

Test Report S/N:	110804I28-T583-586-S15W
Test Date(s):	November 17-19 & 26, 2004
Test Type:	FCC/IC SAR Evaluation

DECLARATION OF COMPLIANCE SAR RF EXPOSURE EVALUATION									
<u>Test Lab</u>		Applicant Information							
CELLTECH LABS INC.Testing and Engineering Services1955 Moss CourtKelowna, B.C.Canada V1Y 9L3Phone:250-448-7047Fax:250-448-7046e-mail:info@celltechlabs.web site:www.celltechlabs.com		ZEBRA TECHNOLOGIES CORPORATION 30 Plan Way Warwick, RI 02886 United States							
FCC IDENTIFIER: IC IDENTIFIER: Model(s):	I28MD-RW4137 3798A-RW4137 QL220, QL320, QL42	0, RW420							
Rule Part(s): Test Procedure(s): FCC Device Classification: IC Device Classification: Device Description: Modulation Type:	FCC OET Bulletin 65 Digital Transmission Low Power Licence- Wireless Portable Pr	8; IC RSS-102 Issue 1 (Provisional) 5, Supplement C (Edition 01-01) n System (DTS) -Exempt Radiocommunication Device (RSS-210) rinter with Symbol LA-4137 Compact Flash DSSS WLAN Card read Spectrum (DSSS)							
Tx Frequency Range: Max. RF Output Power Measured: Antenna Type(s) Tested: Battery Type(s) Tested:	18.2 dBm (66.1 mW) 17.8 dBm (60.3 mW) Internal Li-ion 7.4 VDC P/N: A Li-ion 7.4 VDC P/N: A	· Peak Conducted (2412 MHz) - Peak Conducted (2437 MHz) - Peak Conducted (2462 MHz) AT16004-1 (Printer Models: QL220, QL320) AT16293-1 (Printer Model: QL420) CT17102-2 (Printer Model: RW420)							
Body-Worn Accessories:	Shoulder Strap Plastic Belt-Clip with Plastic Belt-Clip (Prin	n metal screws (Printer Models: QL220, QL320, QL420) nter Model: RW420)							
Max. SAR Levels Evaluated:	QL320: 0.0500 W/kg QL420: 0.0155 W/kg	body-worn (1g average) body-worn (1g average) body-worn (1g average) body-worn (1g average)							

Celltech Labs Inc. declares under its sole responsibility that this wireless portable device has demonstrated compliance with the Specific Absorption Rate (SAR) RF exposure requirements specified in FCC 47 CFR §2.1093 and Health Canada's Safety Code 6. The device was tested in accordance with the measurement standards and procedures specified in FCC OET Bulletin 65, Supplement C (Edition 01-01) and Industry Canada RSS-102 Issue 1 (Provisional) for the General Population / Uncontrolled Exposure environment. All measurements were performed in accordance with the SAR system manufacturer recommendations.

I attest to the accuracy of data. All measurements were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

This test report shall not be reproduced partially, or in full, without the prior written approval of Celltech Labs Inc. The results and statements contained in this report pertain only to the device(s) evaluated.

Performed By:

Spencer Watow

Spencer Watson Compliance Technologist Celltech Labs Inc.

Reviewed By:

W. Puse

Russell W. Pipe Senior Compliance Technologist Celltech Labs Inc.

Test Report S/N:	110804I28-T583-586-S15W
Test Date(s):	November 17-19 & 26, 2004
Test Type:	FCC/IC SAR Evaluation

TABLE OF CONTENTS						
1.0	INTRODUCTION	3				
2.0	DESCRIPTION OF DUT	3				
3.0	SAR MEASUREMENT SYSTEM	4				
4.0	MEASUREMENT SUMMARY	5				
5.0	DETAILS OF SAR EVALUATION	6				
6.0	EVALUATION PROCEDURES	7				
7.0	SYSTEM PERFORMANCE CHECK	8				
8.0	SIMULATED EQUIVALENT TISSUES	9				
9.0	SAR SAFETY LIMITS	9				
10.0	ROBOT SYSTEM SPECIFICATIONS	10				
11.0	PROBE SPECIFICATION	11				
12.0	SAM PHANTOM	11				
13.0	PLANAR PHANTOM	11				
14.0	DEVICE HOLDER	11				
15.0	TEST EQUIPMENT LIST	12				
16.0	MEASUREMENT UNCERTAINTIES	13-14				
17.0	REFERENCES	15				
	IX A - SAR MEASUREMENT DATA	16				
	IX B - SYSTEM PERFORMANCE CHECK DATA	17				
	IX C - SYSTEM VALIDATION.	18				
	IX D - PROBE CALIBRATION	19				
	IX E - MEASURED FLUID DIELECTRIC PARAMETERS	20				
	IX F - SAM PHANTOM CERTIFICATE OF CONFORMITY	21				
	IX G - PLANAR PHANTOM CERTIFICATE OF CONFORMITY IX H - SAR TEST SETUP & DUT PHOTOGRAPHS	22				
APPEND	IN TI - SAR 1231 SETUP & DUT PHUTUGKAPHS	23				

Test Report S/N:	110804l28-T583-586-S15W
Test Date(s):	November 17-19 & 26, 2004
Test Type:	FCC/IC SAR Evaluation

1.0 INTRODUCTION

This measurement report demonstrates that the Zebra Technologies Corporation Model(s): QL220, QL320, QL420, RW420 Wireless Portable Printer FCC ID: I28MD-RW4137 with internal Symbol LA-4137 Compact Flash DSSS WLAN Card complies with the SAR (Specific Absorption Rate) RF exposure requirements specified in FCC 47 CFR §2.1093 (see reference [1]), and Health Canada's Safety Code 6 (see reference [2]) for the General Population / Uncontrolled Exposure environment. The test procedures described in FCC OET Bulletin 65, Supplement C, Edition 01-01 (see reference [3]), and Industry Canada RSS-102 Issue 1 (Provisional) (see reference [4]) were employed. A description of the product, operating configuration, detailed summary of the test results, methodology and procedures used in the evaluation, equipment used, and the various provisions of the rules are included within this test report.

2.0 DESCRIPTION of DEVICE UNDER TEST (DUT)

FCC Rule Part(s)			47 CFR	§2.1093						
IC Rule Part(s)	RSS-102 Issue 1 (Provisional) FCC OET Bulletin 65, Supplement C (01-01)									
Test Procedure(s)		FCC O	ET Bulletin 65,	Supplement C	(01-01)				
FCC Device Classification		Dig	gital Transmiss	ion System (DT	S)					
IC Device Classification	Low Power	Licence	e-Exempt Radio	communication	Devic	e (RSS-210)				
Device Description	Wireless Portable P	rinter w	ith internal Syn	nbol LA-4137 C	ompac	t Flash DSSS WLAN				
FCC IDENTIFER		I28MD-RW4137								
IC IDENTIFER	3798A-RW4137									
Model(s)	QL220 QL320 QL420					RW420				
	XXVA03-12-009	96	QL	220		Production Unit				
Serial No.(s)	CVVQ03-10-003	33	QL	320		Production Unit				
Senai No.(3)	XXVT04-33-0027		QL420		Production Unit					
	XXRC04-37-0085		RW420		Production Unit					
Modulation		Direct	Sequence Spre	ead Spectrum (I	DSSS)					
Tx Frequency Range			2412 - 2	462 MHz						
Antenna Type(s) Tested	2412 - 2462 MHz Internal									
	20.0 dBm		100 mW	Peak Conducted		2412 MHz				
Max. RF Output Power Measured	18.2 dBm	0096 QL220 Production Unit 0033 QL320 Production Unit 0027 QL420 Production Unit 0085 RW420 Production Unit 0100 mW Spectrum (DSSS) 2412 - 2462 MHz Internal 100 mW Peak Conducted 2412 MHz 66.1 mW Peak Conducted 2437 MHz 60.3 mW Peak Conducted 2462 MHz Li-ion 7.4 VDC P/N: AT16004 Li-ion 7.4 VDC P/N: AT16293	2437 MHz							
	17.8 dBm	6	60.3 mW	Peak Condu	cted	2462 MHz				
	QL220		l i-ion	7 4 VDC		P/N: AT16004-1				
Battery Type(s) Tested	QL320		Linon							
	QL420		Li-ion	7.4 VDC		P/N: AT16293-1				
	RW420		Li-ion	7.4 VDC		P/N: CT17102-2				
			Should	er Strap						
Body-Worn Accessories Tested	Note: Belt-Clip for N	3798A-RW4137 QL 320 QL 420 RW 12-0096 QL 220 Production 10-0033 QL 320 Production 33-0027 QL 420 Production 37-0085 RW 420 Production 37-0085 RW 420 Production Direct Sequence Spread Spectrum (DSSS) 2412 - 2462 MHz Internal 1 100 mW Peak Conducted 2412 1 66.1 mW Peak Conducted 2437 1 60.3 mW Peak Conducted 2462 Li-ion 7.4 VDC P/N: A1 Li-ion 7.4 VDC P/N: A1	ents, therefore worst-							

Applicant:	Zebra Technologies Corporation	on	FCC ID:	IC ID:	3798	98A-RW4137	
Model(s):	QL220, QL320, QL420, RW420	Wire	eless Portable I	2412 - 2462	2 MHz	Zebra	
2004 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc.							

Test Report S/N:	110804I28-T583-586-S15W
Test Date(s):	November 17-19 & 26, 2004
Test Type:	FCC/IC SAR Evaluation

3.0 SAR MEASUREMENT SYSTEM

Celltech Labs Inc. SAR measurement facility utilizes the Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG[™]) of Zurich, Switzerland. The DASY4 measurement system is comprised of the measurement server, robot controller, computer, near-field probe, probe alignment sensor, specific anthropomorphic mannequin (SAM) phantom, and various planar phantoms for brain and/or body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electrooptical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the DASY4 measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit. Transmission to the DASY4 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

DASY4 SAR Measurement System with planar phantom

DASY4 SAR Measurement System with SAM phantom

Applicant:	Zebra Technologies Corporatio	n FCC ID:	I28MD-RW4137	IC ID:	3798A-RW4137			
Model(s):	QL220, QL320, QL420, RW420	Printer with DSSS WLAN	2412 - 2462	2 MHz				
2004 Celltech Lat	2004 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc.							

Test Report S/N:	110804l28-T583-586-S15W
Test Date(s):	November 17-19 & 26, 2004
Test Type:	FCC/IC SAR Evaluation

4.0 MEASUREMENT SUMMARY

	BODY-WORN SAR EVALUATION RESULTS													
Test Date	DUT Model	Freq (MHz)	Cha	ın.	Test Mode	Antenna Position	Accessories t		OUT sition Planar Intom	Separation Distance to Planar Phantom (cm)	Cond. Power Before Test (dBm)	Measured SAR 1g (W/kg)	SAR Drift During Test (dB)	Scaled SAR 1g (W/kg)
Nov-17	QL220	2437	Mid	6	DSSS	Internal	Shoulder Strap	Fror	nt Side	0.0	18.2	0.0194	-1.37	0.0266
Nov-17	QL220	2437	Mid	6	DSSS	Internal		Lef	t Side	0.0	18.2	0.0426	-0.237	0.0450
Nov-17	QL220	2437	Mid	6	DSSS	Internal		Righ	nt Side	0.0	18.2	0.0500	0.286	0.0500
Nov-18	QL320	2437	Mid	6	DSSS	Internal	Shoulder Strap	Fror	nt Side	0.0	18.2	0.0181	-0.322	0.0195
Nov-18	QL320	2437	Mid	6	DSSS	Internal	Shoulder Strap	Lef	t Side	0.0	18.2	0.0497	-0.0275	0.0500
Nov-18	QL320	2437	Mid	6	DSSS	Internal	Shoulder Strap	Righ	nt Side	0.0	18.2	0.0213	-0.182	0.0222
Nov-19	QL420	2437	Mid	6	DSSS	Internal	Shoulder Strap	Fror	nt Side	0.0	18.2	0.0148	-0.214	0.0155
Nov-19	RW420	2437	Mid	6	DSSS	Internal	Shoulder Strap	Fror	nt Side	0.0	18.2	0.0415	-0.173	0.0432
Nov-19	QL220	2412	Low	1	DSSS	Internal		Righ	nt Side	0.0	20.0	0.0610	-0.0583	0.0618
	ANSI / IEEE C95.1 1999 - SAFETY LIMIT BODY: 1.6 W/kg (averaged over 1 gram) Spatial Peak - Uncontrolled Exposure / General Population													
-					-	vember 17,			Tes	t Date(s)	Nov-17	Nov-18	Nov-19	Unit
Т	est Date(s	5)			-	vember 18, : vember 19, :		Relative Humidity 30		31	30	%		
Measu	ured Fluid	Туре			24	450 MHz Bo	ody	Atmospheric			103.2	kPa		

$\frac{1.95}{2.01} \times \frac{1.95}{2.01} \times \frac{1.95}{2.01} \times \frac{1.95}{2.01} \times \frac{1.98}{2.01} \times \frac{1.98}{2.01$	0									
σ (mho/m)	1 95	95 + 5%	Nov-17	Nov-18	Nov-19	α (K α /m ³)	1000			
Conductivity	IEEE Ta	rget	Measured			Fluid Depth	≥ 15	≥ 15	≥ 15	cm
	52.7	± 5%	50.9	50.1	50.8	Fluid Temperature	23.9	23.9	23.9	°C
٤r	50.7	. =0/	Nov-17	Nov-18	Nov-19	The lat Taxaa sectors	00.0	00.0	22.0	
Dielectric Constant	IEEE Ta	irget	Measured			Ambient Temperature	25.8	25.3	25.6	°C
Measured Fluid Type		24	450 MHz Bo	ody		Pressure	103.1	101.9	103.2	kPa

Note(s):

- The measurement results were obtained with the DUT tested in the conditions described in this report. Detailed measurement data and plots showing the maximum SAR location of the DUT are reported in Appendix A.
- 2. If the SAR measurements performed at the mid channel were ≥ 3 dB below the SAR limit; SAR evaluation for the low and high channels was optional (per FCC OET Bulletin 65, Supplement C, Edition 01-01 (see reference [3]). Based on the peak conducted power level measured at the low channel was .18 dB higher than the mid channel, a SAR evaluation was performed at the low channel in the worst-case mid channel configuration in order to show compliance at the higher power level as shown in the above test data table.
- The power drifts measured by the DASY4 system for the duration of the SAR evaluations were added to the measured SAR levels to report scaled SAR results as shown in the above table.
- 4. The QL220 unit was tested without shoulder strap accessory for the left and right side configurations in order to report a worst-case result with 0.0 cm gap (shoulder strap links are on the sides of the unit and provide a spacing when the shoulder strap is attached).
- 5. For the QL220 & QL320 units the Bottom Side Peak SAR level measured during the area scan was <1% of the General Population / Uncontrolled exposure limit, therefore the zoom scan was not evaluated based on the 1 gram average SAR level determined to be near the measurement noise floor. See Appendix A for area scan evaluation plot.</p>
- 6. For the QL420 & RW420 units the Bottom Side, Left Side & Right Side Peak SAR levels measured during the area scan were <1% of the General Population / Uncontrolled exposure limit, therefore the zoom scan was not evaluated based on the 1 gram average SAR level determined to be near the measurement noise floor. See Appendix A for area scan evaluation plots.</p>
- 7. The SAR evaluations were performed within 24 hours of the system performance check.

Applicant:	Zebra Technologies Corporation		FCC ID:	I28MD-RW4137	IC ID:	3798	A-RW4137	
Model(s):	QL220	, QL320, QL420, RW420	20 Wireless Portable Printer with DSSS WLAN			2412 - 2462	2 MHz	Zebra
2004 Celltech Lat	2004 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc.							5 of 23

Test Report S/N:	110804I28-T583-586-S15W
Test Date(s):	November 17-19 & 26, 2004
Test Type:	FCC/IC SAR Evaluation

5.0 DETAILS OF SAR EVALUATION

The Zebra Technologies Corporation Model(s): QL220, QL320, QL420, RW420 Wireless Portable Printer FCC ID: I28MD-RW4137 with internal Symbol LA-4137 Compact Flash DSSS WLAN Card was compliant for localized Specific Absorption Rate (General Population / Uncontrolled Exposure) based on the test provisions and conditions described below. Detailed photographs of the measurement setup are shown in Appendix H.

- The QL220, QL320, and QL420 models were tested for body-worn SAR on the bottom side (battery side) of the device with the belt-clip accessory attached. The bottom side of the DUT was positioned parallel to the outer surface of the planar phantom. The belt-clip accessory for the QL220 model provided a 1.6 cm spacing from the bottom of the printer to the outer surface of the planar phantom. The belt-clip accessory for the QL320 and QL420 models provided a 1.8 cm spacing from the bottom of the printer to the outer surface of the planar phantom. The belt-clip accessories for the QL220, QL320, and QL420 printer models contain metallic screws.
- 2. The RW420 model was tested for body-worn SAR without the belt-clip accessory in a worst-case configuration, with the bottom of the unit touching the outer surface of the planar phantom. The belt-clip accessory for the RW420 model contains no metallic components; therefore the worst-case configuration only was tested without belt-clip accessory and with shoulder strap accessory.
- 3. The QL220, QL320, and QL420 models were tested for body-worn SAR on the bottom side (battery side) of the device (without belt-clip accessory) with the shoulder strap accessory attached. The bottom side of the DUT was positioned parallel to, and touching, the outer surface of the planar phantom.
- 4. The printers were tested for body SAR on the front side (LCD display side) of the device with the shoulder strap accessory attached. The front side of the DUT was positioned parallel to, and touching, the outer surface of the planar phantom.
- 5. The printers were tested for body SAR on the left side of the device with the shoulder strap accessory attached (except for model QL220 the shoulder strap links are on the sides of the unit and provide a spacing when the shoulder strap is attached, therefore was tested without the shoulder strap accessory in order to report a worst-case result with 0.0 cm gap). The left side of the DUT was positioned parallel to, and touching, the outer surface of the planar phantom.
- 6. The DUT was tested for body SAR on the right side of the device with the shoulder strap accessory attached (except for model QL220 the shoulder strap links are on the sides of the unit and provide a spacing when the shoulder strap is attached, therefore was tested without the shoulder strap accessory in order to report a worst-case result with 0.0 cm gap). The right side of the DUT was positioned parallel to, and touching, the outer surface of the planar phantom.
- 7. If the Peak SAR level measured during the area scan was <1% of the General Population / Uncontrolled exposure limit, then the zoom scan was not evaluated based on the 1 gram average SAR level determined to be near the measurement noise floor. See Appendix A for area scan evaluation plots.</p>
- 8. The DUT was placed into test mode using internal software and operated at maximum power in modulated DSSS continuous transmit mode for the duration of the tests.
- 9. The conducted power levels were measured before each test using a Gigatronics 8652A Universal Power Meter according to the procedures described in FCC 47 CFR §2.1046.
- 10. The power drifts measured by the DASY4 system for the duration of the SAR evaluations were added to the measured SAR levels to report scaled SAR results as shown in the test data table (page 5).
- 11. Each SAR evaluation was performed with a fully charged battery in the DUT.
- 12. For certain printer models and test positions it was not possible for the DUT to be positioned in the device holder, in which case a stack of low-density, low-loss dielectric foamed polystyrene was used.
- 13. The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter check and the SAR evaluation. The temperatures reported were consistent for all measurement periods.
- 14. The dielectric parameters of the simulated tissue were measured prior to the evaluations using an HP 85070C Dielectric Probe Kit and an HP 8753E Network Analyzer (see Appendix E for printout of measured fluid dielectric parameters).

Applicant:	Zebra Technologies Corporation	FCC ID:	I28MD-RW4137	IC ID: 3798A-RW413		A-RW4137		
Model(s):	QL220, QL320, QL420, RW420 Wireless Portable Printer with DSSS WLAN				2412 - 2462	2 MHz	Zebra	
2004 Celltech Lat	2004 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc.							

Test Report S/N:	110804I28-T583-586-S15W
Test Date(s):	November 17-19 & 26, 2004
Test Type:	FCC/IC SAR Evaluation

6.0 EVALUATION PROCEDURES

a. (i) The evaluation was performed in the applicable area of the phantom depending on the type of device being tested. For devices held to the ear during normal operation, both the left and right ear positions were evaluated using the SAM phantom.

(ii) For body-worn and face-held devices a planar phantom was used.

b. The SAR was determined by a pre-defined procedure within the DASY4 software. Upon completion of a reference and optical surface check, the exposed region of the phantom was scanned near the inner surface with a grid spacing of 15mm x 15mm.

An area scan was determined as follows:

- c. Based on the defined area scan grid, a more detailed grid is created to increase the points by a factor of 10. The interpolation function then evaluates all field values between corresponding measurement points.
- d. A linear search is applied to find all the candidate maxima. Subsequently, all maxima are removed that are >2 dB from the global maximum. The remaining maxima are then used to position the cube scans.

A 1g and 10g spatial peak SAR was determined as follows:

- e. Extrapolation is used to find the points between the dipole center of the probe and the surface of the phantom. This data cannot be measured, since the center of the dipoles is 2.7 mm away form the tip of the probe and the distance between the surface and the lowest measuring point is 1.4 mm (see probe calibration document in Appendix D). The extrapolation was based on trivariate quadratics computed from the previously calculated 3D interpolated points nearest the phantom surface.
- f. Interpolated data is used to calculate the average SAR over 1g and 10g cubes by spatially discretizing the entire measured cube. The volume used to determine the averaged SAR is a 1mm grid (42875 interpolated points).
- g. A zoom scan volume of 32 mm x 32 mm x 30 mm (5 x 5 x 7 points) centered at the peak SAR location determined from the area scan is used for all zoom scans for devices with a transmit frequency < 800 MHz. Zoom scans for frequencies ≥ 800 MHz are determined with a scan volume of 30 mm x 30 mm x 30 mm (7 x 7 x 7) to ensure complete capture of the peak spatial-average SAR.

Applicant:	Zebra Technologies Corporatio	on	FCC ID:	IC ID: 3798A-RW4		A-RW4137		
Model(s):	QL220, QL320, QL420, RW420	Wirel	less Portable I	Printer with DSSS WLAN	2412 - 2462	462 MHz		
2004 Celltech Lat	2004 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc.							

Test Report S/N:	110804I28-T583-586-S15W
Test Date(s):	November 17-19 & 26, 2004
Test Type:	FCC/IC SAR Evaluation

7.0 SYSTEM PERFORMANCE CHECK

Prior to the SAR evaluation a system check was performed in the planar section of the SAM phantom with a 2450MHz dipole (see Appendix C for system validation procedures). The dielectric parameters of the simulated tissue were measured prior to the system performance check using an HP 85070C Dielectric Probe Kit and an HP 8753E Network Analyzer (see Appendix E for printout of measured fluid dielectric parameters). A forward power of 250 mW was applied to the dipole and the system was verified to a tolerance of \pm 10% (see Appendix B for system performance check test plots).

	SYSTEM PERFORMANCE CHECK												
Test Foui	2450MHz Equiv.	(VV/KC)		Dielectric Constant _{&r}		Conductivity σ (mho/m)		ρ	Amb. Temp.	Fluid Temp.	Fluid Depth	Humid.	Barom. Press.
Date	Tissue	IEEE Target	Measured	IEEE Target	Measured	IEEE Target	Measured	(Kg/m ³)	(°C)	(°C)	(cm)	(%)	(kPa)
11/17/04	Brain	13.1 ±10%	13.0 (-0.8%)	39.2 ±5%	38.6	1.80 ±5%	1.89	1000	24.9	23.9	≥ 15	30	103.1
11/18/04	Brain	13.1 ±10%	13.7 (+4.6%)	39.2 ±5%	38.2	1.80 ±5%	1.89	1000	25.2	23.9	≥ 15	30	101.9
11/19/04	Brain	13.1 ±10%	13.5 (+3.1%)	39.2 ±5%	38.1	1.80 ±5%	1.86	1000	24.4	23.9	≥ 15	30	103.0
11/26/04	Brain	13.1 ±10%	13.7 (+4.6%)	39.2 ±5%	38.4	1.80 ±5%	1.87	1000	25.5	23.9	≥ 15	30	102.2

Note(s):

1. The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter check and the system performance check. The temperatures reported in the table above were consistent for all measurement periods.

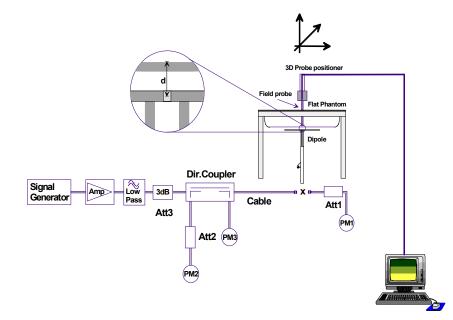


Figure 1. System Performance Check Setup Diagram

2450MHz Dipole Setup

Applicant:	Zebra Technologies Corporat	FCC ID:	I28MD-RW4137	IC ID: 3798A		A-RW4137		
Model(s):	QL220, QL320, QL420, RW420	Wir	eless Portable	Printer with DSSS WLAN	2412 - 2462	2 MHz	Zebra	
2004 Celltech Lat	2004 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc.							

Test Report S/N:	110804I28-T583-586-S15W
Test Date(s):	November 17-19 & 26, 2004
Test Type:	FCC/IC SAR Evaluation

8.0 SIMULATED EQUIVALENT TISSUES

The 2450MHz brain and body simulated tissue mixtures consist of Glycol-monobutyl, water, and salt (body mixture only). The fluid was prepared according to standardized procedures and measured for dielectric parameters (permittivity and conductivity).

SIMULATED TISSUE MIXTURES									
INGREDIENT	2450MHz Brain	2450MHz Body							
INGREDIENT	System Performance Check	DUT Evaluation							
Water	52.00 %	69.98 %							
Glycol Monobutyl	48.00 %	30.00 %							
Salt	-	0.02 %							

9.0 SAR SAFETY LIMITS

	SAR (W/kg)					
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)				
Spatial Average (averaged over the whole body)	0.08	0.4				
Spatial Peak (averaged over any 1 g of tissue)	1.60	8.0				
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0				

Notes:

1. Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.

2. Controlled environments are defined as locations where there is potential exposure of individuals who have knowledge of their potential exposure and can exercise control over their exposure.

Applicant:	Zebra Technologies Corporation			FCC ID:	I28MD-RW4137	IC ID:	3798	A-RW4137
Model(s):	QL220,	QL320, QL420, RW420	Wir	eless Portable	Printer with DSSS WLAN	2412 - 2462 MHz		W.Zebra
2004 Celltech Lat	2004 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc.							

Volume:

Test Report S/N:	110804I28-T583-586-S15W
Test Date(s):	November 17-19 & 26, 2004
Test Type:	FCC/IC SAR Evaluation

l

10.0 ROBOT SYSTEM SPECIFICATIONS

Specifications

Specifi	ications	
	POSITIONER:	Stäubli Unimation Corp. Robot Model: RX60L
	Repeatability:	0.02 mm
	No. of axis:	6
Data A	cquisition Electronic (DA	E) System
	Cell Controller	
	Processor:	AMD Athlon XP 2400+
	Clock Speed:	2.0 GHz
	Operating System:	Windows XP Professional
	Data Converter	
	Features:	Signal Amplifier, multiplexer, A/D converter, and control logic
	Software:	DASY4 software
	Connecting Lines:	Optical downlink for data and status info.
		Optical uplink for commands and clock
DASY4	Measurement Server	
	Function:	Real-time data evaluation for field measurements and surface detection
	Hardware:	PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM
	Connections:	COM1, COM2, DAE, Robot, Ethernet, Service Interface
E-Field	l Probe	
	Model:	ET3DV6
	Serial No.:	1387
	Construction:	Triangular core fiber optic detection system
	Frequency:	10 MHz to 6 GHz
	Linearity:	±0.2 dB (30 MHz to 3 GHz)
Dhanta		
Phanto		
	Evaluation Phantom	
	Туре:	Planar Phantom
	Shell Material:	Fiberglass
	Thickness:	2.0 ±0.1 mm
	Volume:	Approx. 72 liters
	Validation Phantom	
	Туре:	SAM V4.0C
	Shell Material:	Fiberglass
	Thickness:	2.0 ±0.1 mm

Approx. 25 liters

Applicant:	Zebra Technologies Corporatio	on FCC ID:	I28MD-RW4137	IC ID:	3798	A-RW4137
Model(s):	QL220, QL320, QL420, RW420	Wireless Portabl	e Printer with DSSS WLAN	2412 - 246	2 MHz	Zebra
2004 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc.						10 of 23

Test Report S/N:	110804I28-T583-586-S15W
Test Date(s):	November 17-19 & 26, 2004
Test Type:	FCC/IC SAR Evaluation

11.0 PROBE SPECIFICATION (ET3DV6)

Construction:	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g. glycol)
Calibration:	In air from 10 MHz to 2.5 GHz In brain simulating tissue at frequencies of 900 MHz and 1.8 GHz (accuracy \pm 8%)
Frequency:	10 MHz to >6 GHz; Linearity: ±0.2 dB (30 MHz to 3 GHz)
Directivity:	\pm 0.2 dB in brain tissue (rotation around probe axis) \pm 0.4 dB in brain tissue (rotation normal to probe axis)
Dynamic Range:	5μ W/g to >100 mW/g; Linearity: ±0.2 dB
Surface Detection:	±0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces
Dimensions:	Overall length: 330 mm Tip length: 16 mm Body diameter: 12 mm Tip diameter: 6.8 mm Distance from probe tip to dipole centers: 2.7 mm
Application:	General dosimetry up to 3 GHz Compliance tests of mobile phone

12.0 SAM PHANTOM V4.0C

The SAM phantom V4.0C is a fiberglass shell phantom with a 2.0 mm (+/-0.2 mm) shell thickness for left and right head and flat planar area integrated in a wooden table. The shape of the fiberglass shell corresponds to the phantom defined by SCC34-SC2. The device holder positions are adjusted to the standard measurement positions in the three sections (see Appendix F for specifications of the SAM phantom V4.0C).

13.0 PLANAR PHANTOM

The planar phantom is a fiberglass shell phantom with a 2.0 mm (+/-0.2mm) thick device measurement area at the center of the phantom for SAR evaluations of devices with a larger surface area than the planar section of the SAM phantom. The planar phantom is integrated in a wooden table (see Appendix G for dimensions and specifications of the planar phantom).

Planar Phantom

14.0 DEVICE HOLDER

The DASY4 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.

Device Holder

Applicant:	Zebra Technologies Corporation	on	FCC ID:	I28MD-RW4137	IC ID:	3798	A-RW4137
Model(s):	QL220, QL320, QL420, RW420	Wire	Wireless Portable Printer with DSSS WLAN			2 MHz	Zebra
						11 of 23	

Test Report S/N:	110804I28-T583-586-S15W
Test Date(s):	November 17-19 & 26, 2004
Test Type:	FCC/IC SAR Evaluation

15.0 TEST EQUIPMENT LIST

TEST EQUIPMENT	SERIAL NO.	CALIBRATION DATE
Schmid & Partner DASY4 System	-	-
DASY4 Measurement Server	1078	N/A
-Robot	599396-01	N/A
-DAE3	353	Dec 2003
-DAE3	370	May 2004
-ET3DV6 E-Field Probe	1387	Mar 2004
-ET3DV6 E-Field Probe	1590	May 2004
-300MHz Validation Dipole	135	Oct 2004
-450MHz Validation Dipole	136	Nov 2004
-835MHz Validation Dipole	411	Mar 2004
-900MHz Validation Dipole	054	June 2004
-1800MHz Validation Dipole	247	June 2004
-1900MHz Validation Dipole	151	June 2004
-2450MHz Validation Dipole	150	Sept 2004
-SAM Phantom V4.0C	1033	N/A
-Barski Planar Phantom	03-01	N/A
-Plexiglas Planar Phantom	161	N/A
-Validation Planar Phantom	137	N/A
HP 85070C Dielectric Probe Kit	N/A	N/A
Gigatronics 8651A Power Meter	8650137	April 2004
Gigatronics 8652A Power Meter	1835267	April 2004
Gigatronics 80701A Power Sensor	1833535	April 2004
Gigatronics 80701A Power Sensor	1833542	April 2004
Gigatronics 80701A Power Sensor	1834350	April 2004
HP E4408B Spectrum Analyzer	US39240170	Dec 2003
HP 8594E Spectrum Analyzer	3543A02721	April 2004
HP 8753E Network Analyzer	US38433013	April 2004
HP 8648D Signal Generator	3847A00611	April 2004
Amplifier Research 5S1G4 Power Amplifier	26235	N/A

Applicant:	Zeb	ra Technologies Corporatio	n	FCC ID:	I28MD-RW4137	IC ID:	3798	A-RW4137
Model(s):	QL22	0, QL320, QL420, RW420	Wireless Portable Printer with DSSS WLAN			2412 - 246	2 MHz	Zebra
2004 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc.						12 of 23		

Test Report S/N:	110804l28-T583-586-S15W
Test Date(s):	November 17-19 & 26, 2004
Test Type:	FCC/IC SAR Evaluation

16.0 MEASUREMENT UNCERTAINTIES

UI	NCERTAINTY	BUDGET FOR D		ALUATIO	N	
Error Description	Uncertainty Value ±%	Probability Distribution	Divisor	c _i 1g	Standard Uncertainty ±% (1g)	v _i or v _{eff}
Measurement System						
Probe calibration	± 4.85	Normal	1	1	± 4.85	8
Axial isotropy of the probe	± 4.7	Rectangular	√3	(1-c _p)	± 1.9	8
Spherical isotropy of the probe	± 9.6	Rectangular	√3	(Cp)	± 3.9	8
Spatial resolution	± 0.0	Rectangular	√3	1	± 0.0	8
Boundary effects	± 5.5	Rectangular	√3	1	± 3.2	8
Probe linearity	± 4.7	Rectangular	√3	1	± 2.7	8
Detection limit	± 1.0	Rectangular	√3	1	± 0.6	8
Readout electronics	± 1.0	Normal	1	1	± 1.0	8
Response time	± 0.8	Rectangular	√3	1	± 0.5	8
Integration time	± 1.4	Rectangular	√3	1	± 0.8	8
RF ambient conditions	± 3.0	Rectangular	√3	1	± 1.7	8
Mech. constraints of robot	± 0.4	Rectangular	√3	1	± 0.2	8
Probe positioning	± 2.9	Rectangular	√3	1	± 1.7	8
Extrapolation & integration	± 3.9	Rectangular	√3	1	± 2.3	8
Test Sample Related						
Device positioning	± 6.0	Normal	√3	1	± 6.7	12
Device holder uncertainty	± 5.0	Normal	√3	1	± 5.9	8
Power drift	± 5.0	Rectangular	√3		± 2.9	8
Phantom and Setup						
Phantom uncertainty	± 4.0	Rectangular	√3	1	± 2.3	8
Liquid conductivity (target)	± 5.0	Rectangular	√3	0.6	± 1.7	œ
Liquid conductivity (measured)	± 5.0	Rectangular	√3	0.6	± 1.7	œ
Liquid permittivity (target)	± 5.0	Rectangular	√3	0.6	± 1.7	œ
Liquid permittivity (measured)	± 5.0	Rectangular	√3	0.6	± 1.7	x
Combined Standard Uncertaint	y				± 13.32	
Expanded Uncertainty (k=2)					± 26.64	

Measurement Uncertainty Table in accordance with IEEE Standard 1528-2003 (see reference [5])

Applicant:	Zebra Technologies Corporation	on FCC ID:	I28MD-RW4137	IC ID:	3798A-RW4137
Model(s):	QL220, QL320, QL420, RW420 Wireless Portable Printer with DSSS WLAN				2 MHz
2004 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc.					

Test Report S/N:	110804I28-T583-586-S15W
Test Date(s):	November 17-19 & 26, 2004
Test Type:	FCC/IC SAR Evaluation

MEASUREMENT UNCERTAINTIES (Cont.)

UNCERTAINTY BUDGET FOR SYSTEM VALIDATION							
Error Description	Uncertainty Value ±%	Value Distribution Divisor			Standard Uncertainty ±% (1g)	v _i or v _{eff}	
Measurement System							
Probe calibration	± 4.85	Normal	1	1	± 4.85	œ	
Axial isotropy of the probe	± 4.7	Rectangular	√3	(1-c _p)	± 1.9	œ	
Spherical isotropy of the probe	± 9.6	Rectangular	√3	(C _p)	± 3.9	œ	
Spatial resolution	± 0.0	Rectangular	√3	1	± 0.0	œ	
Boundary effects	± 5.5	Rectangular	√3	1	± 3.2	œ	
Probe linearity	± 4.7	Rectangular	√3	1	± 2.7	œ	
Detection limit	± 1.0	Rectangular	√3	1	± 0.6	œ	
Readout electronics	± 1.0	Normal	1	1	± 1.0	œ	
Response time	± 0.8	Rectangular	√3	1	± 0.5	œ	
Integration time	± 1.4	Rectangular	√3	1	± 0.8	œ	
RF ambient conditions	± 3.0	Rectangular	√3	1	± 1.7	œ	
Mech. constraints of robot	± 0.4	Rectangular	√3	1	± 0.2	x	
Probe positioning	± 2.9	Rectangular	√3	1	± 1.7	x	
Extrapolation & integration	± 3.9	Rectangular	√3	1	± 2.3	x	
Dipole							
Dipole Axis to Liquid Distance	± 2.0	Rectangular	√3	1	± 1.2	œ	
Input Power	± 4.7	Rectangular	√3	1	± 2.7	x	
Phantom and Setup							
Phantom uncertainty	± 4.0	Rectangular	√3	1	± 2.3	œ	
Liquid conductivity (target)	± 5.0	Rectangular	√3	0.6	± 1.7	x	
Liquid conductivity (measured)	± 5.0	Rectangular	√3	0.6	± 1.7	œ	
Liquid permittivity (target)	± 5.0	Rectangular	√3	0.6	± 1.7	œ	
Liquid permittivity (measured)	± 5.0	Rectangular	√3	0.6	± 1.7	∞	
Combined Standard Uncertaint	y				± 9.97		
Expanded Uncertainty (k=2)					± 19.93		

Measurement Uncertainty Table in accordance with IEEE Standard 1528-2003 (see reference [5])

Applicant:	Zebra Technologies Corporat	on FCC I	D: I28MD-RV	N4137	IC ID:	3798	A-RW4137
Model(s):	QL220, QL320, QL420, RW420	Wireless Por	able Printer with DS	SS WLAN	2412 - 2462	2 MHz	J. Zebra
2004 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc.					14 of 23		

Test Report S/N:	110804I28-T583-586-S15W
Test Date(s):	November 17-19 & 26, 2004
Test Type:	FCC/IC SAR Evaluation

17.0 REFERENCES

[1] Federal Communications Commission, "Radiofrequency radiation exposure evaluation: portable devices", Rule Part 47 CFR §2.1093: 1999.

[2] Health Canada, "Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz", Safety Code 6.

[3] Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, Supplement C (Edition 01-01), FCC, Washington, D.C.: June 2001.

[4] Industry Canada, "Evaluation Procedure for Mobile and Portable Radio Transmitters with respect to Health Canada's Safety Code 6 for Exposure of Humans to Radio Frequency Fields", Radio Standards Specification RSS-102 Issue 1 (Provisional): September 1999.

[5] IEEE Std 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques": June 2003.

Applicant:	Zebra Technologies Corporatio	n FCC ID:	I28MD-RW4137	IC ID:	3798A-RW4137
Model(s):	QL220, QL320, QL420, RW420	Wireless Portable Printer with DSSS WLAN 2			2 MHz
2004 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc.					Inc. 15 of 23

Test Report S/N:	110804I28-T583-586-S15W
Test Date(s):	November 17-19 & 26, 2004
Test Type:	FCC/IC SAR Evaluation

APPENDIX B - SYSTEM PERFORMANCE CHECK DATA

Applicant:	Zebra Technologies Corporation		FCC ID:	I28MD-RW4137	IC ID:	3798	A-RW4137
Model(s):	QL220, QL320, QL420, RW420 Win		Wireless Portable Printer with DSSS WLAN		2412 - 2462	2 MHz	- Zebra
2004 Celltech Labs Inc. This document is not to be reproduced in who				rt without the written permission of	of Celltech Labs	s Inc.	17 of 23

Test Report S/N:	110804I28-T583-586-S15W
Test Date(s):	November 17-19 & 26, 2004
Test Type:	FCC/IC SAR Evaluation

Date 11/17/04

System Performance Check - 2450 MHz Dipole

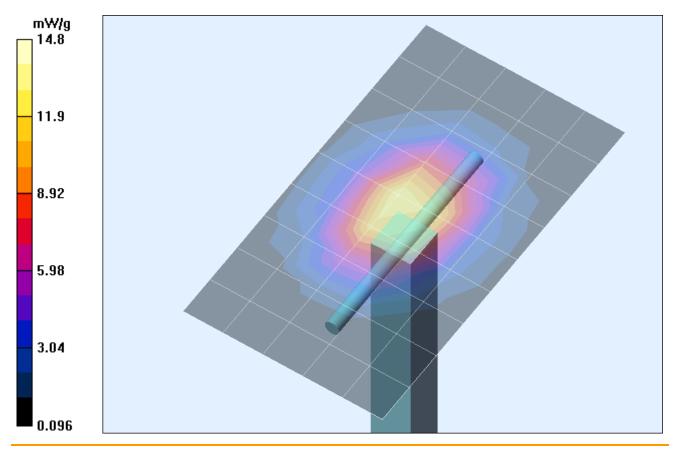
DUT: Dipole 2450 MHz; Model: D2450V2; Type: System Performance Check; Serial: 150; Calibrated: 09/30/2004

Ambient Temp: 24.9 °C; Fluid Temp: 23.9 °C; Barometric Pressure: 103.1 kPa; Humidity: 30%

Communication System: CW Forward Conducted Power: 250mW Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: HSL2450 (σ = 1.89 mho/m; ϵ_r = 38.6; ρ = 1000 kg/m³)

- Probe: ET3DV6 - SN1387; ConvF(4.77, 4.77, 4.77); Calibrated: 18/03/2004

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn370; Calibrated: 14/05/2004
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.3 Build 22; Postprocessing SW: SEMCAD, V1.8 Build 127

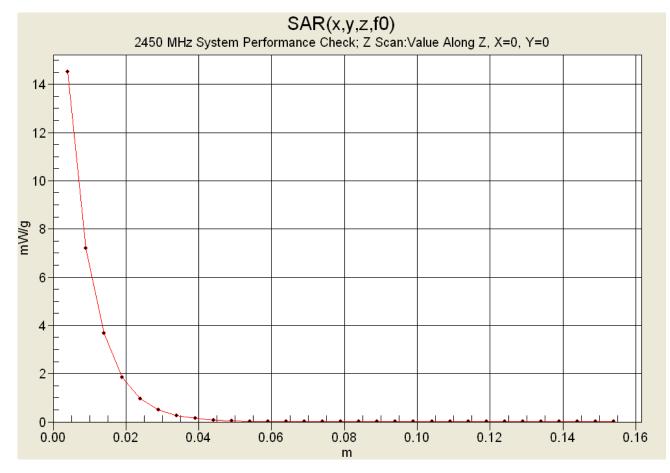

2450 MHz Dipole - System Performance Check/Area Scan (6x10x1):

Measurement grid: dx=10mm, dy=10mm

2450 MHz Dipole - System Performance Check/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 93 V/m; Power Drift = 0.006 dB Peak SAR (extrapolated) = 27 W/kg

SAR(1 g) = 13.0 mW/g; SAR(10 g) = 6.02 mW/g



	Applicant:	Zebra Technologies Corporati	on	FCC ID:	I28MD-RW4137	IC ID:	3798	A-RW4137
	Model(s):	QL220, QL320, QL420, RW420	Wi	reless Portable P	rinter with DSSS WLAN	2412 - 2462	2 MHz	Zebra
2004 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission				nission of Cellte	ch Labs lı	nc.		

Test Report S/N:	110804I28-T583-586-S15W
Test Date(s):	November 17-19 & 26, 2004
Test Type:	FCC/IC SAR Evaluation

Z-Axis Scan

Applicant:	Zebra Technologies Corporat	ion	FCC ID:	I28MD-RW4137	IC ID:	3798	A-RW4137
Model(s):	QL220, QL320, QL420, RW420	Wi	reless Portable P	rinter with DSSS WLAN	2412 - 2462	2 MHz	W Zebra
2004 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc.							

Test Report S/N:	110804I28-T583-586-S15W
Test Date(s):	November 17-19 & 26, 2004
Test Type:	FCC/IC SAR Evaluation

Date: 11/18/04

System Performance Check - 2450 MHz Dipole

DUT: Dipole 2450 MHz; Model: D2450V2; Type: System Performance Check; Serial: 150; Calibrated: 09/30/2004

Ambient Temp: 25.2 °C; Fluid Temp: 23.9 °C; Barometric Pressure: 101.9 kPa; Humidity: 30%

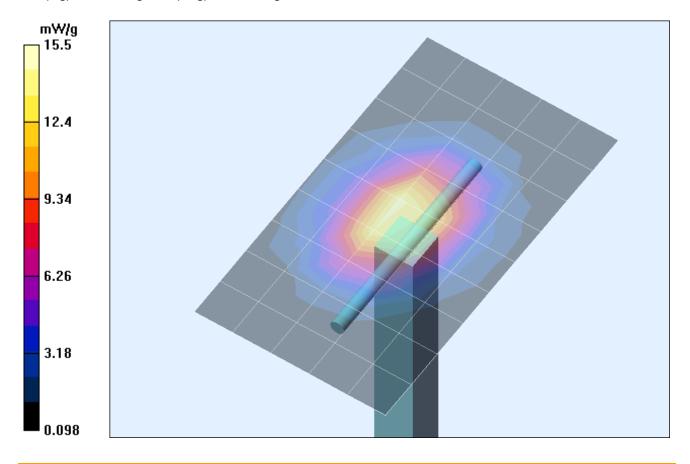
Communication System: CW Forward Conducted Power: 250mW Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: HSL2450 (σ = 1.89 mho/m; ϵ_r = 38.2; ρ = 1000 kg/m³)

- Probe: ET3DV6 - SN1387; ConvF(4.77, 4.77, 4.77); Calibrated: 18/03/2004

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

- Electronics: DAE3 Sn370; Calibrated: 14/05/2004

- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033

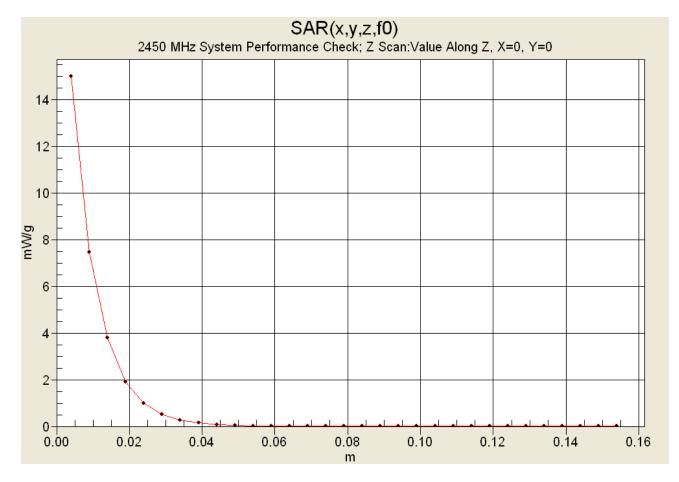

- Measurement SW: DASY4, V4.3 Build 22; Postprocessing SW: SEMCAD, V1.8 Build 127

2450 MHz Dipole - System Performance Check/Area Scan (6x10x1):

Measurement grid: dx=10mm, dy=10mm

2450 MHz Dipole - System Performance Check/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.7 V/m; Power Drift = -0.1 dB Peak SAR (extrapolated) = 28.6 W/kg SAR(1 g) = 13.7 mW/g; SAR(10 g) = 6.37 mW/g



Applicant:	Zebra Technologies Corporation	on FCC ID:	I28MD-RW4137	IC ID:	3798A-RW4137
Model(s):	QL220, QL320, QL420, RW420	Wireless Portabl	Printer with DSSS WLAN	2412 - 246	2 MHz
2004 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc.					

Test Report S/N:	110804I28-T583-586-S15W
Test Date(s):	November 17-19 & 26, 2004
Test Type:	FCC/IC SAR Evaluation

Z-Axis Scan

Applicant:	Zebra Technologies Corporation		FCC ID:	I28MD-RW4137	IC ID:	3798	A-RW4137
Model(s):	QL220, QL320, QL420, RW420	Wi	reless Portable P	rinter with DSSS WLAN	2412 - 2462	2 MHz	Zebra
2004 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc.							

Test Report S/N:	110804I28-T583-586-S15W
Test Date(s):	November 17-19 & 26, 2004
Test Type:	FCC/IC SAR Evaluation

Date: 11/19/04

System Performance Check - 2450 MHz Dipole

DUT: Dipole 2450 MHz; Model: D2450V2; Type: System Performance Check; Serial: 150; Calibrated: 09/30/2004

Ambient Temp: 24.4 °C; Fluid Temp: 23.9 °C; Barometric Pressure: 103.0 kPa; Humidity: 30%

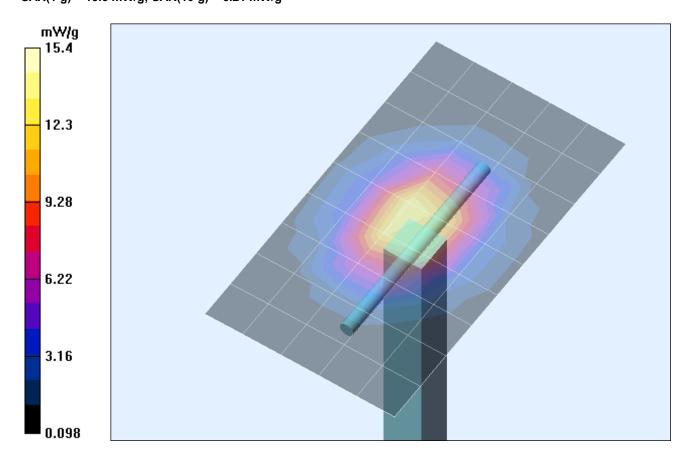
Communication System: CW Forward Conducted Power: 250mW Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: HSL2450 (σ = 1.86 mho/m; ϵ_r = 38.1; ρ = 1000 kg/m³)

- Probe: ET3DV6 - SN1387; ConvF(4.77, 4.77, 4.77); Calibrated: 18/03/2004

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

- Electronics: DAE3 Sn370; Calibrated: 14/05/2004

- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033

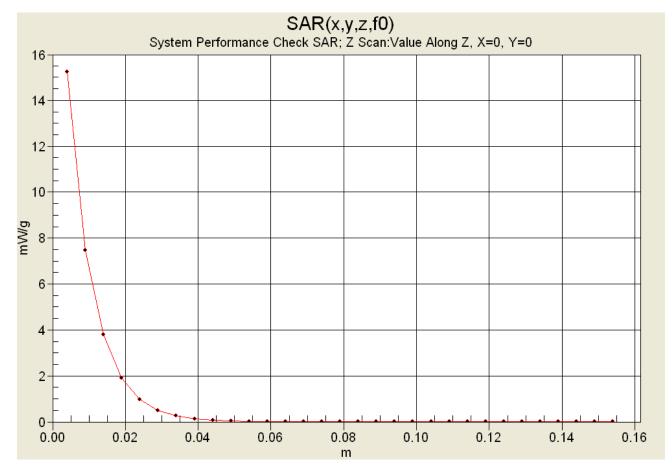

- Measurement SW: DASY4, V4.3 Build 22; Postprocessing SW: SEMCAD, V1.8 Build 127

2450 MHz Dipole - System Performance Check/Area Scan (6x10x1):

Measurement grid: dx=10mm, dy=10mm

2450 MHz Dipole - System Performance Check/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.8 V/m; Power Drift = -0.0 dB Peak SAR (extrapolated) = 29 W/kg SAR(1 g) = 13.5 mW/g; SAR(10 g) = 6.21 mW/g



Applicant:	Zebra Technologies Corporation	on	FCC ID:	I28MD-RW4137	IC ID:	3798A-RW4137
Model(s):	QL220, QL320, QL420, RW420	Wireless Portable Printer with DSSS WLAN			2412 - 2462 MHz	
2004 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc.						

Test Report S/N:	110804I28-T583-586-S15W
Test Date(s):	November 17-19 & 26, 2004
Test Type:	FCC/IC SAR Evaluation

Z-Axis Scan

Applicant:	Zebra Technologies Corporation		FCC ID:	I28MD-RW4137	IC ID:	3798	A-RW4137
Model(s):	QL220, QL320, QL420, RW420	Wi	reless Portable P	rinter with DSSS WLAN	2412 - 2462	2 MHz	Zebra
2004 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc.							

Date Tested: 11/26/04

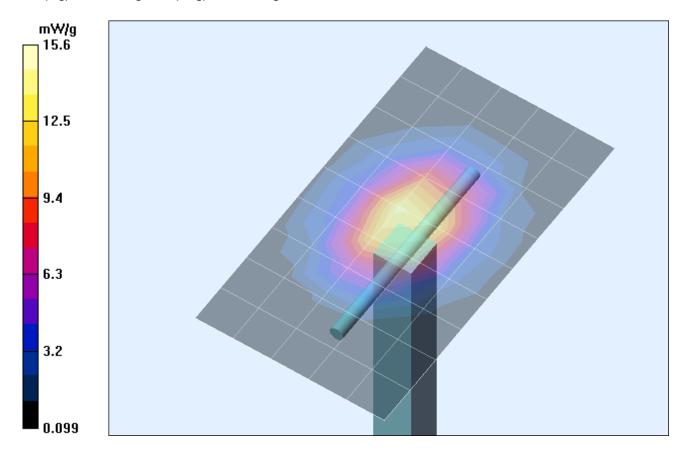
System Performance Check - 2450 MHz Dipole

DUT: Dipole 2450 MHz; Model: D2450V2; Type: System Performance Check; Serial: 150; Calibrated: 09/30/2004

Ambient Temp: 25.5 °C; Fluid Temp: 23.9 °C; Barometric Pressure: 102.2 kPa; Humidity: 30%

Communication System: CW Forward Conducted Power: 250mW Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: HSL2450 (σ = 1.87 mho/m; ϵ_r = 38.4; ρ = 1000 kg/m³)

- Probe: ET3DV6 - SN1387; ConvF(4.77, 4.77, 4.77); Calibrated: 18/03/2004

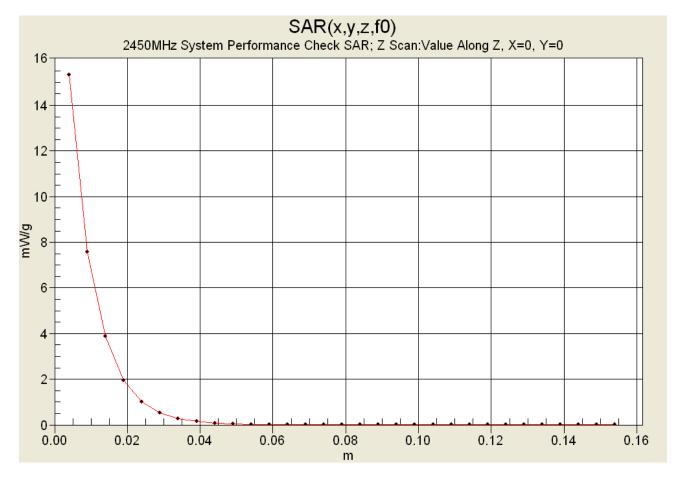

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn370; Calibrated: 14/05/2004
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.3 Build 22; Postprocessing SW: SEMCAD, V1.8 Build

2450 MHz Dipole - System Performance Check/Area Scan (6x10x1):

Measurement grid: dx=10mm, dy=10mm

2450 MHz Dipole - System Performance Check/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.8 V/m; Power Drift = -0.0 dB Peak SAR (extrapolated) = 28.6 W/kg SAR(1 g) = 13.7 mW/g; SAR(10 g) = 6.35 mW/g

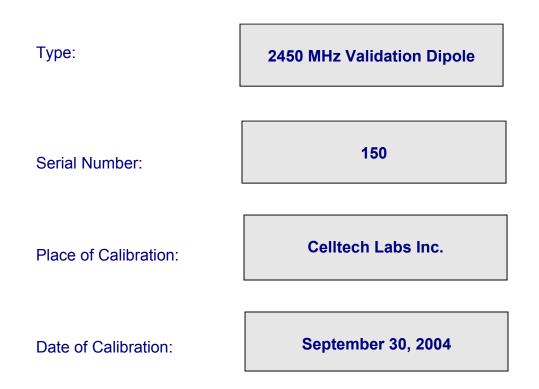


Applicant:	Zebra Technologies Corporation		CC ID:	I28MD-RW4137	IC ID:	3798A-RW4137
Model(s):	QL220, QL320, QL420, RW420	Wireless Portable Printer with DSSS WLAN			2412 - 2462	2 MHz
2004 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc.						

Test Report S/N:	110804I28-T583-586-S15W
Test Date(s):	November 17-19 & 26, 2004
Test Type:	FCC/IC SAR Evaluation

Z-Axis Scan

Applicant:	Zebra Technologies Corporation		FCC ID:	I28MD-RW4137	IC ID:	3798	A-RW4137
Model(s):	QL220, QL320, QL420, RW420	Wi	reless Portable P	rinter with DSSS WLAN	2412 - 2462	2 MHz	Zebra
2004 Celltech Lal	2004 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc.						


Test Report S/N:	110804I28-T583-586-S15W
Test Date(s):	November 17-19 & 26, 2004
Test Type:	FCC/IC SAR Evaluation

APPENDIX C - SYSTEM VALIDATION

Applicant:	Zebra Technologies Corporation	FCC ID:	I28MD-RW4137	IC ID:	3798	A-RW4137
Model(s):	QL220, QL320, QL420, RW420	Wireless Portable	Printer with DSSS WLAN	2412 - 2462	2 MHz	Zebra
2004 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc.					18 of 23	

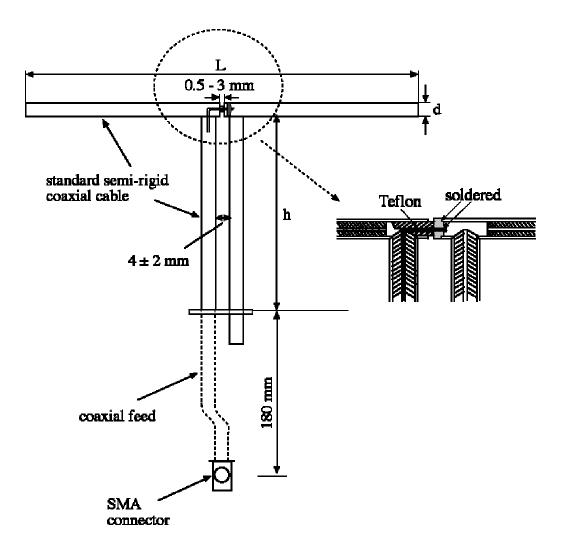
2450 MHz SYSTEM VALIDATION DIPOLE

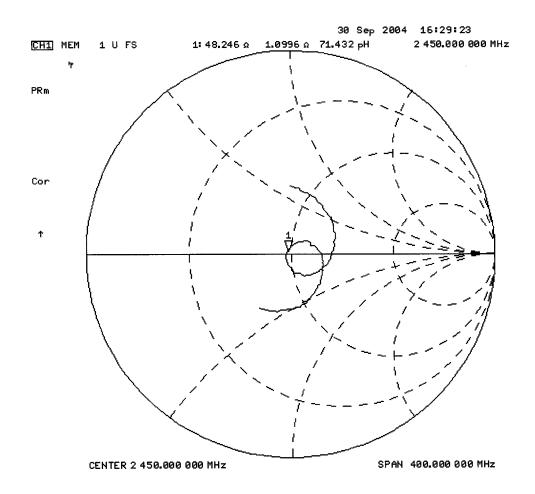
Celltech Labs Inc. hereby certifies that this device has been calibrated on the date indicated above.

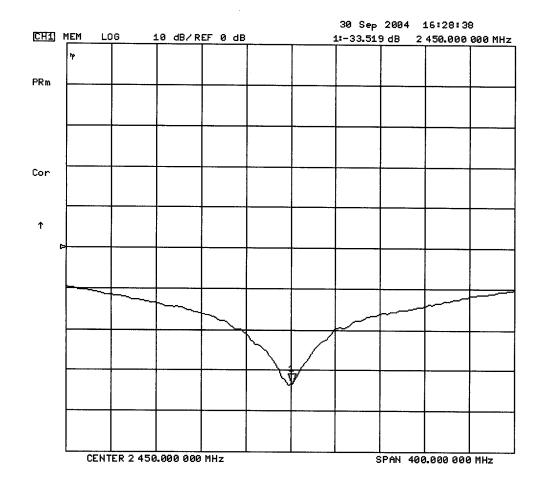
Calibrated by:

Spencer Watton

Approved by:


Jussell W. Pupe



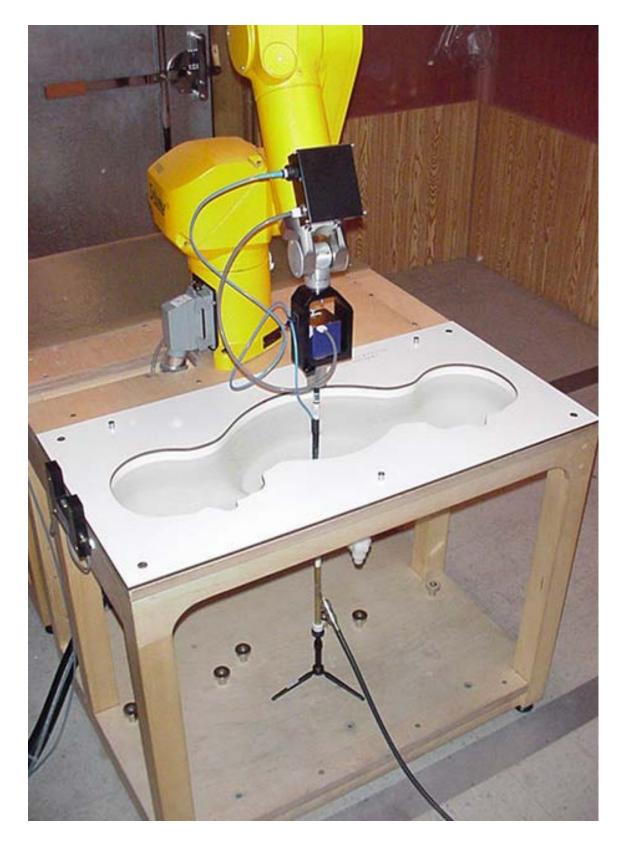

1. Dipole Construction & Electrical Characteristics

The validation dipole was constructed in accordance with the IEEE Std "Recommended Practice for Determining the Spatial-Peak Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques". The electrical properties were measured using an HP 8753E Network Analyzer. The network analyzer was calibrated to the validation dipole N-type connector feed point using an HP85032E Type N calibration kit. The dipole was placed parallel to a planar phantom at a separation distance of 10.0mm from the simulating fluid using a loss-less dielectric spacer. The measured input impedance is:

Feed point impedance at 2450 MHz	Re{Z} = 48.246Ω Im{Z} = 1.0996Ω
Return Loss at 2450 MHz	-33.519 dB

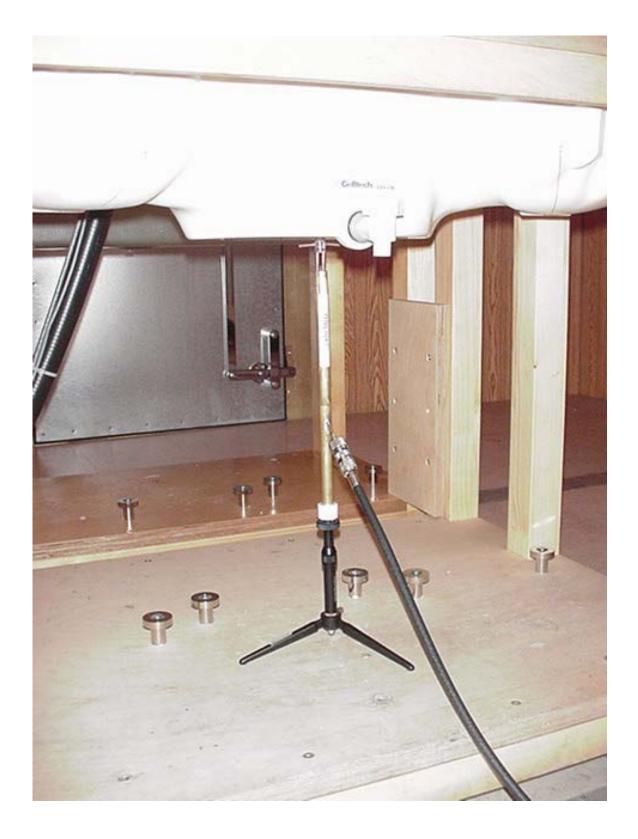
2. Validation Dipole Dimensions

Frequency (MHz)	L (mm)	h (mm)	d (mm)
300	420.0	250.0	6.2
450	288.0	167.0	6.2
835	161.0	89.8	3.6
900	149.0	83.3	3.6
1450	89.1	51.7	3.6
1800	72.0	41.7	3.6
1900	68.0	39.5	3.6
2000	64.5	37.5	3.6
2450	51.8	30.6	3.6
3000	41.5	25.0	3.6


3. Validation Phantom

The validation phantom is the SAM (Specific Anthropomorphic Mannequin) phantom manufactured by Schmid & Partner Engineering AG. The SAM phantom is a Fiberglass shell integrated in a wooden table. The shape of the shell corresponds to the phantom defined by SCC34-SC2. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Shell Thickness:	2.0 ± 0.1 mm
Filling Volume:	Approx. 25 liters
Dimensions:	50 cm (W) x 100 cm (L)



4. 2450 MHz System Validation Setup

5. 2450 MHz Dipole Setup

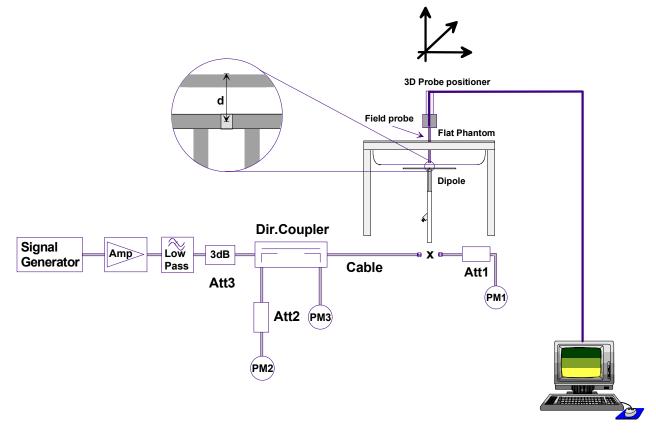
6. Measurement Conditions

The phantom was filled with brain simulating tissue having the following electrical parameters at 2450 MHz:

Relative Permittivity:	38.5
Conductivity:	1.86 mho/m
Fluid Temperature:	23.7 °C
Fluid Depth:	≥ 15.0 cm

Environmental Conditions:

Ambient Temperature:	25.3 °C
Humidity:	32 %
Barometric Pressure:	102.7 kPa


The 2450 MHz simulated brain tissue mixture consists of the following ingredients:

Ingredient	Percentage by weight
Water	52.00%
Glycol Monobutyl	48.00%
Target Dielectric Parameters at 22°C	ϵ_r = 39.2 (+/-5%) σ = 1.80 S/m (+/-5%)

7. SAR Measurement

The SAR measurement was performed with the E-field probe in mechanical detection mode only. The setup and determination of the forward power into the dipole was performed using the following procedures.

First, the power meter PM1 (including attenuator Att1) is connected to the cable to measure the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at the dipole connector (taking into account the attenuation of Att1) as read by power meter PM2. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. If the signal generator does not allow adjustment in 0.01dB steps, the remaining difference at PM2 must be taken into consideration. PM3 records the reflected power from the dipole to ensure that the value is not changed from the previous value. The reflected power should be 20dB below the forward power.

8. Validation Dipole SAR Test Results

Ten SAR measurements were performed in order to achieve repeatability and to establish an average target value.

Validation Measurement	SAR @ 0.25W Input averaged over 1g	SAR @ 1W Input averaged over 1g	SAR @ 0.25W Input averaged over 10g	SAR @ 1W Input averaged over 10g	Peak SAR @ 0.25W Input
Test 1	14.2	56.8	6.58	26.32	30.4
Test 2	14.1	56.4	6.54	26.16	30.2
Test 3	14.1	56.4	6.54	26.16	30.4
Test 4	14.1	56.4	6.51	26.04	30.6
Test 5	14.0	56.0	6.51	26.04	29.8
Test 6	14.0	56.0	6.49	25.96	29.6
Test 7	14.1	56.4	6.54	26.16	30.0
Test 8	14.1	56.4	6.53	26.12	30.1
Test 9	14.0	56.0	6.50	26.00	29.8
Test10	14.0	56.0	6.47	25.88	30.0
Average Value	14.07	56.28	6.52	26.08	30.09

The results have been normalized to 1W (forward power) into the dipole.

IEEE Target over 1cm³ (1g) of tissue: 52.4 mW/g (+/- 10%)

Averaged over 1cm (1g) of tissue: 56.28 mW/g (+ 7.4% deviation)

IEEE Target over 10 cm^3 (10g) of tissue: 24.0 mW/g (+/- 10%)

Averaged over 10cm (10g) of tissue: 26.08 mW/g (+ 8.7% deviation)

2540 MHz System Validation - September 30, 2004

DUT: Dipole 2450 MHz; Model: D2450V2; Serial: 150; Calibrated: 09/30/2004

Ambient Temp: 25.3 °C; Fluid Temp: 23.7 °C; Barometric Pressure: 102.7 kPa; Humidity: 32%

Communication System: CW Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL2450 (σ = 1.86 mho/m; ϵ_r = 38.5; ρ = 1000 kg/m³)

- Probe: ET3DV6 - SN1590; ConvF(4.44, 4.44, 4.44); Calibrated: 24/05/2004

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

- Electronics: DAE3 Sn370; Calibrated: 14/05/2004
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.3 Build 22; Postprocessing SW: SEMCAD, V1.8 Build 127

2450 MHz System Validation/Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm

2450 MHz System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.9 V/m; Power Drift = 0.0 dB Peak SAR (extrapolated) = 30.4 W/kg SAR(1 g) = 14.2 mW/g; SAR(10 g) = 6.58 mW/g

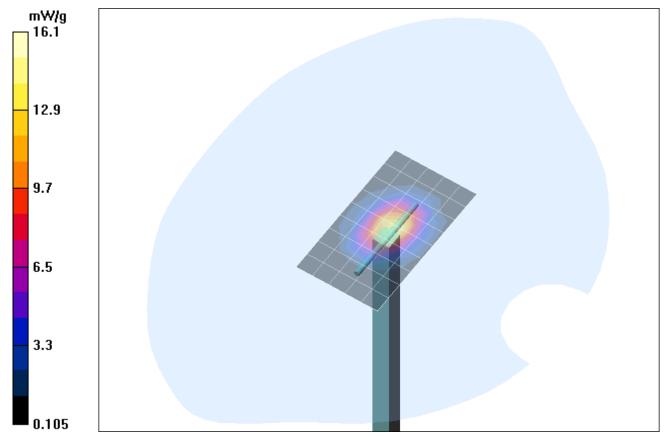
2450 MHz System Validation/Zoom Scan 2 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.9 V/m; Power Drift = -0.002 dB Peak SAR (extrapolated) = 30.2 W/kg SAR(1 g) = 14.1 mW/g; SAR(10 g) = 6.54 mW/g

2450 MHz System Validation/Zoom Scan 3 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.5 V/m; Power Drift = -0.001 dB Peak SAR (extrapolated) = 30.4 W/kg SAR(1 g) = 14.1 mW/g; SAR(10 g) = 6.54 mW/g

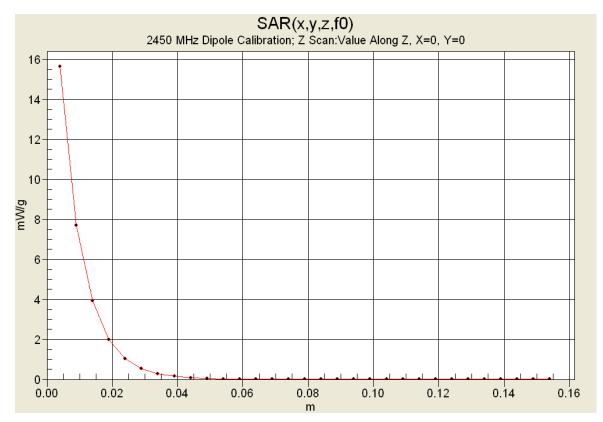
2450 MHz System Validation/Zoom Scan 4 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.1 V/m; Power Drift = 0.008 dB Peak SAR (extrapolated) = 30.6 W/kg SAR(1 g) = 14.1 mW/g; SAR(10 g) = 6.51 mW/g

2450 MHz System Validation/Zoom Scan 5 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.9 V/m; Power Drift = -0.009 dB Peak SAR (extrapolated) = 29.8 W/kg SAR(1 g) = 14.0 mW/g; SAR(10 g) = 6.51 mW/g

2450 MHz System Validation/Zoom Scan 6 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.4 V/m; Power Drift = -0.0 dB Peak SAR (extrapolated) = 29.6 W/kg SAR(1 g) = 14.0 mW/g; SAR(10 g) = 6.49 mW/g


2450 MHz System Validation/Zoom Scan 7 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.4 V/m; Power Drift = -0.008 dB Peak SAR (extrapolated) = 30 W/kg SAR(1 g) = 14.1 mW/g; SAR(10 g) = 6.54 mW/g

2450 MHz System Validation/Zoom Scan 8 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.4 V/m; Power Drift = -0.004 dB Peak SAR (extrapolated) = 30.1 W/kg SAR(1 g) = 14.1 mW/g; SAR(10 g) = 6.53 mW/g


2450 MHz System Validation/Zoom Scan 9 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.3 V/m; Power Drift = -0.0 dB Peak SAR (extrapolated) = 29.8 W/kg SAR(1 g) = 14.0 mW/g; SAR(10 g) = 6.5 mW/g

2450 MHz System Validation/Zoom Scan 10 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.4 V/m; Power Drift = -0.1 dB Peak SAR (extrapolated) = 30 W/kg SAR(1 g) = 14.0 mW/g; SAR(10 g) = 6.47 mW/g

1 g average of 10 measurements: 14.07 mW/g 10 g average of 10 measurements: 6.521 mW/g

2450 MHz System Validation Measured Fluid Dielectric Parameters (Brain) September 30, 2004

Frequency	e'	e"
2.350000000 GHz	38.9044	13.2920
2.36000000 GHz	38.8598	13.3262
2.370000000 GHz	38.8346	13.3589
2.38000000 GHz	38.7702	13.3903
2.39000000 GHz	38.7465	13.4360
2.40000000 GHz	38.6987	13.4546
2.410000000 GHz	38.6553	13.4975
2.420000000 GHz	38.6023	13.5376
2.430000000 GHz	38.5771	13.5800
2.440000000 GHz	38.5403	13.6072
2.450000000 GHz	<mark>38.5010</mark>	<mark>13.6535</mark>
2.460000000 GHz	38.4824	13.6770
2.470000000 GHz	38.4488	13.7080
2.480000000 GHz	38.4153	13.7445
2.490000000 GHz	38.3700	13.7692
2.500000000 GHz	38.3378	13.7887
2.510000000 GHz	38.2798	13.8028
2.520000000 GHz	38.2288	13.8500
2.530000000 GHz	38.1683	13.8945
2.540000000 GHz	38.1113	13.9420
2.550000000 GHz	38.0791	13.9851

Test Report S/N:	110804I28-T583-586-S15W
Test Date(s):	November 17-19 & 26, 2004
Test Type:	FCC/IC SAR Evaluation

APPENDIX D - PROBE CALIBRATION

Applicant:	Zebra Technologies Corporation	FCC ID:	I28MD-RW4137	IC ID:	3798	A-RW4137
Model(s):	QL220, QL320, QL420, RW420	Wireless Portable	Printer with DSSS WLAN	2412 - 2462	2 MHz	Zebra
2004 Celltech Lat	s Inc. This document is not to be rep	roduced in whole or in pa	rt without the written permission o	f Celltech Labs	Inc.	19 of 23

Client Celitech

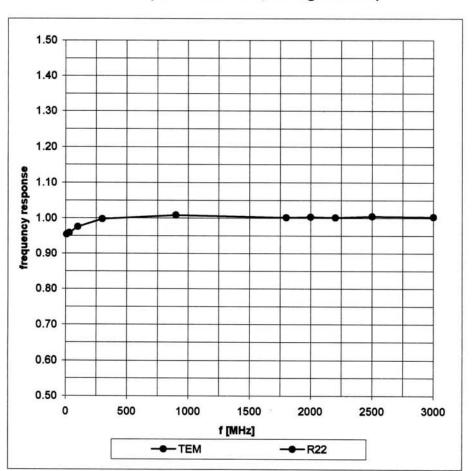
Dbject(s)	ET3DV6 - SN:1387				
Calibration procedure(s)	QA CAL-01.v2 Calibration pro	2 Docedure for dosimetric E-field prob	Des		
Calibration date:	March 18, 200	14			
Condition of the calibrated item	In Tolerance (according to the specific calibratio	n document)		
All calibrations have been conducted	d in the closed laboratory	y facility: environment temperature 22 +/- 2 degrees C	celsius and humidity < 75%.		
Calibration Equipment used (M&TE	critical for calibration)				
alibration Equipment used (M&TE	critical for calibration)	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration		
alibration Equipment used (M&TE lodel Type ower meter EPM E4419B	critical for calibration) ID # GB41293874	Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250)	Scheduled Calibration Apr-04		
alibration Equipment used (M&TE lodel Type ower meter EPM E4419B ower sensor E4412A	critical for calibration) ID # GB41293874 MY41495277	Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250)	Scheduled Calibration Apr-04 Apr-04		
alibration Equipment used (M&TE lodel Type ower meter EPM E4419B ower sensor E4412A eference 20 dB Attenuator	critical for calibration) ID # GB41293874 MY41495277 SN: 5086 (20b)	Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS, No. 251-0340)	Scheduled Calibration Apr-04 Apr-04 Apr-04		
Calibration Equipment used (M&TE Model Type Power meter EPM E4419B Power sensor E4412A Reference 20 dB Attenuator Fluke Process Calibrator Type 702	critical for calibration) ID # GB41293874 MY41495277	Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS, No. 251-0340) 8-Sep-03 (Sintrel SCS No. E-030020)	Scheduled Calibration Apr-04 Apr-04 Apr-04 Sep-04		
Calibration Equipment used (M&TE Model Type Power meter EPM E4419B Power sensor E4412A Reference 20 dB Attenuator Ruke Process Calibrator Type 702 Power sensor HP 8481A	critical for calibration) ID # GB41293874 MY41495277 SN: 5086 (20b) SN: 6295803	Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS, No. 251-0340)	Scheduled Calibration Apr-04 Apr-04 Apr-04		
Calibration Equipment used (M&TE Model Type Power meter EPM E4419B Power sensor E4412A Reference 20 dB Attenuator Fluke Process Calibrator Type 702 Power sensor HP 8481A RF generator HP 8684C	critical for calibration) ID # GB41293874 MY41495277 SN: 5086 (20b) SN: 6295803 MY41092180	Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS, No. 251-0340) 8-Sep-03 (Sintrel SCS No. E-030020) 18-Sep-02 (SPEAG, in house check Oct-03)	Scheduled Calibration Apr-04 Apr-04 Apr-04 Sep-04 In house check: Oct 05		
Calibration Equipment used (M&TE Model Type Power meter EPM E4419B Power sensor E4412A Reference 20 dB Attenuator Fluke Process Calibrator Type 702 Power sensor HP 8481A RF generator HP 8684C Network Analyzer HP 8753E	critical for calibration) ID # GB41293874 MY41495277 SN: 5086 (20b) SN: 6295803 MY41092180 US3642U01700	Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS, No. 251-0340) 8-Sep-03 (Sintrel SCS No. E-030020) 18-Sep-02 (SPEAG, in house check Oct-03) 4-Aug-99 (SPEAG, in house check Aug-02)	Scheduled Calibration Apr-04 Apr-04 Apr-04 Sep-04 In house check: Oct 05 In house check: Aug-05		
Calibration Equipment used (M&TE Model Type Power meter EPM E4419B Power sensor E4412A Reference 20 dB Attenuator Fluke Process Calibrator Type 702 Power sensor HP 8481A RF generator HP 8684C	critical for calibration) ID # GB41293874 MY41495277 SN: 5086 (20b) SN: 6295803 MY41092180 US3642U01700 US37390585	Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS, No. 251-0340) 8-Sep-03 (Sintrel SCS No. E-030020) 18-Sep-02 (SPEAG, in house check Oct-03) 4-Aug-99 (SPEAG, in house check Aug-02) 18-Oct-01 (SPEAG, in house check Oct-03)	Scheduled Calibration Apr-04 Apr-04 Apr-04 Sep-04 In house check: Oct 05 In house check: Aug-05 In house check: Oct 05		
Calibration Equipment used (M&TE Model Type Power meter EPM E4419B Power sensor E4412A Reference 20 dB Attenuator Fluke Process Calibrator Type 702 Power sensor HP 8481A RF generator HP 8684C Network Analyzer HP 8753E	critical for calibration) ID # GB41293874 MY41495277 SN: 5086 (20b) SN: 6295803 MY41092180 US3642U01700 US3642U01700 US37390585	Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS, No. 251-0340) 8-Sep-03 (Sintrel SCS No. E-030020) 18-Sep-02 (SPEAG, in house check Oct-03) 4-Aug-99 (SPEAG, in house check Aug-02) 18-Oct-01 (SPEAG, in house check Oct-03) Function	Scheduled Calibration Apr-04 Apr-04 Apr-04 Sep-04 In house check: Oct 05 In house check: Aug-05 In house check: Oct 05		

Probe ET3DV6

SN:1387

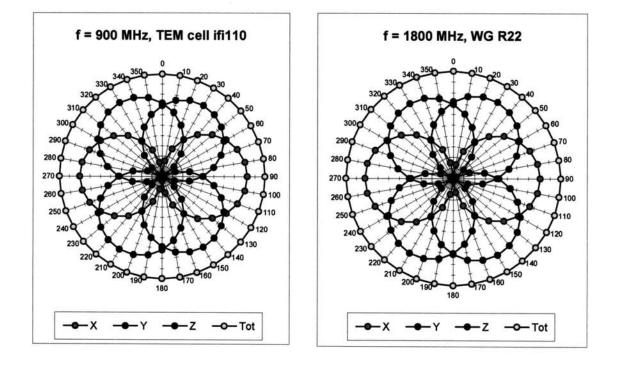
Manufactured: Last calibrated: Recalibrated: September 21, 1999 February 26, 2003 March 18, 2004

Calibrated for DASY Systems

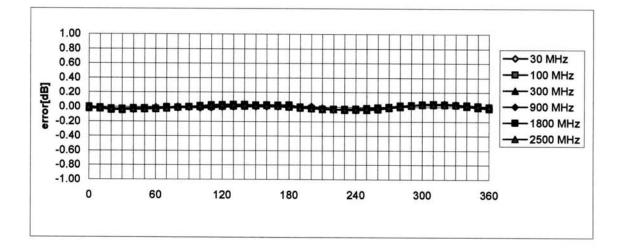

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: ET3DV6 SN:1387

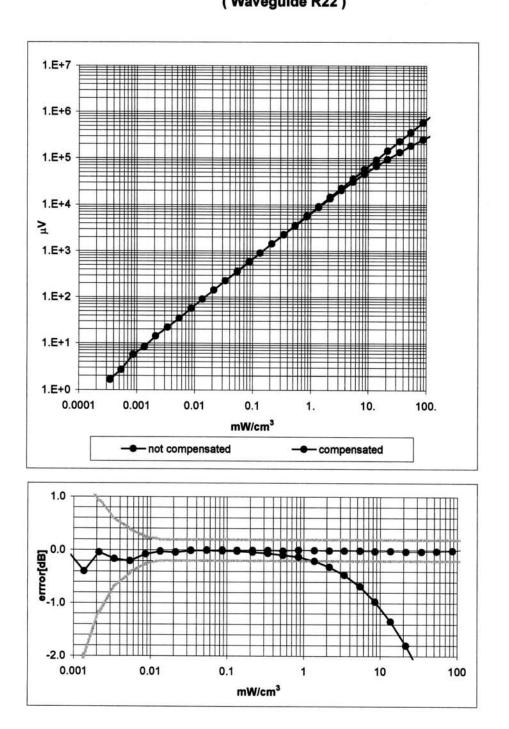
Sens	itivity in Fre	e Spac	e		Diode	Comp	ression ^A
	NormX	1.6	2 μV/(V/m) ²		DCP X	92	mV
	NormY		1 μV/(V/m) ²		DCP Y	92	mV
	NormZ		1 μV/(V/m) ²		DCP Z	92	mV
	Nonnz				001 2	JL	III V
Sens	itivity in Tis	sue Sin	nulating Liquid (Co	nversio	n Facto	ors)	
Plese	see Page 7.						
Bour	idary Effect						
Head	90	0 MHz	Typical SAR gradient:	5 % per m	m		
	Sensor Cener	to Phanto	m Surface Distance		3.7 mm	4.7 mm	
	SAR _{be} [%]	Without	Correction Algorithm		9.3	4.4	
	SAR _{be} [%]	With Co	prrection Algorithm		0.0	0.1	
Head	100	0 MHz	Tunion SAD anodiont	10 %			
neau	100		Typical SAR gradient:	10 % per i	nm		
	Sensor to Surf	ace Distar	ice		3.7 mm	4.7 mm	
	SAR _{be} [%]	Without	Correction Algorithm		14.8	10.0	
	SAR _{be} [%]	With Co	prrection Algorithm		0.2	0.0	
Sens	or Offset						
	Daths Tis to 0						
	Probe Tip to S			2.7	mm		
	Optical Surface	- Detection	n	in to	erance		


The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

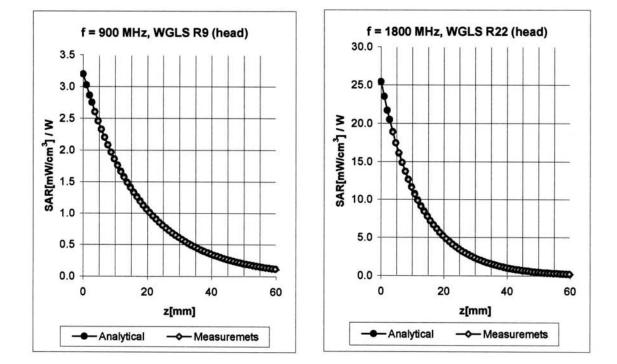
^A numerical linearization parameter: uncertainty not required



Frequency Response of E-Field


(TEM-Cell:ifi110, Waveguide R22)

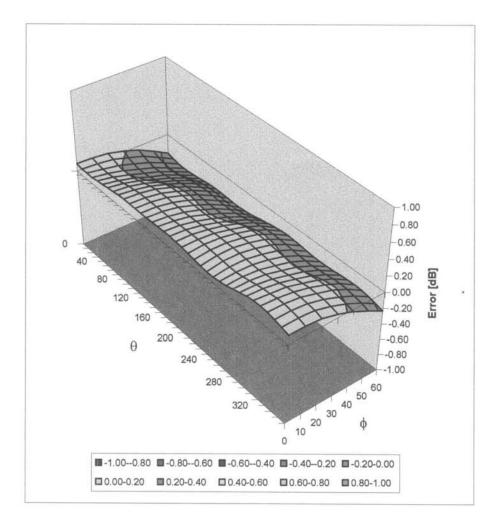
Receiving Pattern (ϕ), θ = 0°


Axial Isotropy Error < ± 0.2 dB

Dynamic Range f(SAR_{head}) (Waveguide R22)

Probe Linearity < ± 0.2 dB

Page 6 of 8


Conversion Factor Assessment

f [MHz]	Validity [MHz] ^B	Tissue	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
835	750-950	Head	41.5 ± 5%	0.90 ± 5%	0.72	1.78	6.71 ± 11.9% (k=2)
1750	1700-1800	Head	40.0 ± 5%	1.40 ± 5%	0.51	2.67	5.38 ± 9.7% (k=2)
1900	1850-1950	Head	40.0 ± 5%	1.40 ± 5%	0.55	2.66	5.25 ± 9.7% (k=2)
2450	2400-2500	Head	39.2 ± 5%	1.80 ± 5%	0.99	1.89	4.77 ± 9.7% (k=2)
835	750-950	Body	55.2 ± 5%	0.97 ± 5%	0.56	2.04	6.24 ± 11.9% (k=2)
1750	1700-1800	Body	53.3 ± 5%	1.52 ± 5%	0.58	2.82	4.68 ± 9.7% (k=2)
1900	1850-1950	Body	53.3 ± 5%	1.52 ± 5%	0.62	2.77	4.57 ± 9.7% (k=2)
2450	2400-2500	Body	52.7 ± 5%	1.95 ± 5%	1.75	1.28	4.50 ± 9.7% (k=2)

^B The total standard uncertainty is calculated as root-sum-square of standard uncertainty of the Conversion Factor at calibration frequency and the standard uncertainty for the indicated frequency band.

Deviation from Isotropy in HSL

Error (θ , ϕ), f = 900 MHz

Spherical Isotropy Error < ± 0.4 dB

Additional Conversion Factors

for Dosimetric E-Field Probe

Туре:	ET3DV6		
Serial Number:	1387		
Place of Assessment:	Zurich		
Date of Assessment:	March 22, 2004		
Probe Calibration Date:	March 18, 2004		

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1800 MHz.

Assessed by:

Monither

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Dosimetric E-Field Probe ET3DV6 SN:1387

Conversion factor (± standard deviation)

150 MHz	ConvF	9.1 ± 8%	$\epsilon_r = 52.3 \pm 5\%$ $\sigma = 0.76 \pm 5\% \text{ mho/m}$ (head tissue)
300 MHz	ConvF	7.8±8%	$\epsilon_r = 45.3 \pm 5\%$ $\sigma = 0.87 \pm 5\%$ mho/m (head tissue)
450 MHz	ConvF	7.5±8%	$\epsilon_r = 43.5 \pm 5\%$ $\sigma = 0.87 \pm 5\%$ mho/m (head tissue)
150 MHz	ConvF	8.7±8%	$\epsilon_r = 61.9 \pm 5\%$ $\sigma = 0.80 \pm 5\%$ mho/m (body tissue)
450 MHz	ConvF	7.6±8%	$\epsilon_r = 56.7 \pm 5\%$ $\sigma = 0.94 \pm 5\%$ mho/m (body tissue)

Important Note:

For numerically assessed probe conversion factors, parameters Alpha and Delta in the DASY software must have the following entries: Alpha = 0 and Delta = 1.

Please see also Section 4.7 of the DASY4 Manual.

Test Report S/N:	110804I28-T583-586-S15W
Test Date(s):	November 17-19 & 26, 2004
Test Type:	FCC/IC SAR Evaluation

APPENDIX E - MEASURED FLUID DIELECTRIC PARAMETERS

Applicant:	Zebra Technologies Corporation	FCC ID:	I28MD-RW4137	IC ID:	3798A	A-RW4137
Model(s):	QL220, QL320, QL420, RW420	Wireless Portable	Printer with DSSS WLAN	2412 - 2462	2 MHz	Zebra
2004 Celltech Lat	s Inc. This document is not to be rep	roduced in whole or in pa	rt without the written permission o	f Celltech Labs	Inc.	20 of 23

2450 MHz System Performance Check Measured Fluid Dielectric Parameters (Brain) November 17, 2004

Frequency	e'	e"
2.350000000 GHz	39.0298	13.5765
2.360000000 GHz	38.9895	13.6011
2.370000000 GHz	38.9405	13.6412
2.380000000 GHz	38.9113	13.6599
2.390000000 GHz	38.8707	13.6771
2.400000000 GHz	38.8301	13.7001
2.410000000 GHz	38.7839	13.7253
2.420000000 GHz	38.7463	13.7632
2.430000000 GHz	38.7027	13.7924
2.440000000 GHz	38.6654	13.8417
2.450000000 GHz	<mark>38.6314</mark>	<mark>13.8635</mark>
2.460000000 GHz	38.5812	13.9214
2.470000000 GHz	38.5630	13.9499
2.480000000 GHz	38.5286	13.9812
2.490000000 GHz	38.4972	14.0019
2.500000000 GHz	38.4424	14.0233
2.510000000 GHz	38.3895	14.0491
2.520000000 GHz	38.3300	14.0726
2.530000000 GHz	38.2719	14.1257
2.540000000 GHz	38.2336	14.1622
2.550000000 GHz	38.1933	14.1952

2450 MHz DUT Evaluation (Body) Measured Fluid Dielectric Parameters (Muscle) November 17, 2004

Frequency	e'	e"
2.350000000 GHz	51.1755	14.4154
2.360000000 GHz	51.1296	14.4434
2.370000000 GHz	51.1025	14.4862
2.380000000 GHz	51.0825	14.5212
2.390000000 GHz	51.0505	14.5785
2.400000000 GHz	51.0038	14.6283
2.410000000 GHz	50.9660	14.6535
2.420000000 GHz	50.9315	14.6864
2.430000000 GHz	50.9160	14.7337
2.440000000 GHz	50.8860	14.7588
2.450000000 GHz	50.8502	<mark>14.7989</mark>
2.460000000 GHz	50.8108	14.8258
2.470000000 GHz	50.7899	14.8636
2.480000000 GHz	50.7729	14.9121
2.490000000 GHz	50.7365	14.9557
2.500000000 GHz	50.6671	15.0191
2.510000000 GHz	50.6298	15.0506
2.520000000 GHz	50.5632	15.0902
2.530000000 GHz	50.5291	15.1601
2.540000000 GHz	50.5055	15.1727
2.550000000 GHz	50.4538	15.2147

2450 MHz System Performance Check Measured Fluid Dielectric Parameters (Brain) November 18, 2004

Frequency	e'	e"
2.350000000 GHz	38.6286	13.5458
2.360000000 GHz	38.5867	13.5924
2.370000000 GHz	38.5595	13.6247
2.380000000 GHz	38.5063	13.6477
2.390000000 GHz	38.4659	13.6716
2.400000000 GHz	38.4417	13.6801
2.410000000 GHz	38.3773	13.7132
2.420000000 GHz	38.3476	13.7570
2.430000000 GHz	38.3004	13.7850
2.440000000 GHz	38.2581	13.8313
2.450000000 GHz	<mark>38.2268</mark>	<mark>13.8661</mark>
2.460000000 GHz	38.1921	13.9124
2.470000000 GHz	38.1610	13.9585
2.480000000 GHz	38.1304	13.9742
2.490000000 GHz	38.0877	13.9975
2.500000000 GHz	38.0427	14.0038
2.510000000 GHz	37.9890	14.0315
2.520000000 GHz	37.9484	14.0705
2.530000000 GHz	37.8843	14.0968
2.540000000 GHz	37.8281	14.1442
2.550000000 GHz	37.8034	14.1761

2450 MHz DUT Evaluation (Body) Measured Fluid Dielectric Parameters (Muscle) November 18, 2004

Frequency	e'	e"
2.350000000 GHz	50.4517	14.3720
2.36000000 GHz	50.4228	14.4122
2.370000000 GHz	50.3927	14.4471
2.380000000 GHz	50.3443	14.4894
2.390000000 GHz	50.3175	14.5182
2.400000000 GHz	50.2794	14.5391
2.410000000 GHz	50.2287	14.5970
2.420000000 GHz	50.1979	14.6430
2.430000000 GHz	50.1453	14.6723
2.440000000 GHz	50.1226	14.7316
2.450000000 GHz	50.0828	<mark>14.7722</mark>
2.460000000 GHz	50.0736	14.8309
2.470000000 GHz	50.0434	14.8650
2.480000000 GHz	50.0106	14.8956
2.490000000 GHz	49.9610	14.9291
2.500000000 GHz	49.9262	14.9380
2.510000000 GHz	49.8716	14.9829
2.520000000 GHz	49.8378	15.0318
2.530000000 GHz	49.7665	15.0844
2.540000000 GHz	49.7318	15.1360
2.550000000 GHz	49.7059	15.1702

2450 MHz System Performance Check Measured Fluid Dielectric Parameters (Brain) November 19, 2004

Frequency	e'	e"
2.350000000 GHz	38.5606	13.3694
2.360000000 GHz	38.5113	13.3864
2.370000000 GHz	38.4717	13.4179
2.380000000 GHz	38.4419	13.4502
2.390000000 GHz	38.4142	13.4700
2.400000000 GHz	38.3646	13.4993
2.410000000 GHz	38.3109	13.5325
2.420000000 GHz	38.2676	13.5739
2.430000000 GHz	38.2300	13.6109
2.440000000 GHz	38.1784	13.6598
2.450000000 GHz	<mark>38.1494</mark>	<mark>13.6848</mark>
2.460000000 GHz	38.1003	13.7075
2.470000000 GHz	38.0772	13.7309
2.480000000 GHz	38.0416	13.7678
2.490000000 GHz	38.0127	13.7855
2.500000000 GHz	37.9703	13.8120
2.510000000 GHz	37.9250	13.8276
2.520000000 GHz	37.8576	13.8841
2.530000000 GHz	37.7993	13.9114
2.540000000 GHz	37.7569	13.9693
2.550000000 GHz	37.7187	13.9858

2450 MHz DUT Evaluation (Body) Measured Fluid Dielectric Parameters (Muscle) November 19, 2004

Frequency	e'	e"
2.350000000 GHz	51.1252	14.1548
2.360000000 GHz	51.0951	14.1789
2.370000000 GHz	51.0746	14.2282
2.380000000 GHz	51.0546	14.2703
2.390000000 GHz	51.0298	14.3041
2.400000000 GHz	50.9863	14.3390
2.410000000 GHz	50.9467	14.3882
2.420000000 GHz	50.9100	14.4382
2.430000000 GHz	50.8902	14.4829
2.440000000 GHz	50.8342	14.5176
2.450000000 GHz	<mark>50.8266</mark>	<mark>14.5635</mark>
2.460000000 GHz	50.7866	14.5909
2.470000000 GHz	50.7667	14.6273
2.480000000 GHz	50.7484	14.6697
2.490000000 GHz	50.7216	14.7158
2.500000000 GHz	50.6699	14.7497
2.510000000 GHz	50.6402	14.7823
2.520000000 GHz	50.5710	14.8176
2.530000000 GHz	50.5159	14.8804
2.540000000 GHz	50.4671	14.9324
2.550000000 GHz	50.4498	14.9671

2450 MHz System Performance Check Measured Fluid Dielectric Parameters (Brain) November 26, 2004

Frequency	e'	e"
2.350000000 GHz	38.7582	13.4536
2.360000000 GHz	38.6970	13.4904
2.370000000 GHz	38.6447	13.5232
2.380000000 GHz	38.6120	13.5515
2.390000000 GHz	38.5656	13.5857
2.400000000 GHz	38.5303	13.6084
2.410000000 GHz	38.5062	13.6471
2.420000000 GHz	38.4902	13.6710
2.430000000 GHz	38.4532	13.7151
2.440000000 GHz	38.4513	13.7471
2.450000000 GHz	<mark>38.4029</mark>	<mark>13.7485</mark>
2.460000000 GHz	38.3661	13.7960
2.470000000 GHz	38.3247	13.8171
2.480000000 GHz	38.2708	13.8518
2.490000000 GHz	38.2195	13.8819
2.500000000 GHz	38.1404	13.8973
2.510000000 GHz	38.0786	13.9453
2.520000000 GHz	38.0280	13.9761
2.530000000 GHz	37.9761	14.0302
2.540000000 GHz	37.9510	14.0565
2.550000000 GHz	37.9233	14.0852

2450 MHz DUT Evaluation (Body) Measured Fluid Dielectric Parameters (Muscle) November 26, 2004

Frequency	e'	e"
2.350000000 GHz	50.9770	14.3601
2.360000000 GHz	50.9219	14.3961
2.370000000 GHz	50.8992	14.4491
2.380000000 GHz	50.8493	14.4838
2.390000000 GHz	50.8040	14.5394
2.400000000 GHz	50.7649	14.5775
2.410000000 GHz	50.7477	14.6264
2.420000000 GHz	50.7206	14.6477
2.430000000 GHz	50.7077	14.7036
2.440000000 GHz	50.6988	14.7222
2.450000000 GHz	<mark>50.6504</mark>	<mark>14.7492</mark>
2.460000000 GHz	50.6298	14.7978
2.470000000 GHz	50.5926	14.8197
2.480000000 GHz	50.5435	14.8754
2.490000000 GHz	50.4792	14.9176
2.500000000 GHz	50.4027	14.9429
2.510000000 GHz	50.3545	15.0073
2.520000000 GHz	50.3115	15.0366
2.530000000 GHz	50.2654	15.1150
2.540000000 GHz	50.2529	15.1369
2.550000000 GHz	50.2328	15.1691

Test Report S/N:	110804I28-T583-586-S15W
Test Date(s):	November 17-19 & 26, 2004
Test Type:	FCC/IC SAR Evaluation

APPENDIX F - SAM PHANTOM CERTIFICATE OF CONFORMITY

Applicant:	Zebra Technologies Corporation	gies Corporation FCC ID: I28MD-RW4137				A-RW4137
Model(s):	QL220, QL320, QL420, RW420	Wireless Portable	Printer with DSSS WLAN	2412 - 2462	2 MHz	Zebra
2004 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc.				21 of 23		

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Certificate of conformity / First Article Inspection

Item	SAM Twin Phantom V4.0		
Type No	QD 000 P40 BA		
Series No	TP-1002 and higher		
Manufacturer / Origin	Untersee Composites Hauptstr. 69 CH-8559 Fruthwilen Switzerland		

Tests

The series production process used allows the limitation to test of first articles.

Complete tests were made on the pre-series Type No. QD 000 P40 AA, Serial No. TP-1001 and on the series first article Type No. QD 000 P40 BA, Serial No. TP-1006. Certain parameters have been retested using further series units (called samples).

Test	Requirement	Details	Units tested
Shape	Compliance with the geometry according to the CAD model.	IT'IS CAD File (*)	First article, Samples
Material thickness	Compliant with the requirements according to the standards	2mm +/- 0.2mm in specific areas	First article, Samples
Materiai parameters	Dielectric parameters for required frequencies	200 MHz – 3 GHz Relative permittivity < 5 Loss tangent < 0.05.	Material sample TP 104-5
Material resistivity	The material has been tested to be compatible with the liquids defined in the standards	Liquid type HSL 1800 and others according to the standard.	Pre-series, First article

Standards

- [1] CENELEC EN 50361
- [2] IEEE P1528-200x draft 6.5
- [3] IEC PT 62209 draft 0.9
- (*) The IT'IS CAD file is derived from [2] and is also within the tolerance requirements of the shapes of [1] and [3].

Conformity

Based on the sample tests above, we certify that this item is in compliance with the uncertainty requirements of SAR measurements specified in standard [1] and draft standards [2] and [3].

Date 18.11.2001 Schmid & Partner Fin Bruholt : lā Signature / Stame Engineering AG Zeughausstrasse 43, CH-8004 Zurich Tel. +41 1 245 97 00, Fax +41 1 245 97 79

Test Report S/N:	110804I28-T583-586-S15W
Test Date(s):	November 17-19 & 26, 2004
Test Type:	FCC/IC SAR Evaluation

APPENDIX G - PLANAR PHANTOM CERTIFICATE OF CONFORMITY

Applicant:	Zebra Technologies Corporation	FCC ID:	I28MD-RW4137	IC ID:	3798A-R	W4137
Model(s):	QL220, QL320, QL420, RW420	Wireless Portable Printer with DSSS WLAN		2412 - 2462	2 MHz	Zebra
				22 of 23		

2378 Westlake Road Kelowna, B.C. Canada V1Z-2V2

Ph. # 250-769-6848 Fax # 250-769-6334 E-mail: <u>barskiind@shaw.ca</u> Web: www.bcfiberglass.com

FIBERGLASS FABRICATORS

Certificate of Conformity

Item : Flat Planar Phantom Unit # 03-01 Date: June 16, 2003 Manufacturer: Barski Industries (1985 Ltd)

Test	Requirement	Details
Shape	Compliance to geometry according to drawing	Supplied CAD drawing
Material Thickness	Compliant with the requirements	2mm +/- 0.2mm in measurement area
Material Parameters	Dielectric parameters for required frequencies Based on Dow Chemical technical data	100 MHz-5 GHz Relative permittivity<5 Loss Tangent<0.05

Conformity

Based on the above information, we certify this product to be compliant to the requirements specified.

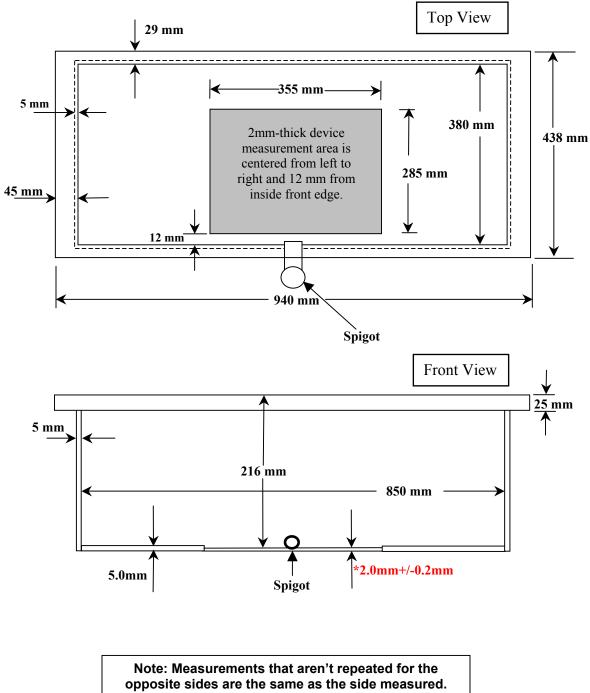
Signature:

Daniel Chailler

Fiberglass Planar Phantom - Top View

Fiberglass Planar Phantom - Front View

Fiberglass Planar Phantom - Back View



Fiberglass Planar Phantom - Bottom View

Dimensions of Fiberglass Planar Phantom

(Manufactured by Barski Industries Ltd. - Unit# 03-01)

