APPENDIX C: RF EXPOSURE INFORMATION

This spread spectrum device, which can be used in portable hosts, has a conducted output power of 0.8 mW. This level is well below the RF exposure limit of 1.6 W/kg. Therefore, this device meets the FCC requirements for RF exposure.

Frequency (MHz)	Channel	Peak Power Conducted Output (dBm)	Peak Power Conducted Output (mW)
2402	2	-3.68	0.4
2440	40	-1.17	0.8
2480	80	-0.99	0.8

FCC RULES AND REGULATIONS PART 1.1307, 1.1310, 2.1091, 2.1093: RF EXPOSURE COMPLIANCE

Antenna Type(s):

Assembly Description	Assembly Type Designation	Manufacturer's Declared Maximum Gains (dBi)	Manufacturer's Declared Average Gains (dBi)
Cameo 2	Dipole	8.7	0.3
Cameo 3	Dipole	8.6	0.6
Cameo 3 SC	Dipole	6.3	-2.3
ZPR Pod	Dipole	7.5	0.6
QL-320	Dipole	3.5	-6.6
QL-220	Dipole	3.5	-6.6

Test signal, Time-averaging, Max. Measured Output Power:

Modulation Type/Modes: FHSS

Frequency Range			
2402-2480 MHz			

Output Power	High	High	Time averaging
(Watt/dBm)	(Watt)	(dBm)	(_0% Duty Cycle)
Conducted	.0008	-0.99	

Rhein Tech Laboratories 360 Herndon Parkway Suite 1400 Herndon, VA 20170 http://www.rheintech.com

Client: Zebra Technologies Model Name/#: ZBR-2/CC16735-1 FCC ID: I28MD-BTC2TY FCC: 15.247 IC: RSS-210

From FCC 1.1310 Table 1A, the maximum permissible RF exposure for an uncontrolled environment is 1 mW/cm². The Electric field generated for a 1mW/cm^2 exposure (S) is calculated as follows:

 $S = E^2/Z$

where: S = Power density E = Electric fieldZ = Impedance.

$$E = \sqrt{S \cdot Z}$$

$$1 \text{ mW/cm}^2 = 10 \text{ W/m}^2$$

The impedance of free space is 377 ohms, where E and H fields are perpendicular.

Thus:

$$E = \sqrt{10 \cdot 377} = 46.4 \text{ V/m}$$
 which is equivalent to 0.57mW/cm^2

Using the relationship between Electric field E, Power in watts P, and distance in meters d, the corresponding Antenna numeric gain G and the transmitter output power:

$$E(V/m) = \frac{\sqrt{30 \times P \times G}}{d}$$
 Power density: $P_d(mW/cm^2) = \frac{E^2}{3770}$

MPE Calculation:

The maximum distance from the antenna at which MPE is met or exceeded is calculated from the equation relating field strength E in V/m, transmit power P in Watts, transmit antenna numeric gain G, and separation distance in meters above, and solving for d below:

$$d = \frac{\sqrt{30 \times P \times G}}{E} \qquad 0.009m = \frac{\sqrt{30 \times 0.0008 \times 7.4}}{46.4}$$

SEPARATION DISTANCE:

Highest Antenna Gain = 7.4 Power ^B (Watt) = 0.0008				
Separation Distance				
(in)	(m)			
0.35	0.009			

Notes:

 B^{B} = Conducted power without Duty Cycle (worst case)