ZEBRA TECHNOLOGIES CORP

BLUETOOTH RADIO MODULE

Model: zbr4-ca

21 February 2008

Report No.: SL07021303-ZBR-007 (15.247)(ZBR4CA)

(This report supersedes NONE)

Modifications made to the product: None

This Test Report is Issued Under the Authority of:				
Choon Sian Ooi				
Choon Sian Ooi	Leslie Bai			
Test Engineer Engineering Reviewer				

Serial# SL07021303-ZBR-007 (15.247)(ZBR4CA) Issue Date 21 February 2008 Page 2 of 67

SIEMIC ACREDITATION DETAILS: NVLAP Lab Code: 200729-0

United States Department of Commerce National Institute of Standards and Technology

Certificate of Accreditation to ISO/IEC 17025:2005

NVLAP LAB CODE: 200729-0

SIEMIC Laboratories

San Jose, CA

is accredited by the National Voluntary Laboratory Accreditation Program for specific services, listed on the Scope of Accreditation, for:

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

This laboratory is accredited in accordance with the recognized international Standard ISC/IEC 17025:2005.

This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique dated 18 June 2005).

2008-01-01 through 2008-12-31

Effective dates

For the National Institute of Standards and Technology

NVLAP-01C (REV. 2006-09-13)

 Serial#
 SL07021303-ZBR-007 (15.247)(ZBR4CA)

 Issue Date
 21 February 2008

 Page
 3 of 67

SIEMIC ACREDITATION DETAILS: FCC Registration No. 783147

FEDERAL COMMUNICATIONS COMMISSION

Laboratory Division 7435 Oakland Mills Road Columbia, MD 21046

January 27, 2005

Registration Number: 783147

SIEMIC Laboratories 2206 Ringwood Avenue San Jose, CA 95131

Attention:

Leslie Bai

Re:

Measurement facility located at San Jose

3 & 10 meter site

Date of Renewal: January 27, 2005

Dear Sir or Madam:

Your request for renewal of the registration of the subject measurement facility has been received. The information submitted has been placed in your file and the registration has been renewed. The name of your organization will remain on the list of facilities whose measurement data will be accepted in conjunction with applications for Certification under Parts 15 or 18 of the Commission's Rules. Please note that the file must be updated for any changes made to the facility and the registration must be renewed at least every three years.

Measurement facilities that have indicated that they are available to the public to perform measurement services on a fee basis may be found on the FCC website www.fcc.gov under E-Filing, OET Equipment Authorization Electronic Filing, Test Firms.

Phyllis Parrish

Information Technician

SIEMIC ACREDITATION DETAILS: Industry of Canada Registration No. 4842-1

April 28, 2006

OUR FILE: 46405-4842 Submission No: 114591

Sigmic Inc.

2206 Ringwood Ave.,

San Jose, CA 95131

Dear Sir/Madame:

The Bureau has received your application for the Alternate Test Site and the filing is satisfactory to Industry Canada.

Please reference to the file number (4842-1) in the body of all test reports containing measurements performed on the site.

Renewal of the filing is required every two years.

If you have any questions, you may contact the Bureau at the telephone number below or by e-mail at certification bureaudic sc.ca. Please reference our file number above for all correspondence.

Yours sincerely,

Robert Corey

Manager Certification

Certification and Engineering Bureau

3701 Carling Ave., Building 94

Ottawa, Ontario

K2H 882

Tel. No. (613) 990-3869

SL07021303-ZBR-007 (15.247)(ZBR4CA) Serial# Page

SIEMIC ACREDITATION DETAILS: Japan VCCI Registration No. 2195

Voluntary Control Council for Interference by Information Technology Equipment 7F NOA Bldg, 2-3-5, Azabudai, Mirasto-Ku, Tokyo, Japan, 105-0041 Tet+81-3-5575-3138 Fac+81-3-5575-3137

February 12, 2004

TO: SIEMIC, INC.

Membership NO: 2195

We confirmed your payment for annual membership fee and admission fee. Thank you very much for your remitting.

Please find enclosed VCCI documents. As admission fee and annual membership fee were confirmed, your company registered as VCCI official member.

From now on, it is possible for your company to submit conformity verification report or/and application for registration of measurement facilities.

Please find necessary forms for your submission from VCCI web-site. www.vcci.or.jp

When you submit conformity verification report, please submit to Ms. Yoko Inagaki / inagaki@vcci.or.jp and application for registration of measurement facilities, please submit to Mr. Masaru Denda / denda@vcci.or.jp

Their address, phone and fax number are absolutly same as I. Please refer address indicated on top right-hand corner of this page.

If you have any other questions regarding membership, feel free to contact me. Thank you very much.

Best Regards,

Naoko Hori (Ms.) VCCI hori@veci.or.ip

Enclosure

Serial# SL07021 Issue Date 21 Febru

SL07021303-ZBR-007 (15.247)(ZBR4CA) 21 February 2008

6 of 67

SIEMIC ACREDITATION DETAILS: Japan RF Technologies Accreditation No. MRF050927

Certificate

This is to certify that the Quality Management System of

SIEMIC, Inc.

2206 Ringwood Avenue San Jose, California 95131 U.S.A

has been authorized to carry out Japan Specified Radio Equipment test by order and under supervision of RF Technologies Co., Ltd. according to Notification No.88 of Radio Law.

An assessment of the laboratory was conducted according to the "Procedure and Conditions for Appointments of 2,4GHz Band Low power data communications system that Bluetooth and Wireless LAN test with reference to ISO/IEC 17025 by an RF Technologies Co., Ltd. auditor.

Audit Report No. MRF050927

Kazuyuki Sarashina

Auditor

RF Technologies Co., Ltd.

Todahiro Regami President

RF Technologies Co., Ltd.

Audit Date September 27th, 2005 Issued Date October 5th, 2005

This Certificate is valid until September 26th 2006 or next schedule audit.

No:006 Registered Certification Body RF Technologies Co., Ltd. 472, Nippa-cho,Kohoku-ku, Yokohama, 223-0057, Japan

 Serial#
 SL07021303-ZBR-007 (15.247)(ZBR4CA)

 Issue Date
 21 February 2008

 Page
 7 of 67

SIEMIC ACREDITATION DETAILS: Korea MIC Lab Code: KR0032

시험기관지정서 Certificate

of Designated Testing Laboratory

지정번호(No.) : KR0032

시험기관명 : (주)현대교정인증기술원

(Name of Lab.) (Hundi Calibration & Cartification Technologies Co., Ltd)

주 소 : 경기도 이천시 부발음 아미리 산136-1

(Address) (136-1, Ami-ri, Buhal-eap, Ichean-si, Kyunggi-Do, Korea)

2206 Ringwood Avenue San Jose, CA, USA.

시험문야 및 범위 : 유선(Telecommunication Part)

(Area & Category) 무선(Radio Communication Part)

전자와장배(EMI): 미국지사 포함 전자파내성(EMS): 미국지사 포함

전기안전(Safety) 전자화흡수용(SAR)

위 기관을 정보통신기기시험기관지정및관리등에관한규칙에 의해 정보통신기기시험기관으로 지정합니다.

This is to certify that
the above mentioned laboratory is designated
as the testing laboratory in accordance with
the Regulations on Designation of Testing Laboratory
for Information and Communication Equipment.

2005년(Year) 7월(Month) 5일(Date

전파연구소

Director General of Radio Research Daboratory Ministry of Information and Communication Republic of Korea

SL07021303-ZBR-007 (15.247)(ZBR4CA) Serial# Page

SIEMIC ACREDITATION DETAILS: Korea CAB ID: US0160

UNITED STATES DEPARTMENT OF COMMERCE Mational Institute of Standards and Technology Gaithersburg, Maryland 20899-

April 17, 2006

Mr. Leslie Bai SIEMIC Laboratories 2206 Ringwood Avenue San Jose, CA 95131

Dear Mr. Bai:

I am pleased to inform you that your laboratory has been recognized by the Ministry of Information and Communication's Radio Research Laboratory (RRL) under the Asia Pacific Economic Cooperation (APEC) Mutual Recognition Arrangement (MRA). Your laboratory is now designated to act as a Conformity Assessment Body (CAB) under Appendix B, Phase I Procedures, of the APEC Tel MRA. The pertinent information about your laboratory's designation is as follows:

CAB Name: SIEMIC Laboratories

Identification No.: US0160

Coverage	Standards	Date of Recognition
Electro Magnetic Interference	RRL Notice No. 2005-82: Technical Requirements for Electromagnetic Interference Annex 8(KN-22), RRL Notice No. 2005-131: Conformity Assessment Procedure for Electromagnetic Interference	April 13, 2006
Electro Magnetic Susceptibility	RRI. Notice No. 2005-130: Technical Requirements for Electromagnetic Susceptibility Annex 1-7(KN-61000-4-2, 4-3, -4-4, -4-5, -4-6, -4-8, -4-11). RRL Notice No. 2005-132: Conformity Assessment Procedure for Electromagnetic Susceptibility	April 13, 2006

You may submit test data to RRL to verify that the equipment to be imported into Korea satisfies the applicable requirements. The designation of your organization will remain in force as long as its accreditation for the designated scope remains valid and comply with the designation requirements.

The names of all recognized CABs will be posted on the NIST website at http://ts.nist.gov/mra. If you have any questions please contact Mr. Jogindar (Joe) Dhillon at (301) 975-5521. We appreciate your continued interest in our international conformity assessment activities.

Sincerely,

Group Leader, Standards Coordination and Conformity Group

2 auro

cc: Jogindar Dhillon

SIEMIC ACREDITATION DETAILS: Taiwan BSMI Accreditation No. SL2-IN-E-1130R

UNITED STATES DEPARTMENT OF COMMERCE National Institute of Standards and Technology Gathersburg, Maryland 20898-

May 3, 2006

Mr. Leslie Bai SIEMIC Laboratories 2206 Ringwood Avenue San Jose, CA 95131

Dear Mr. Bai:

I am pleased to inform you that your laboratory has been recognized by the Chinese Taipei's Bureau of Standards, Metrology, and Inspection (BSMI) under the Asia Pacific Economic Cooperation (APEC) Mutual Recognition Arrangement (MRA). Your laboratory is now designated to act as a Conformity Assessment Body (CAB) under Appendix B, Phase I Procedures, of the APEC Tel MRA. You may submit test data to BSMI to verify that the equipment to be imported into Chinese Taipei satisfies the applicable requirements. The designation of your organization will remain in force as long as its accreditation for the designated scope remains valid and comply with the designation requirements. The pertinent designation information is as follows:

BSMI number: SL2-IN-E-1130R (Must be applied to the test reports)

- U.S Identification No: US0160
- Scope of Designation: CNS 13438
- Authorized signatory: Mr. Leslie Bai

The names of all recognized CABs will be posted on the NIST website at http://ts.nist.gov/mra. If you have any questions, please contact Mr. Dhillon at 301-975-5521. We appreciate your continued interest in our international conformity assessment activities.

Sincerely,

David F. Alderman

Group Leader, Standards Coordination and Conformity Group

2 acce

cc: Jogindar Dhillon

 Serial#
 SL07021303-ZBR-007 (15.247)(ZBR4CA)

 Issue Date
 21 February 2008

 Page
 10 of 67

SIEMIC ACREDITATION DETAILS: Taiwan NCC CAB ID: US0160

UNITED STATES DEPARTMENT OF COMMERCE National Institute of Standards and Technology Sethersburg, Maryland 20898-

August 8, 2006

Mr. Leslie Bai SIEMIC Laboratories 2206 Ringwood Avenue San Jose, CA 95131

Dear Mr. Bai:

I am pleased to inform you that SIEMIC Laboratories has been recognized by the Chinese Taipei's National Communications Commission (NCC) under the Asia Pacific Economic Cooperation for Telecommunications and Information, Mutual Recognition Arrangement (APEC Tel MRA). Your laboratory is now designated to act as a Conformity Assessment Body (CAB) under Appendix B, Phase I Procedures, of the APEC Tel MRA.

You may submit test data to NCC to verify that the equipment to be imported into Chinese Taipei satisfies their applicable requirements using the following guidelines:

- Your laboratory's assigned 6-digit U.S. identification number is US0160. You should reference this number in your correspondence.
- The scope of designation is limited to LP0002. Your designation will remain in force as long as your accreditation remains valid for the scope of designation.

If you have any questions please contact Mr. Jogindar Dhillon via email at dhillon@nist.gov or via fax at 301-975-5414. The names of all recognized laboratories will be posted on the NIST website at http://ts.nist.gov/mra. We appreciate your continued interest in our international conformity assessment activities.

Sincerely,

David F. Alderman

Group Leader, Standards Coordination and Conformity Group

cc: Jogindar Dhillon

2 ach

SL07021303-ZBR-007 (15.247)(ZBR4CA) Serial# Page

SIEMIC ACREDITATION DETAILS: Mexico NOM Recognition

Laboratorio Valentín V. Rivero

México D.F. a 16 de octubre de 2006.

LESLIE BAI DIRECTOR OF CERTIFICATION SIEMIC LABORATORIES, INC. ACCESSING GLOBAL MARKETS PRESENTE

En contestación a su escrito de fecha 5 de septiembre del año en curso, le comento que estamos muy interesados en su intención de firmar un Acuerdo de Reconocimiento Mutuo, para lo cual adjunto a este escrito encontrara el Acuerdo en idioma ingles y español pretenado de los cuales le pido sea revisado y en su caso corregido, para que si esta de acuerdo poder firmado para mandado con las autoridades Mexicanas para su visto bueno y así poder ejercer dicho acuerdo.

Aprovecho este escrito para mencionarle que nuestro intermediario gestor será la empresa lisatel de México. S. A. de C. V., empresa que ha colaborado durante mucho tiempo con nosotros en lo refacionado a la evaluación de la conformidad y que quenta con amplia experiencia en la gestoria de la certificación de cumplimiento con Normas Oficiales Mexicanas de producto en México.

Me despido de ustad enviándole un cordial seludo y esperando sus comentarios al Acuerdo que nos poupa.

Atentamente:

Ing. Fausting Conez González Gerente Frenico del Laboratorio de

Harbergera Condesa ce uso Maleos, D.F. 5264-0308 con 12 lineas Fax 5264-0466

 Serial#
 SL07021303-ZBR-007 (15.247)(ZBR4CA)

 Issue Date
 21 February 2008

 Page
 12 of 67

SIEMIC ACREDITATION DETAILS: Hong Kong OFTA Recognition No. D23/16V

Your Ref 来函檔號: Our Ref 本同檔號: D23/16 V Telephone 電話: (852) 2961 6320 Fax No 副文傳真: (852) 2838 5004

E-mail 電郵地址:

20 July 2005

Mr. Leslie Bai Director of Certification, SIEMIC Laboratories 2206 Ringwood Avenue San Jose, California 95131 USA

Dear Mr. Bai,

Application of Recognised Testing Agency (RTA)

Referring your submission of 28 June 2005 in relation to the application of RTA, I am pleased to inform you that OFTA has appointed SIEMIC Laboratories (SIEMIC) as a Recognised Testing Agency (RTA):

Please note that, under the Hong Kong Telecommunications Equipment Evaluation and Certification (HKTEC) Scheme, SIEMIC is authorized to conduct evaluation tests on telecommunications equipment against the following HKTA specifications:

> Scope of recognition (HKTA Specifications): 1001, 1002, 1004, 1006, 1007, 1008 1010, 1015, 1016 1022, 1026, 1027, 1029

1030, 1031, 1032, 1033, 1034, 1035, 1039

1041, 1042, 1043, 1045, 1047, 1048

2001

You are requested to refer to and comply with the code of practice and guidelines for RTA as given in the Information Note OFTA 1411 "Recognised Testing Agency (RTA) for Conducting Evaluation Test of Telecommunications Equipment", which can be downloaded from OFTA's homepage at http://www.ofta.gov.hk/tec/information-notes.html.

If you have any queries, please do not hesitate to contact me.

Yours sincerely,

(K K Sin)

for Director-General of Telecommunications

Office of the Telecommunications Authority 29IF Wu Chung House 213 Queen's Road East Wan Chai Hong Kong 電訊管理局 http://www.ofta.gov.hk

香港灣仔皇后大道東 213 號胡忠大廈 29 字樓

This page has been left blank intentionally.

Serial#	SL07021303-7BR-007 (15.247)(ZBR4CA)
Issue Date	21 February 2008
Page	14 of 67

CONTENTS

1	EXECUTIVE SUMMARY & EUT INFORMATION	11
2	TECHNICAL DETAILS	11
	MODIFICATION	
	TEST SUMMARY	
	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS	
	EX A. TEST INSTRUMENT & METHOD	
	EX B EUT AND TEST SETUP PHOTOGRAPHS	
	EX C. TEST SETUP AND SUPPORTING EQUIPMENT	
ANNE	EX D USER MANUAL, BLOCK & CIRCUIT DIAGRAM	11
	·	

This page has been left blank intentionally.

1 Executive Summary & EUT information

The purpose of this test programme was to demonstrate compliance of the Zebra Technologies Corp, Bluetooth radio Module, model: ZBR4-CA against the current Stipulated Standards. The Bluetooth radio Module have demonstrated compliance with the FCC 15.247 2007.

EUT Information

EUT Description

Zebra Technologies will only use the ZBR4-CA radio within Zebra products, primarily portable printers. Both the radio and the antenna will be mounted inside the product and will not be user accessible. Nothing that Zebra does in the external circuitry surrounding the ZBR4-CA module will have any affect on either the transmitter or receiver characteristics of the Taiyo-Yuden module. The only affect that Zebra has on the RF performance is the Zebra custom antenna that is used in each printer. Bluetooth radios are designed to operate in the international ISM Band from 2.402 to 2.480 GHZ. They are frequency-hopping radios with 79 channels at a channel spacing of 1 MHz. The modulation is Gaussian Frequency Shift Keying.

Model No : ZBR4-CA

Serial No : 30A07500035, 31A07500015, 32A07500006

Input Power : 3.3 Vdc

Classification Per Stipulated Test Standard

Spread Spectrum System / Device

2 <u>TECHNICAL DETAILS</u>				
Purpose	Compliance testing of Buletooth Radio Module with stipulated standard			
Applicant / Client	Zebra Technologies Corp			
Manufacturer	Zebra Technologies Corp 333 Corporate Woods Parkway. Vernon Hills, IL 60061			
Laboratory performing the tests	SIEMIC Laboratories			
Test report reference number	SL07021303-ZBR-007 (15.247)(ZBR4CA)			
Date EUT received	15 October 2007			
Standard applied	47 CFR §15.247 (2007)			
Dates of test (from – to)	20 February 2008 - 29 February 2008			
No of Units:	2			
Equipment Category:	DSS			
Trade Name:	Zebra Technologies Corp			
Model :	ZBR4-CA			
RF Operating Frequency (ies)	2402 to 2480 MHz			
Number of Channels :	79			
Modulation :	Gaussian Frequency Shift Keying			
FCC ID :	I28-ZBR4CA			
IC ID :	3798B-ZBR4CA			

Serial#	SL07021303-ZBR-007 (15.247)(ZBR4CA)
Issue Date	21 February 2008
Page	18 of 67
www.siemic.com	

3 MODIFICATION

NONE

4 TEST SUMMARY

The product was tested in accordance with the following specifications. All Testing has been performed according to below product classification:

Spread Spectrum System / Device

Test Results Summary

Test Standard		Description	Pass / Fail
CFR 47 Part 15.247: 2007	RSS 210 Issue7: 2007		
15.203		Antenna Requirement	Pass
15.205	RSS210(A8.5)	Restricted Band of Operation	Pass
15.207(a)	RSSGen(7.2.2)	Conducted Emissions Voltage	Pass
15.247(a)(1)	RSS210(A8.1)	Channel Separation	Pass
15.247(a)(1)	RSS210(A8.1)	Occupied Bandwidth	Pass
15.247(a)(2)	RSS210 (A8.2)	Bandwidth	N/A
15.247(a)(1)	RSS210(A8.1)	Number of Hopping Channels	Pass
15.247(a)(1)	RSS210(A8.1)	Time of Occupancy	Pass
15.247(b)	RSS210(A8.4)	Output Power	Pass
15.247(c)	RSS210(A8.4)	Antenna Gain > 6 dBi	N/A
15.247(d)	RSS210(A8.5)	Conducted Spurious Emissions	Pass
15.209; 15.247(d)	RSS210(A8.5)	Radiated Spurious Emissions	Pass
15.247(e)	RSS210(A8.3)	Power Spectral Density	N/A
15.247(f)	RSS210(A8.3)	Hybrid System Requirement	N/A
15.247(g)	RSS210(A8.1)	Hopping Capability	Pass
15.247(h)	RSS210(A8.1)	Hopping Coordination Requirement	Pass
15.247(i)	RSSGen(5.5)	RF Exposure requirement	Pass
	RSSGen(4.8)	Receiver Spurious Emissions	Pass

ANSI C63.4: 2003/ RSS-Gen Issue 2: 2007

PS: All measurement uncertainties are not taken into consideration for all presented test result.

5 MEASUREMENTS, EXAMINATION AND DERIVED RESULTS

5.1 Antenna Requirement

Requirement(s): 47 CFR §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna requirement must meet at least one of the following:

- a) Antenna must be permanently attached to the device.
- b) Antenna must use a unique type of connector to attach to the device.
- c) Device must be professionally installed. Installer shall be responsible for ensuring that the correct antenna is employed with the device.

The antenna is an integral antenna. Antenna maximum gain is 3dBi for 2402-2480 MHz band

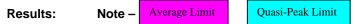
5.2 Conducted Emissions Voltage

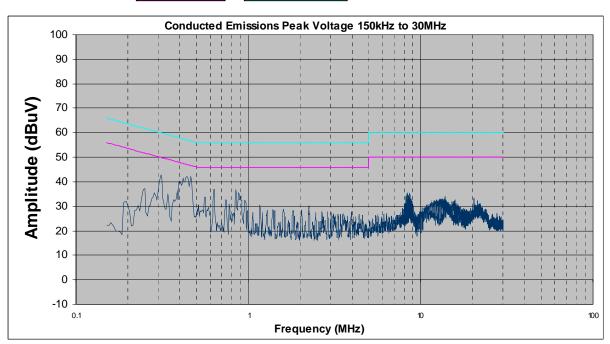
Requirement:

	Conducted lin	nit (dBµV)
Frequency of emission (MHz)	Quasi-peak	Average
0.15–0.5	66 to 56*	56 to 46*
0.5–5	56	46
5–30	60	50

^{*}Decreases with the logarithm of the frequency.

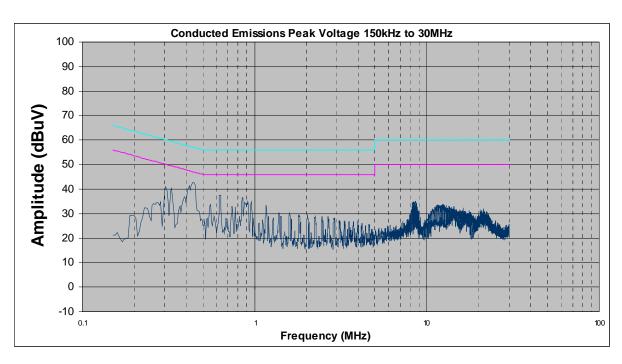
Procedures:


- All possible modes of operation were investigated. Only the 6 worst case emissions measured, using the correct CISPR and Average detectors, are reported. All other emissions were relatively insignificant.
- A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
- 3. <u>Conducted Emissions Measurement Uncertainty</u>


All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 9kHz – 30MHz (Average & Quasi-peak) is ±3.5dB.

4. Environmental Conditions

Temperature 23°C
Relative Humidity 50%
Atmospheric Pressure 1019mbar


Test Date: February 25-29 2008 Tested By: Choon Sian Ooi

Phase Line Plot at 120Vac, 60Hz

Line Under Test	Freq. (MHz)	Corrected Amplitude (dBuV)	Limit (dBuV) QP	Margin (dB) QP	Corrected Amplitude (dBuV)	Limit (dBuV) AVG	Margin (dB) AVG
Neutral	0.31	42.59	59.97	-17.38	42.59	49.97	-7.38
Neutral	0.47	41.90	56.60	-14.70	41.90	46.60	-4.70
Neutral	0.45	41.90	56.97	-15.07	41.90	46.97	-5.07
Neutral	0.64	37.00	56.00	-19.00	37.00	46.00	-9.00
Neutral	8.59	36.60	60.00	-23.40	36.60	50.00	-13.40
Neutral	2.25	29.60	56.00	-26.40	29.60	46.00	-16.40

Neutral Line Plot at 120Vac, 60Hz

Line Under	Freq.	Corrected Amplitude	Limit	Margin	Corrected	Limit	Margin
Test	(MHz)	(dBuV) QP	(dBuV) QP	(dB) QP	Amplitude (dBuV) AVG	(dBuV) AVG	(dB) AVG
Line	0.35	41.00	58.96	-17.96	41.00	48.96	-7.86
Line	0.33	40.20	59.45	-19.25	40.20	49.45	-13.85
Line	0.45	42.40	56.88	-14.48	42.40	46.88	-10.08
Line	0.64	37.50	56.00	-18.50	37.50	46.00	-8.10
Line	0.86	36.40	56.00	-19.60	36.40	46.00	-7.30
Line	8.69	34.30	60.00	-25.70	34.30	50.00	-10.20

5.3 Channel Separation

1. <u>Conducted Measurement</u>

EUT was set for low, mid, high channel with modulated mode and highest RF output power.

The spectrum analyzer was connected to the antenna terminal.

2 Environmental Conditions Temperature 23°C Relative Humidity 50%

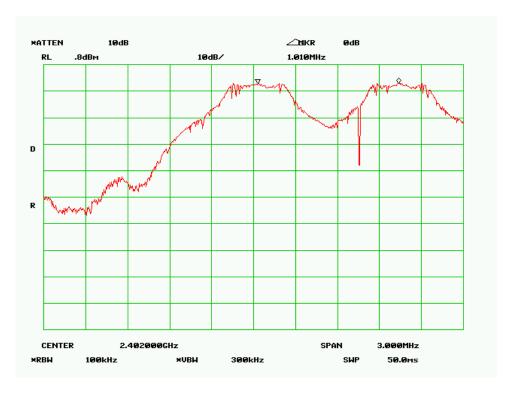
Atmospheric Pressure 1019mbar

3 Conducted Emissions Measurement Uncertainty

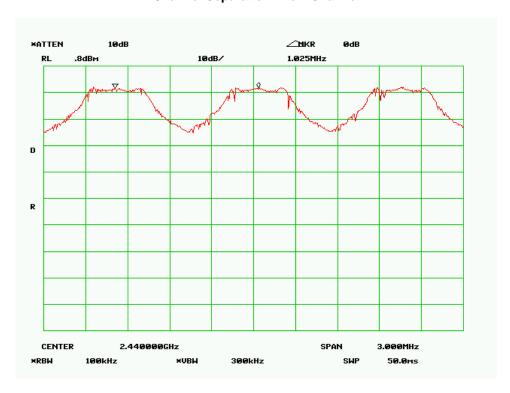
All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are

normal), with a coverage factor of 2, in the range 30MHz – 40GHz is ±1.5dB.

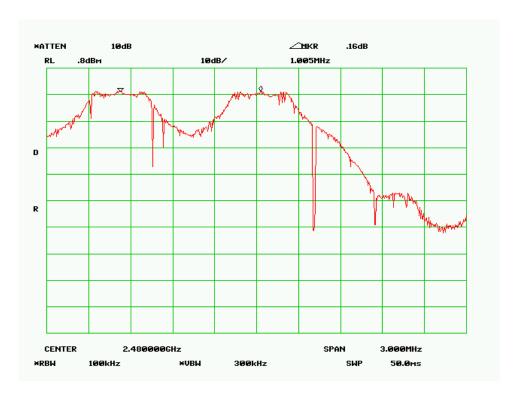
4 Test Date : February 25-29 2008


Tested By : Choon Sian Ooi

Requirement(s): 47 CFR §15.247(a)(1)


Procedures: The Channel Separation was measured conducted using a spectrum analyzer at low, mid, and hi channels.

Note: hopping channel carrier frequencies shall be separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel.


Channel	Channel Frequency (MHz)	Channel Separation (MHz)	20 dB Channel Bandwidth (KHz)	99% Channel Bandwidth (KHz)
Low	2402	1.010	860	845
Mid	2441	1.025	845	855
High	2480	1.005	865	860

Channel Separation - Low Channel

Channel Separation – Mid Channel

Channel Separation – High Channel

5.4 20dB & 99% Occupied Bandwidth

1. <u>Conducted Measurement</u>

EUT was set for low, mid, high channel with modulated mode and highest RF output power.

The spectrum analyzer was connected to the antenna terminal.

2 Environmental Conditions Temperature

Temperature 23°C Relative Humidity 50%

Atmospheric Pressure 1019mbar

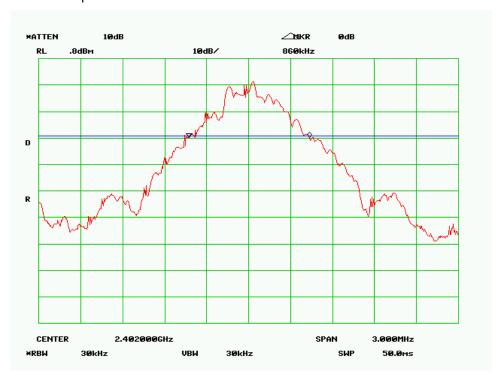
3 Conducted Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are

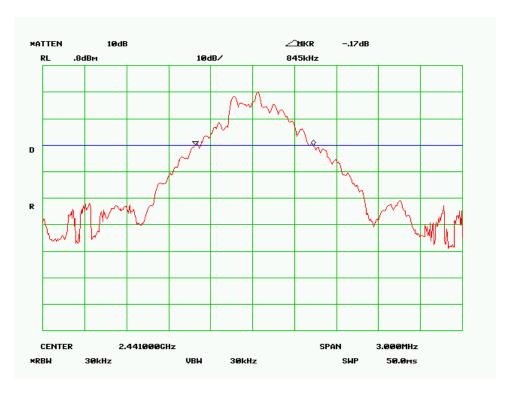
normal), with a coverage factor of 2, in the range 30MHz – 40GHz is ±1.5dB.

4 Test Date : February 25-29 2008

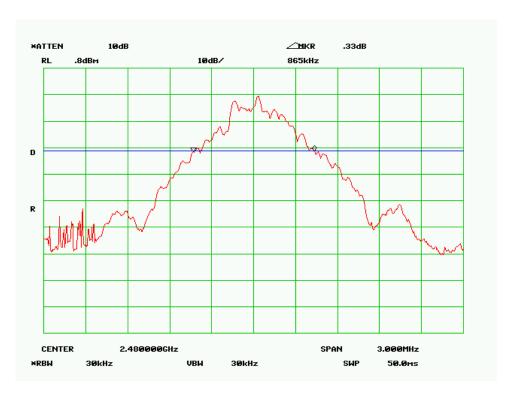
Tested By: Choon Sian Ooi

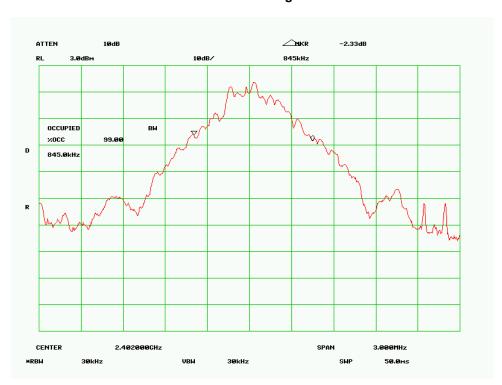

Requirement(s): 47 CFR §15.247(a)(1)

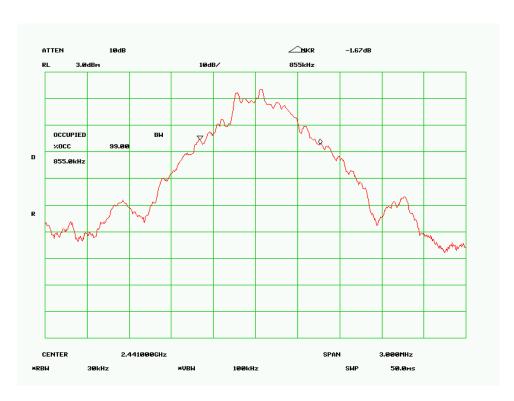
Procedures: The 20dB bandwidths were measured conducted using a spectrum analyzer at low, mid, and

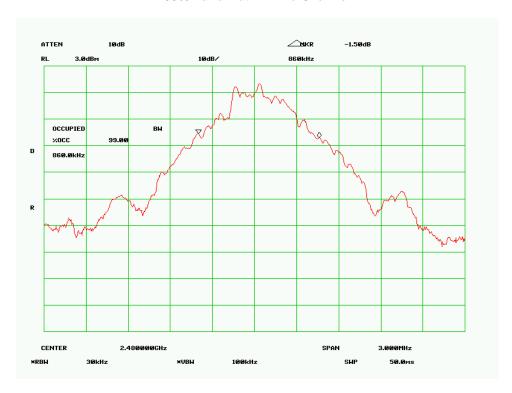

hi channels.

Channel	Channel Frequency (MHz)	20 dB Channel Bandwidth (KHz)	99% Bandwidth (KHz)
Low	2402	860	845
Mid	2441	845	855
High	2480	865	860


Refer to the attached plots.


20 dB Bandwidth - Low Channel


20 dB Bandwidth - Mid Channel


20 dB Bandwidth - High Channel

99% Bandwidth - Low Channel

99% Bandwidth - Mid Channel

99% Bandwidth - High Channel

5.10 Number of Hopping Channel

1. Conducted Measurement

EUT was set for low, mid, high channel with modulated mode and highest RF output power.

The spectrum analyzer was connected to the antenna terminal.

2 Conducted Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are

normal), with a coverage factor of 2, in the range 30MHz – 40GHz is ±1.5dB.

3 Environmental Conditions Temperature 23°C Relative Humidity 50%

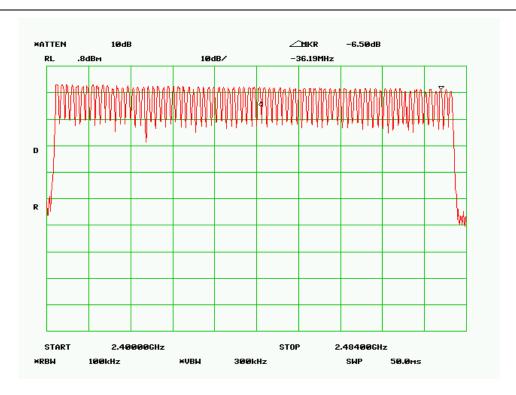
Atmospheric Pressure 1019mbar

4 Test Date : February 25-29 2008

Tested By: Choon Sian Ooi

Standard Requirement: 47 CFR §15.247(a)(1)

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.


Procedures: The Number of Hopping Channel measurement was taken conducted using a spectrum

analyzer.

RBW=100 KHz, VBW > RBW

Test Result:

Total Channel: 79 Channels

Number of Hopping Channel

5.10 Time of Occupancy

1. Conducted Measurement

EUT was set for low , mid, high channel with modulated mode and highest RF output power.

The spectrum analyzer was connected to the antenna terminal.

2 Conducted Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are

normal), with a coverage factor of 2, in the range 30MHz – 40GHz is ±1.5dB.

3 Environmental Conditions Temperature 23°C

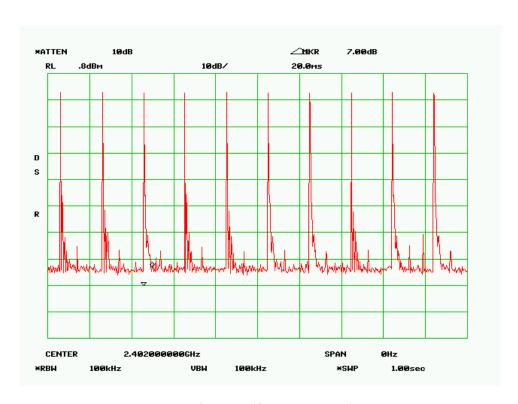
Relative Humidity 50% Atmospheric Pressure 1019mbar

4 Test Date : February 25-29 2008

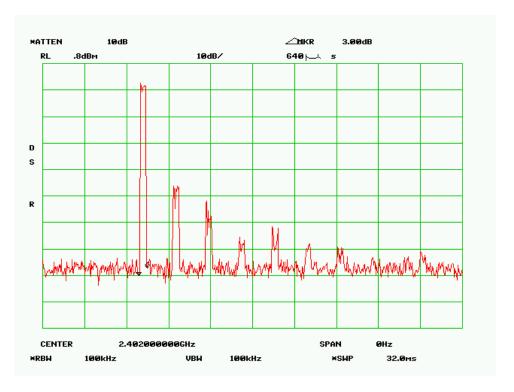
Tested By :Choon Sian Ooi

Standard Requirement: 47 CFR §15.247(a)(1)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used

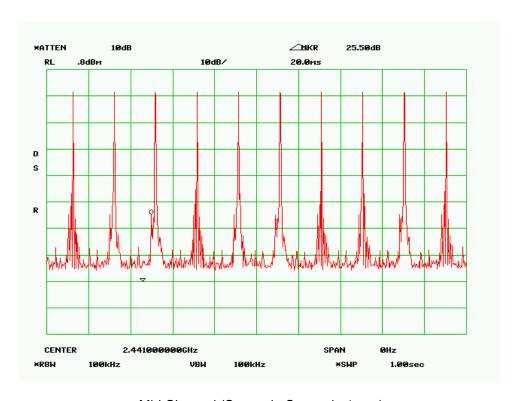

Procedures: The Time of Occupancy measurement was taken conducted using a spectrum analyzer.

Test Result:

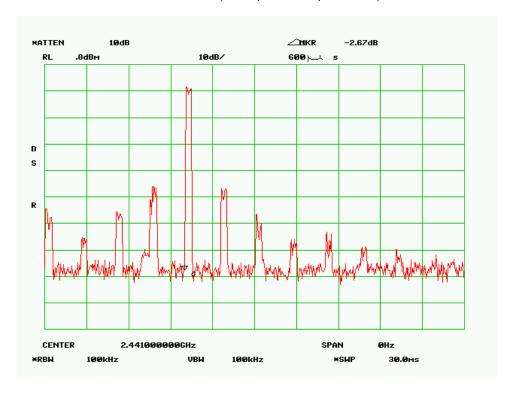

Channel	Channel Frequency (MHz)	Dwell Time (sec)	Limit (sec)
Low	2402	0.202	0.4
Mid	2441	0.189	0.4
High	2480	0.189	0.4

Note: Dwell Time = (0.64msec) * (number of times the specific channel on during 1 sec sweep) * (31.6 sec).

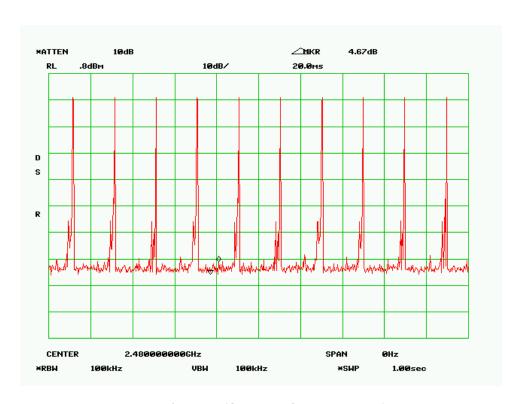
| Serial# | SL07021303-ZBR-007 (15.247)(ZBR4C/I | Issue Date | 21 February 2008 | Page | 34 of 67 | www.siemic.com

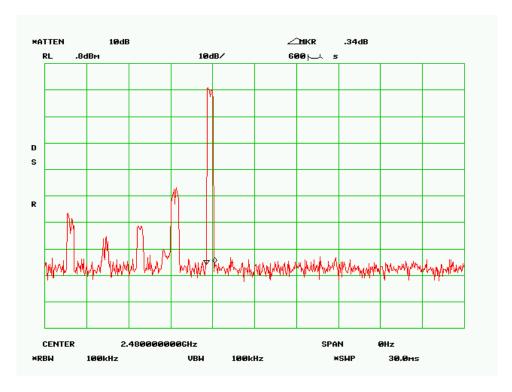


Low Channel (Sweep in 1 sec)



Low Channel (Sweep in 30msec)


| Serial# | SL07021303-ZBR-007 (15.247)(ZBR4C/I | Issue Date | 21 February 2008 | Page | 35 of 67 | www.siemic.com


Mid Channel (Sweep in Sweep in 1 sec)

Mid Channel (Sweep in 30msec)

High Channel (Sweep in Sweep in 1 sec)

High Channel (Sweep in 30msec)

5.10 Peak Output Power

1. Conducted Measurement

EUT was set for low, mid, high channel with modulated mode and highest RF output power.

The spectrum analyzer was connected to the antenna terminal.

2 Conducted Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are

normal), with a coverage factor of 2, in the range 30MHz - 40GHz is $\pm 1.5dB$.

3 Environmental Conditions Temperature 23°C Relative Humidity 50%

Atmospheric Pressure 1019mbar

4 Test Date : February 25-29 2008 Tested By :Choon Sian Ooi

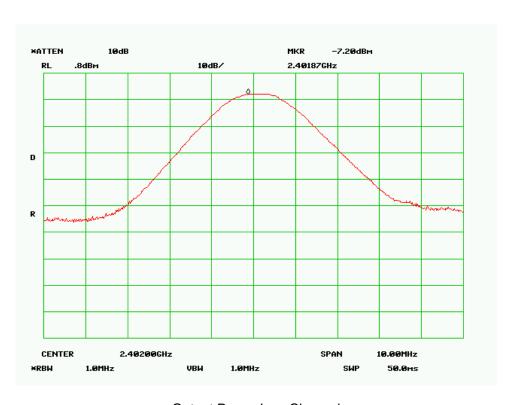
Standard Requirement: 47 CFR §15.247(b)

Procedures: The peak output power was measured conducted using a spectrum analyzer at low, mid,

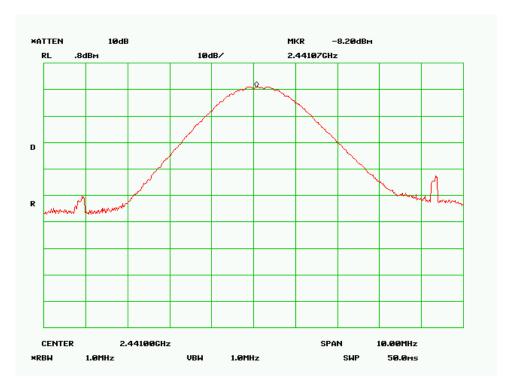
and hi channels. Peak detector was set to measure the power output. The power is

converted from watt to dBm, therefore, 1 watt = 30 dBm. The highest antenna gain that will

be used is 2.64 dBi.

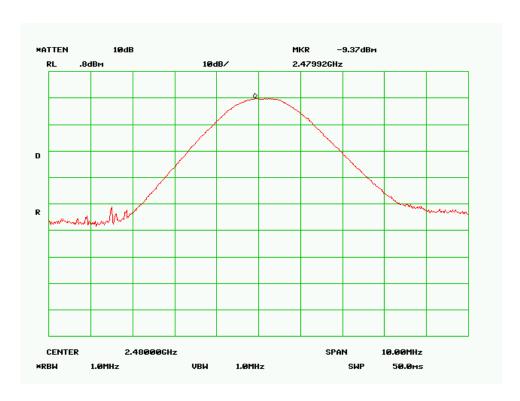

Note: For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least

75 non-overlapping hopping channels, and all frequency hopping systems in the 5725–5850


MHz band: 1 watt.

Test Result:

Channel	Channel Frequency (MHz)	Measured Output Power (dBm)	Peak Output Power Limit (dBm)
Low	2402	-7.20	30
Mid	2441	-8.20	30
High	2480	-9.37	30



Output Power Low Channel

Output Power Mid Channel

Serial#	SL07021303-ZBR-007 (15.247)(ZBR4CA)
Issue Date	21 February 2008
Page	39 of 67

Output Power High Channel

5.10 Antenna Port Emission

1. <u>Conducted Measurement</u>

EUT was set for low , mid, high channel with modulated mode and highest RF output power.

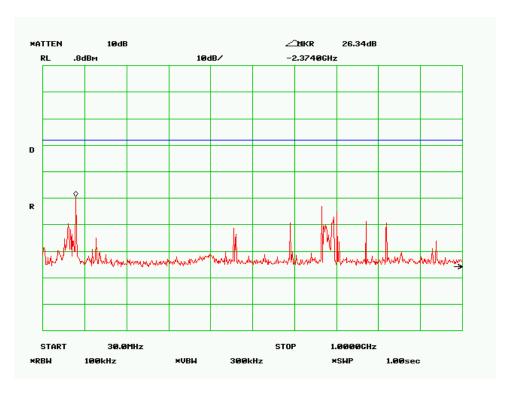
The spectrum analyzer was connected to the antenna terminal.

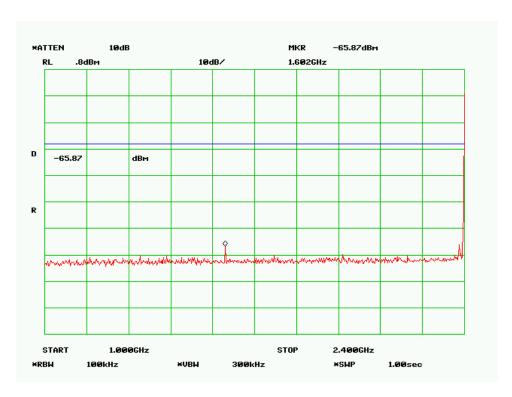
2 <u>Conducted Emissions Measurement Uncertainty</u>

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are

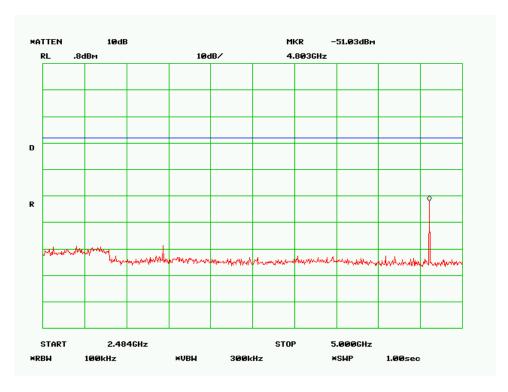
normal), with a coverage factor of 2, in the range 30MHz - 40GHz is ±1.5dB.

3 Environmental Conditions Temperature

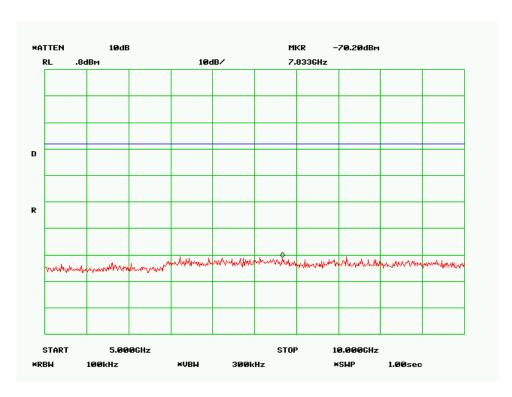

Relative Humidity 50% Atmospheric Pressure 1019mbar

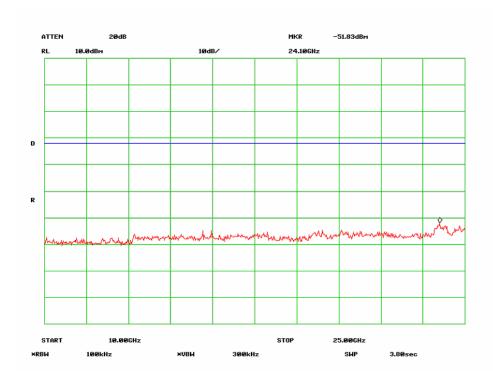

4 Test Date: February 25-29 2008 Tested By: Choon Sian Ooi

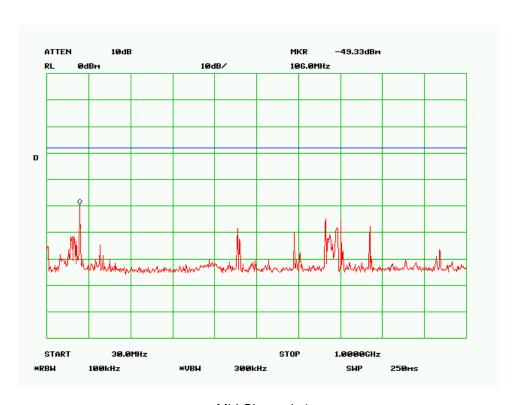
Standard Requirement: 47 CFR §15.247(d)

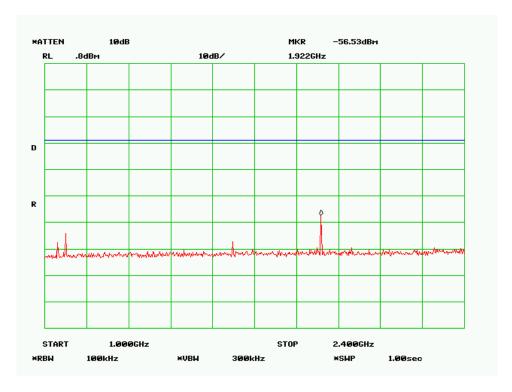

Procedures: The conducted spurious emissions were measured conducted using a spectrum analyzer at low, mid, and hi channels. The limit was determined by attenuating 20 dB of the RF peak power output

Test Result:

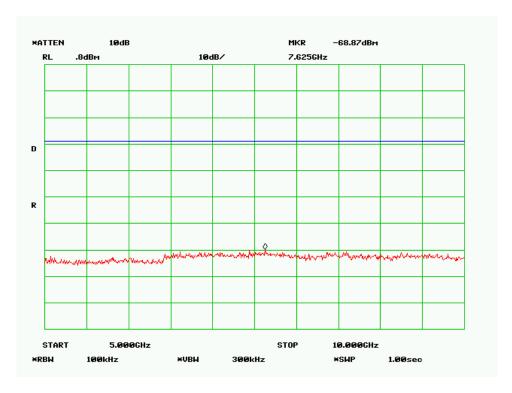


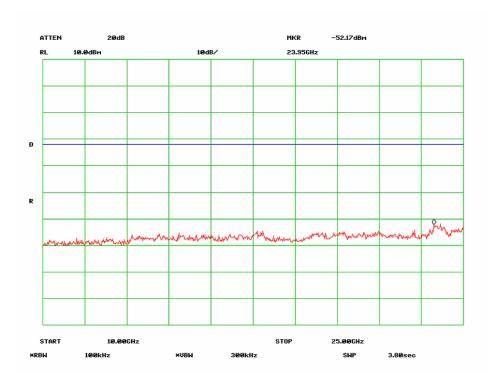

Low Channel -2

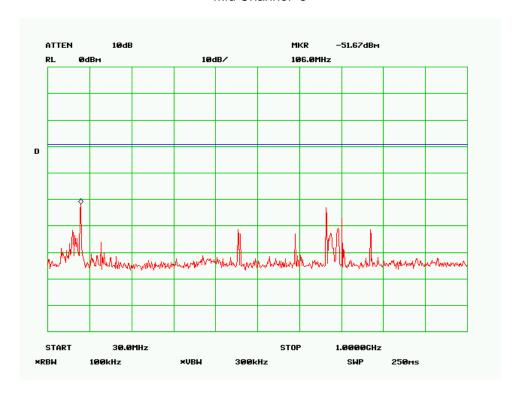

Low Channel -3


Low Channel -4

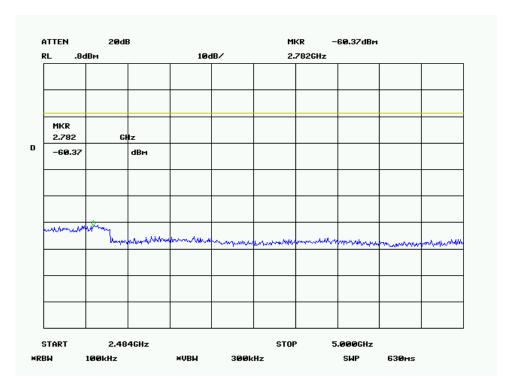

Low Channel -5

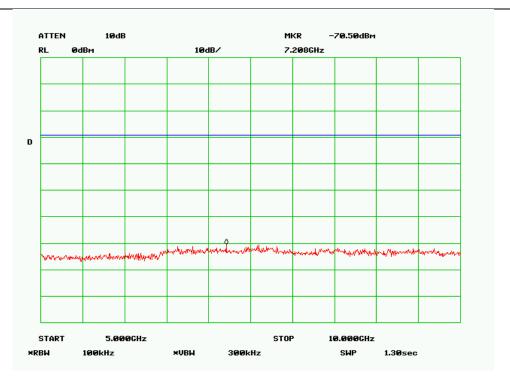

Mid Channel -1

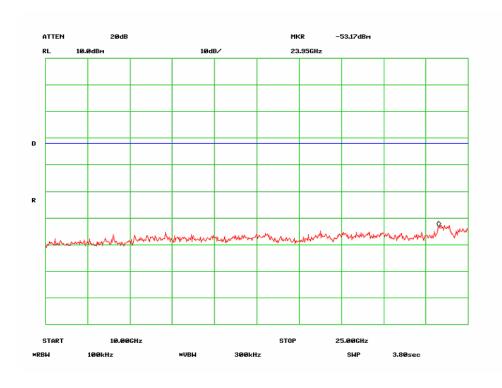

Mid Channel -2


Mid Channel -3

Mid Channel -4


Mid Channel -5


High Channel -1


High Channel -2

High Channel -3

High Channel -4

High Channel -5

- 1. All possible modes of operation were investigated. Only the 6 worst case emissions measured, using the correct CISPR detectors, are reported. All other emissions were relatively insignificant.
- 2. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
- 3. Radiated Emissions Measurement Uncertainty

 All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz 1GHz (QP only @ 3m & 10m) is +5.6dB/-4.5dB (for EUTs < 0.5m X 0.5m X 0.5m).

4 Environmental Conditions Temperature 23°C Relative Humidity 50%

Atmospheric Pressure 1019mbar

Test Date: February 25-29 2008 Tested By: Choon Sian Ooi

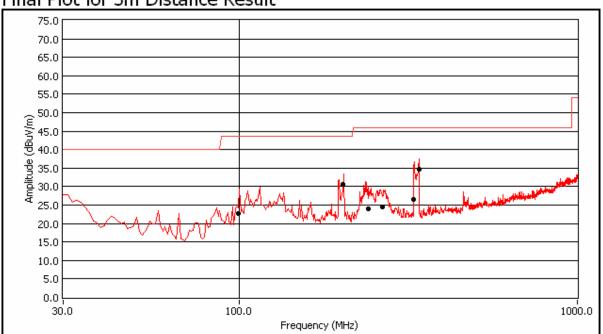
Standard Requirement: 47 CFR §15.247(d)

Procedures: Radiated emissions were measured according to ANSI C63.4. The EUT was set to transmit

at the highest output power. The EUT was set to transmit at mid channel. Note that setting the

channel other than mid, the spurious emissions are the same.

The limit is converted from microvolts/meter to decibel microvolts/meter.

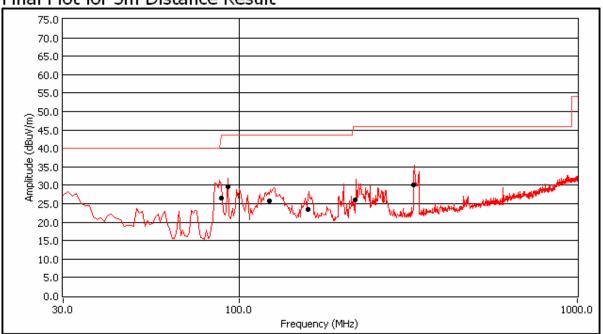

Sample Calculation: Corrected Amplitude = Raw Amplitude(dBµV/m) + ACF(dB) + Cable Loss(dB)

Test Result:

Radiated Emission Plot (Transmit Mode)

Host EUT: GX430t

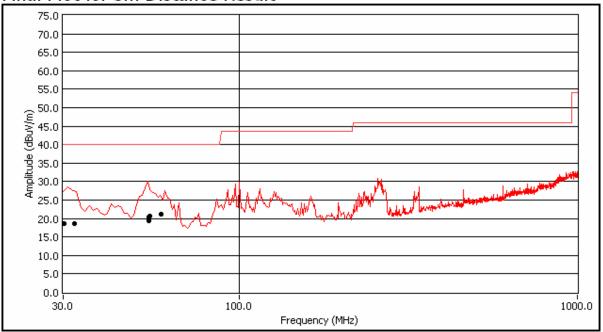
Final Plot for 3m Distance Result



Frequency (MHz)	Quasi-Peak (dBµV/m)	Antenna height (cm)	Polarity	Turntable position (deg)	Limit (dBµV/m)	Margin (dB)
339.10	37.53	100.00	Н	130.00	46.00	-8.47
340.07	37.14	100.00	Н	150.00	46.00	-8.86
328.40	36.82	100.00	Н	292.00	46.00	-9.18
203.02	33.53	100.00	Н	127.00	43.50	-9.97
327.43	35.12	100.00	Н	292.00	46.00	-10.88
338.12	34.86	100.00	Н	120.00	46.00	-11.14

Radiated Emission Plot (Transmit Mode)

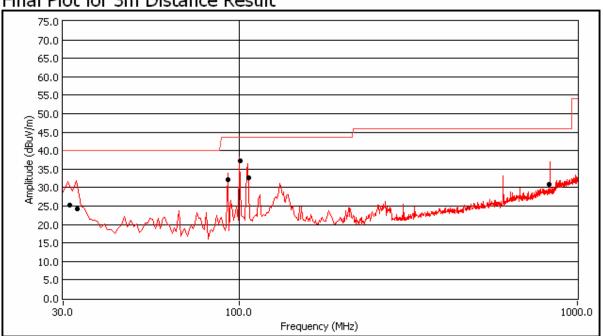
Host EUT: GX420t


Final Plot for 3m Distance Result

Frequency (MHz)	Quasi-Peak (dBµV/m)	Antenna height (cm)	Polarity	Turntable position (deg)	Limit (dBµV/m)	Margin (dB)
88.25	26.59	100.00	V	113.00	43.50	-16.91
122.43	25.81	100.00	V	52.00	43.50	-17.69
159.30	23.55	100.00	V	63.00	43.50	-19.95
328.40	30.01	100.00	Н	148.00	46.00	-15.99
219.78	26.44	248.00	Н	93.00	43.50	-17.06
92.21	29.59	251.00	V	23.00	43.50	-13.91

Host EUT: GX420d

Final Plot for 3m Distance Result

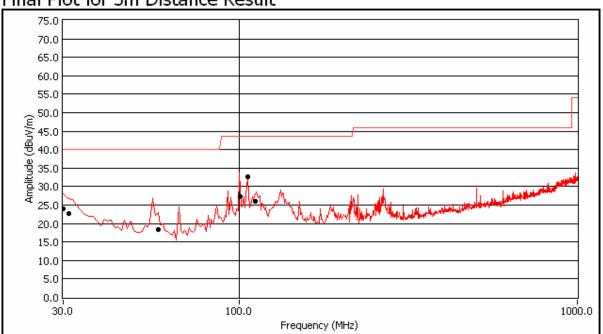


Frequency (MHz)	Quasi-Peak (dBµV/m)	Antenna height (cm)	Polarity	Turntable position (deg)	Limit (dBµV/m)	Margin (dB)
53.33	20.35	99.00	V	274.00	40.00	-19.65
32.47	18.64	99.00	V	52.00	40.00	-21.36
53.76	20.65	99.00	V	284.00	40.00	-19.35
58.60	19.42	99.00	V	355.00	40.00	-20.58
60.13	21.31	99.00	V	314.00	40.00	-18.69
31.94	18.70	99.00	V	304.00	40.00	-21.30

Radiated Emission Plot (Receive Mode)

Host EUT: GX430t

Final Plot for 3m Distance Result

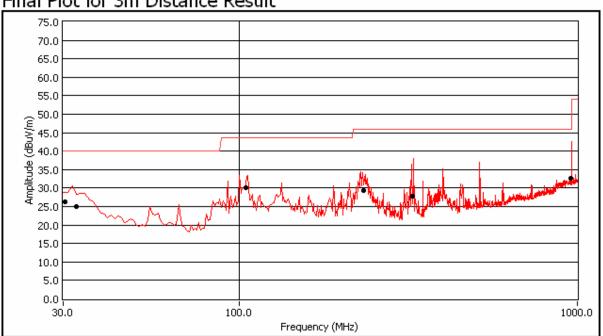


Frequency (MHz)	Quasi-Peak (dBµV/m)	Antenna height (cm)	Polarity	Turntable position (deg)	Limit (dBµV/m)	Margin (dB)
99.98	37.26	100	V	305.00	43.50	-6.24
105.82	32.80	100	Н	195.00	43.50	-10.70
32.92	24.24	100	V	132.00	40.00	-15.76
31.47	25.31	100	V	132.00	40.00	-14.69
830.90	30.92	102	Н	240.00	46.00	-15.08
92.30	32.02	100	Н	195.00	43.50	-11.48

Radiated Emission Plot (Received Mode)

Host EUT: GX420t

Final Plot for 3m Distance Result


Frequency (MHz)	Quasi-Peak (dBµV/m)	Antenna height (cm)	Polarity	Turntable position (deg)	Limit (dBµV/m)	Margin (dB)
99.98	27.32	100	V	205.00	43.50	-16.18
111.22	26.01	100	V	205.00	43.50	-17.49
30.00	24.82	100	V	143.00	40.00	-15.18
31.27	22.76	100	V	294.00	40.00	-17.24
105.74	32.72	100	V	195.00	43.50	-10.78
57.27	18.46	100	V	133.00	40.00	-21.54

Radiated Emission Plot (Receive Mode)

Host EUT: GX420d

Test Data

Final Plot for 3m Distance Result

Frequency (MHz)	Quasi-Peak (dBµV/m)	Antenna height (cm)	Polarity	Turntable position (deg)	Limit (dBµV/m)	Margin (dB)
956.43	32.70	100	Н	260.00	46.00	-13.30
325.06	27.81	100	V	142.00	46.00	-18.19
30.47	26.30	100	Н	78.00	40.00	-13.70
32.84	25.01	100	V	133.00	40.00	-14.99
104.32	30.16	100	V	285.00	43.50	-13.34
232.80	29.30	100	Н	124.00	46.00	-16.70

5.10 Radiated Spurious Emissions > 1GHz & Band Edge

- All possible modes of operation were investigated. Only the 6 worst case emissions measured, using the correct CISPR detectors, are reported. All other emissions were relatively insignificant.
- 2. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
- 3. Radiated Emissions Measurement Uncertainty
 All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 1GHz 40GH is +5.6dB/-4.5dB (for EUTs < 0.5m X 0.5m X 0.5m).

4. Environmental Conditions Temperature 23°C
Relative Humidity 50%
Atmospheric Pressure 1019mbar

Test Date: February 25-29 2008 Tested By: Choon Sian Ooi

Standard Requirement: 47 CFR §15.247(d)

Procedures: Equipment was setup in a semi-anechoic chamber. For measurements above 1 GHz an average measurement was taken with a 10Hz video bandwidth. The EUT was tested at low, mid and high with the highest output power. Investigated up to 10th harmonic of the operating frequency.

Sample Calculation:

EUT Field Strength = Raw Amplitude($dB\mu V/m$) – Amplifier Gain(dB) + Antenna Factor(dB) + Cable Loss(dB) + Filter Attenuation(dB, if used)

Test Result:

Host EUT :GX430t

@ 2402MHz @ 3 Meter

Frequency	Azimuth	Antenna	Height	Raw Amp.	Ant.Corr.	Cable	EUT Final Field	Limit	Delta	Detector
		Polarity		@ 1m	Factor	Loss	Strength	@ 3m		
(GHz)	(Degrees)	(H/V)	(m)	(dBuV)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(pk/avg)
4.804	180.00	٧	155.00	25.90	33.00	4.13	63.03	74.00	-10.98	Peak
4.804	180.00	h	155.00	26.16	33.00	4.13	63.29	74.00	-10.72	Peak
4.804	180.00	V	155.00	11.15	33.00	4.13	48.28	54.00	-5.73	Ave
4.804	180.00	h	155.00	12.38	33.00	4.13	49.51	54.00	-4.50	Ave
2.390	0.00	h	155.00	33.00	29.53	2.32	64.85	74.00	-9.15	Peak
2.390	0.00	h	155.00	8.50	29.53	2.32	40.35	54.00	-13.65	Ave

Emission was scanned up to 25GHz.

@ 2441MHz @ 3Meter

Frequency	Azimuth	Antenna	Height	Raw Amp.	Ant.Corr.	Cable	EUT Final Field	Limit	Delta	Detector
		Polarity		@ 1m	Factor	Loss	Strength	@ 3m		
(GHz)	(Degrees)	(H/V)	(m)	(dBuV)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(pk/avg)
4.884	180.00	V	155.00	25.62	33.00	4.13	62.75	74.00	-11.26	Peak
4.884	180.00	h	155.00	24.49	33.00	4.13	61.62	74.00	-12.39	Peak
4.884	180.00	V	155.00	11.16	33.00	4.13	48.29	54.00	-5.72	Ave
4.884	180.00	h	155.00	11.21	33.00	4.13	48.34	54.00	-5.67	Ave

Emission was scanned up to 25GHz.

@ 2480MHz @ 3Meter

Frequency	Azimuth	Antenna	Height	Raw Amp.	Ant.Corr.	Cable	EUT Final Field	Limit	Delta	Detector
		Polarity		@ 1m	Factor	Loss	Strength	@ 3m		
(GHz)	(Degrees)	(H/V)	(m)	(dBuV)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(pk/avg)
4.96	180.00	V	155.00	25.78	33.00	4.13	62.91	74.00	-11.10	Peak
4.96	180.00	h	155.00	25.75	33.00	4.13	62.88	74.00	-11.13	Peak
4.96	180.00	V	155.00	11.21	33.00	4.13	48.34	54.00	-5.67	Ave
4.96	180.00	h	155.00	11.57	33.00	4.13	48.70	54.00	-5.31	Ave
2.48	0.00	h	155.00	30.00	29.75	2.37	62.12	74.00	-11.88	Peak
2.48	0.00	h	155.00	8.20	29.75	2.37	40.32	54.00	-13.68	Ave

Emission was scanned up to 25GHz.

Host EUT: GX420t

@ 2402MHz @ 3 Meter

Frequency	Azimuth	Antenna	Height	Raw Amp.	Ant.Corr.	Cable	EUT Final Field	Limit	Delta	Detector
		Polarity		@ 1m	Factor	Loss	Strength	@ 3m		
(GHz)	(Degrees)	(H/V)	(m)	(dBuV)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(pk/avg)
4.80	180.00	V	155.00	25.56	33.00	4.13	62.69	74.00	-11.32	Peak
4.80	180.00	h	155.00	28.89	33.00	4.13	66.02	74.00	-7.99	Peak
4.80	180.00	V	155.00	11.23	33.00	4.13	48.36	54.00	-5.65	Ave
4.80	180.00	h	155.00	14.55	33.00	4.13	51.68	54.00	-2.33	Ave
2.39	0.00	h	155.00	33.70	29.53	2.32	65.82	74.00	-8.18	Peak
2.39	0.00	h	155.00	9.90	29.53	2.32	42.02	54.00	-11.98	Ave

Emission was scanned up to 25GHz.

@ 2441MHz @ 3Meter

Frequency	Azimuth	Antenna	Height	Raw Amp.	Ant.Corr.	Cable	EUT Final Field	Limit	Delta	Detector
		Polarity		@ 1m	Factor	Loss	Strength	@ 3m		
(GHz)	(Degrees)	(H/V)	(m)	(dBuV)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(pk/avg)
4.88	180.00	V	155.00	24.65	33.00	4.13	61.78	74.00	-12.23	Peak
4.88	180.00	h	155.00	25.93	33.00	4.13	63.06	74.00	-10.95	Peak
4.88	180.00	V	155.00	11.11	33.00	4.13	48.24	54.00	-5.77	Ave
4.88	180.00	h	155.00	12.11	33.00	4.13	49.24	54.00	-4.77	Ave

Emission was scanned up to 25GHz.

@ 2480MHz @ 3Meter

Frequency	Azimuth	Antenna	Height	Raw Amp.	Ant.Corr.	Cable	EUT Final Field	Limit	Delta	Detector
		Polarity		@ 1m	Factor	Loss	Strength	@ 3m		
(GHz)	(Degrees)	(H/V)	(m)	(dBuV)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(pk/avg)
4.96	180.00	V	155.00	25.02	33.00	4.13	62.15	74.00	-11.86	Peak
4.96	180.00	h	155.00	25.91	33.00	4.13	63.04	74.00	-10.97	Peak
4.96	180.00	V	155.00	11.20	33.00	4.13	48.33	54.00	-5.68	Ave
4.96	180.00	h	155.00	12.13	33.00	4.13	49.26	54.00	-4.75	Ave
2.48	0.00	h	155.00	31.12	29.75	2.37	63.12	74.00	-10.76	Peak
2.48	0.00	h	155.00	9.20	29.75	2.37	41.34	54.00	-12.66	Ave

Emission was scanned up to 25GHz.

Host EUT: GX420d

@ 2402MHz @ 3 Meter

Frequency	Azimuth	Antenna	Height	Raw Amp.	Ant.Corr.	Cable	EUT Final Field	Limit	Delta	Detector
		Polarity		@ 1m	Factor	Loss	Strength	@ 3m		
(GHz)	(Degrees)	(H/V)	(m)	(dBuV)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(pk/avg)
4.80	180.00	V	155.00	27.56	33.00	4.13	64.69	74.00	-9.32	Peak
4.80	180.00	h	155.00	29.87	33.00	4.13	67.00	74.00	-7.01	Peak
4.80	180.00	V	155.00	13.51	33.00	4.13	50.64	54.00	-3.37	Ave
4.80	180.00	h	155.00	14.61	33.00	4.13	51.74	54.00	-2.27	Ave
2.39	0.00	h	155.00	33.70	29.53	2.32	65.82	74.00	-8.18	Peak
2.39	0.00	h	155.00	9.90	29.53	2.32	42.02	54.00	-11.98	Ave

Emission was scanned up to 25GHz.

@ 2441MHz @ 3Meter

Frequency	Azimuth	Antenna	Height	Raw Amp.	Ant.Corr.	Cable	EUT Final Field	Limit	Delta	Detector
		Polarity		@ 1m	Factor	Loss	Strength	@ 3m		
(GHz)	(Degrees)	(H/V)	(m)	(dBuV)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(pk/avg)
4.88	180.00	V	155.00	25.44	33.00	4.13	62.57	74.00	-11.44	Peak
4.88	180.00	h	155.00	26.66	33.00	4.13	63.79	74.00	-10.22	Peak
4.88	180.00	V	155.00	11.13	33.00	4.13	48.26	54.00	-5.75	Ave
4.88	180.00	h	155.00	12.72	33.00	4.13	49.85	54.00	-4.16	Ave

Emission was scanned up to 25GHz.

@ 2480MHz @ 3Meter

Frequency	Azimuth	Antenna	Height	Raw Amp.	Ant.Corr.	Cable	EUT Final Field	Limit	Delta	Detector
		Polarity		@ 1m	Factor	Loss	Strength	@ 3m		
(GHz)	(Degrees)	(H/V)	(m)	(dBuV)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(pk/avg)
4.96	180.00	V	155.00	25.57	33.00	4.13	62.70	74.00	-11.31	Peak
4.96	180.00	h	155.00	25.75	33.00	4.13	62.88	74.00	-11.13	Peak
4.96	180.00	V	155.00	11.19	33.00	4.13	48.32	54.00	-5.69	Ave
4.96	180.00	h	155.00	11.70	33.00	4.13	48.83	54.00	-5.18	Ave
2.48	0.00	h	155.00	31.12	29.75	2.37	63.12	74.00	-10.76	Peak
2.48	0.00	h	155.00	9.20	29.75	2.37	41.34	54.00	-12.66	Ave

Emission was scanned up to 25GHz.

Annex A. TEST INSTRUMENT & METHOD

Annex A.i. TEST INSTRUMENTATION & GENERAL PROCEDURES

Instrument	Manufacturer	Model	CAL Due Date
Spectrum Analyzer	HP	8564E	05/01/2008
EMI Receiver	Rohde & Schwarz	ESIB 40	04/25/2008
R&S LISN	R&S	ESH2-Z5	04/27/2008
CHASE LISN	Chase	MN2050B	04/26/2008
Antenna(1 ~18GHz)	Emco	3115	08/17/2008
Antenna (30MHz~2GHz)	Sunol Sciences	JB1	10/04/2008
Chamber	Lingren	3m	09/28/2008
Pre-Amplifier(1 ~ 26GHz)	HP	8449	05/01/2008
DMM	Fluke	73111	05/01/2008
Variac	KRM	AEEC-2090	See Note
DMM	Fluke	51II	See Note
Horn Antenna (18~40GHz)	Com Power	AH-840	5/21/2008
Microwave Pre-Amp (18~40GHz)	Com Power	PA-840	5/21/2008

Note: No calibration required.

Annex A.ii. CONDUCTED EMISSIONS TEST DESCRIPTION

Test Set-up

- 1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m x 1m x 0.8m high, non-metallic table, as shown in <u>Annex B</u>.
- 2. The power supply for the EUT was fed through a $50\Omega/50\mu H$ EUT LISN, connected to filtered mains.
- 3. The RF OUT of the EUT LISN was connected to the EMI test receiver via a low-loss coaxial cable.
- 4. All other supporting equipments were powered separately from another main supply.

Test Method

- 1. The EUT was switched on and allowed to warm up to its normal operating condition.
- A scan was made on the NEUTRAL line (for AC mains) or Earth line (for DC power) over the required frequency range using an EMI test receiver.
- 3. High peaks, relative to the limit line, were then selected.
- 4. The EMI test receiver was then tuned to the selected frequencies and the necessary measurements made with a receiver bandwidth setting of 10 KHz. For FCC tests, only Quasi-peak measurements were made; while for CISPR/EN tests, both Quasi-peak and Average measurements were made.
- 5. Steps 2 to 4 were then repeated for the LIVE line (for AC mains) or DC line (for DC power).

Sample Calculation Example

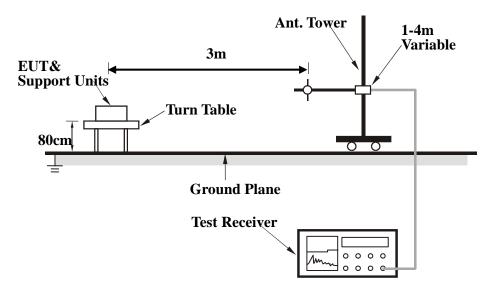
At 20 MHz $limit = 250 \mu V = 47.96 dB\mu V$

Transducer factor of LISN, pulse limiter & cable loss at 20 MHz = 11.20 dB

Q-P reading obtained directly from EMI Receiver = $40.00 \text{ dB}_{\mu}\text{V}$ (Calibrated for system losses)

Therefore, Q-P margin = 47.96 - 40.00 = 7.96 i.e. **7.96 dB below limit**

Annex A. iii RADIATED EMISSIONS TEST DESCRIPTION


EUT Characterisation

EUT characterisation, over the frequency range from 30MHz to 10th Harmonic , was done in order to minimise radiated emissions testing time while still maintaining high confidence in the test results.

The EUT was placed in the chamber, at a height of about 0.8m on a turntable. Its radiated emissions frequency profile was observed, using a spectrum analyzer /receiver with the appropriate broadband antenna placed 3m away from the EUT. Radiated emissions from the EUT were maximised by rotating the turntable manually, changing the antenna polarisation and manipulating the EUT cables while observing the frequency profile on the spectrum analyzer / receiver. Frequency points at which maximum emissions occurred, clock frequencies and operating frequencies were then noted for the formal radiated emissions test at the Open Area Test Site (OATS).

Test Set-up

- 1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m X 1.0m X 0.8m high, non-metallic table.
- 2. The filtered power supply for the EUT and supporting equipment were tapped from the appropriate power sockets located on the turntable.
- 3. The relevant broadband antenna was set at the required test distance away from the EUT and supporting equipment boundary.

Test Method

The following procedure was performed to determine the maximum emission axis of EUT:

- 1. With the receiving antenna is H polarization, rotate the EUT in turns with three orthogonal axes to determine the axis of maximum emission.
- 2. With the receiving antenna is V polarization, rotate the EUT in turns with three orthogonal axes to determine the axis of maximum emission.
- 3. Compare the results derived from above two steps. So, the axis of maximum emission from EUT was determined and the configuration was used to perform the final measurement.

Final Radiated Emission Measurement

- 1. Setup the configuration according to figure 1. Turn on EUT and make sure that it is in normal function.
- 2. For emission frequencies measured below 1 GHz, a pre-scan is performed in a shielded chamber to determine the accurate frequencies of higher emissions will be checked on a open test site. As the same purpose, for emission frequencies measured above 1 GHz, a pre-scan also be performed with a 1 meter measuring distance before final test.
- 3. For emission frequencies measured below and above 1 GHz, set the spectrum analyzer on a 100 kHz and 1 MHz resolution bandwidth respectively for each frequency measured in step 2.
- 4. The search antenna is to be raised and lowered over a range from 1 to 4 meters in horizontally polarized orientation. Position the highness when the highest value is indicated on spectrum analyzer, then change the orientation of EUT on test table over a range from $0 \circ 1360 \circ 1$
- 5. Repeat step 4 until all frequencies need to be measured were complete.
- 6. Repeat step 5 with search antenna in vertical polarized orientations.

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	Peak	100 kHz	100 kHz
Above 1000	Peak	1 MHz	1 MHz
Above 1000	Average	1 MHz	10 Hz

Sample Calculation Example

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. For the limit is employed average value, therefore the peak value can be transferred to average value by subtracting the duty factor. The basic equation with a sample calculation is as follows:

Peak = Reading + Corrected Factor

where

Corr. Factor = Antenna Factor + Cable Factor - Amplifier Gain (if any)

And the average value is

Average = Peak Value + Duty Factor or Set RBW = 1MHz, VBW = 10Hz.

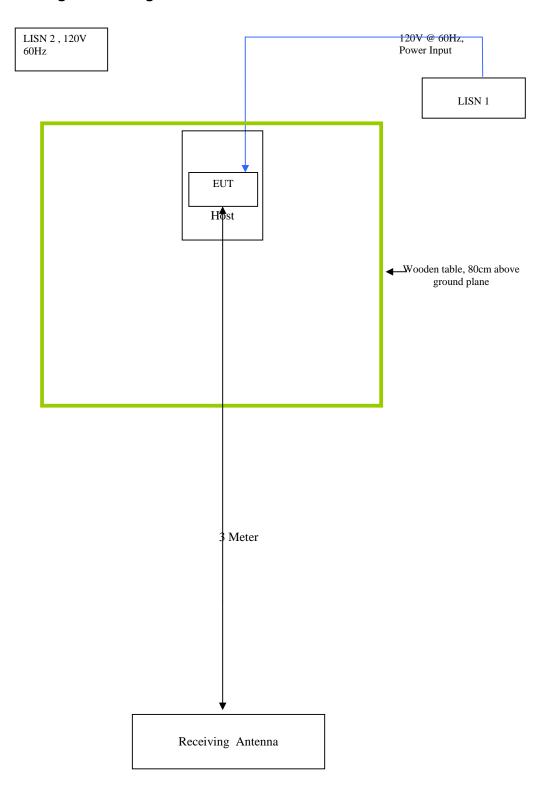
Note:

If the measured frequencies are fall in the restricted frequency band, the limit employed must be quasi peak value when frequencies are below or equal to 1 GHz. And the measuring instrument is set to quasi peak detector function.

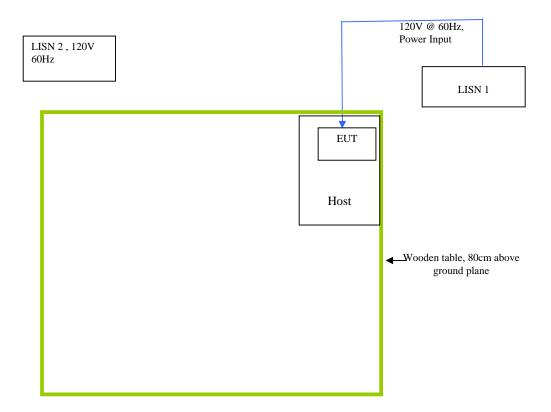
Annex B EUT AND TEST SETUP PHOTOGRAPHS

Please see the attachment

Annex C. TEST SETUP AND SUPPORTING EQUIPMENT


EUT TEST CONDITIONS

Annex C. i. SUPPORTING EQUIPMENT DESCRIPTION


The following is a description of supporting equipment and details of cables used with the EUT.

Equipment Description (Including Brand Name)	Model & Serial Number	Cable Description (List Length, Type & Purpose)
Laptop PC	IBM	Serial to USB Cable: 1meter.

Block Configuration Diagram for Radiated Emission

Block Configuration Diagram for Conducted Emission

Annex C.ii. EUT OPERATING CONDITIONS

The following is the description of how the EUT is exercised during testing.

Test	Description Of Operation
Emissions Testing	The EUT was controlled via PC Using manufacturer's program.
Others Testing	TX mode is normal mode with full power.

Annex D USER MANUAL, BLOCK & CIRCUIT DIAGRAM

Please see attachment