5 FCC §15.247(i) §2.1091 & ISED RSS-102 - RF Exposure

5.1 Applicable Standards

According to FCC §2.1091 (Mobile Devices) RF exposure is calculated.

Limits for General Population/Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Averaging Time (minute)					
Limits for General Population/Uncontrolled Exposure									
0.3-1.34	614	1.63	*(100)	30					
1.34-30	824/f	2.19/f	*(180/f ²)	30					
30-300	27.5	0.073	0.2	30					
300-1500	/	/	f/1500	30					
1500-100,000	/	/	1.0	30					

Note: f = frequency in MHz

According to ISED RSS-102 Issue 5:

2.5.2 Exemption Limits for Routine Evaluation – RF Exposure Evaluation

RF exposure evaluation is required if the separation distance between the user and/or bystander and the device's radiating element is greater than 20 cm, except when the device operates as follows:

- below 20 MHz⁶ and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 1 W (adjusted for tune-up tolerance);
- at or above 20 MHz and below 48 MHz and the source-based, time-averaged maximum e.i.r.p. of the
 device is equal to or less than 4.49/f^{0.5} W (adjusted for tune-up tolerance), where f is in MHz;
- at or above 48 MHz and below 300 MHz and the source-based, time-averaged maximum e.i.r.p. of the
 device is equal to or less than 0.6 W (adjusted for tune-up tolerance);
- at or above 300 MHz and below 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 1.31 x 10⁻² f^{0.6834} W (adjusted for tune-up tolerance), where f is in MHz:
- at or above 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 5 W (adjusted for tune-up tolerance).

In these cases, the information contained in the RF exposure technical brief may be limited to information that demonstrates how the e.i.r.p. was derived.

^{* =} Plane-wave equivalent power density

5.2 MPE Prediction

Predication of MPE limit at a given distance, Equation from OET Bulletin 65, Edition 97-01

 $S = PG/4\pi R^2$

Where: S = power density

P = power input to antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

5.3 MPE Results

BT 2.4 GHz Radio (FCC ID: I28MD-FXLAN11AC)

Maximum average output power at antenna input terminal (dBm): 10.27 Maximum average output power at antenna input terminal (mW): 10.641

Prediction distance (cm): 20

Prediction frequency (MHz): 2402

Maximum Antenna Gain, typical (dBi): 0.3

Maximum Antenna Gain (numeric): 1.0715

Power density of prediction frequency at 20.0 cm (mW/cm²): 0.0023

FCC MPE limit for uncontrolled exposure at prediction frequency

 (mW/cm^2) : 1.0

WLAN 2.4 GHz Radio (FCC ID: I28MD-FXLAN11AC)

Maximum average output power at antenna input terminal (dBm): 16.77

Maximum average output power at antenna input terminal (mW): 47.534

Prediction distance (cm): 20

Prediction frequency (MHz): 2412

Maximum Antenna Gain, typical (dBi): 0.3

Maximum Antenna Gain (numeric): 1.0715

Power density of prediction frequency at 20.0 cm (mW/cm²): 0.010

FCC MPE limit for uncontrolled exposure at prediction frequency

 (mW/cm^2) : 1.0

WLAN 5 GHz Radio (FCC ID: I28MD-FXLAN11AC)

Maximum average output power at antenna input terminal (dBm): 14.76

Maximum average output power at antenna input terminal (mW): 29.923

Prediction distance (cm): 20

Prediction frequency (MHz): 5550

Maximum Antenna Gain, typical (dBi): 4.4

Maximum Antenna Gain (numeric): 2.75

Power density of prediction frequency at 20.0 cm (mW/cm²): 0.016

FCC MPE limit for uncontrolled exposure at prediction frequency

 (mW/cm^2) : 1.0

RFID 900 MHz Radio (FCC ID: UZ7RE40)

Maximum average output power at antenna input terminal (dBm): 27.20

Maximum average output power at antenna input terminal (mW): 524.807

Prediction distance (cm): 20

Prediction frequency (MHz): 902.75

Maximum Antenna Gain, typical (dBi): -30

Maximum Antenna Gain (numeric): 0.001

Power density of prediction frequency at 20.0 cm (mW/cm²): 0.0001

FCC MPE limit for uncontrolled exposure at prediction frequency

 (mW/cm^2) : 0.602

Radio Co-location

Frequency Band	Max Conducted Power (dBm)	Antenna Gain (dBi)	Evaluated Distance (cm)	Worst-Case MPE (mW/cm²)	MPE Limit (mW/cm²)	Worst- Case MPE Ratios	Sum of MPE Ratios	Limit			
Worst Case											
900 MHz Radio	27.20	-30	20	0.0001	0.602	0.02%	- 1.62%	100%			
WLAN/BT Radio	14.76	4.4	20	0.016	1.0	1.6%					

Results

For the different combination of transmitters, a separation distance of 20 cm complies with the MPE simultaneous transmission limit of ≤ 1.0 .

5.4 RF exposure evaluation exemption for IC

RFID 902.75 MHz (IC: 109AN-RE40)

 $27.20 \text{ dBm} + (-30.0) \text{ dBi} = -2.8 \text{ dBm} < 1.31 \times 10^{-2} t^{0.6834} = 1.371 \text{ W} = 31.370 \text{ dBm}$

BT BR, 2402 MHz (IC: 3798B-FXLANAC)

 $10.27 \text{ dBm} + 0.3 \text{ dBi} = 10.57 \text{ dBm} < 1.31 \times 10^{-2} f^{0.6834} = 2.676 \text{ W} = 34.275 \text{ dBm}$

WLAN 802.11b, 2412 MHz (IC: 3798B-FXLANAC)

 $16.77 \text{ dBm} + 0.3 \text{ dBi} = 17.07 \text{ dBm} < 1.31 \times 10^{-2} f^{0.6834} = 2.684 \text{ W} = 34.288 \text{ dBm}$

WLAN 802.11n40, 5550 MHz (IC: 3798B-FXLANAC)

 $14.76 \text{ dBm} + 4.4 \text{ dBi} = 19.16 \text{ dBm} < 1.31 \times 10^{-2} f^{0.6834} = 4.744 \text{ W} = 36.761 \text{ dBm}$

Therefore, RF exposure is not required.