CERTIFICA TE OF COM PLIA N CE (SAR EVA LUA TION)

APPLICANT NAME \& ADDRESS:
Zebra Technologies Corporation
30 Plan Way
W arwick, RI 02886.1012
Attn: Bob Heon

DATE \& LOCATION OF TESTING:

Dates of Tests: August 5, 2002
Test Report S/N: SAR. 220731410.128
Test Site: PCTEST Lab, Columbia M D

FCC ID: APPUCANT:	12821224121 Zebra Technologies Corporation
EUT Type:	RF Terminal with W LAN PC Card Module
Tx Frequency:	$2412-2462 \mathrm{MHz}$ (DSSS)
Rx Frequency:	2412 -2462 M Hz (DSSS)
Max. RF O utput Power:	0.135 W Conducted
M ax. SAR M easurement:	0.18 W/kg over 1 gm (Body)
Trade N ame/Model(s):	Zebra PS2122
FCC Classification:	Part 15 Spread Spectrum Transmitter (DSS)
FCC Rule Part(s):	§ 2.1093; ET Docket 96.326
Application Type:	Certification
Test Device Serial No.:	Identical prototype

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/ general population exposure limits specified in A N SI/IEEE Std. C95.1-1992 and has been tested in accordance with the measurement procedures specified in FCC/OET Bulletin 65 Supplement C (2001) and IEEE Std. 1528-200X (Draft 6.4, July 2001).
I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my know ledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

PCTEST certifies that no party to this a pplication has been denied the FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 862.

||

PCTESTтм SAR TEST REPO RT	PCTEST	EVALUATIO		Reviewed by: Quality M anager
SAR Filename: SAR. 220731410.128	Test Dates: August 5, 2002	EUT Type: RF Terminal	$\begin{aligned} & \text { FCC ID: } \\ & \text { I2821224121 } \end{aligned}$	Page 1 of 21

1. INTRODUCTION 3
SAR DEFINITION 3
2. SAR MEASUREM ENT SETUP 4
Robotic System 4
System H ardware 4
System Electronics 4
3. DASY3 E-FIELD PRO BE SYSTEM 5
Probe M easurement System 5
Probe Specifications 5
4. Probe Calibration Process 6
D osimetric Assessment Procedure 6
Free Space Assessment 6
Temperature Assessment 6
5. PHANTOM \& EQUIVALENT TISSUES 7
SAM Phantom 7
Brain \& M uscle Simulating M ixture Characterization 7
Device Holder 7
6. TEST SYSTEM SPECIFICATIONS 8
Automated Test System Specifications 8
7. DOSIM ETRIC ASSESSM ENT \& PHANTOM SPECS 9
M easurement Procedure 9
Specific Anthropomorphic M annequin (SAM) Specifications 9
8. DEFINITION OF REFERENCE POINTS 10
EAR Reference Point 10
Handset Reference Points 10
9. TEST CONFIGURATION PO SITIO NS 11
Body Holster /Belt Clip Configurations. 11
10. ANSI/IEEE C95.1-1992 RF EXPO SU RE LIMITS 12
Uncontrolled Environment. 12
Controlled Environment. 12
11. MEASUREMENT UNCERTAINTIES 13
12. SYSTEM VERIFICATION 14
Tissue Verification 14
Test System Verification 14
13. SAR TEST DATA SUMMARY 15
See M easurement Result Data Pages 15
Procedures U sed To Establish Test Signal 15
Device Test Conditions 15
14. SAR DATA SUMMARY 18-23
15. SAR TEST EQ UIPMENT 22
Equipment Calibration 22
16. CONCLUSION 23
M easurement Conclusion 23
17. REFERENCES 24

PCTEST™ SAR TEST REPO RT	PCTEST	EVALUATION REPORT		Reviewed by: Quality M anager
SAR Filename: SAR. 220731410.128	Test Dates: August 5, 2002	EUT Type: RF Terminal	$\begin{array}{\|l} \hline \text { FCC ID: } \\ \text { I2821224121 } \end{array}$	Page 2 of 21

Engineering Laboratory, Inc.

1. INTRO DUCTION / SAR DEFINITION

The FCC has adopted the guidelines for evaluating the environmental effects of radiofrequency radiation in ET D ocket 93-62 on Aug. 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices.[1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz . (c) 1992 by the Institute of Electrical and Electronics Engineers, Inc., New York, N ew York 10017.[2] The measurement procedure described in IEEE/ANSI C95.3-1992 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave[3] is used for guidance in measuring SAR due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the N ational Council on Radiation Protection and Measurements (NCRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," NCRP Report No. 86 (c) NCRP, 1986, Bethesda, MD 20814.[6] SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

SAR Definition

Specific Absorption Rate (SAR) is defined as the time derivative (rate) of the incremental energy ($d U$) absorbed by (dissipated in) an incremental mass ($d m$) contained in a volume element ($d V$) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Fig. 1.1).

$$
S A R=\frac{d}{d t}\left(\frac{d U}{d m}\right)=\frac{d}{d t}\left(\frac{d U}{\rho d v}\right)
$$

Figure 1.1
SAR M athematical Equation
SAR is expressed in units of W atts per Kilogram (W/kg).

$$
\mathrm{SAR}=\sigma E^{2} / \rho
$$

where:

σ	$=$	conductivity of the tissue-simulant material $(\mathrm{S} / \mathrm{m})$
ρ	$=$	mass density of the tissue-simulant material $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
\boldsymbol{E}	$=\quad$ Total RMS electric field strength $(\mathrm{V} / \mathrm{m})$	

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relations to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

PCTESTтм ${ }^{\text {Tm }}$ SAR TEST REPORT	PCTEST	EVALUATION REPORT		Reviewed by: Quality M anager
SAR Filename: SAR. 220731410.128	Test Dates: August 5, 2002	EUT Type: RF Terminal	$\begin{array}{\|l} \text { FCC ID: } \\ \text { I2821224121 } \end{array}$	Page 3 of 21

Engineering Laboratory, Inc.

2. SAR MEASUREM ENT SETUP

Robotic System

Measurements are performed using the ALIDX-500 automated dosimetric assessment system. The ALIDX-500 is made by IDX Robotics, Inc. (IDX) in the United States and consists of high precision robotics system (CRS), robot controller, Pentium 4 computer, near-field probe, probe alignment sensor, and the Left and Right SAM phantoms containing the head/brain equivalent tissue, and the flat phantoms for body/muscle equivalent. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Fig. 2.1).

System Hardware

The Robot table consists of the power supply, robot controller, safety computer, teach pendant (Joystick), six-axis robot arm, and the probe. The cell controller consists of DELL Dimension 4300 Pentium-4 1.6 GHz computer with Windows 2000 system and SAR Measurement software, National Instruments analog card, monitor, keyboard, and mouse. The robot controller is connected to the cell controller to communicate between the two computers. The probe data is connected to the cell controller via data acquisition cables.

System Electronics

Figure 2.1
SAR M easurement System Setup

When the Robot is in the home position, the Y -axis of the coordinate system parallels the line of intersection between the tabletop and the long axis of the Robot's Large Shoulder. The Teach Pendant may be used to establish the X, Y coordinate directions by depressing the $0-X$ and $0-Y$ MOTO R/AXIS switches while in axis mode.
The robot is first taught to position the probe sensor following a specific pattern of points. In the first sweep the sensor enclosure touches the inside of the phantom head. The SAR is measured on a defined grid of points that are concentrated on the surface of the head closest to the antenna of the transmitting device (EUT).

PCTEST ${ }^{\text {m }}$ SAR TEST REPORT	PCTEST	EVALUATION REPORT		Reviewed by: Quality M anager
SAR Filename: SAR. 220731410.128	Test Dates: August 5, 2002	EUT Type: RF Terminal	$\begin{array}{\|l} \text { FCC ID: } \\ \text { I2821224121 } \end{array}$	Page 4 of 21

3. ALIDX-500 E-FIELD PRO BE SYSTEM

Probe M easurement System

The near-field probe is an implantable isotropic E-field probe that measures the

Fig 3.1
IDX System

Frequency Range:
Calibration:

Sensitivity:
DC Resistance:
Isotropic Response:
Dynamic Range:
Resistance to Pull:
Probe Length:
Probe Tip M aterial:
Probe Tip Length:
Probe Tip Diameter:
Application: voltages proportional to the $|\mathrm{E}|^{2}$ (electric) or $|\mathrm{H}|^{2}$ (magnetic) fields. The probe is enclosed in a hollow glass protective cylinder $9-\mathrm{mm}$. outer diameter, 0.5 mm . thickness and 30 cm . in length. The E-probe contains three electrically small array of orthogonal dipoles strategically placed to provide greater accuracy and to compensate for near-field spatial gradients. The probe contains diodes that are placed over the gap of the dipoles to improve RF detection. The electrical signal detected by each diode is amplified by three DC amplifiers and are contained in a shielded container in the robot end effector so its performance is not affected by the presence of incident electromagnetic fields (see Fig. 3.1).

Probe Specifications

$10 \mathrm{kHz}-3.0 \mathrm{GHz}$
In air from 10 MHz to 3.0 GHz
In brain and muscle simulating tissue at Frequencies of 835 $\mathrm{MHz}, 1900 \mathrm{MHz}$ and 2450 MHz
$3.5 \mathrm{mV} / \mathrm{mW} / \mathrm{cm}^{2}$ (air -typical)
300 kohm
0.25 dB
$10 \mathrm{~mW} / \mathrm{kg}-100 \mathrm{~W} / \mathrm{kg}$
25 N
290 mm
Glass
40 mm
$7 \pm 0.2 \mathrm{~mm}$
SAR Dosimetry Testing
HAC (Hearing Aid Compatibility)
Compliance tests of mobile phones

Figure 3.2
Triangular Probe Configuration

Triangular Probe Isotropic Characteristics
(plane perpendicular to probe axis)

Figure 3.3
Probe Characteristics

PCTEST ${ }^{\text {m }}$ SAR TEST REPORT	1 PCTEST	EVALUATION REPORT	Stum	Reviewed by: Quality M anager
SAR Filename: SAR. 220731410.128	Test Dates: August 5, 2002	EUT Type: RF Terminal	$\begin{array}{\|l} \text { FCC ID: } \\ \text { I2821224121 } \end{array}$	Page 5 of 21

4. Probe Calibration Process

Dosimetric Assessment Procedure

Each E-Probe/Probe amplifier combination has unique calibration parameters. A TEM calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the Probe to a known E-field density ($1 \mathrm{~mW} / \mathrm{cm}^{2}$) using an RF Signal generator, TEM cell, and RF Power Meter. The SAR measurement software is used for Probe calibration.

Free Space Assessment

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and in a waveguide or some other methodologies above 1 GHz for free space. For the free space calibration, we place the probe in the volumetric center of the cavity and at the proper orientation with the field. We then rotate the probe 360 degrees until the three channels show the maximum reading. The power density readings equates to $1 \mathrm{~mW} / \mathrm{cm}^{2}$.

Temperature Assessment *

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe (see Fig. 4.2).

$$
\mathrm{SAR}=C \frac{\Delta \mathrm{~T}}{\Delta t}
$$

where:
$\Delta t=$ exposure time (30 seconds),
$\mathrm{C}=$ heat capacity of tissue (brain or muscle),
$\Delta \mathrm{T}=$ temperature increase due to RF exposure.
SAR is proportional to $\Delta \mathrm{T} / \Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. Now it's possible to quantify the electric field in the simulated tissue by equating the thermally derived SAR to the E - field;

Figure 4.1 E-Field and Temperature measurements at 900 MHz

where:
$\sigma=$ simulated tissue conductivity,
$\rho=$ Tissue density ($1.25 \mathrm{~g} / \mathrm{cm}^{3}$ for brain tissue)
*NOTE: The temperature calibration was not performed by PCTEST. For information use only.

PCTESTтм SAR TEST REPO RT	PPCTEST	EVALUATION REPORT		Reviewed by: Quality M anager
SAR Filename: SAR. 220731410.128	Test Dates: August 5, 2002	EUT Type: RF Terminal	$\begin{aligned} & \text { FCC ID: } \\ & \text { I2821224121 } \end{aligned}$	Page 6 of 21

© 2002 PCTEST Engineering Laboratory, Inc.

5. PHANTOM \& EQUIVALENT TISSUES

SAM Phantom

Figure 5.1
SAM Phantoms

Brain \& M uscle Simulating M ixture Characterization

Figure 5.2
Head Simulated Tissue

Figure 5.3 Body/M uscle Simulated Tissue

The Left and Right SAM Phantoms are constructed of a vivac composite integrated in a corian stand. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users [7][8]. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. (see Fig. 5.1)

The brain and muscle mixtures consist of a viscous gel using hydroxethylcellullose (HEC) gelling agent and saline solution (see Table 6.1). Preservation with a bacteriacide is added and visual inspection is made to make sure air bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 have been incorporated in the following table. Other head and body tissue parameters that have not been specified in P1528 are derived from the issue dielectric parameters computed from the 4-Cole-Cole equations. The mixture characterizations used for the brain and muscle tissue simulating liquids are according to the data by C. Gabriel and G. Hartsgrove [9]. (see Table 5.1)

Ingredients (\% by weight) Tissue Type	Frequency (MHz)									
	450		835		915		1900		2450	
	Head	Body								
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7

Salt: $99^{+} \%$ Pure Sodium Chloride Sugar: $98^{\circ} \%$ Pure Sucrose
Water: De-ionized, $16 \mathrm{M} \Omega$ resistivity HEC: Hydroxyethyl Cellulose
DGBE: $99^{+} \%$ Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]
Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl] ether
Table 5.1
Composition of the Brain \& M uscle Tissue Equivalent M atter

Device Holder

Figure 5.4
Device Positioner

In combination with the SAM Phantom, the EUT Holder (see Fig. 6.2) enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation point is the ear opening. Device positioning is accurate and repeatable according to the FCC and CEN ELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

* Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produce infinite number of configurations [8]. To produce the worstcase condition (the hand absorbs antenna output power), the hand is omitted during the tests.

PCTESTтм SAR TEST REPO RT	PPCTEST	EVALUATION REPORT		Reviewed by: Quality M anager
SAR Filename: SAR. 220731410.128	Test Dates: August 5, 2002	EUT Type: RF Terminal	$\begin{aligned} & \text { FCC ID: } \\ & \text { I2821224121 } \end{aligned}$	Page 7 of 21

© 2002 PCTEST Engineering Laboratory, Inc.

6. TEST SYSTEM SPECIFICATIONS

Automated Test System Specifications

Positioner
Robot: \quad CRS Robotics, Inc. Robot M odel: F3
Repeatability: $\quad \pm 0.05 \mathrm{~mm}$ (0.002 in .)
No. Of axes: 6

Data Acquisition Electronic (DAE) System
Cell Controller
Processor:
Pentium 4
Clock Speed: \quad 1.6 G Hz
O perating System: Windows $2000^{\text {TM }}$ Professional
Data Card: NIDAQ Card (in CPU)
Data Converter
Software:
IDX Flexware
Connecting Lines: Data Acquisition Cable RS-232 Host Interface Cable
Sampling Rate: 6000 samples/sec

Figure 6.1
ALIDX-500 Test System

E-Field Probes

Model:
Construction
Frequency:

Phantom
Phantom: SAM Phantoms (Left \& Right)
Shell M aterial: Vivac Composite
Thickness:
$2.0 \pm 0.2 \mathrm{~mm}$

PCTESTтм SAR TEST REPO RT	PCTEST	EVALUATION REPORT	Semp	Reviewed by: Quality M anager
SAR Filename: SAR. 220731410.128	Test Dates: August 5, 2002	EUT Type: RF Terminal	$\begin{array}{\|l} \hline \text { FCC ID: } \\ \text { I2821224121 } \end{array}$	Page 8 of 21

7. DOSIMETRIC ASSESSMENT \& PHANTOM SPECS

M easurement Procedure

The measurement procedure consists of the process parameters, probe parameters, EUT product data, and measurement scans (teach points). The measurement procedure is a set of predefined points to be scanned and measured by the probe, DC amplified and processed by the cell controller. The corresponding voltages determined by the electric and magnetic fields are extrapolated to determine peak SAR value.

The SAR M easurement System measures field strength by employing two different types of systematic measurement scans; a coarse scan and a fine scan. Coarse and fine scans measure field strength in a rectangular area within the XY plane (a plane parallel to the top of the Robot Table). The measurement area is divided into a grid of small squares defined by equally spaced grid lines. During an actual measurement process, the probe moves along grid lines systematically recording the field strength at grid line intersections. Typically, after a coarse scan is completed, a fine scan is conducted at the peak field strength value (hot spot) that was measured in the coarse scan. The fine scan has a greater resolution (smaller grid squares) than the coarse scan, and covers only a fraction of the measurement area in the coarse scan.

Specific Anthropomorphic M annequin (SAM) Specifications

The phantom for handset SAR assessment testing is a low-loss dielectric shell, with shape and dimensions derived from the anthropometric data of the $90^{\text {th }}$ percentile adult male head dimensions as tabulated by the US Army. The SAM Phantom shell is bisected along the midsagittal plane into right and left halves (see Fig. 7.1). The perimeter sidewalls of each phantom halves are extended to allow filling with liquid to a depth that is sufficient to minimized reflections from the upper surface. The liquid depth is maintained at a minimum depth of 15 cm to minimize reflections from the upper surface. The SAM shell thickness is $2.0 \pm 0.2 \mathrm{~mm}$.

Figure 7.1
Left and Right SAM Phantom shells

PCTEST ${ }^{\text {m }}$ SAR TEST REPORT	1 PCTEST	EVALUATION REPORT	Stum	Reviewed by: Quality M anager
SAR Filename: SAR. 220731410.128	Test Dates: August 5, 2002	EUT Type: RF Terminal	$\begin{array}{\|l} \text { FCC ID: } \\ \text { I2821224121 } \end{array}$	Page 9 of 21

8. DEFINITION OF REFERENCE POINTS

EAR Reference Point (ERP)

Figure 8.1 shows the front, back and side views of the SAM Twin Phantom. The point " M " is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and

Figure 8.2 Close-up side view of ERPs "RE" is the right ERP. The ERPs are 15 mm posterior to the entrance to the ear canal (EEC) along the B-M line (Back-M outh), as shown in Figure 9.2. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front) is perpendicular to the reference plane and passing through the RE (or LE) is called the Reference Pivoting Line (see Figure 8.2). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning [5].

Figure 8.1 Front, back and side view of SAM Tw in Phantom

Handset Reference Points

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Fig. 8.3). The "test device reference point" was than located at the same level as the center of the ear reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at it's top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point.

Figure 8.3 Handset Vertical Center \& H orizontal Line Reference Points

PCTEST ${ }^{\text {Tm }}$ SAR TEST REPORT	PCTEST	EVALUATION REPORT		Reviewed by: Quality M anager
SAR Filename: SAR. 220731410.128	Test Dates: August 5, 2002	EUT Type: RF Terminal	$\begin{array}{\|l} \text { FCC ID: } \\ \text { I2821224121 } \end{array}$	Page 10 of 21

9. TEST CONFIGURATION POSITION

Body Holster / Belt Clip Configurations

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 9.5). A device with a headset output is tested with a headset connected to the device. Body dielectric parameters are used.
Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are supplied with the device, the device is tested with each accessory that contains a unique metallic component. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different

Figure 9.5 Body Belt Clip \& Holster Configurations holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.
Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration where a separation distance between the back of the device and the flat phantom is used. All test position spacings are documented.
Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessory(ies), including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.
In all cases SAR measurements are performed to investigate the worst-case positioning. W orst-case positioning is then documented and used to perform Body SAR testing.
In order for users to be aware of the body-worn operating requirements for meeting RF exposure compliance, operating instructions and cautions statements must be included in the user's manual.

PCTESTTM SAR TEST REPORT	PCTEST		EVALUATION REPORT	

10. ANSI/IEEE C95.1-1992 RF EXPO SU RE LIMITS

Uncontrolled Environment

UNCO NTRO LLED ENVIRO NMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 10.1. Safety Limits for Partial Body Exposure [2]

	HUMAN EXPO SURE LIMITS	
	UNCONTROLLED ENVIRON MENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)
SPATIAL PEAK SAR ${ }^{1}$ Brain	1.60	8.00
SPATIAL AVERAGE SAR ${ }^{2}$ Whole Body	0.08	0.40
SPATIAL PEAK SAR ${ }^{3}$ Hands, Feet, Ankles, W rists	4.00	20.00

1 The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
2 The Spatial Average value of the SAR averaged over the whole body.
3 The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

PCTEST ${ }^{\text {TM }}$ SAR TEST REPO RT	PCCTEST	EVALUATION REPORT		Reviewed by: Quality M anager
SAR Filename: SAR. 220731410.128	Test Dates: August 5, 2002	EUT Type: RF Terminal	$\begin{array}{\|l} \hline \text { FCC ID: } \\ \text { I2821224121 } \end{array}$	Page 12 of 21

11. MEASUREM ENT UNCERTAINTIES

a	b	c	d	$\begin{gathered} \mathrm{e}= \\ \mathrm{f}(\mathrm{~d}, \mathrm{k}) \end{gathered}$	f	g	$\begin{aligned} & h= \\ & c x f / e \end{aligned}$	$\begin{gathered} i= \\ \text { cxg/e } \end{gathered}$	k
Uncertainty Component	Sec.	$\begin{gathered} \hline \text { Tol. } \\ (\pm \%) \end{gathered}$	Prob. Dist.	Div.	$\begin{gathered} c_{\mathrm{i}} \\ (1-\mathrm{g}) \end{gathered}$	$\begin{gathered} c_{\mathrm{i}} \\ (10-\mathrm{g}) \end{gathered}$	$\begin{gathered} 1-g \\ u_{i} \\ (\pm \%) \\ \hline \end{gathered}$	$\begin{gathered} 10-\mathrm{g} \\ \mathrm{u}_{\mathrm{i}} \\ (\pm \%) \\ \hline \end{gathered}$	v_{i}
M easurement System									
Probe Calibration	E1.1	6.0	N	1	1	1	6.0	6.0	∞
Axial Isotropy	E1.2	4.88	R	$\sqrt{ } 3$	0.5	0.5	1.4	1.4	∞
Hemishperical Isotropy	E1.2	9.6	R	$\sqrt{ } 3$	0.5	0.5	2.8	2.8	∞
Boundary Effect	E1.3	11.0	R	$\sqrt{ } 3$	1	1	6.4	6.4	∞
Linearity	E1.4	4.7	R	$\sqrt{ } 3$	1	1	2.7	2.7	∞
System D etection Limits	E1.5	1.0	R	$\sqrt{ } 3$	1	1	0.6	0.6	∞
Readout Electronics	E1.6	1.0	R	1	1	1	1.0	1.0	∞
Response Time	E1.7	0.8	R	$\sqrt{ } 3$	1	1	0.5	0.5	∞
Integration Time	E1.8	1.7	R	$\sqrt{ } 3$	1	1	1.0	1.0	∞
RF Ambient Conditions	E5.1	1.2	R	$\sqrt{ } 3$	1	1	0.7	0.7	∞
Probe Positioner Mechanical Tolerance	E5.2	0.4	R	$\sqrt{ } 3$	1	1	0.2	0.2	∞
Probe Positioning w/ respect to Phantom Shell	E5.3	2.9	R	$\sqrt{ } 3$	1	1	1.7	1.7	∞
Extrapolation, Interpolation \& Integration Algorithms for Max. SAR Evaluation	E4.2	3.9	R	$\sqrt{ } 3$	1	1	2.3	2.3	∞
Test Sample Related									
Test Sample Positioning	E3.2.1	10.6	R	$\sqrt{ } 3$	1	1	6.1	6.1	11
Device Holder Uncertainty	E3.1.1	8.7	R	$\sqrt{ } 3$	1	1	5.0	5.0	8
O utput Power Variation - SAR drift measurement	5.6.2	5.0	R	$\sqrt{ } 3$	1	1	2.9	2.9	∞
Phantom \& Tissue Parameters									
Phantom Uncertainty (Shape \& Thickness tolerances)	E2.1	4.0	R	$\sqrt{ } 3$	1	1	2.3	2.3	∞
Liquid Conductivity - deviation from target values	E2.2	5.0	R	$\sqrt{ } 3$	0.7	0.5	2.0	1.4	∞
Liquid Conductivity - measurement uncertainty	E2.2	10.0	R	$\sqrt{ } 3$	0.7	0.5	4.0	2.9	∞
Liquid Permittivity - deviation from target values	E2.2	5.0	R	$\sqrt{ } 3$	0.6	0.5	1.7	1.4	∞
Liquid Permittivity - measurement uncertainty	E2.2	5.0	R	$\sqrt{ } 3$	0.6	0.5	1.7	1.4	∞
Combined Standard U ncertainty ($\mathrm{k}=1$)			RSS				14.4	14.0	
Expanded Uncertainty ($\mathrm{k}=2$) (95\% CO N FIDEN CE LEVEL)							28.8	28.0	

The above measurement uncertainties are according to IEEE Std. 1528-200x (July, 2001)

PCTESTтm SAR TEST REPORT	1 PCTEST	EVALUATION REPORT		Reviewed by: Quality M anager
SAR Filename: SAR. 220731410.128	Test Dates: August 5, 2002	EUT Type: RF Terminal	$\begin{array}{\|l\|} \hline \text { FCC ID: } \\ \text { I2821224121 } \end{array}$	Page 13 of 21

12. SYSTEM VERIFICATION

Tissue Verification
Table 12.1 Simulated Tissue Verification

M EASU RED TISSU E PARAM ETERS									
D ate(s)	03/25/02	1900 MHz Brain		1900 MHz M uscle		2450 MHz Brain		2450 MHz Muscle	
Liquid Temperature (${ }^{\circ} \mathrm{C}$)	21.8	Target	M easured						
Dielectric Constant: ε		40.00	N/A	53.30	N/A	39.20	39.34	52.70	53.57
Conductivity: σ		1.400	N / A	1.520	N/A	1.800	1.770	1.950	1.960

Test System Validation

Prior to assessment, the system is verified to the $\pm 10 \%$ of the specifications at 2450 M Hz by using the system validation kit(s). (G raphic Plots Attached)

Table 12.2 System Validation

SYSTEM DIPO LE VALIDATION TARGET \& MEASURED (at 0.250 W)				
System Validation Kit: D-835S, S/N: 103	$835 \mathrm{MHz}$ Brain	$\begin{gathered} \text { Targeted } \mathrm{SAR}_{1 \mathrm{~g}}(\mathrm{~mW} / \mathrm{g}) \\ 2.375 \end{gathered}$	M easured $\mathrm{SAR}_{1 \mathrm{~g}}(\mathrm{~mW} / \mathrm{g})$ N/A	Deviation (\%) N/A
System Validation Kit: D-1900S, S/N: 104	$\begin{aligned} & 1900 \mathrm{M} \mathrm{~Hz} \\ & \text { Brain } \end{aligned}$	$\begin{gathered} \text { Targeted } \mathrm{SAR}_{1 \mathrm{~g}}(\mathrm{~mW} / \mathrm{g}) \\ 9.925 \end{gathered}$	M easured $\mathrm{SAR}_{1 g}(\mathrm{~mW} / \mathrm{g})$ N/A	$\begin{gathered} \text { Deviation (\%) } \\ \text { N/A } \end{gathered}$
System Validation Kit: D-2450S, S/N: 105	$\begin{aligned} & \text { 2450M Hz } \\ & \text { Brain } \end{aligned}$	$\begin{gathered} \text { Targeted } \mathrm{SAR}_{1 \mathrm{~g}}(\mathrm{~mW} / \mathrm{g}) \\ 13.100 \end{gathered}$	$\begin{gathered} \text { M easured } \mathrm{SAR}_{1 \mathrm{lg}}(\mathrm{~mW} / \mathrm{g}) \\ 13.05 \end{gathered}$	$\begin{gathered} \text { Deviation (\%) } \\ -0.35 \end{gathered}$

Figure 12.1 Dipole Validation Test Setup

PCTESTTM SAR TEST REPORT	1 PCTEST	EVALUATION REPORT		Reviewed by: Quality M anager
SAR Filename: SAR. 220731410.128	Test Dates: August 5, 2002	EUT Type: RF Terminal	$\begin{array}{\|l\|} \hline \text { FCC ID: } \\ \text { I2821224121 } \end{array}$	Page 14 of 21

[^0]
13. SAR TEST DATA SUMMARY

See M easurement Result Data Pages

Procedures U sed To Establish Test Signal

The handset was placed into simulated transmit mode (DSSS mode) using the manufacturer's software. Such test signals offer a consistent means for testing SAR and are recommended for evaluating SAR [4]. When test modes are not available or inappropriate for testing a handset, the actual transmission is activated through a base station simulator or similar equipment. See data pages for actual procedure used in measurement.

Device Test Conditions

The handset is battery operated. Each SAR measurement was taken with a fully charged battery. In order to verify that the device was tested at full power, conducted output power measurements were performed before and after each SAR measurement to confirm the output power. If a conducted power deviation of more than 5% occurred, the test was repeated.

PCTESTTм SAR TEST REPO RT	PCTEST	EVALUATION REPORT		Reviewed by: Quality M anager
SAR Filename: SAR. 220731410.128	Test Dates: August 5, 2002	EUT Type: RF Terminal	$\begin{array}{\|l} \text { FCC ID: } \\ \text { I2821224121 } \end{array}$	Page 15 of 21

SAR DATA SUMMARY

Mixture Type：
2450M Hz Muscle

14．1 M EASU REM ENT RESU LTS（DSSS Body SAR —Back Side，BED G Antenna）

FREQ U ENCY		Modulation	Begin／End POWER ${ }^{\ddagger}$			Separation Distance ${ }^{\ddagger \ddagger}$（cm）	Antenna Position	$\begin{gathered} \text { SAR } \\ (\mathrm{W} / \mathrm{kg}) \end{gathered}$
M Hz	Ch．		W ATTS		Battery			
2412	1	DSSS	0.135	0.135	Standard	TOUCH	Fixed	0.04
2437	6	DSSS	0.135	0.135	Standard	TOUCH	Fixed	0.04
2462	11	DSSS	0.135	0.135	Standard	TOUCH	Fixed	0.03
ANSI／IEEE C95．1 1992 －SAFETY LIMIT Spatial Peak Uncontrolled Exposure／General Population						$\begin{gathered} \text { M uscle } \\ 1.6 \mathrm{~W} / \mathrm{kg}(\mathrm{~mW} / \mathrm{g}) \\ \text { averaged over } 1 \mathrm{gram} \end{gathered}$		

NOTES：
1．The test data reported are the worst－case SAR value with the antenna－head position set in a typical configuration．Test procedures used are according to FCC／O ET Bulletin 65，Supp．C［July 2001］．
2．All modes of operation were investigated，and worst－case results are reported．
3．Battery is fully charged for all readings．
${ }^{\ddagger}$ Power M easured
4．SAR M easurement System
Phantom Configuration
5．SAR Configuration
6．Test Signal Call Mode
7．${ }^{\ddagger \ddagger}$ Test Configuration
8．Tissue parameters and temperatures are listed on the SAR plots．

® Conducted
\square ERP
\square EIRP
\square DASY3
\square Left Head
\square Head
区 Software
\square W ith Belt Clip

区 IDX
® Flat Phantom \square Right Head
区 Body
－Hand
\square Base Station Simulator
区 Without Belt Clip

Figure 14．1 Body SAR Test Setup

PCTESTтм ${ }^{\text {TM }}$ SAR TEST REPORT	1 PCT	EVALUATI		Reviewed by： Quality M anager
SAR Filename： SAR． 220731410.128	Test Dates： August 5， 2002	EUT Type： RF Terminal	$\begin{array}{\|l} \text { FCC ID: } \\ \text { I2821224121 } \end{array}$	Page 16 of 21

GAR DATA SUM MARY

Mixture Type：
2450 MHz Muscle

14．2 M EASU REM ENT RESULTS（DSSS Body SAR－Screen Side，BED G Antenna）

NOTES：

1．The test data reported are the worst－case SAR value with the antenna－head position set in a typical configuration．Test procedures used are according to FCC／O ET Bulletin 65，Supp．C［July 2001］．
2．All modes of operation were investigated，and worst－case results are reported．
3．Battery is fully charged for all readings．
${ }^{\ddagger}$ Power Measured
4．SAR M easurement System
Phantom Configuration
5．SAR Configuration
6．Test Signal Call M ode
7．${ }^{\ddagger \ddagger}$ Test Configuration
8．Tissue parameters and temperatures are listed on the SAR plots．

区 Conducted
\square ER
区 ID X
® Flat Phantom \square Right Head
\square Body \square Hand
\square Base Station Simulator
区 Without Belt Clip
\square DASY3
\square Left Head
\square Head
区 Software
\square With Belt Clip
Without Belt

SAR DATA SUMMARY

Mixture Type：

14．3 M EASU REM ENT RESULTS（DSSS Body SAR —Back Side，End Cap Antenna）

FREQUENCY		Modulation	Begin／End POWER ${ }^{\ddagger}$			Separation Distance ${ }^{\ddagger \ddagger}$（cm）	Antenna Position	$\begin{gathered} \text { SAR } \\ \text { (W/kg) } \end{gathered}$
M Hz	Ch．		WATTS		Battery			
2412	1	DSSS	0.135	0.135	Standard	TOUCH	Fixed	0.02
2437	6	DSSS	0.135	0.135	Standard	TOUCH	Fixed	0.01
2462	11	DSSS	0.135	0.135	Standard	TOUCH	Fixed	0.01
ANSI／IEEE C95．1 1992 －SAFETY LIMIT Spatial Peak Uncontrolled Exposure／General Population						Muscle 1．6 W／kg（mW／g） averaged over 1 gram		

NOTES：
1．The test data reported are the worst－case SAR value with the antenna－head position set in a typical configuration．Test procedures used are according to FCC／OET Bulletin 65，Supp．C［July 2001］．
2．All modes of operation were investigated，and worst－case results are reported．
3．Battery is fully charged for all readings．
${ }^{\ddagger}$ Power M easured
4．SAR M easurement System
Phantom Configuration
5．SAR Configuration
6．Test Signal Call Mode
7．${ }^{\ddagger \ddagger}$ Test Configuration
8．Tissue parameters and temperatures are listed on the SAR plots．

® Conducted
\square ERP
\square EIRP
\square DASY3
\square Left Head
\square Head
区 Software
\square W ith Belt Clip

区 IDX
® Flat Phantom \square Right Head
区 Body
\square Hand
\square Base Station Simulator
区 Without Belt Clip

Figure 14．3 Body SAR Test Setup

PCTESTтм ${ }^{\text {TM }}$ SAR TEST REPORT	1 PCT	EVALUATI		Reviewed by： Quality M anager
SAR Filename： SAR． 220731410.128	Test Dates： August 5， 2002	EUT Type： RF Terminal	$\begin{array}{\|l} \text { FCC ID: } \\ \text { I2821224121 } \end{array}$	Page 18 of 21

SAR DATA SUM MARY

Mixture Type：
2450 M Hz M uscle

14．4 MEASU REM ENT RESU LTS（DSSS Body SAR —Screen Side，End Cap Antenna）

FREQ U ENCY		M odulation	Begin／End POWER ${ }^{\ddagger}$			Separation Distance ${ }^{\ddagger \ddagger}$（cm）	Antenna Position	$\begin{gathered} \text { SAR } \\ (\mathrm{W} / \mathrm{kg}) \end{gathered}$
M Hz	Ch．		W ATTS		Battery			
2412	1	DSSS	0.135	0.135	Standard	TOUCH	Fixed	0.08
2437	6	DSSS	0.135	0.135	Standard	TOUCH	Fixed	0.05
2462	11	DSSS	0.135	0.135	Standard	TOUCH	Fixed	0.04
ANSI／IEEE C95．1 1992 －SAFETY LIMIT Spatial Peak Uncontrolled Exposure／General Population						Muscle $1.6 \mathrm{~W} / \mathrm{kg}(\mathrm{mW} / \mathrm{g})$ averaged over 1 gram		

NOTES：

1．The test data reported are the worst－case SAR value with the antenna－head position set in a typical configuration．Test procedures used are according to FCC／O ET Bulletin 65，Supp．C［July 2001］．
2．All modes of operation were investigated，and worst－case results are reported．
3．Battery is fully charged for all readings．
\ddagger Power M easured
区 Conducted
\square ERP
\square EIRP
\square DASY3
\square Left Head
\square Head
区 Software
\square W ith Belt Clip
区 IDX
区 Flat PhantomRight Head
区 Body
\square Hand
\square Base Station Simulator
区 Without Belt Clip
7．${ }^{\ddagger \ddagger}$ Test Configuration
on the SAR plots．

Figure 14．4 Body SAR Test Setup

SAR DATA SUM MARY

Mixture Type：
2450 MHz Muscle

14．5 MEASUREM ENT RESULTS（DSSS Body SAR－W ith Base，BED G Antenna）

FREQ UENCY		Modulation	Begin／End PO W ER ${ }^{\ddagger}$			Separation Distance ${ }^{\ddagger \ddagger}$（cm）	Antenna Position	SAR （W／kg）
M Hz	Ch．		WATTS		Battery			
2412	1	DSSS	0.135	0.135	Standard	TOUCH	Fixed	0.17
2437	6	DSSS	0.135	0.135	Standard	TOUCH	Fixed	0.11
2462	11	DSSS	0.135	0.135	Standard	TOUCH	Fixed	0.08
ANSI／IEEE C95．1 1992 －SAFETY LIMIT Spatial Peak						Muscle 1．6 W／kg（mW／g） averaged over 1 gram		

NOTES：

1．The test data reported are the worst－case SAR value with the antenna－head position set in a typical configuration．Test procedures used are according to FCC／O ET Bulletin 65，Supp．C［July 2001］．
2．All modes of operation were investigated，and worst－case results are reported．
3．Battery is fully charged for all readings．
${ }^{\ddagger}$ Power M easured
区 Conducted
\square ERP
\square EIRP
\square DASY3
\square Left Head
Head
区 Software
\square W ith Belt Clip
区 IDX
区 Flat Phantom
区 Body
\square Right Head
\square Base Station Simulator
区 Without Belt Clip
7．${ }^{\ddagger \ddagger}$ Test Configuration

8．Tissue parameters and temperatures are listed on the SAR plots．

Figure 14．5 Body SAR Test Setup

PCTESTтm SAR TEST REPORT	1 PCTEST	EVALUATION REPORT		Reviewed by： Quality M anager
SAR Filename： SAR． 220731410.128	Test Dates： August 5， 2002	EUT Type： RF Terminal	$\begin{array}{\|l\|} \hline \text { FCC ID: } \\ \text { I2821224121 } \end{array}$	Page 20 of 21

SAR DATA SUM MARY

Mixture Type:

2450 MHz Muscle

. 6	AS	M ENT	U LT	(DSS	ody	-With	BED	tenn
FREQ UENCY		Modulation	Begin / End PO W ER ${ }^{\ddagger}$			Separation Distance (cm)	Antenna Position	$\begin{gathered} \text { SAR } \\ (W / \mathrm{kg}) \end{gathered}$
M Hz	Ch.		WATTS		Battery			
2412	1	DSSS	0.135	0.135	Standard	TOUCH	Fixed	0.08
2437	6	DSSS	0.135	0.135	Standard	TOUCH	Fixed	0.06
2462	11	DSSS	0.135	0.135	Standard	TOUCH	Fixed	0.04
ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population						Muscle 1.6 W/kg (mW/g) averaged over 1 grams		

NOTES:

1. The test data reported are the worst-case SAR value with the antenna-head position set in a typical configuration. Test procedures used are according to FCC/O ET Bulletin 65, Supp.C [July 2001].
2. All modes of operation were investigated, and worst-case results are reported.
3. Battery is fully charged for all readings.
${ }^{\ddagger}$ Power M easured
区 Conducted
\square DASY3
\square Left Head

- Head

区 Software
6. Test Signal Call M ode
7. Tissue parameters and temperatures are listed on the SAR plots.

Figure 14.6 H and SAR Test Setup

PCTESTтm SAR TEST REPORT	1 PCTEST	EVALUATION REPORT		Reviewed by: Quality M anager
SAR Filename: SAR. 220731410.128	Test Dates: August 5, 2002	EUT Type: RF Terminal	$\begin{array}{\|l\|} \hline \text { FCC ID: } \\ \text { I2821224121 } \end{array}$	Page 21 of 21

15. SAR TEST EQUIPM ENT

Equipment Calibration

Table 15.1 Test Equipment Calibration

EQ UIPM ENT SPECIFICATIONS		
Type	Calibration Date	Serial Number
CRS Robot F3	February 2002	RAF0134133
CRS C500C M otion Controller	February 2002	RCB0003303
CRS Teach Pendant (Joystick)	February 2002	STP0132231
DELL Computer, Pentium 41.6 GHz, W indows 2000 ${ }^{\text {TM }}$	February 2002	
E-Field Probe E-010	January 2002	PCT25
Right Ear SAM Phantom (P-SAM-R)	February 2002	
Left Ear SAM Phantom (P-SAM-L)	February 2002	
IDX Robot End Effector (EE-103-C)	February 2002	07111223
IDX Probe Amplifier	February 2002	07111113
Validation Dipole D-2450S	February 2002	PCT641
Brain Equivalent M atter ($2450 \mathrm{MHz)}$	August 2002	PCTBEM 501
M uscle Equivalent Matter (2450M Hz)	August 2002	PCTM EM 601
Microwave Amp. M odel: $5 \mathrm{~S} 1 \mathrm{G} 4,(800 \mathrm{MHz}-4.2 \mathrm{GHz}$)	January 2002	22332
Gigatronics 8651A Power M eter	January 2002	1835299
HP-8648D (9kHz ~ 4G Hz) Signal Generator	January 2002	PCT530
Amplifier Research 5S1G 4 Power Amp	January 2002	PCT540
HP-8753E (30kHz ~3G Hz) N etwork Analyzer	January 2002	PCT552
HP85070B Dielectric Probe Kit	January 2002	PCT501
Ambient N oise/Reflection, etc. $\quad<12 \mathrm{~mW} / \mathrm{kg} /<3 \%$ of SAR	January 2002	Anechoic Room PCT01

NOTE:

The E-field probe was calibrated by IDX, by temperature measurement procedure. PCTEST Lab re-calibrated the E-field probe, by using TEM Cell and wave guide procedure. Dipole Validation measurement is performed by PCTEST Lab. before each test. The brain simulating material is calibrated by PCTEST using the dielectric probe system and network analyzer to determine the conductivity and permittivity (dielectric constant) of the brain-equivalent material.

PCTEST™ SAR TEST REPORT	1 PCTEST	EVALUATION REPORT	Stum	Reviewed by: Quality M anager
SAR Filename: SAR. 220731410.128	Test Dates: August 5, 2002	EUT Type: RF Terminal	$\begin{array}{\|l} \text { FCC ID: } \\ \text { I2821224121 } \end{array}$	Page 22 of 21

16. CONCLUSION

M easurement Conclusion

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the FCC. These measurements are taken to simulate the RF effects exposure under worstcase conditions. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters subject to the test. The test results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because innumerable factors may interact to determine the specific biological outcome of an exposure to electromagnetic fields, any protection guide shall consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables.[3]

PCTESTTM SAR TEST REPORT	PCTEST		EVALUATION REPORT	

17. REFERENCES

[1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
[2] AN SI/IEEE C95.1-1991, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 300kHz to 100 GHz , New York: IEEE, Aug. 1992.
[3] ANSI/IEEE C95.3-1991, IEEE Recommended Practice for the M easurement of Potentially H azardous Electromagnetic Fields - RF and Microwave, New York: IEEE, 1992.
[4] Federal Communications Commission, OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields, July 2001.
[5] IEEE Standards Coordinating Committee 34 -IEEE Std. 1528-200X (Draft 6.1 -July 2001), Draft Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques.
[6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
[7] V. Hombach, K. M eier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Head Modeling at 900 MHz , IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
[8] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300 MHz , IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
[9] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, U niversity of O ttawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
[10] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
[11] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recepies in C, The Art of Scientific Computing, Second edition, Cambridge U niversity Press, 1992.
[12] Federal Communications Commission, OET Bulletin 65, Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields. Supplement C, Dec. 1997.
[13] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields Highfrequency: $10 \mathrm{kHz}-300 \mathrm{GHz}$, Jan. 1995.

PCTESTTM SAR TEST REPORT	PCTEST	EVALUATION REPORT		Reviewed by: Quality M anager
SAR Filename: SAR. 220731410.128	Test Dates: August 5, 2002	EUT Type: RF Terminal	$\begin{aligned} & \text { FCC ID: } \\ & \text { I2821224121 } \end{aligned}$	Page 24 of 21

[^0]: © 2002 PCTEST Engineering Laboratory, Inc.

