 15.247:2010 & RSS-210 Issue 8 : 2010

 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

 Issue Date
 Mar 02 2011

 Page
 15 of 80

 www.siemic.com

Quasi-Peak Limit

Average Limit

Frequency (MHz)	QP Value (dBµV)	Class B Limit (dB)	Margin (dB)	Avg Value (dBμV)	Class B Limit (dB)	Margin (dB)	Line
0.20	46.63	63.67	-17.04	33.07	53.67	-20.60	Neutral
0.25	40.08	61.73	-21.65	30.76	51.73	-20.97	Neutral
14.51	41.58	60.00	-18.42	40.98	50.00	-9.02	Neutral
13.40	31.58	60.00	-28.42	28.91	50.00	-21.09	Neutral
11.17	40.45	60.00	-19.55	39.79	50.00	-10.21	Neutral
1.12	34.65	56.00	-21.35	33.60	46.00	-12.40	Neutral

Neutral Line Plot at 120Vac, 60Hz

 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

 Issue Date
 Mar 02 2011

 Page
 16 of 80

 www.siemic.com

5.3 Channel Separation

Conducted Measurement

1. EUT was set for low , mid, high channel with modulated mode and highest RF output power. The spectrum analyzer was connected to the antenna terminal.

2	Environmental Conditions	Temperature	25°C
		Relative Humidity	50%
		Atmospheric Pressure	1019mbar
	Conducted Emissions Measuremen	nt Uncertainty	
3	All test measurements carried out a	are traceable to national standards.	The uncertainty of the
3	confidence level of approximately 9	5% (in the case where distributions	are normal), with a cov

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz – 40GHz is ±1.5dB.
 Test Date : Feb 14-Mar 01 2011

4 Tested By :Choon Sian Ooi

Requirement(s): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Procedures: The Channel Separation was measured conducted using a spectrum analyzer at low, mid, and high channels.

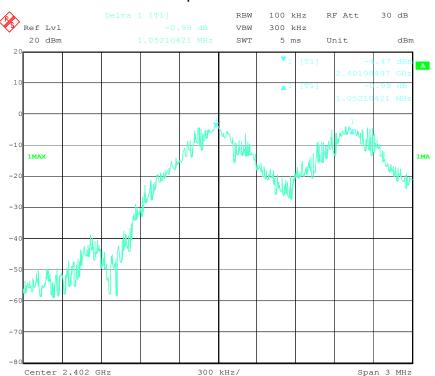
Conniguration . Didetootin mode			
Channel	Channel Frequency (MHz)	Channel Separation (MHz)	Limit (20dB bandwidth) (KHz)
Low	2402	1.052	949.89
Mid	2441	1.016	949.89
High	2480	1.016	865.73

Configuration : Bluetooth Mode

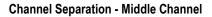
Refer to the attached plots.

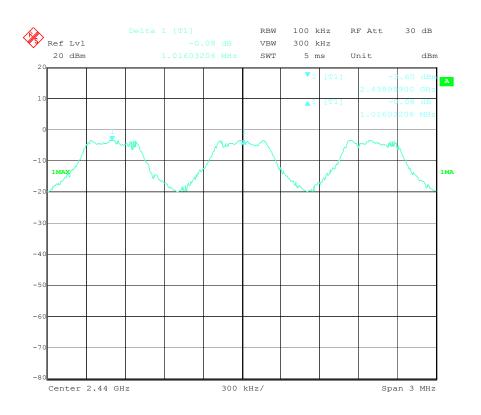
SIEMIC, INC.

Title:


То

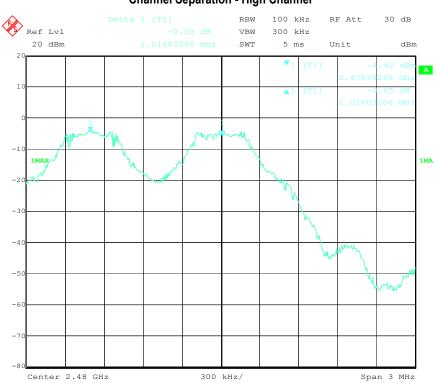
RF Test Report of Zebra Technologies Corp Model : EYSMACAXX FCC 15.247:2010 & RSS-210 Issue 8 : 2010
 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0


 Issue Date
 Mar 02 2011


 Page
 17 of 80

 www.siemic.com

Channel Separation - Low Channel



Title: To RF Test Report of Zebra Technologies Corp Model : EYSMACAXX FCC 15.247:2010 & RSS-210 Issue 8 : 2010
 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

 Issue Date
 Mar 02 2011

 Page
 18 of 80

 www.siemic.com

Channel Separation - High Channel

 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

 Issue Date
 Mar 02 2011

 Page
 19 of 80

 www.siemic.com

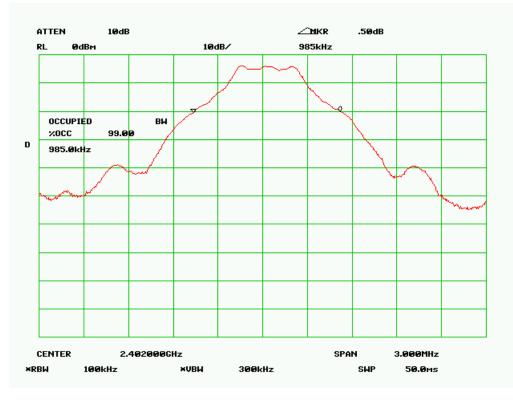
5.4 99% Occupied Bandwidth

- 1. Conducted Measurement EUT was set for low , mid, high channel with modulated mode and highest RF output power. The spectrum analyzer was connected to the antenna terminal. 2 **Environmental Conditions** Temperature 23°C **Relative Humidity** 50% Atmospheric Pressure 1019mbar 3 Conducted Emissions Measurement Uncertainty All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz - 40GHz is $\pm 1.5dB$. Test Date : Feb 14-Mar 01 2011 4
- Tested By :Choon Sian Ooi

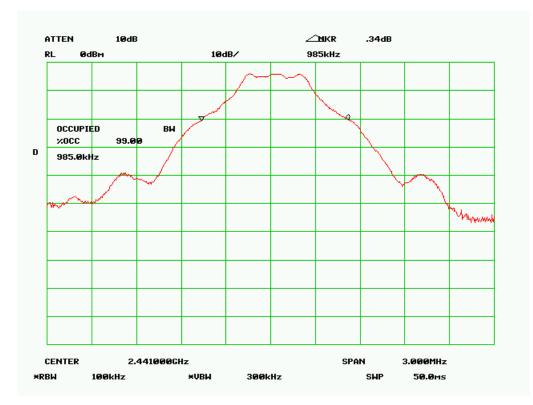
Requirement(s):

Procedures:

Results:


 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

 Issue Date
 Mar 02 2011

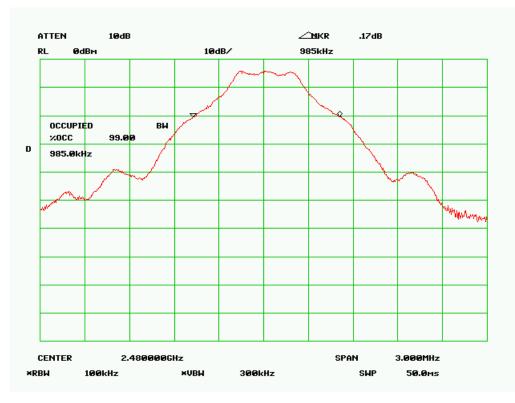

 Page
 20 of 80

 www.siemic.com

Bluetooth Mode

99% dB Bandwidth - Low Channel

99% dB Bandwidth - Mid Channel


Title: То

SIEMIC, INC. Accessing global markets RF Test Report of Zebra Technologies Corp Model : EYSMACAXX FCC 15.247:2010 & RSS-210 Issue 8 : 2010

 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

 Issue Date
 Mar 02 2011

 Page
 21 of 80
 www.siemic.com

99% dB Bandwidth - High Channel

 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

 Issue Date
 Mar 02 2011

 Page
 22 of 80

 www.siemic.com

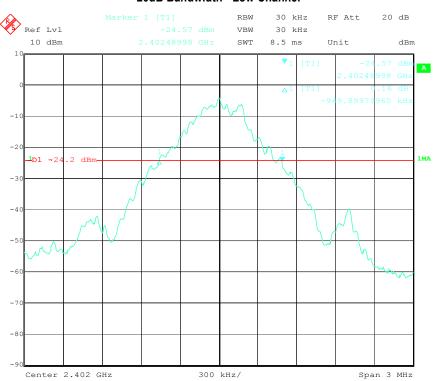
5.5 20dB Occupied Bandwidth

1.	Conducted Measurement				
	EUT was set for low , mid, high channel with modulated mode and highest RF output power.				
	The spectrum analyzer was connected to the antenna terminal.				
2	Environmental Conditions	Temperature	23°C		
		Relative Humidity	50%		
		Atmospheric Pressure	1019mbar		
3	Conducted Emissions Measureme	nt Uncertainty			
	All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a				
	confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the				
	range 30MHz – 40GHz is ±1.5dB.	Υ.			
4	Test Date : Feb 14-Mar 01 2011				
	Tested By :Choon Sian Ooi				
	,				

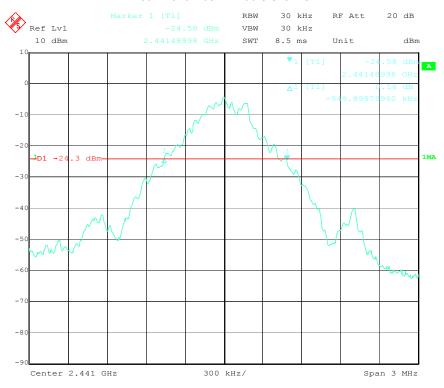
Requirement(s): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 2/3 of 20 dB bandwidth of the hopping channel, whichever is greater.

Procedures: The 20dB bandwidths were measured conducted using a spectrum analyzer at low, mid, and hi channels.

Results: Pass


Configuration : Bluetooth mode , Basic Rate

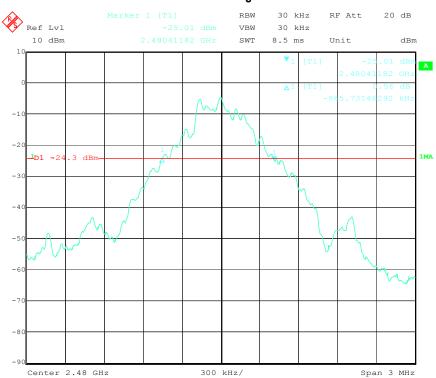
Channel	Channel Frequency (MHz)	20 dB Bandwidth (KHz)
Low	2402	949.89
Mid	2441	949.89
High	2480	865.73


Serial# SL11012304-ZBR-003(FCC FHSS) rev 1.0 Issue Date Mar 02 2011 23 of 80 Page www.siemic.com

Refer to the attached plots.

20dB Bandwidth - Low Channel

20dB Bandwidth – Middle Channel



Title: To RF Test Report of Zebra Technologies Corp Model : EYSMACAXX FCC 15.247:2010 & RSS-210 Issue 8 : 2010
 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

 Issue Date
 Mar 02 2011

 Page
 24 of 80

 www.siemic.com

20dB Bandwidth – High Channel

 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

 Issue Date
 Mar 02 2011

 Page
 25 of 80 www.siemic.com

5.6 Number of Hopping Channel

Conducted Measurement

1. EUT was set for low , mid, high channel with modulated mode and highest RF output power. The spectrum analyzer was connected to the antenna terminal. Conducted Emissions Measurement Uncertainty

- All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz 40GHz is ±1.5dB.
- 3 Environmental Conditions

Temperature Relative Humidity Atmospheric Pressure 25°C 50% 1019mbar

4 Test Date : Feb 14-Mar 01 2011 Tested By :Choon Sian Ooi

Standard Requirement:

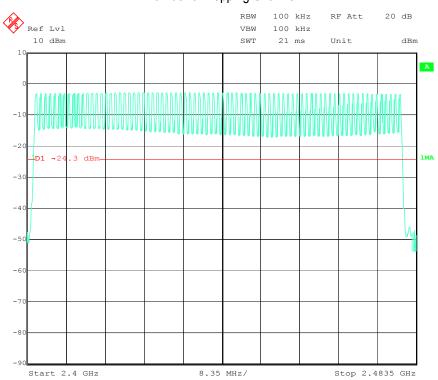
Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

Procedures: The Number of Hopping Channel measurement was taken conducted using a spectrum analyzer.

RBW=100 KHz, VBW > RBW

Test Result: Pass

Total Channel: 79 Channels


Refer to the attached plots.

SIEMIC, INC.

Title: To Accessing glocal markets RF Test Report of Zebra Technologies Corp Model : EYSMACAXX FCC 15.247:2010 & RSS-210 Issue 8 : 2010
 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

 Issue Date
 Mar 02 2011

 Page
 26 of 80 www.siemic.com

Number of Hopping Channel

5.7 Time of Occupancy

- 1. Conducted Measurement EUT was set for low, mid, high channel with modulated mode and highest RF output power. The spectrum analyzer was connected to the antenna terminal. 2 Conducted Emissions Measurement Uncertainty All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz - 40GHz is $\pm 1.5dB$. 3 **Environmental Conditions** Temperature 25°C **Relative Humidity** 50% Atmospheric Pressure 1019mbar
- 4 Test Date : Feb 14-Mar 01 2011 Tested By :Choon Sian Ooi

Standard Requirement:

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used

Procedures: The Time of Occupancy measurement was taken conducted using a spectrum analyzer.

Test Result: Pass

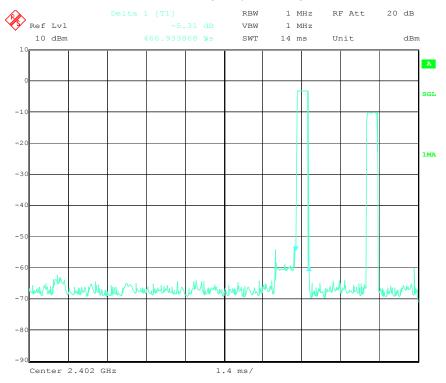
Channel	Channel Frequency (MHz)	Dwell Time (sec)	Limit (sec)
Low	2402	0.1494	0.4
Mid	2441	0.1818	0.4
High	2480	0.1504	0.4

Refer to the attached plots.

Title:

То

RF Test Report of Zebra Technologies Corp Model : EYSMACAXX FCC 15.247:2010 & RSS-210 Issue 8 : 2010
 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

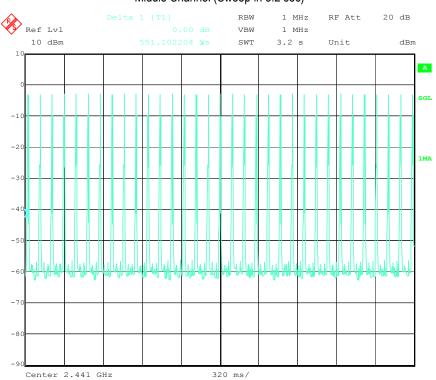

 Issue Date
 Mar 02 2011

 Page
 28 of 80

 www.siemic.com

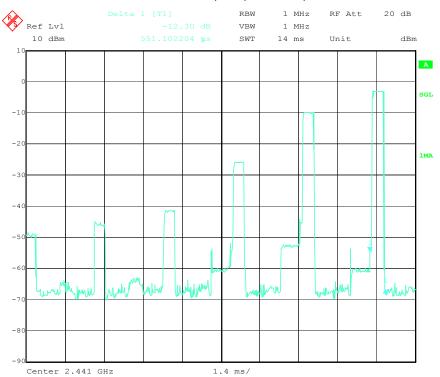
Low Channel (Sweep in 14msec)

Title:


То

RF Test Report of Zebra Technologies Corp Model : EYSMACAXX FCC 15.247:2010 & RSS-210 Issue 8 : 2010
 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

 Issue Date
 Mar 02 2011


 Page
 29 of 80

 www.siemic.com

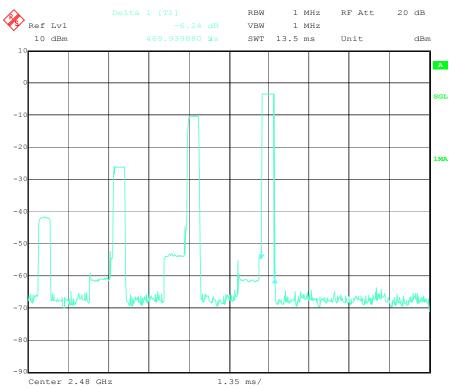
Middle Channel (Sweep in 3.2 sec)

Middle Channel (Sweep in 14msec)

Title:

То

Accessing good markets RF Test Report of Zebra Technologies Corp Model : EYSMACAXX FCC 15.247:2010 & RSS-210 Issue 8 : 2010
 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0


 Issue Date
 Mar 02 2011

 Page
 30 of 80

 www.siemic.com

High Channel (Sweep in 3.2 sec) XY VBW Ref Lvl 1 MHz 10 dBm 551.102204 **N**s SWT 3.2 s Unit dBm A SGL -1 -20 1MA -30 -40 -5 -60 Mages POL Cla Charolad dia Mats Andr . New Charles Charles Charles Abstraction Charles -7 -80 -90 Center 2.48 GHz 320 ms/

High Channel (Sweep in 13.5msec)

 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

 Issue Date
 Mar 02 2011

 Page
 31 of 80 www.siemic.com

5.8 Peak Spectral Density

1.	Conducted Measurement				
	EUT was set for low , mid, high ch	annel with modulated mode and highe	st RF output power.		
	The spectrum analyzer was connected to the antenna terminal.				
2	Conducted Emissions Measurement Uncertainty				
	All test measurements carried out	are traceable to national standards. T	he uncertainty of the measurement at a		
	confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the				
	range 30MHz – 40GHz is ±1.5dB				
3	Environmental Conditions	Temperature	N/A		
		Relative Humidity	N/A		
		Atmospheric Pressure	N/A		
4	Test Date : N/A				
	Tested By : N/A				

Standard Requirement: 47 CFR §15.247(e)

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission

Procedures: The Peak Spectral density measurement was taken conducted using a spectrum analyzer with average measurement method

RBW=3KHz, VBW > RBW, Sweep time atuo

Test Result: N/A

 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

 Issue Date
 Mar 02 2011

 Page
 32 of 80

 www.siemic.com

5.9 Peak Output Power

1.	Conducted Measurement			
	EUT was set for low , mid, high channe	I with modulated mode and highest RF or	utput power.	
	The spectrum analyzer was connected to the antenna terminal.			
2	Conducted Emissions Measurement Uncertainty			
	All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range $30MHz - 40GHz$ is $\pm 1.5dB$.			
3	Environmental Conditions	Temperature	23°C	
		Relative Humidity	50%	
		Atmospheric Pressure	1019mbar	
4	Test Date : Feb 14-Mar 01 2011 Tested By :Choon Sian Ooi			

Standard Requirement: 47 CFR §15.247(b)

For all other frequency hopping systems in the 2400-2483.5band: 0.125 Watt.

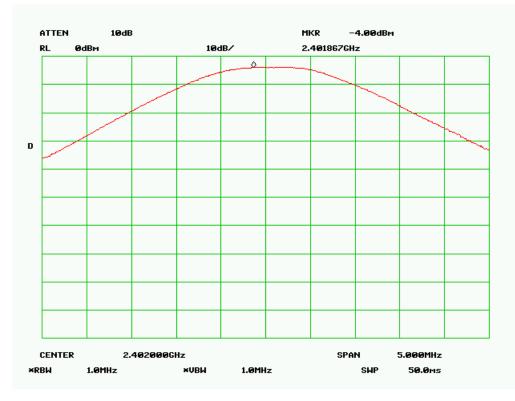
Procedures: The peak output power was measured conducted using a spectrum analyzer at low, mid, and hi channels. Peak detector was set to measure the power output. The power is converted from watt to dBm, therefore, 1 watt = 30 dBm.

Test Result: Pass

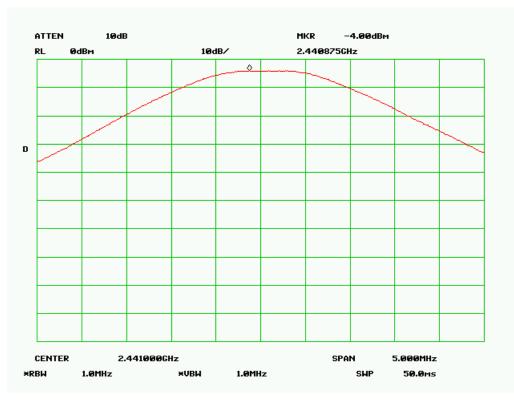
Bluetooth Measurement Result

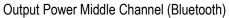
Configuration Mode	Antenna Gain	Channel	Channel Frequency (MHz)	Measured Output Power(dBm)
Bluetooth	1.16 dBi	Low	2402	-4.00
Bluetooth	1.16 dBi	Mid	2441	-4.00
Bluetooth	1.16 dBi	High	2480	-4.50

Title:


То

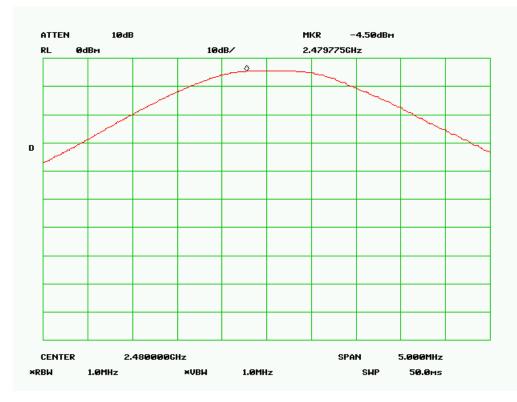
RF Test Report of Zebra Technologies Corp Model : EYSMACAXX FCC 15.247:2010 & RSS-210 Issue 8 : 2010
 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0


 Issue Date
 Mar 02 2011


 Page
 33 of 80

 www.siemic.com

Output Power Low Channel (Bluetooth)


Title: То

SIEMIC, INC. RF Test Report of Zebra Technologies Corp Model : EYSMACAXX FCC 15.247:2010 & RSS-210 Issue 8 : 2010

 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

 Issue Date
 Mar 02 2011

 Page
 34 of 80
 www.siemic.com

Output Power High Channel (Bluetooth)

 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

 Issue Date
 Mar 02 2011

 Page
 35 of 80 www.siemic.com

5.10 Antenna Port Emission

1. <u>Conducted Measurement</u>				
	EUT was set for low , mid, high c	hannel with modulated mode and hig	hest RF output power.	
	The spectrum analyzer was connected to the antenna terminal.			
2	Conducted Emissions Measurem	Conducted Emissions Measurement Uncertainty		
	All test measurements carried ou	t are traceable to national standards.	The uncertainty of the measurement at a	
	confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the			
	range 30MHz – 40GHz is ±1.5d	<u>B.</u>	, <u> </u>	
3	Environmental Conditions	Temperature	23°C	
		Relative Humidity	50%	
		Atmospheric Pressure	1019mbar	
4	Test Date : Feb 14-Mar 01 2011			
	Tested By :Choon Sian Ooi			

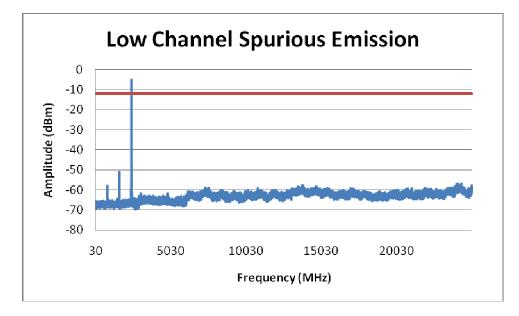
Standard Requirement: 47 CFR §15.247(d)

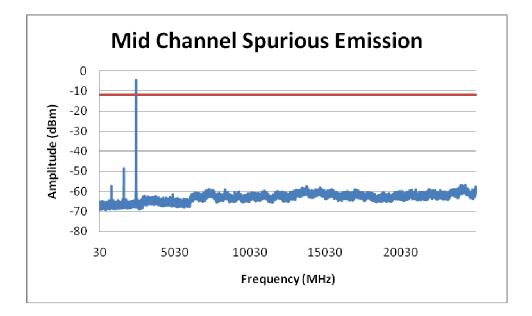
Radiated emission limits: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the modulation products of the spreading sequence, the information sequence and the carrier frequency shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power

Procedures: The conducted spurious emissions were measured conducted using a spectrum analyzer at low, mid, and hi channels. The limit was determined by attenuating 20 dB of the RF peak power output

Test Result: Pass

Refer to the attached plots.

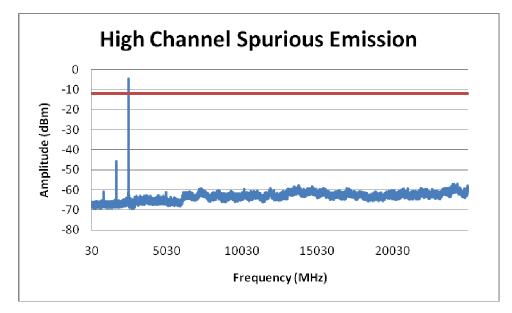

Title


То

 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

 Issue Date
 Mar 02 2011

 Page
 36 of 80 www.siemic.com


SIEMIC, INC. Accessing global markets Title: То

RF Test Report of Zebra Technologies Corp Model : EYSMACAXX FCC 15.247:2010 & RSS-210 Issue 8 : 2010

 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

 Issue Date
 Mar 02 2011

 Page
 37 of 80
 www.siemic.com

 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

 Issue Date
 Mar 02 2011

 Page
 38 of 80 www.siemic.com

50%

1019mbar

5.11 Radiated Spurious Emission < 1GHz

- 1. <u>All possible modes of operation were investigated</u>. Only the 6 worst case emissions measured, using the correct CISPR detectors, are reported. All other emissions were relatively insignificant.
- A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
 Radiated Emissions Measurement Uncertainty
- All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz 1GHz (QP only @ 3m & 10m) is +6.0dB (for EUTs < 0.5m X 0.5m X 0.5m). Environmental Conditions Temperature 23°C
- 4 Environmental Conditions Temperature Relative Humidity Atmospheric Pressure

Test Date : Feb 14-Mar 01 2011 Tested By :Choon Sian Ooi

Standard Requirement: 47 CFR §15.247(d)

Procedures: Radiated emissions were measured according to ANSI C63.4. The EUT was set to transmit at the highest output power. The EUT was set to transmit at mid channel. Note that setting the channel other than middle, the spurious emissions are the same.

The limit is converted from microvolts/meter to decibel microvolts/meter.

Sample Calculation: Corrected Amplitude = Raw Amplitude (dBµV/m) + ACF (dB) + Cable Loss (dB)

Test Result: Pass

RF Test Report of Zebra Technologies Corp Model : EYSMACAXX FCC 15.247:2010 & RSS-210 Issue 8 : 2010

 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

 Issue Date
 Mar 02 2011

 Page
 39 of 80
 www.siemic.com

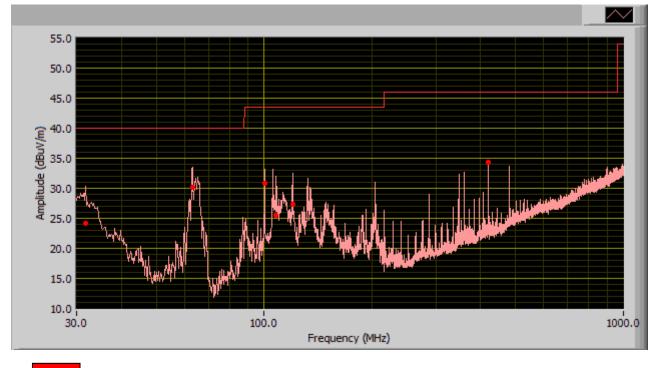
TX-Radiated Emissions-QLn320 Host

30MHz	~1000MHz	Result	@	3m
-------	----------	--------	---	----

Frequency (MHz)	Corrected Quasi-Peak (dBµV/m) @ 3m	Turntable position (deg)	Polarity	Antenna height (cm)	Limit (dBµV/m)	Margin (dB)
180.97	34.01	152.00	V	100.00	43.50	-9.49
957.04	32.65	349.00	V	386.00	46.00	-13.35
853.53	30.92	67.00	V	385.00	46.00	-15.08
866.47	31.14	117.00	V	326.00	46.00	-14.86
905.19	31.97	322.00	V	291.00	46.00	-14.03
42.40	19.69	74.00	V	140.00	40.00	-20.31

SIEMIC, INC. Accessing global markets

Accessing global markets RF Test Report of Zebra Technologies Corp Model : EYSMACAXX FCC 15.247:2010 & RSS-210 Issue 8 : 2010
 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0


 Issue Date
 Mar 02 2011

 Page
 40 of 80

 www.siemic.com

TX-Radiated Emissions – QLn220 Host

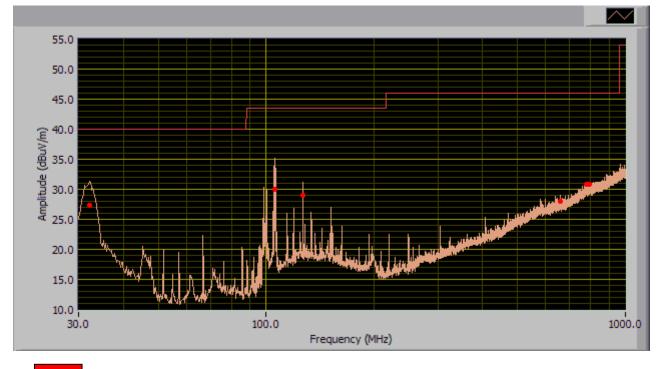
Title: To

Limit

30MHz ~1000MHz Result @ 3m

Frequency (MHz)	Corrected Quasi-Peak (dBµV/m) @ 3m	Turntable position (deg)	Polarity	Antenna height (cm)	Limit (dBµV/m)	Margin (dB)
63.15	30.09	360.00	V	157.00	40.00	-9.91
31.69	24.14	179.00	V	111.00	40.00	-15.86
100.27	30.87	284.00	V	138.00	43.50	-12.63
119.91	27.26	218.00	V	131.00	43.50	-16.24
107.89	25.43	190.00	V	264.00	43.50	-18.07
420.01	34.26	175.00	Н	199.00	46.00	-11.74

SIEMIC, INC. Accessing global markets


RF Test Report of Zebra Technologies Corp Model : EYSMACAXX FCC 15.247:2010 & RSS-210 Issue 8 : 2010
 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

 Issue Date
 Mar 02 2011

 Page
 41 of 80 www.siemic.com

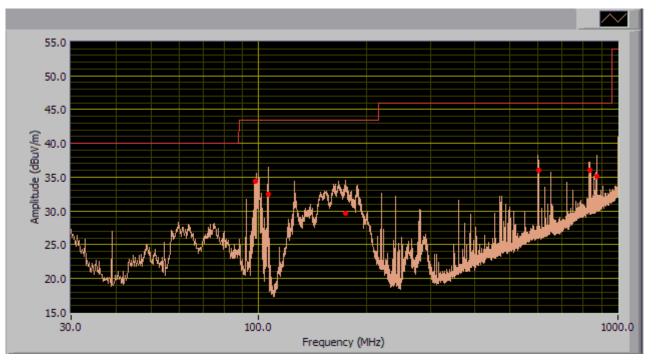
RX-Radiated Emissions- QLn320 Host

Title: To

Limit

30MHz ~1000MHz Result @ 3m

Frequency (MHz)	Corrected Quasi-Peak (dBµV/m) @ 3m	Turntable position (deg)	Polarity	Antenna height (cm)	Limit (dBµV/m)	Margin (dB)
32.18	27.31	314.00	V	104.00	40.00	-12.69
105.72	30.05	41.00	V	401.00	43.50	-13.45
126.41	29.11	151.00	Н	252.00	43.50	-14.39
659.35	27.96	317.00	Н	182.00	46.00	-18.04
778.44	30.75	129.00	Н	106.00	46.00	-15.25
794.30	30.81	294.00	Н	141.00	46.00	-15.19



 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

 Issue Date
 Mar 02 2011

 Page
 42 of 80 www.siemic.com

RX-Radiated Emissions- QLn220 Host

Limit

30MHz ~1000MHz Result @ 3m

Frequency (MHz)	Corrected Quasi-Peak (dBµV/m) @ 3m	Turntable position (deg)	Polarity	Antenna height (cm)	Limit (dBµV/m)	Margin (dB)
97.50	34.35	290.00	Н	183.00	43.50	-9.15
106.48	32.44	33.00	V	198.00	43.50	-11.06
174.20	29.66	43.00	V	105.00	43.50	-13.84
600.01	36.06	299.00	Н	101.00	46.00	-9.94
830.83	36.04	43.00	Н	245.00	46.00	-9.96
874.72	35.07	148.00	Н	366.00	46.00	-10.93

 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

 Issue Date
 Mar 02 2011

 Page
 43 of 80 www.siemic.com

5.12 Radiated Spurious Emissions > 1GHz & Band Edge

1.	All possible modes of operation we	re investigated. Only the 6 w	orst case emissions measured, using the correct
	CISPR detectors, are reported. All	other emissions were relative	ely insignificant.
2.	A "-ve" margin indicates a PASS as	it refers to the margin prese	nt below the limit line at the particular frequency.
3.	Radiated Emissions Measurement	Uncertainty	
	All test measurements carried out a	are traceable to national stand	dards. The uncertainty of the measurement at a
	confidence level of approximately S	5% (in the case where distrib	outions are normal), with a coverage factor of 2, in the
	range 1GHz - 40GH is +6.0dB (for	EUTs < 0.5m X 0.5m X 0.5n	n).
4.	Environmental Conditions	Temperature	23°C
		Relative Humidity	50%
		Atmospheric Pressure	1019mbar

Test Date : Feb 14-Mar 01 2011 Tested By :Choon Sian Ooi

Standard Requirement: 47 CFR §15.247(d)

Procedures: Equipment was setup in a semi-anechoic chamber. For measurements above 1 GHz an average measurement was taken with a 10Hz video bandwidth. The EUT was tested at low, mid and high with the highest output power. An emission was scan up to 10th harmonic of the operating frequency.

Sample Calculation:

EUT Field Strength = Raw Amplitude (dBµV/m) – Amplifier Gain (dB) + Antenna Factor (dB) + Cable Loss (dB) + Filter Attenuation (dB, if used)

Test Result: Pass

Note : other Bluetooth mode were verified, only the result of worst case (Basic Rate mode) was presented

 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

 Issue Date
 Mar 02 2011

 Page
 44 of 80 www.siemic.com

Host QLn 320

Low Channel @ 3 Meter

Frequency (GHz)	Reading (dBuV/m)	Direction (degree)	Height (m)	Polarity (H/V)	Antenna Loss (dB)	Cable Loss (dB)	Amplifier (dB)	Corrected Reading (dBuV/m)	15.247/15.209 Limit @ 3m (dBuV/m)	Margin (dBuV/m)	Detector (pk/avg)
4.804	47.35	135	2.3	v	32.2	4.13	32.49	51.19	74	-22.81	Peak
4.804	47.03	137	2.1	h	32.2	4.13	32.49	50.87	74	-23.13	Peak
4.804	35.74	135	2.3	V	32.2	4.13	32.49	39.58	54	-14.42	Ave
4.804	34.56	137	2.1	h	32.2	4.13	32.49	38.4	54	-15.6	Ave
7.206	45.76	136	1.5	V	35.1	5.22	32.39	53.69	74	-20.31	Peak
7.206	44.68	116	1.3	h	35.1	5.22	32.39	52.61	74	-21.39	Peak
7.206	35.53	136	1.5	V	35.1	5.22	32.39	43.46	54	-10.54	Ave
7.206	34.86	116	1.3	h	35.1	5.22	32.39	42.79	54	-11.21	Ave
9.608	48.74	246	1.3	V	38.9	6.26	32.32	61.58	74	-12.42	Peak
9.608	47.53	126	1.5	h	38.9	6.26	32.32	60.37	74	-13.63	Peak
9.608	34.97	246	1.3	V	38.9	6.26	32.32	47.81	54	-6.19	Ave
9.608	33.48	126	1.5	h	38.9	6.26	32.32	46.32	54	-7.68	Ave
2.4	46.83	126	1.4	V	27.5	2.5	32.04	44.79	74	-29.21	Peak
2.4	45.84	157	1.3	h	27.5	2.5	32.04	43.8	74	-30.2	Peak
2.4	35.86	126	1.4	V	27.5	2.5	32.04	33.82	54	-20.18	Ave
2.4	34.67	157	1.3	h	27.5	2.5	32.04	32.63	54	-21.37	Ave

Note: Emission was scanned up to 25GHz; no emissions were detected above the noise floor which was at least 20dB below the specification limit

Frequency (GHz)	Reading (dBuV/m)	Direction (degree)	Height (m)	Polarity (H/V)	Antenna Loss (dB)	Cable Loss (dB)	Amplifier (dB)	Corrected Reading (dBuV/m)	15.247/15.209 Limit @ 3m (dBuV/m)	Margin (dBuV/m)	Detector (pk/avg)
4.882	46.74	175	1.3	v	32.2	4.13	32.49	50.58	74	-23.42	Peak
4.882	45.36	146	1.2	h	32.2	4.13	32.49	49.2	74	-24.8	Peak
4.882	35.86	175	1.3	v	32.2	4.13	32.49	39.7	54	-14.3	Ave
4.882	34.75	146	1.2	h	32.2	4.13	32.49	38.59	54	-15.41	Ave
7.323	46.64	134	1.4	v	35.1	5.22	32.39	54.57	74	-19.43	Peak
7.323	45.26	135	1.4	h	35.1	5.22	32.39	53.19	74	-20.81	Peak
7.323	34.67	134	1.4	v	35.1	5.22	32.39	42.6	54	-11.4	Ave
7.323	33.64	135	1.4	h	35.1	5.22	32.39	41.57	54	-12.43	Ave
9.764	45.15	216	1.6	v	38.9	6.26	32.32	57.99	74	-16.01	Peak
9.764	44.86	157	1.3	h	38.9	6.26	32.32	57.7	74	-16.3	Peak
9.764	34.65	216	1.6	v	38.9	6.26	32.32	47.49	54	-6.51	Ave
9.764	32.67	157	1.3	h	38.9	6.26	32.32	45.51	54	-8.49	Ave

Mid Channel @ 3 Meter

Note: Emission was scanned up to 25 GHz; no emissions were detected above the noise floor which was at least 20dB below the specification limit

SIEMIC, INC. Accessing global markets

Title: To

RF Test Report of Zebra Technologies Corp Model : EYSMACAXX FCC 15.247:2010 & RSS-210 Issue 8 : 2010
 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

 Issue Date
 Mar 02 2011

 Page
 45 of 80 www.siemic.com

High Channel @ 3 Meter

Frequency (GHz)	Reading (dBuV/m)	Direction (degree)	Height (m)	Polarity (H/V)	Antenna Loss (dB)	Cable Loss (dB)	Amplifier (dB)	Corrected Reading (dBuV/m)	15.247/15.209 Limit @ 3m (dBuV/m)	Margin (dBuV/m)	Detector (pk/avg)
4.96	47.75	156	1.7	v	32.2	4.13	32.49	51.59	74	-22.41	Peak
4.96	45.75	118	1.5	h	32.2	4.13	32.49	49.59	74	-24.41	Peak
4.96	34.78	156	1.7	v	32.2	4.13	32.49	38.62	54	-15.38	Ave
4.96	33.56	118	1.5	h	32.2	4.13	32.49	37.4	54	-16.6	Ave
7.44	45.63	186	1.9	v	35.1	5.22	32.39	53.56	74	-20.44	Peak
7.44	44.86	146	2.5	h	35.1	5.22	32.39	52.79	74	-21.21	Peak
7.44	34.47	186	1.9	v	35.1	5.22	32.39	42.4	54	-11.6	Ave
7.44	33.37	146	2.5	h	35.1	5.22	32.39	41.3	54	-12.7	Ave
9.92	47.74	134	1.4	v	38.9	6.26	32.32	60.58	74	-13.42	Peak
9.92	46.16	127	1.3	h	38.9	6.26	32.32	59	74	-15	Peak
9.92	35.63	134	1.4	v	38.9	6.26	32.32	48.47	54	-5.53	Ave
9.92	34.57	127	1.3	h	38.9	6.26	32.32	47.41	54	-6.59	Ave
2.484	46.46	186	1.3	v	27.5	2.5	32.04	44.42	74	-29.58	Peak
2.484	45.85	175	1.9	h	27.5	2.5	32.04	43.81	74	-30.19	Peak
2.484	34.63	186	1.3	v	27.5	2.5	32.04	32.59	54	-21.41	Ave
2.484	33.16	175	1.9	h	27.5	2.5	32.04	31.12	54	-22.88	Ave

Note: Emission was scanned up to 25GHz; no emissions were detected above the noise floor which was at least 20dB below the specification limit

 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

 Issue Date
 Mar 02 2011

 Page
 46 of 80

 www.siemic.com

Host QLn 220

Low Channel @ 3 Meter

Frequency (GHz)	Reading (dBuV/m)	Direction (degree)	Height (m)	Polarity (H/V)	Antenna Loss (dB)	Cable Loss (dB)	Amplifier (dB)	Corrected Reading (dBuV/m)	15.247/15.209 Limit @ 3m (dBuV/m)	Margin (dBuV/m)	Detector (pk/avg)
4.804	47.46	216.00	1.50	v	32.20	4.13	32.49	51.30	74.00	-22.71	Peak
4.804	46.96	174.00	1.30	h	32.20	4.13	32.49	50.80	74.00	-23.21	Peak
4.804	36.76	216.00	1.50	v	32.20	4.13	32.49	40.60	54.00	-13.41	Ave
4.804	35.84	174.00	1.30	h	32.20	4.13	32.49	39.68	54.00	-14.33	Ave
7.206	46.78	157.00	1.80	v	35.10	5.22	32.39	54.71	74.00	-19.29	Peak
7.206	45.36	126.00	1.30	h	35.10	5.22	32.39	53.29	74.00	-20.71	Peak
7.206	34.56	157.00	1.80	v	35.10	5.22	32.39	42.49	54.00	-11.51	Ave
7.206	33.48	126.00	1.30	h	35.10	5.22	32.39	41.41	54.00	-12.59	Ave
9.608	45.68	196.00	2.50	v	38.90	6.26	32.32	58.52	74.00	-15.49	Peak
9.608	44.69	175.00	1.30	h	38.90	6.26	32.32	57.53	74.00	-16.48	Peak
9.608	35.48	196.00	2.50	v	38.90	6.26	32.32	48.32	54.00	-5.69	Ave
9.608	34.96	175.00	1.30	h	38.90	6.26	32.32	47.80	54.00	-6.21	Ave
2.4	48.47	135.00	1.40	v	27.50	2.50	32.04	46.43	74.00	-27.57	Peak
2.4	47.25	126.00	1.20	h	27.50	2.50	32.04	45.21	74.00	-28.79	Peak
2.4	37.57	135.00	1.40	v	27.50	2.50	32.04	35.53	54.00	-18.47	Ave
2.4	35.68	126.00	1.20	h	27.50	2.50	32.04	33.64	54.00	-20.36	Ave

Note: Emission was scanned up to 25GHz; no emissions were detected above the noise floor which was at least 20dB below the specification limit

Frequency (GHz)	Reading (dBuV/m)	Direction (degree)	Height (m)	Polarity (H/V)	Antenna Loss (dB)	Cable Loss (dB)	Amplifier (dB)	Corrected Reading (dBuV/m)	15.247/15.209 Limit @ 3m (dBuV/m)	Margin (dBuV/m)	Detector (pk/avg)
4.882	48.35	135.00	1.40	v	32.20	4.13	32.49	52.19	74.00	-21.81	Peak
4.882	47.48	127.00	1.30	h	32.20	4.13	32.49	51.32	74.00	-22.68	Peak
4.882	34.67	135.00	1.40	v	32.20	4.13	32.49	38.51	54.00	-15.49	Ave
4.882	33.74	127.00	1.30	h	32.20	4.13	32.49	37.58	54.00	-16.42	Ave
7.323	44.75	157.00	1.50	v	35.10	5.22	32.39	52.68	74.00	-21.32	Peak
7.323	43.67	186.00	1.20	h	35.10	5.22	32.39	51.60	74.00	-22.40	Peak
7.323	33.68	157.00	1.50	v	35.10	5.22	32.39	41.61	54.00	-12.39	Ave
7.323	32.66	186.00	1.20	h	35.10	5.22	32.39	40.59	54.00	-13.41	Ave
9.764	45.78	185.00	2.50	v	38.90	6.26	32.32	58.62	74.00	-15.38	Peak
9.764	44.64	147.00	1.40	h	38.90	6.26	32.32	57.48	74.00	-16.52	Peak
9.764	34.65	185.00	2.50	v	38.90	6.26	32.32	47.49	54.00	-6.51	Ave
9.764	33.68	147.00	1.40	h	38.90	6.26	32.32	46.52	54.00	-7.48	Ave

Mid Channel @ 3 Meter

Note: Emission was scanned up to 25 GHz; no emissions were detected above the noise floor which was at least 20dB below the specification limit

SIEMIC, INC. Accessing global markets

Access Title: RF Test Re Model : EYS To FCC 15.247

RF Test Report of Zebra Technologies Corp Model : EYSMACAXX FCC 15.247:2010 & RSS-210 Issue 8 : 2010
 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

 Issue Date
 Mar 02 2011

 Page
 47 of 80

 www.siemic.com

High Channel @ 3 Meter

Frequency (GHz)	Reading (dBuV/m)	Direction (degree)	Height (m)	Polarity (H/V)	Antenna Loss (dB)	Cable Loss (dB)	Amplifier (dB)	Corrected Reading (dBuV/m)	15.247/15.209 Limit @ 3m (dBuV/m)	Margin (dBuV/m)	Detector (pk/avg)
4.96	45.86	196.00	2.60	v	32.20	4.13	32.49	49.70	74.00	-24.31	Peak
4.96	44.63	136.00	2.10	h	32.20	4.13	32.49	48.47	74.00	-25.54	Peak
4.96	33.57	196.00	2.60	v	32.20	4.13	32.49	37.41	54.00	-16.60	Ave
4.96	32.78	136.00	2.10	h	32.20	4.13	32.49	36.62	54.00	-17.39	Ave
7.440	46.86	135.00	1.40	v	35.10	5.22	32.39	54.79	74.00	-19.21	Peak
7.440	45.84	126.00	1.30	h	35.10	5.22	32.39	53.77	74.00	-20.23	Peak
7.440	35.75	135.00	1.40	v	35.10	5.22	32.39	43.68	54.00	-10.32	Ave
7.440	34.86	126.00	1.30	h	35.10	5.22	32.39	42.79	54.00	-11.21	Ave
9.920	48.74	185.00	1.40	v	38.90	6.26	32.32	61.58	74.00	-12.43	Peak
9.920	47.75	257.00	1.30	h	38.90	6.26	32.32	60.59	74.00	-13.42	Peak
9.920	34.75	185.00	1.40	v	38.90	6.26	32.32	47.59	54.00	-6.42	Ave
9.920	33.75	257.00	1.30	h	38.90	6.26	32.32	46.59	54.00	-7.42	Ave
2.484	45.74	147.00	1.30	v	27.50	2.50	32.04	43.70	74.00	-30.30	Peak
2.484	44.87	137.00	1.90	h	27.50	2.50	32.04	42.83	74.00	-31.17	Peak
2.484	33.76	147.00	1.30	v	27.50	2.50	32.04	31.72	54.00	-22.28	Ave
2.484	32.86	137.00	1.90	h	27.50	2.50	32.04	30.82	54.00	-23.18	Ave

Note: Emission was scanned up to 25GHz; no emissions were detected above the noise floor which was at least 20dB below the specification limit

A Title: RF Tess Model : To FCC 15.

RF Test Report of Zebra Technologies Corp Model : EYSMACAXX FCC 15.247:2010 & RSS-210 Issue 8 : 2010
 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

 Issue Date
 Mar 02 2011

 Page
 48 of 80

 www.siemic.com

Annex A. TEST INSTRUMENT & METHOD

Annex A.i. TEST INSTRUMENTATION & GENERAL PROCEDURES

Instrument	Model	Calibration Due
AC Conducted Emissions		
R&S EMI Test Receiver	ESIB40	05/19/2011
R&S LISN	ESH2-Z5	05/18/2011
CHASE LISN	MN2050B	05/18/2011
Universal Radio Communication Tester	CMU200	02/22/2012
Radiated Emissions		
Spectrum Analyzer	8564E	05/19/2011
EMI Receiver	ESIB 40	05/18/2011
R&S LISN	ESH2-Z5	05/18/2011
CHASE LISN	MN2050B	05/19/2011
Antenna(1 ~18GHz)	3115	6/2/2011
Antenna (30MHz~2GHz)	JB1	6/1/2011
Chamber	3m	12/4/2010
Pre-Amplifier(1 ~ 26GHz)	8449	5/17/2011
Horn Antenna (18~40GHz)	AH-840	7/23/2013
Microwave Pre-Amp (18~40GHz)	PA-840	Every 2000 Hours
Environmental Monitoring		
Sekonic Hygro Hermograph	HE01-000092	06/04/2012

Note: Functional Verification

Annex A.ii. CONDUCTED EMISSIONS TEST DESCRIPTION

Test Set-up

- 1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m x 1m x 0.8m high, non-metallic table, as shown in <u>Annex B</u>.
- 2. The power supply for the EUT was fed through a $50\Omega/50\mu$ H EUT LISN, connected to filtered mains.
- 3. The RF OUT of the EUT LISN was connected to the EMI test receiver via a low-loss coaxial cable.
- 4. All other supporting equipments were powered separately from another main supply.

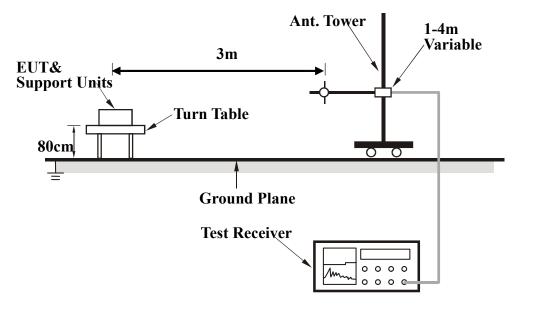
Test Method

- 1. The EUT was switched on and allowed to warm up to its normal operating condition.
- 2. A scan was made on the NEUTRAL line (for AC mains) or Earth line (for DC power) over the required frequency range using an EMI test receiver.
- 3. High peaks, relative to the limit line, were then selected.
- 4. The EMI test receiver was then tuned to the selected frequencies and the necessary measurements made with a receiver bandwidth setting of 10 KHz. For FCC tests, only Quasi-peak measurements were made; while for CISPR/EN tests, both Quasi-peak and Average measurements were made.
- 5. Steps 2 to 4 were then repeated for the LIVE line (for AC mains) or DC line (for DC power).

Sample Calculation Example

At 20 MHz	limit = 250 μV = 47.96 dBμV
Transducer factor of LISN, pulse limiter & cable loss at 20 M	ИНz = 11.20 dВ
Q-P reading obtained directly from EMI Receiver = 40.00 d	BμV (Calibrated for system losses)
Therefore, Q-P margin = 47.96 – 40.00 = 7.96	i.e. 7.96 dB below limit

Annex A. iii RADIATED EMISSIONS TEST DESCRIPTION


EUT Characterisation

EUT characterisation, over the frequency range from 30MHz to 1GHz (for FCC tests, until the 5th harmonic for operating frequencies \geq 108MHz), was done in order to minimise radiated emissions testing time while still maintaining high confidence in the test results.

The EUT was placed in the chamber, at a height of about 0.8m on a turntable. Its radiated emissions frequency profile was observed, using a spectrum analyzer /receiver with the appropriate broadband antenna placed 3m away from the EUT. Radiated emissions from the EUT were maximised by rotating the turntable manually, changing the antenna polarisation and manipulating the EUT cables while observing the frequency profile on the spectrum analyzer / receiver. Frequency points at which maximum emissions occurred, clock frequencies and operating frequencies were then noted for the formal radiated emissions test at the Open Area Test Site (OATS).

Test Set-up

- 1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m X 1.0m X 0.8m high, non-metallic table as shown in <u>Annex B</u>.
- 2. The filtered power supply for the EUT and supporting equipment were tapped from the appropriate power sockets located on the turntable.
- 3. The relevant broadband antenna was set at the required test distance away from the EUT and supporting equipment boundary.

Test Method

The following procedure was performed to determine the maximum emission axis of EUT:

1. With the receiving antenna is H polarization, rotate the EUT in turns with three orthogonal axes to determine the axis of maximum emission.

2. With the receiving antenna is V polarization, rotate the EUT in turns with three orthogonal axes to determine the axis of maximum emission.

3. Compare the results derived from above two steps. So, the axis of maximum emission from EUT was determined and the configuration was used to perform the final measurement.

Final Radiated Emission Measurement

1. Setup the configuration according to figure 1. Turn on EUT and make sure that it is in normal function.

2. For emission frequencies measured below 1 GHz, a pre-scan is performed in a shielded chamber to determine the accurate frequencies of higher emissions will be checked on a open test site. As the same purpose, for emission frequencies measured above 1 GHz, a pre-scan also be performed with a 1 meter measuring distance before final test.

3. For emission frequencies measured below and above 1 GHz, set the spectrum analyzer on a 100 kHz and 1 MHz resolution bandwidth respectively for each frequency measured in step 2.

4. The search antenna is to be raised and lowered over a range from 1 to 4 meters in horizontally polarized orientation. Position the highness when the highest value is indicated on spectrum analyzer, then change the orientation of EUT on test table over a range from $0 \circ to 360 \circ with a speed as slow as possible, and keep the azimuth that highest emission is indicated on the spectrum analyzer. Vary the antenna position again and record the highest value as a final reading.$

5. Repeat step 4 until all frequencies need to be measured were complete.

6. Repeat step 5 with search antenna in vertical polarized orientations.

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	Peak	100 kHz	100 kHz
About 1000	Peak	1 MHz	1 MHz
Above 1000	Average	1 MHz	10 Hz

Sample Calculation Example

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. For the limit is employed average value, therefore the peak value can be transferred to average value by subtracting the duty factor. The basic equation with a sample calculation is as follows: Peak = Reading + Corrected Factor

Where:

Corr. Factor = Antenna Factor + Cable Factor - Amplifier Gain (if any) And the average value is

Average = Peak Value + Duty Factor or Set RBW = 1MHz, VBW = 10Hz.

Note:

If the measured frequencies are fall in the restricted frequency band, the limit employed must be quasi peak value when frequencies are below or equal to 1 GHz. And the measuring instrument is set to quasi peak detector function.

 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

 Issue Date
 Mar 02 2011

 Page
 52 of 80 www.siemic.com

Annex B EUT AND TEST SETUP PHOTOGRAPHS

Please see the attachment

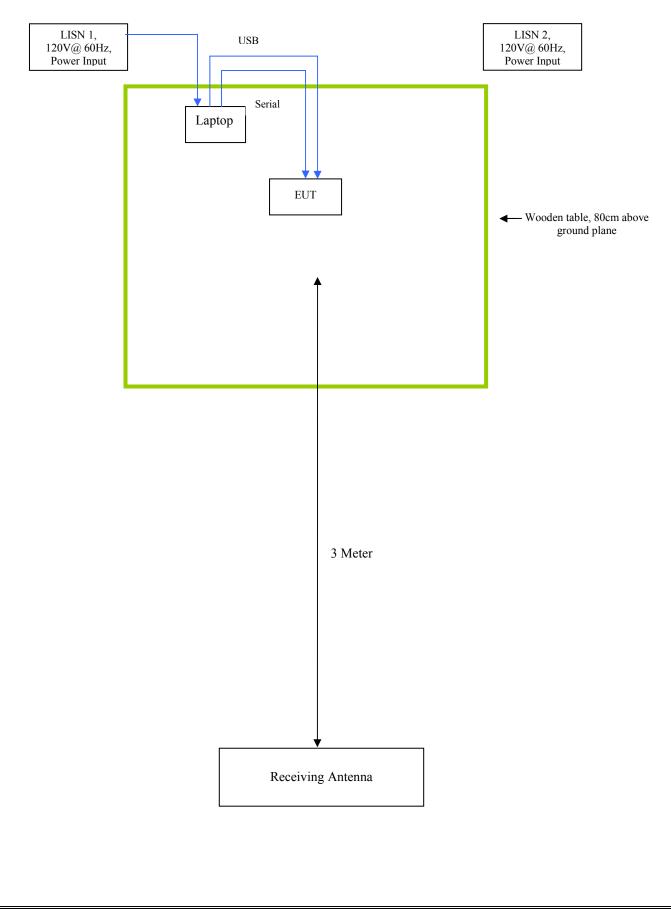
Annex C. TEST SETUP AND SUPPORTING EQUIPMENT

EUT TEST CONDITIONS

Annex C. i. SUPPORTING EQUIPMENT DESCRIPTION

The following is a description of supporting equipment and details of cables used with the EUT.

Equipment Description	Model & Serial	Cable Description
(Including Brand Name)	Number	(List Length, Type & Purpose)
PC Laptop / DELL	Latitude D600	Shielded USB Cable < 1 meter (From PC to EUT)

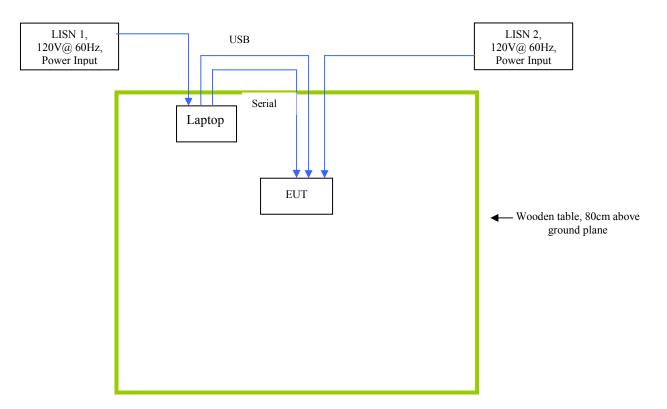

 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

 Issue Date
 Mar 02 2011

 Page
 53 of 80

www.siemic.com

Block Configuration Diagram for Radiated Emission


 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

 Issue Date
 Mar 02 2011

 Page
 54 of 80

www.siemic.com

Block Configuration Diagram for Conducted Emission

 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

 Issue Date
 Mar 02 2011

 Page
 55 of 80 www.siemic.com

Annex C.ii. EUT OPERATING CONDITIONS

The following is the description of how the EUT is exercised during testing.

Test	Description Of Operation
Emissions Testing	The EUT was continuously transmitting controlled via usb connection to PC Laptop using test program.
Others Testing	The EUT was continuously transmitting controlled via usb connection to PC Laptop using test program.

 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

 Issue Date
 Mar 02 2011

 Page
 56 of 80

 www.siemic.com

Annex D User Manual, Block Diagram, Circuit Diagram

Please see attachment

 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

 Issue Date
 Mar 02 2011

 Page
 57 of 80 www.siemic.com

Annex E SIEMIC ACCREDITATION

SIEMIC ACREDITATION DETAILS: A2LA 17025 & ISO Guide 65 : 2742.01 , 2742.2

Accessing gobal markets Title: RF Test Report of Zebra Technologies Corp Model : EYSMACAXX To FCC 15.247:2010 & RSS-210 Issue 8 : 2010

 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

 Issue Date
 Mar 02 2011

 Page
 58 of 80 www.siemic.com

The American Association for Laboratory Accreditation

"World Class Accreditation"

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005

SIEMIC LABORATORIES¹ 2206 Ringwood Ave. San Jose, CA 95131 Mr. Leslie Bai Phone: 408 526 1188 Email: leslie.bai@siemic.com Mr. Snell Leong Phone: 408 526 1188 Email: snell.leong@siemic.com www.siemic.com

ELECTRICAL

Valid to: September 30, 2012

Certificate Number: 2742.01

In recognition of the successful completion of the A2LA evaluation process, accreditation is granted to this laboratory to perform the following EMC, Product Safety, Radio and Telecommunication tests;

Test Description:	Test Method:
EN & IEC – Emissions & Immunity	IEC/CISPR 11; IEC/CISPR 12; EN 55011; IEC/CISPR 22; EN 55022; IEC/CISPR 20; EN 55020; EN 61000-6-1; EN 61000-6-2; EN 61000-6-3; EN 61000-6-4; EN 61204-3; EN 61326, EN 61326-1; EN 61000-3-2; EN 61000-3-3; EN 50081-1, EN 50081-2; EN 50082-1; IEC 61000-4-2; EN 61000-4-2; IEC 61000-4-3 (<i>limited up to 2.7 GHz and 3V/m</i>); EN 61000-4-3; (<i>limited up to 2.7 GHz and 3V/m</i>); IEC 61000-4-4; EN 61000-4-4; IEC 61000-4-5; EN 61000-4-5; IEC 61000-4-6; EN 61000-4-4; IEC 61000-4-5; EN 61000-4-5; IEC 61000-4-6; EN 61000-4-6; IEC 61000-4-8; EN 61000-4-8; IEC 61000-4-11; EN 61000-4-11; IEC/CISPR 24; EN 55024; EN 50412-2-1; EN 50083-2; EN 50090-2-2; EN 50091-2; EN 50130-4; EN 50130-4 +A12; IEC 60601-1-2; EN 12184; EN 55015; EN 61547; CISPR 16-1-4
Korea – Emissions & Immunity	 KCC Notice 2009-27, Nov. 5, 2009; RRA Announce 2009-9, Dec. 21, 2009; KN 22:2007-12; KCC Notice 2009-27, Nov. 5, 2009; RRA Notice 2009-10, Dec. 21, 2009; RRA Notice 2009-10, Dec. 21, 2009; KN 24:2008-5; KN 61000-4-2:2008-5; KN 61000-4-3:2008-5; KN 61000-4-4:2008-5; KN 61000-4-5:2008-5; KN 61000-4-6:2008-5; KN 61000-4-8:2008-5; KN 61000-4-11:2008-5; RRL Notice 2008-3; RRL Notice 2008-4; RRL Notice 2005-131; RRL Notice 2007-99; RRL Notice 2007-101; RRL Notice 2008-4; RRA Notice No 2008-11(2008.12.16); RRA Notice No 2008-12(2008.12.16); KN 60601-1-2; KCC Notice 2009-27; KN 301 489-1(2008-05); KN 301 489-7(2008-05); KN 16-1-1(2008-05); KN 16-1-2(2008-05); KN 16-1-3(2008-05); KN 16-1-4(2008-05); KN 16-1-5(2008-05); KN 16-2-1(2008-05); KN 16-2-2(2008-05); KN 16-2-3(2008-05); KN 16-2-4(2008-05);

(A2LA Certificate No. 2742.01) 11/23/2010

Peter Alnye

Page 1 of 7

5301 Buckeystown Pike, Suite 350 | Frederick, Maryland 21704-8373 | Phone: 301 644 3248 Fax: 301 662 2974 | www.A2LA.org

Title: То

RF Test Report of Zebra Technologies Corp Model : EYSMACAXX FCC 15.247:2010 & RSS-210 Issue 8 : 2010

 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

 Issue Date
 Mar 02 2011

 Page
 59 of 80
 www.siemic.com

FCC – Emissions	ANSI C63.17.2006; ANSI C63.4(2003) with FCC Method 47 CFR Part 11; ANSI C63.4(2003) with FCC Method 47 CFR Part 15, Subpart E; ANSI C63.4(2003) with FCC Method 47 CFR Part 15, Subpart C; ANSI C63.4(2003) and DA 02-2138; ANSI C63.4(2003) with FCC Method 47 CFR Part 15, Subpart B; ANSI C63.4(2009); ANSI C63.10(2009); FCC Method 47 CFR Part 18, FCC OST/MP-5(1986); FCC Method 47 CFR Part 18, FCC OST/MP-5(1986); FCC Report and Order ET Docket 98-153 (FCC 02-48); FCC Method 47 CFR Part 15, Subpart G, using FCC Order 04-425; FCC Method 47 CFR Parts 11 (Emergency Alert System (EAS)), 15 (Radio Frequency Devices) and 18 (Industrial, Scientific, and Medical Equipment); SAE J1113-11; SAE J1113-12; SAE J1113-41; SAE J1113-43; SAE J1113-13.
Canada – Emissions	ICES-001; ICES-002; ICES-003 Issue 4; ICES-003 Issue 4 (2004); ICES-006 Issue 1
Vietnam – Emission & Immunity	TCN 68-193:2003; TCN 68-196:2001; TCVN 7189:2002
Australia / New Zealand – Emissions and Immunity	AS/NZS 1044; AS/NZS 4251.1; AS/NZS 4251.2; AS/NZS CISPR 22; AS/NZS 3548; AS/NZS 2279.3; AS/NZS 61000-3-3; AS/NZS CISPR 11; AS/NZS CISPR 24; AS/NZS 61000.6.3; AS/NZS 61000.6.4; AS/NZS CISPR 14.1; AS/NZS 61000.3.2
Japan – Emissions	JETTA IT-3001; VCCI-V-3:2010.4 (up to 6 GHz)
China - Emissions	GB9254; GB17625.1
Taiwan - Emissions	CNS 13438 (up to 6 GHz); CNS 13783-1; CNS 13803; CNS 13439
Singapore – Emissions & Immunity	IDA TS EMC; CISPR 22; IEC 61000-4-2; IEC 61000-4-3; IEC 61000-4-4; IEC 61000-4-5; IEC 61000-4-6
FCC – Radio TIA/EIA 603-C with 47 CFR Part 2	Maritime and Aviation Radio Services in 47 CFR Parts 80 and 87; Personal Mobile Radio Services in 47 CFR Parts 22 (cellular), 24, 25, 26, and 27; Personal Mobile Radio Services in 47 CFR Part 22 (cellular) and Part 24 – [limited to TX conducted and radiated power and RX - TX radiated spurious emissions]; General Mobile Radio Services in 47 CFR Parts 22 (non-cellular), 74, 90, 95, and 97; General Mobile Radio Services in 47 CFR Part 90; Microwave Radio Services in 47 CFR Parts 21, 27, 74, and 101
Canada – Radio	RSS 102; RSS 111; RSS 112; RSS 117; RSS 118; RSS 119; RSS 123; RSS 125; RSS 127; RSS 128; RSS 129; RSS 131; RSS 132; RSS 133; RSS 134; RSS 135; RSS 136; RSS 137; RSS 138; RSS 139; RSS 141; RSS 142; RSS 170; RSS 181; RSS 182; RSS 188; RSS 191; RSS 192; RSS 193; RSS 194; RSS 195; RSS 196; RSS 197; RSS 198; RSS 199; RSS 210; RSS 220; RSS 213; RSS 215; RSS 243; RSS 287; RSS 310; RSS Gen

(A2LA Certificate No. 2742.01) 11/23/2010

Peter Mhyen Page 2 of 7

 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

 Issue Date
 Mar 02 2011

 Page
 60 of 80
 www.siemic.com

Vietnam – Radio	TCN 68-242:2006; TCN 68-243:2006; TCN 68-246:2006
IDA – Radio	IDA TS 3G-BS; IDA TS 3G-MT; IDA TS AR; IDA TS CT-CTS; IDA TS GMPCS; IDA TS GSM-BS; IDA TS GSM-MT; IDA TS LMR; IDA TS RPG; IDA TS SRD; IDA TS UWB; IDA TS WBA
IDA – Radio	

(A2LA Certificate No. 2742.01) 11/23/2010

Peter Mhyen

Page 3 of 7

Title: То

SIEMIC, INC. Accessing global marites RF Test Report of Zebra Technologies Corp Model : EYSMACAXX FCC 15.247:2010 & RSS-210 Issue 8 : 2010

 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

 Issue Date
 Mar 02 2011

 Page
 61 of 80
 www.siemic.com

Korea – Radio	KCC Notice 2009-13; KCC Notice 2008-26; RRL Notice 2008-2; RRL Notice 2005-105; RRL Notice 2008-17; RRL Notice 2005-127; RRL Notice 2005-24; RRL Notice 2005-25; RRL Notice 2005-179; RRL Notice 2008-10; RRL Notice 2007-49; RRL Notice 2007-20; RRL Notice 2007-11; RRL Notice 2007-80; RRL Notice 2004-68; KCC Notice 2009-36, Dec, 8, 2009; RRL Notice 2009-6, October 15, 2009; KCC Notice 2010-1; KCC Notice 2010-12; KCC Notice 2010-13
Taiwan – Radio	LP0002; PLMN07; PLMN01; PLMN08
Australia - New Zealand – Radio	AS 2772.2; AS/NZS 4281; AS/NZS 4268; AS/NZS 4280.1; AS/NZS 4583; AS/NZS 4280.2; AS/NZS 4281; AS/NZS 4295; AS/NZS 4582; AS/NZS 4769.1; AS/NZS 4769.2; AS/NZS 4770; AS/NZS 4771
Hong Kong – Radio	HKTA 1002; HKTA 1007; HKTA 1008; HKTA 1010; HKTA 1015; HKTA 1016; HKTA 1020; HKTA 1022; HKTA 1026; HKTA 1027; HKTA 1029; HKTA 1030; HKTA 1031; HKTA 1032; HKTA 1033; HKTA 1034; HKTA 1035; HKTA 1036; HKTA 1037; HKTA 1039; HKTA 1041; HKTA 1042; HKTA 1043; HKTA 1044; HKTA 1046; HKTA 1047; HKTA 1048; HKTA 1049; HKTA 1051; HKTA1052; HKTA1053; HKTA 1054; HKTA 1055
USA – Telecom	ANSI/TIA-968-A:03; ANSI/TIA-968-A-1:03; ANSI/TIA-968-A-2:04; ANSI/TIA-968-A-3:05; ANSI/TIA-968-A-4:07; ANSI/TIA-968-A-5:07; TIA-968-B; FCC Rule Part 68; 47 CFR Part 68.316; 47 CFR Part 68.317; ANSI/TIA/EIA-464-C; TIA-810-B; TI TRQ6 (2002); TCB-31-B (1998); TIA-470.110-C; TIA-810-B; TIA-920
Canada – Telecom	CS-03 Part V Issue 9:2009 Amendment 1; CS-03 Part VIII Issue 9:2009 Amendment 4; CS-03 Part VIII Issue 9:2006 Amendment 3; CS-03 Part II Issue 9:2004; CS-03 Part II Issue 9:2004; CS-03 Part V Issue 9:2004 ; CS-03 Part VI Issue 9:2004; CS-03 Part VII Issue 9:2006 Amendment 3; CS-03 Part VIII Issue 9:2007 Amendment 3; CS-03 Issue 9:04 + A2(06) + A3(06)
Europe – Telecom	TBR 2: 01-1997; TBR 004 Ed 1.95 + A1 (97); TBR 1; TBR 3; TBR 12:A1 01-1996; TBR 013 ed 1; TBR 024 ed 1; TBR 25; TBR 38 ed 1; ETSI ES 203 021-05; ETSI ES 203 021-2; ETSI ES 021-3; TBR 021; ETSI EG 201 121; ETSI EN 301 437; ETSI TS 101 270-1; ITU-T Recommendation Q.920; ITU-T Recommendation Q.920 – Amendment 1; ITU-T Recommendation Q.921; ITU-T Recommendation Q.921 – Amendment 1; ITU-T Recommendation Q.931; ITU-T Recommendation Q.931 (05/1998); ISDN User Network Interface Layer 3 Specification for Basic Call Control; ITU-T Recommendation P.300
Australia – Telecom	AS/CA \$003.1:2010; AS/CA \$003.2:2010; AS/CA \$003.3:2010; AS/CA \$004:2010; AS/ACIF \$006;2008; AS/ACIF \$041.1:2009

 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

 Issue Date
 Mar 02 2011

 Page
 62 of 80 www.siemic.com

Australia – Telecom	AS/ACIF S041.2:2009; AS/ACIF S041.3:2009; AS/ACIF S042.1:2008; AS/ACIF S043.2:2008; AS/ACIF S043.3:2008; AS/ACIF S002:05; AS/ACIF S003:06; AS/ACIF S004:06; AS/ACIF S006:01; AS/ACIF S016:01; AS/ACIF S031:01; AS/ACIF S038:01; AS/ACIF S040:01; AS/ACIF S031:01; AS/ACIF S038:01; AS/ACIF S040:01; AS/ACIF S041:05; AS/ACIF S043.2:06; AS ACIF S042.1
New Zealand - Telecom	PTC200.2006; PTC200 Issue No.2:97 + A1(980); PTC220; PTC273:2007; TNA 115; TNA 117
Singapore – Telecom	IDA TS ADSL, Issue I, Rev. 1 (April 2006); IDA TS DLCN, Issue I (July 2005); IDA TS ISDN BA, Issue I (July 2005); IDA TS ISDN PRA, Issue I (July 2005); IDA TS ISDN 3 (Oct. 2000); IDA TS-PSTN, Issue I (March 2007); IDA TS ACLIP 07
Hong Kong – Telecom	HKTA 2011; HKTA 2012; HKTA 2013; HKTA 2014; HKTA 2017; HKTA 2018; HKTA 2022; HKTA 2024; HKTA 2026; HKTA 2027; HKTA 2028; HKTA 2029; HKTA 2030; HKTA 2031; HKTA 2032; HKTA 2033
Vietnam – Telecom	TCN 68-188:2000; TCN 68-193:2003; TCN 68-196:2001; TCN 68-143:2003; TCN 68-192:2003; TCN 68-189:2000; TCN 68-221:2004; TCN 68-222:2004; TCN 68-245:2004; TCN 68-223:2004
Korea – Telecom	RRA Notice 2009-38, Sep. 11, 2009: RRA Notice 2009-7 (including attachments 1, 3, 5, 6); Presidential Decree 21098, RRL Notice 2007-30; RRL Notice 2008-10 (attachments 1, 3, 5, 6); RRL Notice 2009-25; RRL Notice 2008-59
China – Telecom	YD/T 514-1:98; YD/T 1277.1-2003; GB/T 17904.1-1999; GB/T 17904.2-1999; GB/T 17154.1-1997; GB/T 17154.2-1997; YD/T1091-2000; YD/T1006-1999; GB/T 17789-1999
Taiwan – Telecom	PSTN01:03; ADSL01:08; ID0002; IS6100: 93
Japan – Telecom	JATE Blue Book, Green Book; Ministerial Ordinance of the Ministry of Posts and Telecommunications No 31 of April 1, 1985 (last amended on March 22 2004); Ordinance Concerning Technical Conditions Compliance Approval etc. of Terminal Equipment
South Africa – Telecom	DPT-TE-001; TE-002; TE-003; TE-004; TE-005; TE-006; TE-007; TE-008; TE-009; TE-010; TE-012 (telephone interface); TE-013 (telephone interface); TE-014; TE-015; TE-018; SWS-001; SWS-002; SWS-003; SWS-004; SWS-005; SWS-006; SWS-007; SWS-008; SWS-009; SWS-010
Israel – Telecom	Israel MoC Spe. 23/96

(A2LA Certificate No. 2742.01) 11/23/2010

Peter Alayer

Page 5 of 7

Title: То

RF Test Report of Zebra Technologies Corp Model : EYSMACAXX FCC 15.247:2010 & RSS-210 Issue 8 : 2010

 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

 Issue Date
 Mar 02 2011

 Page
 63 of 80
 www.siemic.com

Mexico – Telecom	NOM-151-SCT1-1999, NOM-152-SCT1-1999
Argentina – Telecom	CNC-ST2-44-01
Brazil – Telecom	Resolution 392-2005
International Telecom Union	ITU-T-G.703:01; ITU-T-G.823:93; ITU-T G.824; ITU-T G.825; ITU-T-G.991.2; ITU-T-G.992.1; ITU-T-G.992.3; ITU-T-G.992.5; ITU-T-G.993.1
Product Safety	IEC 60950-1; EN 60950-1; UL 60950-1; IEC 60601-1-1; CAN/CSA 22.2 NO. 60950-1-03; SS-EN 60950-1; AS/NZ 60950-1, (voltage surge testing up to 6kV, excluding Annex A and H); CNS 14336, CNS 14408; GB4943; President Notice 20664; RRL Notice 2008-10 (attachment 4); RRA Notice 2009-7 (attachment 4); TCN 68-190:2003; SABS IEC 60950; IEC/EN 61558; IEC/EN 61558-2-7; EN 62115; IEC 60215; EN 60958; EN 60598; IEC 215 (1987) + A1 (1992) + A2 (1994)
Japan - Radio	ARIB STD-T81; ARIB STD-T66; RCR STD-1; RCR STD-29; ARIB STD-T94 Fascicle 1; ARIB STD-T90; ARIB STD-T89; RCR STD-33
SAR & HAC	IEEE P1528:2003 + Ad1; IEEE 1528A:2005; FCC OET Bulletin 65 Supplement C; FCC OET Bulletin 65; ANSI C95; ANSI C63.19; FCC 47 CFR 20.19; H46-2/99-273E; EN 50360; EN 50361; IEC62209-1; IEC 62209-2; EN 50371; EN 50383; EN 50357; EN 50364; RRL 2008-18; RRL 2008-16; KCC 2009-27; RRL 2004-67; CNS 14959; NZS 2772.1; NZS 6609.2; Resolution N 533
Japan – Notification No. 88 of MIC 2004	
Table No 13	CB Radio
Table No 21	Cordless Telephone
Table Nos 22-1 thru 22-17	Low Power Radio Equipment
Table No 36	Low Power Security System
Table No 43	Low Power Data Communication in the 2.4 GHz Band
Table No 44	Low Power Data Communication in the 2.4 GHz Band
Table No 45	Low Power Data Communication in the 5.2, 5.3, 5.6 GHz Bands
Table No 46	Low Power Data Communication in the 25 and 27 GHz Bands
Table No 47	Base Station for 5 GHz Band Wireless Access System
Table No 47	Base Station for 5 GHz Band Wireless Access System (low spurious type)
Table No 47	Land Mobile Relay for 5 GHz Band Wireless Access System (limited for use in special zones)

Page 6 of 7

SIEMIC, INC. Accessing global markets

Title:

То

Accessing global markets RF Test Report of Zebra Technologies Corp Model : EYSMACAXX FCC 15.247:2010 & RSS-210 Issue 8 : 2010
 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

 Issue Date
 Mar 02 2011

 Page
 64 of 80 www.siemic.com

Table No 47	Land Mobile Relay for 5 GHz Band Wireless Access System (limited for use in special zones, low spurious type)
Table No 47	Land Mobile Relay for 5 GHz Band Wireless Access System
Table No 47	Land Mobile Relay for 5 GHz Band Wireless Access System (low spurious type)
Table No 47	Land Mobile Relay for 5 GHz Band Wireless Access System (low power type)
Table No 50	Digital Cordless Telephone
Table No 50	PHS Base Station
Table No 50	PHS Land Møbile Station
Table No 50	PHS Relay Station
Table No 50	PHS Test Station
Table No 64	Mobile Station for Dedicated Short Range Communication Systems
Table No 64	Base Station for Dedicated Short Range Communication Systems
Table No 64	Test Station for Dedicated Short Range Communication Systems
Table No 70	UWB (Ultra Wide Band) Radio System

¹Note: This accreditation covers testing performed at the laboratory listed above and the OATS located at 44366 South Grimmer Blvd., Fremont CA 94538. At this site "Radiated Emissions" are tested at a measurement distance of 10m.

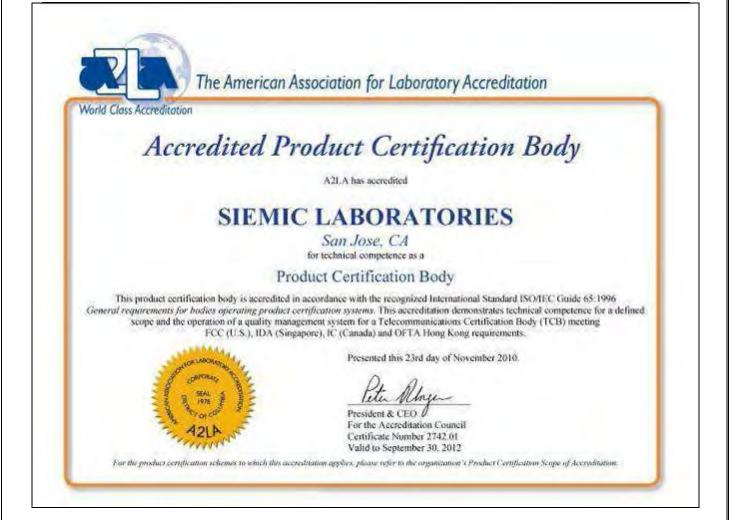
*Limitations for listed standards are indicated by italics and Scope excludes protocol sections of applicable standards.

(A2LA Certificate No. 2742.01) 11/23/2010

Peter Mhyen

Page 7 of 7

Title


То

Accessing global markets RF Test Report of Zebra Technologies Corp Model : EYSMACAXX FCC 15.247:2010 & RSS-210 Issue 8 : 2010

 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

 Issue Date
 Mar 02 2011

 Page
 65 of 80 www.siemic.com

sing global mar RF Test Report of Zebra Technologies Corp Title Model : EYSMACAXX FCC 15.247:2010 & RSS-210 Issue 8 : 2010 То

SL11012304-ZBR-003(FCC FHSS) rev 1.0 Serial# Issue Date Mar 02 2011 Page 66 of 80 www.siemic.com

The American Association for Laboratory Accreditation

World Class Accreditation

SCOPE OF ACCREDITATION TO ISO/IEC GUIDE 65:1996

SIEMIC INC. 2206 Ringwood Ave. San Jose, CA 95131 Mr. Snell Leong (Authorized Representative) Phone: 408 526 1188 www.siemic.com

PRODUCT CERTIFICATION CONFORMITY ASSESSMENT BODY (CAB)

Valid to: September 30, 2012

Certificate Number: 2742.02

In recognition of the successful completion of the A2LA Certification Body Accreditation Program evaluation, including the US Federal Communications Commission (FCC), Industry Canada (IC), Singapore (IDA) and Hong Kong (OFTA) requirements for the indicated types of product certifications, accreditation is granted to this organization to perform the following product certification schemes:

Economy

Scope

Federal Communication Commission - (FCC)

Unlicensed Radio Frequency Devices	A1, A2, A3, A4
Licensed Radio Frequency Devices	B1, B2, B3, B4
Telephone Terminal Equipment	C

*Please refer to FCC TCB Program Roles and Responsibilities, released July 22, 2010 detailing scopes, roles and responsibilities. http://fjallfoss.fcc.gov/oetcf/kdb/forms/FTSSearchResultPage.cfm?id=44683&switch=P

Industry Canada - (IC)

Radio

Scope 1-Licence-Exempt Radio Frequency Devices: Scope 2-Licensed Personal Mobile Radio Services; Scope 3-Licensed General Mobile & Fixed Radio Services; Scope 4-Licensed Maritime & Aviation Radio Services; Scope 5-Licensed Fixed Microwave Radio Services;

*Please refer to Industry Canada (IC) website at: http://www.ic.gc.ca/eic/site/smt-gst.nsf/eng/sf09888.html

IDA - Singapore

Line Terminal Equipment

All Technical Specifications for Line Terminal Equipment - Table 1 of IDA MRA Recognition Scheme: 2009, Annex 2

Radio-Communication Equipment

All Technical Specifications for Radio-Communication Equipment - Table 2 of IDA MRA Recognition Scheme: 2009, Annex 2

*Please refer to Info-Communication Development Authority (iDA) Singapore website at: http://www.ida.gov.sg/doc/Policies%20and%20Regulation/Policies_and_Regulation_Level2/20060609145118/MRAReeSc heme pdf Allace (A2LA Cert. No. 2742.02) 11/23/2010 Page 1 of 2 leter

5301 Buckeystown Pike, Suite 350 | Frederick, Maryland 21704-8373 | Phone: 301 644 3248 | Fax: 301 662 2974 | www.A2LA.org

Title

То

Accessing global markets RF Test Report of Zebra Technologies Corp Model : EYSMACAXX FCC 15.247:2010 & RSS-210 Issue 8 : 2010

 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

 Issue Date
 Mar 02 2011

 Page
 67 of 80 www.siemic.com

OFTA - Hong Kong

Radio Equipment

HKTA 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1015, 1016, 1019, 1020, 1022, 1026, 1027, 1029, 1030, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052, 1053, 1054, 1055

"Please refer to the Office of the Telecommunications Authority's website at. http://www.ofta.gov.hk/en/standards/HKTASpec/hkta-Ibxx.html

Fixed Network Equipment

HKTA 2001, 2005, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033, 2034, 2035, 2036, 2037, 2040, 2041, 2102, 2103, 2104, 2108, 2201, 2202, 2203, 2204

"Please refer to the Office of the Telecommunications Authority's website at: http://www.ofta.gov.hk/en/standards/HKTASpec.hkta-2xxx.html

(A2LA Cert. No. 2742.02) 11/23/2010

Peter Allage Page 2 of 2

SIEMIC ACREDITATION DETAILS: FCC Test Site Registration No. 783147

FEDERAL COMMUNICATIONS COMMISSION

Laboratory Division 7435 Oakland Mills Road Columbia, MD 21046

December 20, 2007

Registration Number: 783147

SIEMIC Laboratories 2206 Ringwood Avenue, San Jose, CA 95131

Attention: Leslie Bai

Re: Measurement facility located at San Jose 3 & 10 meter site Date of Renewal: December 20, 2007

Dear Sir or Madam:

Your request for renewal of the registration of the subject measurement facility has been received. The information submitted has been placed in your file and the registration has been renewed. The name of your organization will remain on the list of facilities whose measurement data will be accepted in conjunction with applications for Certification under Parts 15 or 18 of the Commission's Rules. Please note that the file must be updated for any changes made to the facility and the registration must be renewed at least every three years.

Measurement facilities that have indicated that they are available to the public to perform measurement services on a fee basis may be found on the FCC website <u>www.fcc.gov</u> under E-Filing, OET Equipment Authorization Electronic Filing, Test Firms.

Sincerely,

Phyllis Parrish Industry Analyst

 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

 Issue Date
 Mar 02 2011

 Page
 69 of 80 www.siemic.com

SIEMIC ACREDITATION DETAILS: Industry of Canada CAB ID : US0160

UNITED STATES DEPARTMENT OF COMMERCE National Institute of Standards and Technology Gaithersburg, Maryland 20899-

March 4, 2009

Title

То

Mr. Leslie Bai SIEMIC, Inc. 2206 Ringwood Avenue San Jose, CA 95131

Dear Mr. Bai:

NIST is pleased to inform you that your laboratory has been recognized by Industry Canada (IC), under the Asia Pacific Economic Cooperation for Telecommunications Equipment Mutual Recognition Arrangement (APEC Tel MRA). Your laboratory is now designated to act as a Conformity Assessment Body (CAB) under Appendix B, **Phase I** Procedures, of the APEC Tel MRA. The pertinent information about your laboratory's designation is as follows:

CAB Name:	SIEMIC, Inc.
Physical Location:	2206 Ringwood Avenue, San Jose, CA 95131 USA
Identification No .:	US0160
Recognized Scope:	CS-03 Part I, II, V, VI, VII and VIII

You may submit test data to IC to verify that the equipment to be imported into Canada satisfies the applicable requirements. The designation of your organization will remain in force as long as its accreditation for the designated scope remains valid and comply with the designation requirements.

Recognized CABs are listed on the NIST website at http://ts.nist.gov/mra. Please contact Ms. Ramona Saar at (301) 975-5521 or ramona.saar@nist.gov if you have any questions.

Sincerely,

Parial In Alda

David F. Alderman Group Leader, Standards Coordination and Conformity Group Standards Services Division

Enclosure

cc: CAB Program Manager

 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

 Issue Date
 Mar 02 2011

 Page
 70 of 80 www.siemic.com

SIEMIC ACREDITATION DETAILS: Industry of Canada Test Site Registration No. 4842-1

Canada Canada

May 27, 2010

Title

То

OUR FILE: 46405-4842 Submission No: 140856

Siemic Inc. 2206 Ringwood Ave San Jose, CA, 95131 USA

Attention: Snell Leong

Dear Sir/Madame:

The Bureau has received your application for the renewal of a 3m alternative test site. Be advised that the information received was satisfactory to Industry Canada. The following number(s) is now associated to the site(s) for which registration / renewal was sought (4842A-1). Please reference the appropriate site number in the body of test reports containing measurements performed on the site. In addition, please keep for your records the following information;

- Your primary code is: 4842

- The company number associated to the site(s) located at the above address is: 4842A

Furthermore, to obtain or renew a unique site number, the applicant shall demonstrate that the site has been accredited to ANSI C63.4-2003 or later. A scope of accreditation indicating the accreditation by a recognized accreditation body to ANSI C63.4-2003 or later shall be accepted. Please indicate in a letter the previous assigned site number if applicable and the type of site (example: 3 metre OATS or 3 metre chamber). If the test facility is not accredited to ANSI C63.4-2003 or later, the test facility shall submit test data demonstrating full compliance with the ANSI standard. The Bureau will evaluate the filing to determine if recognition shall be granted.

The frequency for re-validation of the test site and the information that is required to be filed or retained by the testing party shall comply with the requirements established by the accrediting organization. However, in all cases, test site re-validation shall occur on an interval not to exceed two years. There is no fee or form associated with an OATS filing. OATS submissions are encouraged to be submitted electronically to the Bureau using the following URL;

http://strategis.ic.gc.ca/epic/internet/inceb-bhst.nsf/en/h_tt00052e.html.

If you have any questions, you may contact the Bureau by e-mail at <u>certification.bureau@ic.gc.ca</u> Please reference our file and submission number above for all correspondence.

Yours sincerely,

Johinderfell

Dalwinder Gill For: Wireless Laboratory Manager Certification and Engineering Bureau 3701 Carling Ava., Building 94 P.O. Box 11490, Station "H" Ottawa, Ontatio K2H 8S2 Email: dalwinder.gill@ic.gc.ca Tel. No. (613) 998-8363 Fax. No. (613) 990-4752

Title

То

Accessing global markets RF Test Report of Zebra Technologies Corp Model : EYSMACAXX FCC 15.247:2010 & RSS-210 Issue 8 : 2010

 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

 Issue Date
 Mar 02 2011

 Page
 71 of 80 www.siemic.com

SIEMIC ACREDITATION DETAILS: FCC DOC CAB Recognition : US1109

FEDERAL COMMUNICATIONS COMMISSION

Laboratory Division 7435 Oakland Mills Road Columbia, MD 21046

August 28, 2008

Siemic Laboratories 2206 Ringwood Ave., San Jose, CA 95131

Attention: Leslie Bai

Accreditation of Siemic Laboratories Designation Number: US1109 Test Firm Registration #: 540430

Dear Sir or Madam:

Re:

We have been notified by American Association for Laboratory Accreditation that Siemic Laboratories has been accredited as a Conformity Assessment Body (CAB).

At this time Siemic Laboratories is hereby designated to perform compliance testing on equipment subject to Declaration Of Conformity (DOC) and Certification under Parts 15 and 18 of the Commission's Rules.

This designation will expire upon expiration of the accreditation or notification of withdrawal of designation.

Sincerely,

George Tanahill

George Tannahill Electronics Engineer

Title

То

Accessing global markets RF Test Report of Zebra Technologies Corp Model : EYSMACAXX FCC 15.247:2010 & RSS-210 Issue 8 : 2010

 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

 Issue Date
 Mar 02 2011

 Page
 72 of 80 www.siemic.com

SIEMIC ACREDITATION DETAILS: Australia CAB ID : US0160

UNITED STATES DEPARTMENT OF COMMERCE National Institute of Standards and Technology Gaithersburg, Maryland 20899-

November 20, 2008

Mr. Leslie Bai SIEMIC, Inc. 2206 Ringwood Avenue San Jose, CA 95131

Dear Mr. Bai:

NIST is pleased to inform you that your laboratory has been recognized by the Australian Communications and Media Authority (ACMA) under the Asia Pacific Economic Cooperation for Telecommunications Equipment Mutual Recognition Arrangement (APEC Tel MRA). Your laboratory is now designated to act as a Conformity Assessment Body (CAB) under Appendix B, Phase I Procedures, of the APEC Tel MRA. The pertinent information about your laboratory's designation is as follows:

CAB Name: Physical Location: Identification No.: Recognized Scope:	Siemic, Inc. 2206 Ringwood Avenue, San Jose, CA 95131 US0160 <u>EMC</u> : AS/NZS 4251.1 (until 5/31/2009), AS/NZS 4251.2 (until 5/31/2009), AS/NZS CISPR 11, AS/NZS CISPR 14.1, AS/NZS CISPR 22, AS/NZS 61000.6.3, AS/NZS 61000.6.4 <u>Radiocommunications</u> : AS/NZS 4281, AS/NZS 4268, AS/NZS 4280.1, AS/NZS 4280.2, AS/NZS 4295, AS/NZS 4582, AS/NZS 4583, AS/NZS 4769.1, AS/NZS 4769.2, AS/NZS 4770, AS/NZS 4771 <u>Telecommunications</u> : AS/ACIF S002:05, AS/ACIF S003:06, AS/ACIF S004:06, AS/ACIF S006:01, AS/ACIF S016:01, AS/ACIF S031:01, AS/ACIF S038:01,
	AS/ACIF S006:01, AS/ACIF S016:01, AS/ACIF S031:01, AS/ACIF S038:01, AS/ACIF S040:01, AS/ACIF S041:05, AS/ACIF S043.2:06, AS/NZS 60950.1

You may submit test data to ACMA to verify that the equipment to be imported into Australia satisfies the applicable requirements. The designation of your organization will remain in force as long as its accreditation for the designated scope remains valid and comply with the designation requirements. Recognized CABs are listed on the NIST website at http://ts.nist.gov/mra. Please contact Ms. Ramona Saar, at (301) 975-5521 or ramona.saar@nist.gov if you have questions.

Sincerely,

Daniel I. alder

David F. Alderman Group Leader, Standards Coordination and Conformity Group Standards Services Division

Enclosure

cc: Snell Leong, Siemic, Inc.; Ramona Saar, NIST

SIEMIC ACREDITATION DETAILS: Korea CAB ID: US0160

UNITED STATES DEPARTMENT OF COMMERCE National Institute of Standards and Technology Gaithersburg, Maryland 20899-

October 1, 2008

Title

Τn

Mr. Leslie Bai SIEMIC, Inc. 2206 Ringwood Avenue San Jose, CA 95131

Dear Mr. Bai:

NIST is pleased to inform you that your laboratory has been recognized by the Radio Research Agency (RRA) Korea Communications Commission (KCC) under the Asia Pacific Economic Cooperation for Telecommunications Equipment Mutual Recognition Arrangement (APEC Tel MRA). Your laboratory is now designated to act as a Conformity Assessment Body (CAB) under Appendix B, **Phase I** Procedures, of the APEC Tel MRA. The pertinent information about your laboratory's designation is as follows:

CAB Name: Physical Location: Identification No.: Recognized Scope: SIEMIC, Inc.
2206 Ringwood Avenue, San Jose, CA 95131
US0160
EMI: KCC Notice 2008-39, RRL Notice 2008-3: CA Procedures for EMI
KN22: Test Method for EMI
EMS: KCC Notice 2008-38, RRL Notice 2008-4: CA Procedures for EMS
KN24, KN-61000-4-2, -4-3, -4-4, -4-5, -4-6, -4-8, -4-11: Test Method for EMS
Wireless: RRL Notice 2008-26, RRL Notice 2008-2, RRL Notice 2008-10, RRL Notice 2007-49, RRL Notice 2007-20, RRL Notice 2007-21, RRL Notice 2007-80, RRL Notice 2004-68
Wired: President Notice 20664, RRL Notice 2007-30, RRL Notice 2008-7 with attachments 1, 3, 5, 6
President Notice 20664, RRL Notice 2008-7 with attachment 4

You may submit test data to RRA/KCC to verify that the equipment to be imported into Korea satisfies the applicable requirements. The designation of your organization will remain in force as long as its accreditation for the designated scope remains valid and comply with the designation requirements.

Recognized CABs are listed on the NIST website at http://ts.nist.gov/mra. If you have any questions please contact Ramona Saar at (301) 975-5521 or ramona.saar@nist.gov.

Sincerely,

Paul In alde

David F. Alderman Group Leader, Standards Coordination and Conformity Group Standards Services Division

Enclosure

cc: Ramona Saar

Title

Τo

Accessing global markets RF Test Report of Zebra Technologies Corp Model : EYSMACAXX FCC 15.247:2010 & RSS-210 Issue 8 : 2010

 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

 Issue Date
 Mar 02 2011

 Page
 74 of 80

 www.siemic.com

SIEMIC ACREDITATION DETAILS: Taiwan BSMI Accreditation No. SL2-IN-E-1130R

UNITED STATES DEPARTMENT OF COMMERCE National lestitute of Standards and Technology Getlandurg, Maryland 20895

May 3, 2006

Mr. Leslie Bai SIEMIC Laboratories 2206 Ringwood Avenue San Jose, CA 95131

Dear Mr. Bai:

I am pleased to inform you that your laboratory has been recognized by the Chinese Taipei's Bareau of Standards, Metrology, and Inspection (BSMI) under the Asia Pacific Economic Cooperation (APEC) Mutual Recognition Arrangement (MRA). Your laboratory is now designated to act as a Conformity Assessment Body (CAB) under Appendix B. Phase I Procedures, of the APEC Tel MRA. You may submit test data to BSMI to verify that the equipment to be imported into Chinese Taipei satisfies the applicable requirements. The designated scope remains valid and comply with the designation requirements. The performance of your organization will remain in force as long as its accreditation for the designated scope remains valid and comply with the designation requirements. The performance information is as follows:

- BSMI number:

SL2-IN-E-1130R (Must be applied to the test reports) US0160

- U.S Identification No:
 - Scope of Designation: CNS 13438
 - Authorized signatory: Mr. Leslie Bai

The names of all recognized CABs will be posted on the NIST website at http://ts.nist.gov/mra. If you have any questions, please contact Mr. Dhillon at 301-975-5521. We appreciate your continued interest in our international conformity assessment activities.

Sincerely,

Part & all

David F. Alderman Group Leader, Standards Coordination and Conformity Group

eet Jogindur Dhillon

 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

 Issue Date
 Mar 02 2011

 Page
 75 of 80 www.siemic.com

SIEMIC ACREDITATION DETAILS: Taiwan NCC CAB ID: US0160

Gaithersburg, Maryland 20899-

November 25, 2008

Title

То

Mr. LeslieBai SIEMIC, Inc. 2206 Ringwood Avenue San Jose, CA 95131

Dear Mr. Bai:

NIST is pleased to inform you that your laboratory has been recognized by the National Communications Commission (NCC) for the requested scope expansion under the Asia Pacific Economic Cooperation for Telecommunications Equipment Mutual Recognition Arrangement (APEC Tel MRA). Your laboratory is designated to act as a Conformity Assessment Body (CAB) under Appendix B, **Phase I** Procedures, of the APEC Tel MRA. The pertinent information about your laboratory's designation is as follows:

CAB Name:	SIEMIC, Inc.
Physical Location:	2206 Ringwood Avenue, San Jose, CA 95131
Identification No .:	US0160
Current Scope:	LP0002
Additional Scope:	PSTN01, ADSL01, ID0002, IS6100 and CNS 14336

You may submit test data to NCC to verify that the equipment to be imported into China satisfies the applicable requirements. The designation of your organization will remain in force as long as its accreditation for the designated scope remains valid and comply with the designation requirements.

Recognized CABs are listed on the NIST website at http://ts.nist.gov/mra. If you have any questions please contact Ramona Saar at (301) 975-5521 or ramona.saar@nist.gov.

Sincerely,

Paris Z. alda

David F. Alderman Group Leader, Standards Coordination and Conformity Group Standards Services Division

Enclosure

cc: Ramona Saar

Title

То

Accessing global markets RF Test Report of Zebra Technologies Corp Model : EYSMACAXX FCC 15.247:2010 & RSS-210 Issue 8 : 2010

SIEMIC ACREDITATION DETAILS: Mexico NOM Recognition

 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

 Issue Date
 Mar 02 2011

 Page
 77 of 80 www.siemic.com

SIEMIC ACREDITATION DETAILS: Hong Kong OFTA CAB ID : US0160

UNITED STATES DEPARTMENT OF COMMERCE National Institute of Standards and Technology Gaithersburg, Maryland 20899-

December 8, 2008

Title

То

Mr. Leslie Bai SIEMIC, Inc. 2206 Ringwood Avenue San Jose, CA 95131

Dear Mr. Bai:

NIST is pleased to inform you that your laboratory has been recognized by the Office of the Telecommunications Authority (OFTA) under the Asia Pacific Economic Cooperation for Telecommunications Equipment Mutual Recognition Arrangement (APEC Tel MRA). Your laboratory is now designated to act as a Conformity Assessment Body (CAB) under Appendix B, **Phase I** Procedures, of the APEC Tel MRA. The pertinent information about your laboratory's designation is as follows:

CAB Name:	SIEMIC, Inc.
Physical Location:	2206 Ringwood Avenue, San Jose, California 95131 USA
Identification No .:	US0160
Recognized Scope:	Radio: HKTA 1002, 1007, 1008, 1010, 1015, 1016, 1020, 1022, 1026,
	1027, 1029, 1030, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1039, 1041,
	1042, 1043, 1044, 1046, 1047, 1048, 1049, 1051
	Telecom: HKTA 2011, 2012, 2013, 2014, 2017, 2018, 2022, 2024, 2026,
	2027, 2028, 2029, 2030, 2031, 2032, 2033

You may submit test data to OFTA to verify that the equipment to be imported into Hong Kong satisfies the applicable requirements. The designation of your organization will remain in force as long as its accreditation for the designated scope remains valid and comply with the designation requirements.

Recognized CABs are listed on the NIST website at http://ts.nist.gov/mra. If you have any questions please contact Ramona Saar at (301) 975-5521 or ramona.saar@nist.gov.

Sincerely,

David I. alden

David F. Alderman Group Leader, Standards Coordination and Conformity Group Standards Services Division

Enclosure

cc: Ramona Saar

Title

То

VC

RF Test Report of Zebra Technologies Corp Model : EYSMACAXX FCC 15.247:2010 & RSS-210 Issue 8 : 2010
 Serial#
 SL11012304-ZBR-003(FCC FHSS) rev 1.0

 Issue Date
 Mar 02 2011

 Page
 78 of 80

 www.siemic.com

SIEMIC ACREDITATION DETAILS: VCCI Radiated Test Site Registration No. T-1597

CERTIFICATE

Company: SIEMIC Laboratories <<u>Member No.</u> 3081

Facility: SIEMIC Laboratories

е.

VEI

(Telecominication Ports Conducted Disturbance Measurement)

Location of Facility: 2206 Ringwood Ave San Jose, CA 95131, USA

This is to certify that the following measuring facility has been registered in accordance with the Rules for Voluntary Control Measures

Registration No.: T-1597 Date of Registration: October 01, 2010 This Certificate is valid until September 30, 2012

VEI

Title

То

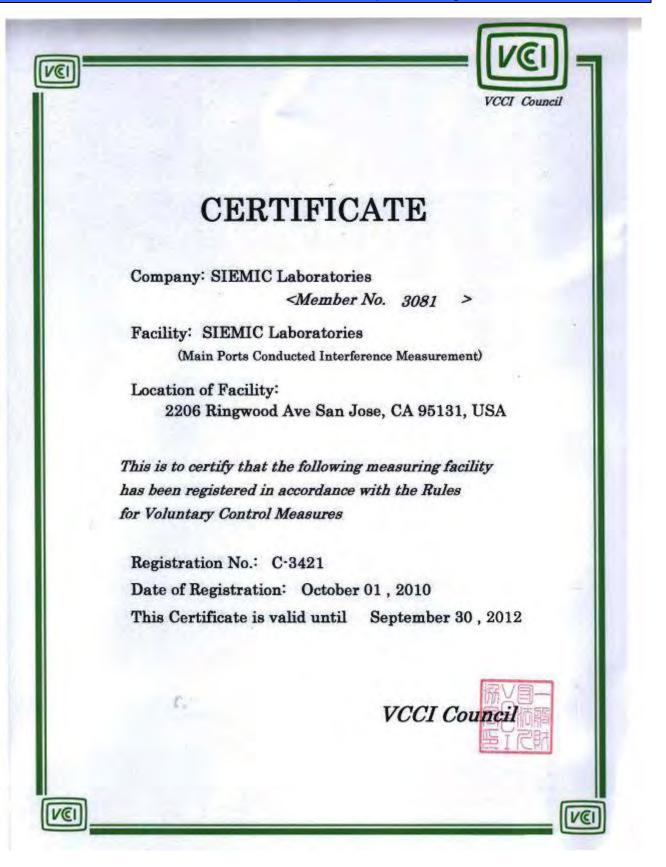
VEI

VEI

RF Test Report of Zebra Technologies Corp Model : EYSMACAXX FCC 15.247:2010 & RSS-210 Issue 8 : 2010

VCCI Council

SIEMIC ACREDITATION DETAILS: VCCI Conducted (Main Port) Test Site Registration No. R-3083


VEI

Title

То

RF Test Report of Zebra Technologies Corp Model : EYSMACAXX FCC 15.247:2010 & RSS-210 Issue 8 : 2010

SIEMIC ACREDITATION DETAILS: VCCI Conducted (Telecom Port) Test Site Registration No. C-3421

