

FCC PART 15, SUBPART B and C TEST REPORT

for

CARD PRINTER with RFID

MODEL: DG420i

Prepared for

ZEBRA TECHNOLOGIES CORPORATION 1001 FLYNN ROAD CAMARILLO, CALIFORNIA 93012

Prepared by:

MICHAEL CHRISTENSEN

Approved by:_____

KYLE FUJIMOTO

COMPATIBLE ELECTRONICS INC. 114 OLINDA DRIVE BREA, CALIFORNIA 92823 (714) 579-0500

DATE: JULY 14, 2003

	REPORT		APPENDICES					TOTAL
	BODY	A	B	С	D	E	F	
PAGES	16	2	2	2	11	15	3	51

This report shall not be reproduced except in full, without the written approval of Compatible Electronics.

TABLE OF CONTENTS

Section / Title	PAGE
GENERAL REPORT SUMMARY	4
SUMMARY OF TEST RESULTS	4
1. PURPOSE	5
2.ADMINISTRATIVE DATA2.1Location of Testing2.2Traceability Statement2.3Cognizant Personnel2.4Date Test Sample was Received2.5Disposition of the Test Sample2.6Abbreviations and Acronyms	6 6 6 6 6 6
3. APPLICABLE DOCUMENTS	7
 4. Description of Test Configuration 4.1 Description of Test Configuration - EMI 4.1.1 Cable Construction and Termination 5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT 	8 8 9 10
5.1 EUT and Accessory List5.2 EMI Test Equipment	10 11
 TEST SITE DESCRIPTION Test Facility Description EUT Mounting, Bonding and Grounding 	12 12 12
7.Test Procedures7.1RF Emissions7.1.1Conducted Emissions Test7.1.2Radiated Emissions (Spurious and Harmonics) Test7.2Frequency Tolerance of Carrier Signal	13 13 13 14 15
8. CONCLUSIONS	16

LIST OF APPENDICES

APPENDIX	TITLE				
А	Laboratory Recognitions				
В	Modifications to the EUT				
С	Additional Models Covered Under This Report				
D	Diagrams, Charts, and Photos				
	Test Setup Diagrams				
	Radiated and Conducted Emissions Photos				
	Antenna and Effective Gain Factors				
Е	Data Sheets				
F	Temperature Testing Graph and Equipment List				

LIST OF FIGURES

FIGURE	TITLE
1	Conducted Emissions Test Setup
2	Plot Map And Layout of Radiated Test Site

GENERAL REPORT SUMMARY

This electromagnetic emission test report is generated by Compatible Electronics Inc., which is an independent testing and consulting firm. The test report is based on testing performed by Compatible Electronics personnel according to the measurement procedures described in the test specifications given below and in the "Test Procedures" section of this report.

The measurement data and conclusions appearing herein relate only to the sample tested and this report may not be reproduced without the written permission of Compatible Electronics, unless done so in full.

This report must not be used to claim product endorsement by NVLAP, NIST or any other agency of the U.S. Government.

Device Tested:	Card Printer with RFID Model: DG420i S/N: 2154609
Product Description:	See Expository Statement.
Modifications:	The EUT was not modified in order to meet the specifications.
Manufacturer:	Zebra Technologies Corporation 1001 Flynn Road Camarillo, California 93012
Test Dates:	June 9 and 20, 2003
Test Specifications:	EMI requirements CFR Title 47, Part 15 Subpart B; and Subpart C, Sections 15.205, 15.207, 15.209 and 15.225
Test Procedure:	ANSI C63.4: 1992
Test Deviations:	The test procedure was not deviated from during the testing.

SUMMARY OF TEST RESULTS

TEST	DESCRIPTION	RESULTS
1	Conducted RF Emissions, 150 kHz - 30 MHz	Complies with the Class B limits of CFR Title 47, Part 15, Subpart B; and Subpart C, sections 15.207.
2	Radiated RF Emissions, 10 kHz - 1000 MHz	Complies with the Class B limits of CFR Title 47, Part 15, Subpart B; and Subpart C, sections 15.205, 15.209, and 15.225.

Page 5 of 16

1. PURPOSE

This document is a qualification test report based on the Electromagnetic Interference (EMI) tests performed on the Card Printer with RFID Model: DG420i. The EMI measurements were performed according to the measurement procedure described in ANSI C63.4: 1992. The tests were performed in order to determine whether the electromagnetic emissions from the equipment under test, referred to as EUT hereafter, are within the Class B specification limits defined by CFR Title 47, Part 15, Subpart B; and Subpart C, sections 15.205, 15.207, 15.209 and 15.225.

2. ADMINISTRATIVE DATA

2.1 Location of Testing

The EMI tests described herein were performed at the test facility of Compatible Electronics, 114 Olinda Drive, Brea, California 92823. The temperature testing was performed at Environmental Associates located at 2300 Cape Cod Way, Santa Ana, California.

2.2 Traceability Statement

The calibration certificates of all test equipment used during the test are on file at the location of the test. The calibration is traceable to the National Institute of Standards and Technology (NIST).

2.3 Cognizant Personnel

Zebra Technologies Corporation

Shlomo Rozen Sr. Reliability Engineer

Compatible Electronics, Inc.

Benigno Chavez	Test Technician
Kyle Fujimoto	Test Engineer
Michael Christensen	Test Engineer

2.4 Date Test Sample was Received

The test sample was received on June 9, 2003.

2.5 Disposition of the Test Sample

The sample has not been returned to Zebra Technologies Corporation as of June 24, 2003.

2.6 Abbreviations and Acronyms

The following abbreviations and acronyms may be used in this document.

RF	Radio Frequency
EMI	Electromagnetic Interference
EUT	Equipment Under Test
P/N	Part Number
S/N	Serial Number
HP	Hewlett Packard
ITE	Information Technology Equipment
CML	Corrected Meter Limit
LISN	Line Impedance Stabilization Network

3. APPLICABLE DOCUMENTS

The following documents are referenced or used in the preparation of this EMI Test Report.

SPEC	TITLE
CFR Title 47, Part 15	FCC Rules – Radio frequency devices (including digital devices)
ANSI C63.4 1992	Methods of measurement of radio-noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz

Page 8 of 16

4. DESCRIPTION OF TEST CONFIGURATION

4.1 Description of Test Configuration - EMI

Setup and operation of the equipment under test.

Specifics of the EUT:

The Card Printer with RFID Model: DG420i (EUT) was tested by continuously printing cards. During the testing, the EUT was connected to an ethernet hub via its ethernet port. The ethernet hub was connected to a computer via its ethernet port and the computer was connected to a keyboard, mouse, monitor, and modem via its keyboard, mouse, video, and serial ports, respectively. Also, during the testing, the RFID was continuously transmitting. The RFID antenna is a PCB trace.

It was determined that the emissions were at their highest level when the EUT was operating in the above configuration. The cables were moved to maximize the emissions. The final conducted as well as radiated data was taken in this mode of operation. All initial investigations were performed with the spectrum analyzer in manual mode scanning the frequency range continuously. The cables were bundled and routed as shown in the photographs in Appendix D.

4.1.1 Cable Construction and Termination

Cable 1	
	This is a 1.25 meter braid and foil shielded cable connecting the computer to the monitor. It has a high density D-15 pin metallic connector at the computer end and is hard wired at the monitor end. The shield of the cable was terminated at the connector. The cable also has a molded ferrite at the computer end.
Cable 2	
	This is a 2 meter unshielded cable connecting the computer to the ethernet hub. It has an RJ-45 connector at both ends. The cable was bundled to a length of 1.4 meters.
Cable 3	
	This is a 4.5 meter unshielded cable connecting the EUT to the ethernet hub. It has an RJ-45 connector at both ends. The cable was bundled to a length of 1 meter.
Cable 4	
	This is a 1.5 meter braid and foil shielded cable connecting the computer to the modem. It has a D-9 pin metallic connector at the computer end and a D-25 metallic connector at the modem end. The shield of the cable was terminated via the connectors.
Cable 5	
	This is a 2 meter foil shielded cable connecting the computer to the keyboard. It has a 6 pin mini DIN connector at the computer end and is hard wired at the keyboard end. The shield of the cable was grounded to the chassis via the connector.
Cable 6	
	This is a 1.9 meter foil shielded cable connecting the computer to the mouse. It has a 6 pin mini DIN connector at the computer end and is hard wired at the mouse end. The shield of the cable was grounded to the chassis via the connector.
Cable 7	
	This is a 2 meter unshielded cable connecting the AC adapter to the modem. It is hard wired at the AC adapter end and has a 3 pin connector at the modem end.
Cable 8	
	This is a 2 meter unshielded cable connecting the AC adapter to the ethernet hub. It is hard wired at the AC adapter end and has a 3 mm barrel connector at the ethernet hub end.

5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT

5.1 EUT and Accessory List

EQUIPMENT	MANUFACTURER	MODEL NUMBER	SERIALNUMBER	FCC ID
CARD PRINTER with	ZEBRA	DG420i	2154609	I28DG420I-1356MHZ
RFID (EUT)	TECHNOLOGIES CORPORATION			
COMPUTER	COMPAQ	SERIES PD1010	6914CBP4D295	DoC
MONITOR	DIGIVIEW	HR-1434	15B818310	AMPJD144
KEYBOARD	COMPAQ	RT101	1GD39CV19589	AQ6-MTN4XZ15
MOUSE	COMPAQ	M-S34	P/N: 141189-401	DZL211029
MODEM	HAYES	231AA	A0563100823	BFJ9D9231AA
ETHERNET HUB	LINKSYS	EZXS88W Ver. 3.0	RA30228012651	DoC
AC ADAPTER (MODEM)	HAYES	52-00008	N/A	N/A
AC ADAPTER (ETHERNET HUB)	LINKSYS	AD 9/8	P/N: PSA9P8-AM- H-2K	N/A

5.2 EMI Test Equipment

EQUIPMENT TYPE	MANU- FACTURER	MODEL NUMBER	SERIAL NUMBER	CAL. DATE	CAL. CYCLE
Radiate Emissions Data Capture Program	Compatible Electronics	2.0	N/A	N/A	N/A
Emissions Program	Compatible Electronics	2.3 (SR19)	N/A	N/A	N/A
Spectrum Analyzer – Main Section	Hewlett Packard	8566B	2727A04757	November 12, 2002	1 Year
Spectrum Analyzer – Display Section	Hewlett Packard	85662A	2648A15455	November 12, 2002	1 Year
Quasi-Peak Adapter	Hewlett Packard	85650A	3303A01688	November 12, 2002	1 Year
Preamplifier	Com Power	PA-103	1582	March 6, 2003	1 Year
Biconical Antenna	Com Power	AB-900	15226	April 21, 2003	1 Year
Log Periodic Antenna	Com Power	AL-100	16202	February 3, 2003	1 Year
RF Attenuator	Weinschel Corp.	2	BJ6394	July 30, 2002	1 Year
LISN	Com Power	LI-215	12090	November 20, 2002	1 Year
LISN	Com Power	LI-215	12076	November 20, 2002	1 Year
Antenna Mast	Com Power	AM-100	N/A	N/A	N/A
Turntable	Com Power	TT-100	N/A	N/A	N/A
Computer	Hewlett Packard	4530	US91912319	N/A	N/A
Monitor	Hewlett Packard	D5258A	TW74500641	N/A	N/A
Loop Antenna	Com-Power	AL-130	17070	June 19, 2002	1 Year
Frequency Counter	Global Specialties	5003	G001742	September 26, 2002	1 Year
Variable Auto Transformer	Staco Energy Products	3PN1010	N/A	N/A	N/A
Multimeter	Fluke	87	51350019	July 11, 2002	1 Year

6. TEST SITE DESCRIPTION

6.1 Test Facility Description

Please refer to section 2.1 and 7.1 of this report for EMI test location.

6.2 EUT Mounting, Bonding and Grounding

For all tests except for Frequency Tolerance of the Carrier Signal, the EUT was mounted on a 1.0 by 1.5 meter non-conductive table 0.8 meters above the ground plane.

For Frequency Tolerance of the Carrier Signal, the EUT was powered by a Staco Energy Products Variable Auto Transformer and placed inside a temperature chamber. The output of the Variable Auto Transformer was verified by a Fluke Multimeter.

The EUT was grounded only through the safety ground in its power cord.

7. TEST PROCEDURES

The following sections describe the test methods and the specifications for the tests. Test results are also included in this section.

7.1 **RF Emissions**

7.1.1 Conducted Emissions Test

The spectrum analyzer was used as a measuring meter. The data was collected with the spectrum analyzer in the peak detect mode with the "Max Hold" feature activated. The quasi-peak was used only where indicated in the data sheets. A 10 dB attenuation pad was used for the protection of the spectrum analyzer input stage, and the offset was adjusted accordingly to read the actual data measured. The LISN output was measured using the spectrum analyzer. The output of the second LISN was terminated by a 50 ohm termination. The effective measurement bandwidth used for this test was 9 kHz.

Please see section 6.2 of this report for mounting, bonding, and grounding of the EUT. The EUT was powered through the LISN, which was bonded to the ground plane. The LISN power was filtered and the filter was bonded to the ground plane. The EUT was set up with the minimum distances from any conductive surfaces as specified in ANSI C63.4: 1992. The excess power cord was wrapped in a figure eight pattern to form a bundle not exceeding 0.4 meters in length.

The conducted emissions from the EUT were maximized for operating mode as well as cable placement. The final data was collected under program control by the Compatible Electronics software in several overlapping sweeps by running the spectrum analyzer at a minimum scan rate of 10 seconds per octave. The final qualification data is located in Appendix E.

Test Results:

The EUT complies with the **Class B** limits of EN 55022: 1998 for conducted emissions; and the limits of CFR Title 47, Part 15, Subpart C, Section 15.207 for conducted emissions.

7.1.2 Radiated Emissions (Spurious and Harmonics) Test

The spectrum analyzer was used as a measuring meter along with the quasi-peak adapter. A preamplifier was used to increase the sensitivity of the instrument. The spectrum analyzer was used in the peak detect mode with the "Max Hold" feature activated. In this mode, the spectrum analyzer records the highest measured reading over all the sweeps.

The measurement bandwidths and transducers used for the radiated emissions test were:

FREQUENCY RANGE	EFFECTIVE MEASUREMENT BANDWIDTH	TRANSDUCER				
9 kHz to 150 kHz	200 Hz	Active Loop Antenna				
150 kHz to 30 MHz	9 kHz	Active Loop Antenna				
30 MHz to 300 MHz	120 kHz	Biconical Antenna				
300 MHz to 1 GHz	120 kHz	Log Periodic Antenna				

The open field test site of Compatible Electronics, Inc. was used for radiated emission testing. This test site is set up according to ANSI C63.4: 1992. Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The turntable supporting the EUT is remote controlled using a motor. The turntable permits EUT rotation of 360 degrees in order to maximize emissions. Also, the antenna mast allows height variation of the antenna from 1 meter to 4 meters. Data was collected in the worst case (highest emission) configuration of the EUT. At each reading, the EUT was rotated 360 degrees and the antenna height was varied from 1 to 4 meters (for E field radiated field strength). The loop antenna was also rotated in the horizontal and vertical axis in order to ensure accurate results.

The presence of ambient signals was verified by turning the EUT off. In case an ambient signal was detected, the measurement bandwidth was reduced temporarily and verification was made that an additional adjacent peak did not exist. This ensures that the ambient signal does not hide any emissions from the EUT. The EUT was tested at a 3 meter test distance to obtain final test data. The final qualification data sheets are located in Appendix E.

7.2 Frequency Tolerance of Carrier Signal

Please see section 6.2 of this test report for mounting, bonding and grounding of the EUT. Please see appendix F for the temperature testing equipment and graph. The EUT had at least a 20 minute acclimation period before taking the readings in order to make sure the EUT was at the proper temperature. The EUT was checked with a frequency counter to determine whether the carrier signal was within 0.01% of the fundamental frequency at 0 minutes, 2 minutes, 5 minutes and 10 minutes after the acclimation period. The frequency tolerance of the carrier signal was also checked at 85% and 115% of the rated supply voltage at 20 degrees C. A data sheet of the Frequency Tolerance testing is located in Appendix E.

Test Results:

The EUT complies with the frequency tolerance requirements of CFR Title 47, Part 15, Subpart C, Section 15.225.

8. CONCLUSIONS

The Card Printer with RFID Model: DG420i meets all of the Class B specification limits defined in CFR Title 47, Part 15, Subpart B; and Subpart C, sections 15.205, 15.209, and 15.225.

Page A1

APPENDIX A

LABORATORY RECOGNITIONS

Compatible Electronics has the following agency accreditations:

National Voluntary Laboratory Accreditation Program - Lab Code: 200528-0

Voluntary Control Council for Interference - Registration Numbers: R-983, C-1026, R-984 and C-1027

Bureau of Standards and Metrology Inspection - Reference Number: SL2-IN-E-1031

Conformity Assessment Body for the EMC Directive Under the US/EU MRA Appointed by NIST

Compatible Electronics is recognized or on file with the following agencies:

Federal Communications Commission Industry Canada Radio-Frequency Technologies (Competent Body)

Page B1

APPENDIX B

MODIFICATIONS TO THE EUT

MODIFICATIONS TO THE EUT

The modifications listed below were made to the EUT to pass FCC 15.225 or FCC Class B specifications.

All the rework described below was implemented during the test in a method that could be reproduced in all the units by the manufacturer.

No modifications were made to the EUT during testing.

APPENDIX C

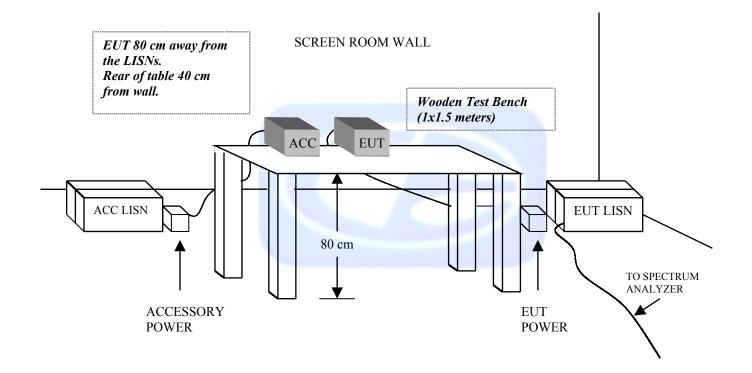
ADDITIONAL MODELS COVERED UNDER THIS REPORT

ADDITIONAL MODELS COVERED UNDER THIS REPORT

USED FOR THE PRIMARY TEST

Card Printer with RFID Model: DG420i S/N: 2154609

There were no additional models covered under this report.


APPENDIX D

DIAGRAMS, CHARTS, AND PHOTOS

FIGURE 1: CONDUCTED EMISSIONS TEST SETUP

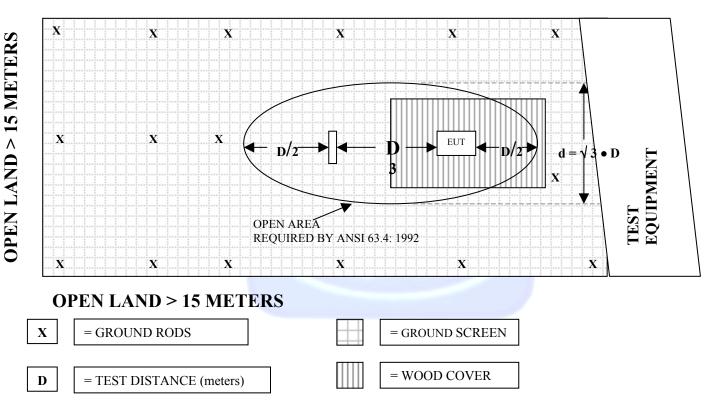


FIGURE 2: PLOT MAP AND LAYOUT OF RADIATED SITE

OPEN LAND > 15 METERS

COM-POWER AB-900

BICONICAL ANTENNA

S/N: 15226

CALIBRATION DATE: APRIL 21, 2003

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(MHz)	(dB)	(MHz)	(dB)
30	11.20	120	13.80
35	10.40	125	12.50
40	10.20	140	12.50
45	11.00	150	10.90
50	11.30	160	11.50
60	9.60	175	14.90
70	7.40	180	15.50
80	6.10	200	16.90
90	7.70	250	15.50
100	10.50	300	23.80

COM-POWER AL-100

LOG PERIODIC ANTENNA

S/N: 16202

CALIBRATION DATE: FEBRUARY 3, 2003

FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
300	12.70	700	20.60
400	15.40	800	21.80
500	16.50	900	21.00
600	17.20	1000	21.50

COM-POWER PA-103

PREAMPLIFIER

S/N: 1582

CALIBRATION DATE: MARCH 6, 2003

EDEQUENCY	БАСТОВ	EDEQUENCY	ЕАСТОВ
FREQUENCY	FACTOR	FREQUENCY	FACTOR
(MHz)	(dB)	(MHz)	(dB)
30	33.6	300	33.3
40	33.6	350	33.3
50	33.6	400	33.1
60	33.6	450	33.0
70	33.5	500	32.9
80	33.5	550	33.0
90	33.5	600	32.8
100	33.6	650	32.6
125	33.6	700	32.7
150	33.4	750	32.4
175	33.5	800	32.4
200	33.4	850	32.7
225	33.3	900	31.9
250	33.2	950	31.8
275	33.3	1000	32.5

COM-POWER AL-130

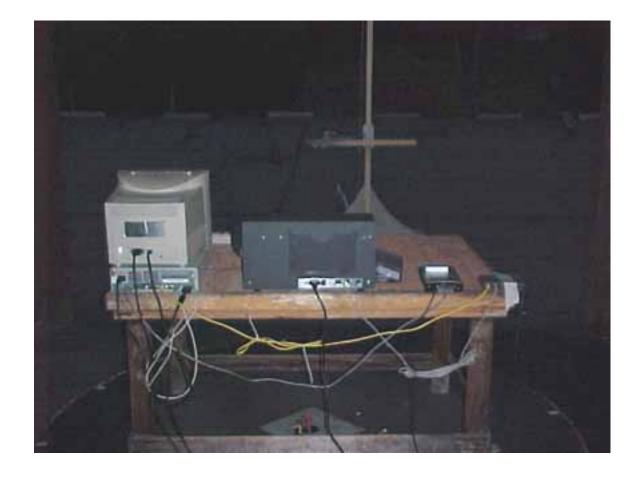
LOOP ANTENNA

S/N: 17070

CALIBRATION DATE: JUNE 19, 2002

FREQUENCY (MHz)	MAGNETIC (dB/m)	ELECTRIC (dB/m)					
0.009	-40.4	11.1					
0.01	-40.3	11.2					
0.02	-41.2	10.3					
0.05	-41.6	9.9					
0.07	-41.4	10.1					
0.1	-41.7	9.8					
0.2	-44.0	7.5					
0.3	-41.6	9.9					
0.5	-41.3	10.2					
0.7	-41.4	10.1					
1	-40.9	10.6					
2	-40.6	10.9					
3	-40.5	11.0					
4	-40.8	10.7					
5	-40.2	11.3					
10	-40.7	10.8					
15	-41.4	10.1					
20	-41.6	9.9					
25	-41.7	9.8					
30	-42.9	8.6					

FRONT VIEW


ZEBRA TECHNOLOGIES CORPORATION CARD PRINTER with RFID MODEL: DG420i FCC SUBPART B AND C - RADIATED EMISSIONS – 6-9-03

PHOTOGRAPH SHOWING THE EUT CONFIGURATION FOR MAXIMUM EMISSIONS

Page D8

REAR VIEW

ZEBRA TECHNOLOGIES CORPORATION CARD PRINTER with RFID MODEL: DG420i FCC SUBPART B AND C - RADIATED EMISSIONS – 6-9-03

PHOTOGRAPH SHOWING THE EUT CONFIGURATION FOR MAXIMUM EMISSIONS

FRONT VIEW

ZEBRA TECHNOLOGIES CORPORATION CARD PRINTER with RFID MODEL: DG420i FCC SUBPART B AND C - CONDUCTED EMISSIONS – 6-9-03

PHOTOGRAPH SHOWING THE EUT CONFIGURATION FOR MAXIMUM EMISSIONS

REAR VIEW

ZEBRA TECHNOLOGIES CORPORATION CARD PRINTER with RFID MODEL: DG420i FCC SUBPART B AND C - CONDUCTED EMISSIONS – 6-9-03

PHOTOGRAPH SHOWING THE EUT CONFIGURATION FOR MAXIMUM EMISSIONS

Page E1

APPENDIX E

DATA SHEETS

RADIATED AND CONDUCTED EMISSIONS

DATA SHEETS

RADIATED EMISSIONS (FCC SECTION 15.205 AND 15.225)

COMPANY		ZEBRA TECHNOLOGIES									DATE		6/9/03					
EUT		CARD PRINTER									DUTY CYCLE		N/A	%				
MODEL		DG420i								PEAK TO AVG		N/A	dB					
S/N		2154609	2154609							TEST DIST.		3	Meters					
TEST ENGINE	ER	Michael Ch	Michael Christensen								LAB A							
Frequency	Peak		Average (A) Antenna Antenna EUT EUT EUT Antenna Cable Amplifier Distance Mixer *Corrected Delta									Delta	Spec					
Frequency	Reading	Average (A) or Quasi-		Height			Тх	Factor	Loss	Gain	Factor	Factor	Reading	**	Limit			
MHz	(dBuV)	Peak (QP)						(dB)	(dB)	(dB)	(dB)	(dB)	(dBuV/m)	(dB)	(dBuV/m)		Comments	
13.5600	27.0	А	Н	1.0	0			10.3	0.5	0.0	20.0	0.0	17.8	-62.2	80.0	DATA TAI	KEN AT 3 M	
																NO NEED	TO EXTRAP	OLATE
																LIMIT FR	OM 30 METE	RS
13.5600	29.5	А	V	1.0	0			10.3	0.5	0.0	20.0	0.0	20.3	-59.7	80.0			
	23.0			1.0	Ŭ			10.5	0.0	0.0	20.0	0.0	2000	0,11				
<u> </u>			1															
															ł			

* CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

** DELTA = SPEC LIMIT - CORRECTED READING

PAGE 1 of PAGE 2

RADIATED EMISSIONS (FCC SECTION 15.205 AND 15.225)

COMPANY		ZEBRA TH	CHNO	OCIES											DATE		6/9/03	
EUT		CARD PRI		LUGIES											DATE DUTY C		0/3/03 N/A	%
MODEL		DG420i											PEAK TO AVG		N/A	/o dB		
S/N		2154609													TEST D		3	Meters
TEST ENGINE	FD	Michael Ch	ristansa	n											LAB		A	Meters
TEST EROME		ivitenaei en										LAD		Α				
Frequency	Peak	Average (A)		Antenna		EUT	EUT	Antenna	Cable	Amplifier		Mixer	*Corrected		Spec			
MIL	Reading (dBuV)			Height			Tx	Factor	Loss (dB)	Gain	Factor (dB)	Factor	Reading	** (JD)	Limit		Comments	
MHz				1.0	(degrees)	(A,Y,L)	Channel	(dB)	<u>(ав)</u> 0.7	(dB)	<i>(</i>	(dB) 0.0	(dBuV/m)		(dBuV/m)		Comments	
27.1200	23.4	A	Н	1.0	0			9.3	0.7	0.0	20.0	0.0	13.4	-16.1	29.5			
													-					
27.1200	23.3	Α	V	1.0	0			9.3	0.7	0.0	20.0	0.0	13.3	-16.2	29.5			
]										

* CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

** DELTA = SPEC LIMIT - CORRECTED READING

PAGE 2 of PAGE 2

Custoner	:	Compatible Electronics DIGIMARC ZEBRA TECHNOLOGIES			:	1/4 6/09/2003 13: 09: 15
Eut nane Model	:	CARD PRINTER DG420i	Test	Lab Di stance	-	
	cti	FCC Class B on factor (20 * log(test/sp TESTED BY MICHAEL CHRISTENSEN	ec)		:	0. 00

Pol	Freq	Rdng	Cabl e l oss	Ant factor	Amp gai n	Cor'd rdg = R	Limit = L	Delta R-L
	MHz	dBuV	dB	dB	dB	dBuV	dBuV/m	dB
1V	32.111	55.20	0.95	11.26	33.60	33.81	40.00	- 6. 19
2H	64.068	49.60	1.34	8.55	33.56	25.93	40.00	- 14. 07
3V	64.081	58.20	1.34	8.55	33.56	34.53	40.00	- 5. 47
4H	67.849	50.50	1.38	7.80	33. 52	26.16	40.00	- 13. 84
5V	67.862	50. 70	1.38	7.80	33. 52	26.36	40.00	- 13. 64
6V	67. 862Qp	49.96	1.38	7.80	33. 52	25.62	40.00	- 14. 38
7H	67.872	48.80	1.38	7.80	33. 52	24.46	40.00	- 15. 54
8V	73. 782	54.60	1.44	6.89	33. 50	29.43	40.00	- 10. 57
9V	80.061	55.30	1.50	6.11	33.50	29.41	40.00	- 10. 59
10H	80. 104	48.30	1.50	6.11	33.50	22.42	40.00	- 17. 58
11V	88. 571	57.90	1.59	7.22	33. 50	33. 21	43. 50	- 10. 29
12V	100.062	59.10	1.60	10.21	33.60	37.31	43.50	- 6. 19
13V	127.058	56.10	1.83	12.27	33. 58	36.62	43.50	- 6. 88
14H	128. 505	55.40	1.85	12.25	33. 57	35.93	43.50	- 7. 57
15H	128. 574	54.70	1.85	12.25	33. 57	35.23	43.50	- 8. 27
16H	134. 964	52.60	1.93	12.16	33. 52	33. 17	43. 50	- 10. 33
17V	135. 664Qp	44.40	1.93	12.16	33. 51	24.98	43. 50	- 18. 52
18V	135.664	46.10	1.93	12.16	33. 51	26.68	43.50	- 16. 82
19V	143. 463	55.00	2.03	11. 78	33.45	35.36	43.50	- 8. 14
20H	144. 099	52.40	2.03	11.72	33.44	32.71	43.50	- 10. 79
21H	147. 518	50. 70	2.07	11.42	33. 42	30. 77	43. 50	- 12. 73
22V	147.559	50.40	2.07	11.41	33.42	30.47	43.50	- 13. 03
23V	147.874	60.10	2.08	11.39	33.42	40.15	43.50	- 3. 35
24V	147. 880Qp	50. 52	2.08	11.39	33.42	30.57	43.50	- 12. 93
25H	151.606	52.20	2.11	11.35	33. 41	32.25	43.50	- 11. 25
26H	159. 190	44. 70	2.14	12.03	33.44	25.43	43. 50	- 18. 07
27H	160. 079	52.20	2.14	12.12	33.44	33.02	43.50	- 10. 48
28V	160. 107	54.60	2.14	12.12	33.44	35.42	43.50	- 8. 08
29V	160. 108	54.10	2.14	12.12	33.44	34. 92	43.50	- 8. 58
30H	162.157	50.00	2.15	12.56	33. 45	31.26	43.50	- 12. 24
31H	168.868	51.50	2.18	13. 97	33.48	34.17	43. 50	- 9. 33
32H	170. 826	49.90	2.18	14.36	33.48	32.96	43.50	- 10. 54
33V	180. 081	51.40	2.26	15.90	33.48	36.09	43. 50	- 7. 41
34H	194. 746	55.10	2.44	16.72	33.42	40.84	43.50	- 2. 66
35H	194. 766Qp	52.31	2.44	16.72	33.42	38.05	43. 50	-5.45
	1							- CONTAGO

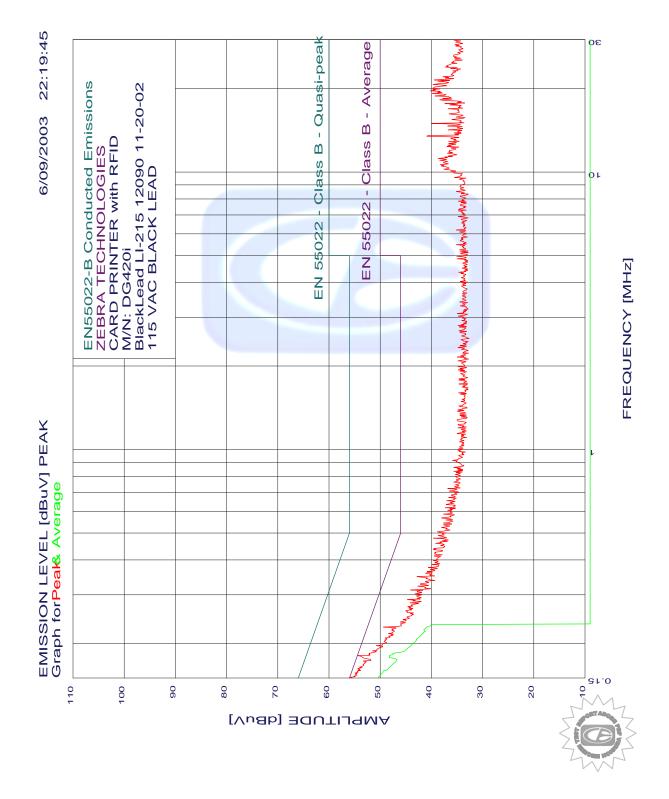
Test Location	:	Compatible Electronics		Page	:	2/4
Custoner	:	DI GI MARC		Date	:	6/09/2003
Manufacturer	:	ZEBRA TECHNOLOGIES		Ti ne	:	13: 09: 15
Eut nane	:	CARD PRINTER		Lab	:	Α
Model	:	DG420i	Test	Distance	:	3.0
Serial #	:					
Specification	:	FCC Class B				
Distance corre	cti	ion factor (20 * log(test/sp	ec)		:	0.00
Test Mbde	:	TESTED BY MICHAEL CHRISTENSEN				

Pol	Freq	Rdng	Cabl e l oss	Ant factor	Amp gai n	Cor'd rdg = R	Limit = L	Delta R-L
	MHz	dBuV	dB	dB	dB	dBuV	dBuV/m	dB
36H 37H 38H 39H 40H	199. 008 199. 0110p 200. 108 202. 256 202. 2590p	57.50 54.52 52.20 56.20 52.93	2.49 2.49 2.50 2.51 2.51	16. 95 16. 95 17. 00 16. 94 16. 94	33. 40 33. 40 33. 40 33. 39 33. 39	43. 53 40. 55 38. 30 42. 26 38. 99	43. 50 43. 50 43. 50 43. 50 43. 50	0. 03 - 2. 95 - 5. 20 - 1. 24 - 4. 51
41H 42H 43V 44H 45V	207. 046 207. 0470p 217. 000 217. 000 217. 0010p	58. 80 54. 18 48. 40 50. 40 47. 44	2.53 2.53 2.57 2.57 2.57	16. 83 16. 83 16. 60 16. 60 16. 60	33. 37 33. 37 33. 33 33. 33 33. 33 33. 33	44. 79 40. 17 34. 24 36. 24 33. 28	43. 50 43. 50 46. 00 46. 00 46. 00	1. 29 - 3. 33 - 11. 76 - 9. 76 - 12. 72
46H 47H 48H 49V 50H	217. 0030p 217. 018 224. 071 224. 102 227. 001	48. 11 50. 60 54. 70 51. 50 53. 00	2.57 2.57 2.60 2.60 2.61	16. 60 16. 60 16. 44 16. 44 16. 38	33. 33 33. 33 33. 30 33. 30 33. 29	33. 95 36. 44 40. 43 37. 23 38. 69	$\begin{array}{c} 46.\ 00\\ 46.\ 00\\ 46.\ 00\\ 46.\ 00\\ 46.\ 00\\ \end{array}$	- 12. 05 - 9. 56 - 5. 57 - 8. 77 - 7. 31
51V 52V 53V 54H 55H	228. 896 230. 565 230. 565Qp 230. 601 230. 602	49. 10 47. 00 46. 03 52. 30 46. 30	2.62 2.62 2.62 2.62 2.62 2.62	16. 33 16. 30 16. 30 16. 30 16. 30	33. 28 33. 28 33. 28 33. 28 33. 28 33. 28	34. 77 32. 65 31. 68 37. 94 31. 94	$\begin{array}{c} 46.\ 00\\ 46.\ 00\\ 46.\ 00\\ 46.\ 00\\ 46.\ 00\\ \end{array}$	- 11. 23 - 13. 35 - 14. 32 - 8. 06 - 14. 06
56H 57H 58H 59H 60H	230. 603Qp 232. 198 235. 880 240. 026 243. 444	51. 35 54. 70 52. 40 44. 30 47. 80	2. 62 2. 63 2. 64 2. 66 2. 67	16. 30 16. 26 16. 19 16. 10 16. 03	33. 28 33. 27 33. 26 33. 24 33. 23	36. 99 40. 32 37. 98 29. 82 33. 28	$\begin{array}{c} 46.\ 00\\ 46.\ 00\\ 46.\ 00\\ 46.\ 00\\ 46.\ 00\\ \end{array}$	- 9. 01 - 5. 68 - 8. 02 - 16. 18 - 12. 72
61V 62V 63H 64H 65V	250. 074 256. 060 257. 511 288. 061 311. 909	48. 70 43. 70 49. 20 40. 40 49. 60	2.70 2.73 2.73 2.85 2.98	15. 91 16. 40 16. 52 18. 85 13. 07	33. 20 33. 23 33. 23 33. 30 33. 30 33. 30	34. 11 29. 60 35. 22 28. 81 32. 34	$\begin{array}{c} 46.\ 00\\ 46.\ 00\\ 46.\ 00\\ 46.\ 00\\ 46.\ 00\\ \end{array}$	- 11. 89 - 16. 40 - 10. 78 - 17. 19 - 13. 66
66V 67H 68H 69H 70V	320. 062 320. 070 320. 103 324. 221 325. 518	50. 00 48. 70 49. 60 52. 90 52. 00	3. 03 3. 03 3. 03 3. 05 3. 06	$13. 31 \\ 13. 31 \\ 13. 31 \\ 13. 43 \\ 13. 43 \\ 13. 47$	33. 30 33. 30 33. 30 33. 30 33. 30 33. 30	33. 03 31. 73 32. 63 36. 08 35. 23	$\begin{array}{c} 46.\ 00\\ 46.\ 00\\ 46.\ 00\\ 46.\ 00\\ 46.\ 00\\ \end{array}$	- 12. 97 - 14. 27 - 13. 37 - 9. 92 + 10. 77

Test Location	:	Compatible Electronics		Page	:	3/4
Custoner	:	DI GI MARC		Date	:	6/09/2003
Manufacturer	:	ZEBRA TECHNOLOGIES		Ti ne	:	13: 09: 15
Eut nane	:	CARD PRINTER		Lab	:	Α
Model	:	DG420i	Test	Distance	:	3.0
Serial #	:					
Specification	:	FCC Class B				
Distance corre	ct	ion factor (20 * log(test/sp	ec)		:	0.00
Test Mbde	:	TESTED BY MICHAEL CHRISTENSEN				

Pol	Freq	Rdng	Cabl e l oss	Ant factor	Amp gain	Cor'd rdg = R	Limit = L	Delta R-L
	MHz	dBuV	dB	dB	dB	dBuV	dBuV/m	dB
71V 72V 73H 74V 75V	339. 028 339. 031 339. 043 340. 732 343. 324	53. 30 54. 90 51. 00 53. 90 52. 50	3. 14 3. 14 3. 14 3. 15 3. 16	13. 85 13. 85 13. 85 13. 89 13. 97	33. 30 33. 30 33. 30 33. 30 33. 30 33. 30	36. 99 38. 59 34. 69 37. 64 36. 33	46. 00 46. 00 46. 00 46. 00 46. 00	- 9. 01 - 7. 41 - 11. 31 - 8. 36 - 9. 67
76H 77H 78H 79V 80V	346. 533 352. 058Qp 352. 058 352. 082 352. 088Qp	48. 40 58. 40 59. 10 60. 70 59. 46	3. 18 3. 21 3. 21 3. 21 3. 21 3. 21	14. 05 14. 20 14. 20 14. 20 14. 20 14. 20	33. 30 33. 29 33. 29 33. 29 33. 29 33. 29	32. 33 42. 52 43. 22 44. 82 43. 58	46. 00 46. 00 46. 00 46. 00 46. 00	- 13. 67 - 3. 48 - 2. 78 - 1. 18 - 2. 42
81V 82V 83H 84H 85V	352. 608 352. 6130p 352. 6260p 352. 636 360. 134	54. 80 52. 42 49. 52 50. 60 52. 20	3. 22 3. 22 3. 22 3. 22 3. 22 3. 26	14. 22 14. 22 14. 22 14. 22 14. 22 14. 41	33. 29 33. 29 33. 29 33. 29 33. 29 33. 26	38. 94 36. 56 33. 66 34. 75 36. 62	46. 00 46. 00 46. 00 46. 00 46. 00	- 7. 06 - 9. 44 - 12. 34 - 11. 25 - 9. 38
86V 87V 88H 89V 90V	366. 186 366. 1900p 371. 965 379. 695 379. 6970p	56. 90 55. 03 44. 10 52. 30 49. 31	3. 30 3. 30 3. 34 3. 38 3. 38	14. 57 14. 57 14. 72 14. 91 14. 91	33. 23 33. 23 33. 21 33. 18 33. 18	41. 54 39. 67 28. 95 37. 42 34. 43	$\begin{array}{c} 46.\ 00\\ 46.\ 00\\ 46.\ 00\\ 46.\ 00\\ 46.\ 00\\ \end{array}$	- 4. 46 - 6. 33 - 17. 05 - 8. 58 - 11. 57
91V 92V 93H 94V 95H	379. 712 384. 066 384. 091 393. 285 400. 070	52. 40 51. 60 43. 00 49. 10 43. 90	3. 38 3. 41 3. 41 3. 46 3. 50	14. 91 15. 02 15. 02 15. 24 15. 40	33. 18 33. 16 33. 16 33. 13 33. 13 33. 10	37. 52 36. 87 28. 27 34. 68 29. 70	$\begin{array}{c} 46.\ 00\\ 46.\ 00\\ 46.\ 00\\ 46.\ 00\\ 46.\ 00\\ \end{array}$	- 8. 48 - 9. 13 - 17. 73 - 11. 32 - 16. 30
96V 97H 98V 99V 100V	406. 840 416. 044 416. 070 420. 376 433. 318	46. 30 41. 90 47. 00 46. 30 46. 00	3.53 3.57 3.57 3.58 3.64	15. 48 15. 59 15. 59 15. 64 15. 79	33. 09 33. 07 33. 07 33. 06 33. 03	32. 23 27. 99 33. 09 32. 47 32. 40	$\begin{array}{c} 46.\ 00\\ 46.\ 00\\ 46.\ 00\\ 46.\ 00\\ 46.\ 00\\ \end{array}$	- 13. 77 - 18. 01 - 12. 91 - 13. 53 - 13. 60
101V 102H 103H 104V 105H	448. 081 448. 091 479. 970 480. 082 500. 103	40. 90 44. 70 42. 70 42. 50 50. 00	3. 69 3. 69 3. 82 3. 82 3. 82 3. 90	15.96 15.96 16.30 16.30 16.50	33. 00 33. 00 32. 94 32. 94 32. 90	27.55 31.35 29.88 29.68 37.50	$\begin{array}{c} 46.\ 00\\ 46.\ 00\\ 46.\ 00\\ 46.\ 00\\ 46.\ 00\\ \end{array}$	- 18. 45 - 14. 65 - 16. 12 - 16. 32 - 8. 50

Compatible	El ectroni cs	Page	:	4/4
DI GI MARC		Date	:	6/09/2003
ZEBRA TECH	NOLOGIES	Ti ne	:	13: 09: 15
CARD PRINT	ER	Lab	:	Α
DG420i	Test	Distance	: :	3. 0
FCC Class	В			
ion factor	· (20 * log(test/spec)		:	0.00
TESTED BY	MI CHAEL CHRI STENSEN			
: : : :	: DIGIMARC : ZEBRA TECH : CARD PRINT : DG420i : : FCC Class I c tion factor	: DI GÎ MARC : ZEBRA TECHNOLOGI ES : CARD PRINTER	: DIGIMARCDate: ZEBRA TECHNOLOGIESTime: CARD PRINTERLab: DG420iTest Distance::: FCC Class B:ction factor (20 * log(test/spec)	: DIGIMARCDate :: ZEBRA TECHNOLOGIESTime :: CARD PRINTERLab :: DG420iTest Distance : 3::: FCC Class B:ction factor (20 * log(test/spec)):


Pol	Freq	Rdng	Cabl e l oss	Ant factor	Amp gain	Cor'd rdg = R	Limit = L	Delta R-L
	MHz	dBuV	dB	dB	dB	dBuV	dBuV/m	dB
106H 107V 108H 109V 110H	510. 527 512. 028 512. 043 528. 088 544. 079	50. 30 46. 50 41. 60 43. 10 40. 30	3. 94 3. 95 3. 95 4. 01 4. 08	16. 58 16. 59 16. 59 16. 71 16. 82	32. 92 32. 92 32. 92 32. 92 32. 96 32. 99	37. 90 34. 12 29. 22 30. 87 28. 21	46. 00 46. 00 46. 00 46. 00 46. 00	- 8. 10 - 11. 88 - 16. 78 - 15. 13 - 17. 79
111V 112V 113H 114V 115H	544. 083 576. 101 589. 819 608. 029 608. 066	43. 70 51. 50 36. 30 45. 20 42. 10	4.08 4.15 4.18 4.27 4.27	16. 82 17. 04 17. 13 17. 49 17. 49	32. 99 32. 89 32. 84 32. 77 32. 77	31. 61 39. 80 24. 78 34. 19 31. 09	46. 00 46. 00 46. 00 46. 00 46. 00	- 14. 39 - 6. 20 - 21. 22 - 11. 81 - 14. 91
116H 117V 118V 119V 120V	640. 031 640. 0410p 664. 468 664. 4710p 664. 4850p	44. 40 50. 10 47. 70 46. 41 45. 00	$\begin{array}{c} 4.52\\ 4.52\\ 4.60\\ 4.60\\ 4.60\\ 4.60\end{array}$	18. 62 18. 62 19. 45 19. 45 19. 45 19. 45	$\begin{array}{c} 32.\ 64\\ 32.\ 64\\ 32.\ 63\\ 32.\ 63\\ 32.\ 63\\ 32.\ 63\\ \end{array}$	34. 91 40. 61 39. 12 37. 83 36. 42	46. 00 46. 00 46. 00 46. 00 46. 00	- 11. 09 - 5. 39 - 6. 88 - 8. 17 - 9. 58
121V 122V 123H 124V 125V	664. 492 672. 035 672. 055 678. 041 678. 046Qp	46. 20 46. 40 38. 70 45. 20 43. 34	$\begin{array}{c} 4.\ 60\\ 4.\ 60\\ 4.\ 60\\ 4.\ 60\\ 4.\ 60\end{array}$	19. 45 19. 70 19. 70 19. 90 19. 90	$\begin{array}{c} 32.\ 63\\ 32.\ 64\\ 32.\ 65\\ 32.\ 66\\ 32.\ 66\\ 32.\ 66\end{array}$	37.62 38.06 30.36 37.04 35.18	46. 00 46. 00 46. 00 46. 00 46. 00	- 8. 38 - 7. 94 - 15. 64 - 8. 96 - 10. 82
126V 127V 128V 129V 130V	691. 585Qp 691. 597 704. 049 704. 049Qp 736. 027	43. 74 45. 00 51. 90 50. 44 42. 50	$\begin{array}{c} 4.\ 60\\ 4.\ 60\\ 4.\ 62\\ 4.\ 62\\ 4.\ 75\end{array}$	20. 33 20. 33 20. 65 20. 65 21. 05	32. 68 32. 68 32. 67 32. 67 32. 48	35. 99 37. 25 44. 49 43. 03 35. 81	46. 00 46. 00 46. 00 46. 00 46. 00	- 10. 01 - 8. 75 - 1. 51 - 2. 97 - 10. 19
131V 132V 133V 134V 135H	768. 035 768. 0360p 800. 033 832. 035 832. 062	50. 20 49. 14 43. 50 47. 20 42. 60	4. 80 4. 80 4. 80 4. 93 4. 93	21. 43 21. 43 21. 80 21. 53 21. 53	32. 40 32. 40 32. 40 32. 59 32. 59	44. 03 42. 97 37. 70 41. 07 36. 47	46. 00 46. 00 46. 00 46. 00 46. 00	- 1. 97 - 3. 03 - 8. 30 - 4. 93 - 9. 53
136H 137V 138V	868. 732 896. 029 928. 047	45. 00 43. 20 37. 90	5. 04 5. 09 5. 21	21. 24 21. 03 21. 15	32. 39 31. 96 31. 84	38. 88 37. 36 32. 42	46. 00 46. 00 46. 00	- 7. 12 - 8. 64 - 13. 58

Page E8

Page E9

page 1/1

6/09/2003 22:19:45

ZEBRA TECHNOLOGIES CARD PRINTER with RFID M/N: DG420i 115 VAC BLACK LEAD TEST ENGINEER : BENIGNO CHAVEZ

42 highest peaks above -50.00 dB of EN 55022 - Class B - Average limit line								
Peał	criteria :	1.00 dB, 0	Curve : Peak		_			
Peał	k# Freq(M⊢	lz)Amp(dE	BuVI⊾imit(dB)	Delta(dB)				
1	0.181	54.35	54.46	-0.10*				
2	0.150	55.47	56.00	-0.53*				
3	0.197	50.74	53.75	-3.01*				
4	0.229	49.32	52.48	-3.16*				
5	0.312	44.06	49.92	-5.86				
6	0.288	44.68	50.58	-5.91				
7	0.348	42.76	49.00	-6.24				
8	0.262	44.99	51.38	-6.38				
9	0.280	44.18	50.81	-6.62				
10	0.479	39.56	46.36	-6.80				
11	0.322	42.66	49.66	-7.00				
12	0.302	43.17	50.19	-7.02				
13	0.505	38.77	46.00	-7.23				
14	0.327	42.16	49.53	-7.36				
15	0.489	38.66	46.18	-7.52				
16	0.459	39.16	46.71	-7.55				
17	0.435	39.56	47.15	-7.59				
18	0.358	41.06	48.78	-7.72				
19	0.375	40.56	48.38	-7.82				
20	0.363	40.76	48.65	-7.89				
21	0.426	39.36	47.33	-7.96				
22	0.567	37.97	46.00	-8.03				
23	0.524	37.97	46.00	-8.03				
24	0.413	39.46	47.59	-8.13				
25	0.385	39.86	48.16	-8.30				
26	0.398	39.56	47.90	-8.34				
27	0.586	37.57	46.00	-8.43				
28	0.544	37.57	46.00	-8.43				
29	0.535	37.57	46.00	-8.43				
30	0.469	37.86	46.53	-8.67				
31	0.618	37.27	46.00	-8.73				
32	0.634	37.07	46.00	-8.93				
33	0.558	37.07	46.00	-8.93				
34	0.655	36.97	46.00	-9.03				
35	13.486	40.92	50.00	-9.08				
36	0.724	36.77	46.00	-9.23				
37	0.672	36.57	46.00	-9.43				
38	0.709	36.47	46.00	-9.53				
39	19.644	40.22	50.00	-9.78				
40	14.991	39.97	50.00	-10.03				
41	0.914	35.87	46.00	-10.13				
42	30.000	34.67	50.00	-15.33				

page 1/1

6/09/2003 22:19:45

ZEBRA TECHNOLOGIES CARD PRINTER with RFID M/N: DG420i 115 VAC BLACK LEAD TEST ENGINEER : BENIGNO CHAVEZ

2 highest peaks above -50.00 dB of EN 55022 - Class B - Average limit line Peak criteria : 0.10 dB, Curve : Average Peak# Freq(MHz)Amp(dBuV).imit(dB) Delta(dB) 1 0.179 48.20 54.54 -6.34 2 0.224 41.49 52.65 -11.16

22:25:14 Quași-peak 30 Average EN55022-B Conducted Emissions ZEBRA TECHNOLOGIES CARD PRINTER with RFID M/N: DG420i WhiteLead LI-215 12090 11-20-02 115 VAC WHITE LEAD Т 6/09/2003 Ш i. Class Ľ Class ٥٢ т 55022 1 55022 Z Ш FREQUENCY [MHz] Z Ш MANAM MM when we MANNA MANNA MANA MANANA EMISSION LEVEL [dBuV] PEAK Graph for<mark>Peak</mark> L -www. 91.0 40 30 100 90 80 20 60 50 20 0 110 ΑΜΡΓΙΤUDE [dBuV]

Page E12

page 1/1

6/09/2003 22:25:14

ZEBRA TECHNOLOGIES CARD PRINTER with RFID M/N: DG420i 115 VAC WHITE LEAD TEST ENGINEER : BENIGNO CHAVEZ

42 highest peaks above -50.00 dB of EN 55022 - Class B - Average limit line Peak criteria : 1.00 dB, Curve : Peak Peak# Freq(MHz)Amp(dBuV)Limit(dB) Delta(dB)

Peak	# Freq(MH	z)Amp(d	3uVI⊾imit(dB)	Delta(dB)	
1	0.154	51.77	55.78	-4.01	
2	0.184	50.15	54.28	-4.13	
3	0.150	51.77	56.00	-4.23	
4	0.160	48.17	55.47	-7.30	
5	0.158	48.17	55.56	-7.39	
6	13.486	41.20	50.00	-8.80	
7	14.991	41.16	50.00	-8.84	
8	19.848	40.85	50.00	-9.15	
9	0.162	46.06	55.34	-9.27	
10	21.373	39.62	50.00	-10.38	
11	3.924	35.33	46.00	-10.67	
12	2.310	35.09	46.00	-10.91	
13	0.592	35.05	46.00	-10.95	
14	0.174	43.76	54.77	-11.01	
15	4.799	34.96	46.00	-11.04	
16	18.241	38.89	50.00	-11.11	
17	0.500	34.85	46.01	-11.16	
18	1.304	34.77	46.00	-11.23	
19	4.600	34.75	46.00	-11.25	
20	3.781	34.73	46.00	-11.27	
21	2.358	34.70	46.00	-11.30	
22	0.168	43.76	55.07	-11.31	
23	1.496	34.67	46.00	-11.33	
24	1.374	34.67	46.00	-11.33	
25	1.352	34.67	46.00	-11.33	
26	0.669	34.65	46.00	-11.35	
27	3.841	34.63	46.00	-11.37	
28	3.585	34.63	46.00	-11.37	
29	1.586	34.58	46.00	-11.42	
30	0.489	34.75	46.18	-11.44	
31	0.984	34.56	46.00	-11.44	
32	4.339	34.55	46.00	-11.45	
33	3.644	34.53	46.00	-11.47	
34	11.145	38.50	50.00	-11.50	
35	2.226	34.49	46.00	-11.51	
36	1.338	34.47	46.00	-11.53	
37	1.204	34.47	46.00	-11.53	
38	0.934	34.46	46.00	-11.54	
39	0.724	34.45	46.00	-11.55	
40	2.885	34.41	46.00	-11.59	
41	2.610	34.40	46.00	-11.60	
42	30.000	34.84	50.00	-15.16	

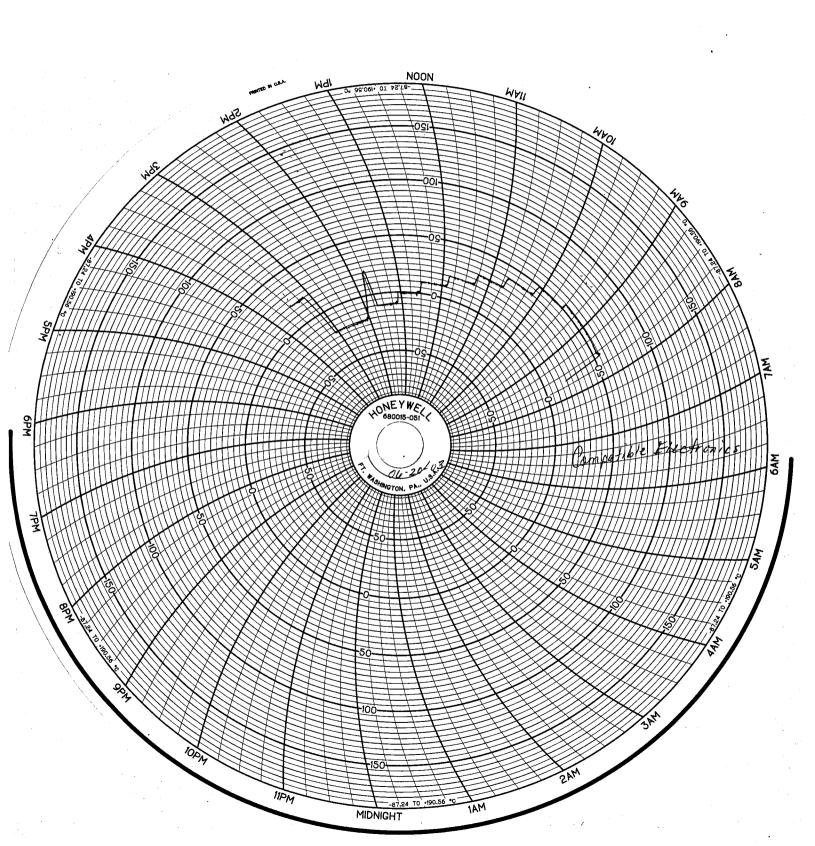
FREQUENCY TOLERANCE

DATA SHEET

SECTION 15.225 [c] TESTING

COMPANY:	ZEBRA TECHNOLOGIES	DATE:	06-20-03
EUT:	CARD PRINTER with RFID	ENGINEER:	KYLE FUJIMOTO
MODEL:	DG420i	S/N	2154609

TEMPERATURE	FREQUENCY (MHz) AT 0 MINUTES	FREQUENCY (MHz) AT 2 MINUTES	FREQUENCY (MHz) AT 5 MINUTES	FREQUENCY (MHz) AT 10 MINUTES	% OF SUPPLY VOLTAGE
-20°C	13.559958	13.559956	13.559954	13.559951	100%
-10°C	13.559973	13.55976	13.559916	13.55976	100%
-0°C	13.559955	13.559967	13.559910	13.55970	100%
+10°C	13.559931	13.559940	13.559945	13.559948	100%
+20°C	13.559910	13.559910	13.559910	13.55910	85%
+20°C	13.559910	13.559910	13.559910	13.55910	100%
+20°C	13.559910	13.559910	13.559910	13.559910	115%
+30°C	13.559872	13.559875	13.559870	13.559890	100%
+40°C	13.559872	13.559875	13.559877	13.559875	100%
+50°C	13.559860	13.559860	13.559860	13.55986	100%


The Frequency Tolerance allowed is 0.01% (±0.00135591 MHz) of the frequency measured at +20°C at 100% Supply Voltage. If the Frequency is between 13.557741 MHz and 13.561265 MHz, the EUT is considered within the specification limits of FCC 15.225 [c].

APPENDIX F

TEMPERATURE TESTING GRAPH AND EQUIPMENT LIST

Compatible Electronics

JOB NUMBER 0615592 - 0610995

ENVIRONMENT ASSOCIATES

EQUIPMENT LIST

TEST DESCRIPTION:					
EQUIPMENT DESCRIPTION	MANUFACTURER	MODEL NUMBER	I.D. NUMBER	CALIBRATION LAST	CALIBRÀTION DUE
TEMPERATURE CHAMBER	RUSSELLS	RB-16-705-705	688603	NOT REQUIRED	
CHART RECORDER	HONEYWELL	DR4501	9305985398032	02-13-03	08-13-03

Form 105 10/99