

FCC RADIO TEST REPORT

FCC ID	: I28-WYSBHVDXP
Equipment	: WLAN/BTLE module
Brand Name	: ZEBRA
Model Name	: WYSBHVDXP
Applicant	: Zebra Technologies Corporation 3 Overlook Point, LincoInshire, IL 60069, United States
Manufacturer	: Zebra Technologies Corporation 3 Overlook Point, Lincolnshire, IL 60069, United States
Standard	: FCC Part 15 Subpart C §15.247

The product was received on Jun. 27, 2023 and testing was performed from Jul. 11, 2023 to Aug. 01, 2023. We, Sporton International Inc. Wensan Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this variant report apply exclusively to the tested model / sample. Without written approval from Sporton International Inc. Wensan Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Approved by: Louis Wu

Sporton International Inc. Wensan Laboratory

No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.)

Page Number: 1 of 22Issue Date: Sep. 25, 2023Report Version: 01

Table of Contents

His	tory o	f this test report	3
Sur	nmary	of Test Result	4
1	Gene	ral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Product Specification of Equipment Under Test	6
	1.3	Modification of EUT	6
	1.4	Testing Location	6
	1.5	Applicable Standards	7
2	Test	Configuration of Equipment Under Test	8
	2.1	Carrier Frequency Channel	8
	2.2	Test Mode	9
	2.3	Connection Diagram of Test System	.11
	2.4	EUT Operation Test Setup	.11
	2.5	Measurement Results Explanation Example	.11
3	Test	Result	.12
	3.1	6dB and 99% Bandwidth Measurement	.12
	3.2	Output Power Measurement	.13
	3.3	Power Spectral Density Measurement	.14
	3.4	Conducted Band Edges and Spurious Emission Measurement	.15
	3.5	Radiated Band Edges and Spurious Emission Measurement	.16
	3.6	Antenna Requirements	.20
4	List c	of Measuring Equipment	.21
5	Meas	urement Uncertainty	.22
Арр	oendix	A. Conducted Test Results	
Арр	oendix	B. Radiated Spurious Emission	
Арр	pendix	C. Radiated Spurious Emission Plots	

- Appendix D. Duty Cycle Plots
- Appendix E. Setup Photographs

History of this test report

Report No.	Version	Description	Issue Date
FR0D2423-05B	01	Initial issue of report	Sep. 25, 2023

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(2)	6dB Bandwidth	Pass	-
3.1	2.1049	99% Occupied Bandwidth	Reporting only	-
3.2	15.247(b)(3) 15.247(b)(4)	Output Power	Pass	-
3.3	15.247(e)	Power Spectral Density	Pass	-
3.4	15.247(d)	Conducted Band Edges and Spurious Emission	Pass	-
3.5	15.247(d)	Radiated Band Edges and Spurious Emission	Pass	7.42 dB under the limit at 335.55 MHz
-	15.207	AC Conducted Emission	Not Required	-
3.6	15.203	Antenna Requirement	Pass	-

Note:

- 1. Not required means after assessing, test items are not necessary to carry out.
- This is a variant report by changing the Bluetooth antenna trace design and additionally assess Bluetooth and WLAN antennas. All the test cases were performed on original report which can be referred to Sporton Report Number FR0D2423-01B. Based on the original report, only worst case was verified.

Conformity Assessment Condition:

- The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account.
- 2. The measurement uncertainty please refer to each test result in the section "Measurement Uncertainty".

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Wei Chen Report Producer: Lucy Wu

1 General Description

1.1 Product Feature of Equipment Under Test

Product Feature				
Equipment	WLAN/BTLE module			
Brand Name	ZEBRA			
Model Name	WYSBHVDXP			
FCC ID	I28-WYSBHVDXP			
EUT supports Radios application	WLAN 11a/b/g/n HT20/HT40 WLAN 11ac VHT20/VHT40/VHT80 WLAN 11ax HE20/HE40/HE80 Bluetooth BR/EDR/LE			
HW Version	Revision G			
SW Version	17.68.01.p94			
EUT Stage	Identical Prototype			

Remark: The EUT's information above is declared by manufacturer.

Supported Unit Used in Test Configuration and System				
Test Fixture	Brand Name	ZEBRA	Model Name	P1129126-101
AC Adapter	Brand Name	ZEBRA	Model Name	FSP025-DYAA3
Bluetooth Antenna 1	Brand Name	gigaAnt	Model Name	3030A5645-01
Bluetooth Antenna 2	Brand Name	TAIYO YUDEN	Model Name	AH 168M245001
Bluetooth Antenna 3	Brand Name	Johanson Technology	Model Name	2450AT07A0100
Bluetooth Antenna 4	Brand Name	Laird	Model Name	RD2458-5
Bluetooth Antenna 5	Brand Name	Auden	Model Name	220370-09
Bluetooth Antenna 6	Brand Name	Auden	Model Name	A73009-00
Bluetooth Antenna 7	Brand Name	Auden	Model Name	B53026-90
WLAN Antenna 1	Brand Name	Laird	Model Name	RD2458-5
WLAN Antenna 2	Brand Name	Pulse	Model Name	W3006
WLAN Antenna 3	Brand Name	Auden	Model Name	220370-09
WLAN Antenna 4	Brand Name	Auden	Model Name	B91882-30
WLAN Antenna 5	Brand Name	Auden	Model Name	B53023-30
WLAN Antenna 6	Brand Name	Auden	Model Name	B53025-30

1.2 Product Specification of Equipment Under Test

Product Specification is subject to this standard				
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz			
Number of Channels	40			
Carrier Frequency of Each Channel	40 Channel (37 hopping + 3 advertising channel)			
Maximum Output Power to Antenna	3.20 dBm (0.0021 W) for 1Mbps 3.20 dBm (0.0021 W) for 2Mbps			
99% Occupied Bandwidth	1.001 MHz for 1Mbps 1.994 MHz for 2Mbps			
Antenna Type	 <3030A5645-01>: Monopole Antenna with gain 2.70 dBi <ah 168m245001="">: Monopole Antenna with gain 3.00 dBi</ah> <2450AT07A0100>: Monopole Antenna with gain 1.00 dBi <rd2458-5>: Dipole Antenna with gain 3.00 dBi</rd2458-5> <220370-09>: Monopole Antenna with gain 3.81 dBi <a73009-00>: Monopole Antenna with gain 3.20 dBi</a73009-00> <b53026-90>: Monopole Antenna with gain 5.50 dBi</b53026-90> 			
Type of Modulation Bluetooth LE : GFSK				

Remark: The EUT's information above is declared by manufacturer. Please refer to Disclaimer in report

summary.

1.3 Modification of EUT

No modifications made to the EUT during the testing.

1.4 Testing Location

Test Site	Sporton International Inc. Wensan Laboratory		
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855		
Test Site No.	Sporton Site No. TH05-HY. 03CH20-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW3786

1.5 Applicable Standards

According to the specifications declared by the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- + FCC KDB Publication No. 558074 D01 15.247 Meas Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

- 1. All the test items were validated and recorded in accordance with the standards without any modification during the testing.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	21	2444
	1	2404	22	2446
	2	2406	23	2448
	3	2408	24	2450
	4	2410	25	2452
	5	2412	26	2454
	6	2414	27	2456
	7	2416	28	2458
	8	2418	29	2460
	9	2420	30	2462
2400-2483.5 MHz	10 11	2422	31	2464
		2424	32	2466
	12	2426	33	2468
	13	2428	34	2470
	14	2430	35	2472
	15	2432	36	2474
	16	2434	37	2476
	17	2436	38	2478
	18	2438	39	2480
	19	2440	-	-
	20	2442	-	-

2.2 Test Mode

a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, the measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape), and adjusting the measurement antenna orientation, following C63.10 exploratory test procedures and only the worst case emissions were reported in this report.

The following summary table is showing all test modes to demonstrate in compliance with the standard.

	Summary table of Test Cases			
Test Item	Data Rate / Modulation			
		Bluetooth – LE / GFSK		
	Mode 1:	Bluetooth Tx CH00_2402 MHz_1Mbps		
Conducted	Mode 2:	Bluetooth Tx CH19_2440 MHz_1Mbps		
Test Cases	Mode 3:	Bluetooth Tx CH39_2480 MHz_1Mbps		
	Mode 4:	Bluetooth Tx CH00_2402 MHz_2Mbps		
	Mode 5:	Bluetooth Tx CH19_2440 MHz_2Mbps		
	Mode 6:	Bluetooth Tx CH39_2480 MHz_2Mbps		

Summary table of Test Cases				
Test Item	Data Rate / Modulation			
<eut (rd2458-5)="" antenna="" bluetooth="" with=""></eut>				
	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps			
	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps			
	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps			
	Mode 4: Bluetooth Tx CH00_2402 MHz_2Mbps			
	Mode 5: Bluetooth Tx CH19_2440 MHz_2Mbps			
Radiated Mode 6: Bluetooth Tx CH39_2480 MHz_2Mbps				
Test Cases <eut (b53026-90)="" antenna="" bluetooth="" with=""></eut>				
	Mode 7: Bluetooth Tx CH00_2402 MHz_1Mbps			
Mode 8: Bluetooth Tx CH19_2440 MHz_1Mbps				
Mode 9: Bluetooth Tx CH39_2480 MHz_1Mbps				
	Mode 10: Bluetooth Tx CH00_2402 MHz_2Mbps			
	Mode 11: Bluetooth Tx CH19_2440 MHz_2Mbps			
	Mode 12: Bluetooth Tx CH39_2480 MHz_2Mbps			
Remark:				
1. For Radiated Test Cases, the tests were performed with Bluetooth Antenna (RD2458-5) and				
Bluetooth A	etooth Antenna (B53026-90)			
2. For radiation	or radiation spurious emission, the modulation and the data rate picked for testing are			
determined	determined by the Max. RF conducted power.			

2.3 Connection Diagram of Test System

<Bluetooth - LE Tx Mode>

2.4 EUT Operation Test Setup

The RF test items, utility "Tool box Version 1.84" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.5 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example :

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10 dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

= 4.2 + 10 = 14.2 (dB)

3 Test Result

3.1 6dB and 99% Bandwidth Measurement

3.1.1 Limit of 6dB and 99% Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

3.1.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.1.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 6.9.3 (OBW) and 11.8.1 (6dB BW).
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz.
- 5. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1-5% of the emission bandwidth and set the Video bandwidth (VBW) \ge 3 * RBW.
- 6. Measure and record the results in the test report.

3.1.4 Test Setup

Spectrum Analyzer

3.1.5 Test Result of 6dB Bandwidth

Please refer to Appendix A.

3.1.6 Test Result of 99% Occupied Bandwidth

3.2 Output Power Measurement

3.2.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5 MHz, the limit for output power is 30 dBm. If transmitting antenna of directional gain greater than 6 dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

3.2.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.2.3 Test Procedures

- 1. For Average Power, the testing follows ANSI C63.10 Section 11.9.2.3.2 Method AVGPM-G
- 2. The RF output of EUT is connected to the power meter by RF cable and attenuator.
- 3. The path loss is compensated to the results for each measurement.
- 4. Set the maximum power setting and enable the EUT to transmit continuously.
- 5. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

3.2.5 Test Result of Average Output Power

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8 dBm in any 3 kHz band at any time interval of continuous transmission.

3.3.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.3.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 11.10.2 Method PKPSD.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz.
 Video bandwidth (VBW) = 10 kHz. In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6 dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- The Measured power density (dBm)/ 100 kHz is a reference level and is used as 20 dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

3.3.4 Test Setup

Spectrum Analyzer

3.3.5 Test Result of Power Spectral Density

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission

All harmonics/spurious must be at least 30 dB down from the highest emission level within the authorized band.

3.4.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.4.3 Test Procedure

- 1. The testing follows the ANSI C63.10 Section 11.11.3 Emission level measurement.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Set RBW = 100 kHz, VBW = 300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.4.4 Test Setup

3.4.5 Test Result of Conducted Band Edges Plots

Please refer to Appendix A.

3.4.6 Test Result of Conducted Spurious Emission Plots

3.5 Radiated Band Edges and Spurious Emission Measurement

3.5.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device is measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance	
(MHz)	(microvolts/meter)	(meters)	
0.009 - 0.490	2400/F(kHz)	300	
0.490 – 1.705	24000/F(kHz)	30	
1.705 – 30.0	30	30	
30 – 88	100	3	
88 – 216	150	3	
216 - 960	200	3	
Above 960	500	3	

3.5.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.5.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 11.12.1 Radiated emission measurements.
- 2. The EUT is arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT is placed on a turntable with 0.8 meter for frequency below 1 GHz and 1.5 meter for frequency above 1 GHz respectively above ground.
- 4. The EUT is set 3 meters away from the receiving antenna, which is mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. Radiated testing below 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading. When there is no suspected emission found and the emission level is with at least 6 dB margin against QP limit line, the position is marked as "-".
- 7. Radiated testing above 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading for scanning all frequencies. When there is no suspected emission found and the harmonic emission level is with at least 6 dB margin against average limit line, the position is marked as "-".
- 8. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW = 100 kHz for f < 1 GHz; VBW \ge RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW = 3 MHz for $f \ge 1$ GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

3.5.4 Test Setup

For radiated test below 30MHz

Spectrum Analyzer / Receiver

For radiated test above 18GHz

3.5.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which starts from 9 kHz to 30 MHz, is pre-scanned and the result which is 20 dB lower than the limit line is not reported.

There is adequate comparison measurement of both open-field test site and alternative test site -

semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result comes out very similar.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix B and C.

3.5.7 Duty Cycle

Please refer to Appendix D.

3.5.8 Test Result of Radiated Spurious Emission (30 MHz ~ 10th Harmonic)

Please refer to Appendix B and C.

3.6 Antenna Requirements

3.6.1 Standard Applicable

The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.6.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

4 List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
EMI Test Receiver	Keysight	N9038A	MY59053012	N/A	Nov. 18, 2022	Jul. 11, 2023~ Aug. 01, 2023	Nov. 17, 2023	Radiation (03CH20-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Sep. 20, 2022	Jul. 11, 2023~ Aug. 01, 2023	Sep. 19, 2023	Radiation (03CH20-HY)
Preamplifier	EMEC	EM18G40G	060715	18GHz~40GHz	Dec. 07, 2022	Jul. 11, 2023~ Aug. 01, 2023	Dec. 06, 2023	Radiation (03CH20-HY)
Controller	ChainTek	3000-1	N/A	Control Turn table & Ant Mast	N/A	Jul. 11, 2023~ Aug. 01, 2023	N/A	Radiation (03CH20-HY)
Antenna Mast	ChainTek	MBS-520-1	N/A	1m~4m	N/A	Jul. 11, 2023~ Aug. 01, 2023	N/A	Radiation (03CH20-HY)
Turn Table	ChainTek	T-200-S-1	N/A	0~360 Degree	N/A	Jul. 11, 2023~ Aug. 01, 2023	N/A	Radiation (03CH20-HY)
Signal Analyzer	Keysight	N9010B	MY60240520	N/A	Dec. 22, 2022	Jul. 11, 2023~ Aug. 01, 2023	Dec. 21, 2023	Radiation (03CH20-HY)
Bilog Antenna	TESEQ	CBL 6111D&00802N 1D01N-06	55606 & 08	30MHz~1GHz	Oct. 22, 2022	Jul. 11, 2023~ Aug. 01, 2023	Oct. 21, 2023	Radiation (03CH20-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	02360	1GHz-18GHz	Nov. 04, 2022	Jul. 11, 2023~ Aug. 01, 2023	Nov. 03, 2023	Radiation (03CH20-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	00994	18GHz-40GHz	Nov. 04, 2022	Jul. 11, 2023~ Aug. 01, 2023	Nov. 03, 2023	Radiation (03CH20-HY)
Preamplifier	COM-POWER	PAM-103	18020201	1MHz-1000MHz	Jan. 02, 2023	Jul. 11, 2023~ Aug. 01, 2023	Jan. 01, 2024	Radiation (03CH20-HY)
Amplifier	EMCI	EMC118A45SE	980792	N/A	Nov. 14, 2022	Jul. 11, 2023~ Aug. 01, 2023	Nov. 13, 2023	Radiation (03CH20-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	519229/2,8040 15/2,804027/2	N/A	Jan. 18, 2023	Jul. 11, 2023~ Aug. 01, 2023	Jan. 17, 2024	Radiation (03CH20-HY)
Hygrometer	TECPEL	DTM-303B	TP200728	N/A	Mar. 28, 2023	Jul. 11, 2023~ Aug. 01, 2023	Mar. 27, 2024	Radiation (03CH20-HY)
Software	Audix	N/A	RK-002156	N/A	N/A	Jul. 11, 2023~ Aug. 01, 2023	N/A	Radiation (03CH20-HY)
Hygrometer	TECPEL	DTM-303A	TP201996	N/A	Nov. 17, 2022	Jul. 25, 2023	Nov. 16, 2023	Conducted (TH05-HY)
Power Sensor	DARE	RPR3006W	16I00054SNO 12 (NO:113)	10MHz~6GHz	Dec. 13, 2022	Jul. 25, 2023	Dec. 12, 2023	Conducted (TH05-HY)
Signal Analyzer	Rohde & Schwarz	FSV40	101905	10Hz - 40GHz(amp)	Aug. 03, 2022	Jul. 25, 2023	Aug. 02, 2023	Conducted (TH05-HY)

5 Measurement Uncertainty

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	6 E dP
of 95% (U = 2Uc(y))	0.5 dB

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 6000 MHz)

Measuring Uncertainty for a Level of Confidence	4.2 dB
of 95% (U = 2Uc(y))	4.3 UD

Uncertainty of Radiated Emission Measurement (6000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	1 0 dB
of 95% (U = 2Uc(y))	4.0 UB

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5.4 dB
of 95% (U = 2Uc(y))	5.4 dB

Report Number : FR0D2423-05B

Appendix A. Test Result of Conducted Test Items

Test Engineer:	James Li	Temperature:	21~25	°C
Test Date:	2023/7/25	Relative Humidity:	51~54	%

	<u>TEST RESULTS DATA</u> <u>6dB and 99% Occupied Bandwidth</u>											
					99%		6dB BW					
Mod.	Data Rate	Nтx	CH.	Freq. (MHz)	Occupied BW (MHz)	6dB BW (MHz)	Limit (MHz)	Pass/Fail				
BLE	1Mbps	1	0	2402	0.999	0.658	0.50	Pass				
BLE	1Mbps	1	19	2440	1.001	0.658	0.50	Pass				
BLE	1Mbps	1	39	2480	1.001	0.658	0.50	Pass				

					<u>TEST </u> <u>Avera</u>	RESULTS ge Power	<u>DATA</u> Table			
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Average Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	1Mbps	1	0	2402	3.20	30.00	5.50	8.70	36.00	Pass
BLE	1Mbps	1	19	2440	3.10	30.00	5.50	8.60	36.00	Pass
BLE	1Mbps	1	39	2480	2.80	30.00	5.50	8.30	36.00	Pass

						<u>TEST i</u> <u>Peak</u>	RESULTS Power De	<u>DATA</u> ensity		
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail	
BLE	1Mbps	1	0	2402	3.18	2.37	5.50	8.00	Pass	
BLE	1Mbps	1	19	2440	2.99	2.19	5.50	8.00	Pass	
BLE	1Mbps	1	39	2480	2.73	1.93	5.50	8.00	Pass	

				<u>TEST RESULTS DATA</u> 6dB and 99% Occupied Bandw												
Mod.	Data Rate	Ντx	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail								
BLE	2Mbps	1	0	2402	1.990	1.168	0.50	Pass								
BLE	2Mbps	1	19	2440	1.994	1.168	0.50	Pass								
BLE	2Mbps	1	39	2480	1.994	1.168	0.50	Pass								

TEST RESULTS DATA Average Power Table

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Average Conducted Power (dBm)	Conducted Power DG Limit (dBi) (dBm)		EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	2Mbps	1	0	2402	3.20	30.00	5.50	8.70	36.00	Pass
BLE	2Mbps	1	19	2440	3.10	30.00	5.50	8.60	36.00	Pass
BLE	2Mbps	1	39	2480	2.80	30.00	5.50	8.30	36.00	Pass

TEST RESULTS DATA Peak Power Density

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail	
BLE	2Mbps	1	0	2402	3.16	-1.24	5.50	8.00	Pass	
BLE	2Mbps	1	19	2440	2.97	-1.43	5.50	8.00	Pass	
BLE	2Mbps	1	39	2480	2.71	-1.70	5.50	8.00	Pass	

6dB Bandwidth

<1Mbps>

<2Mbps>

99% Occupied Bandwidth

<1Mbps>

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

<2Mbps>

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

Power Spectral Density (dBm/3kHz)

<1Mbps>

<2Mbps>

Band Edge and Conducted Spurious Emission

<1Mbps>

Channel 19																		
100kHz PSD reference Level Plot										Middle Channel Plot								
Spectrum	<u>,</u>								Ē	I								
Ref Level	1 30.00 dBr 20 d	Offset	23.70 dB	RBW 100 k	Hz Hz Mode	Gwean			(v	1								
• Att • 1Pk Max	20 u	3 3 11	1 115	- VBW 300 K	m2 Mode	Sweep			2.00 dBm	1								
20 dBm-						1(1)	-	2.4402	254390 GHz									
10 d0m																		
10 080							M1											
0 dBm	~																	
-10 dBm																		
-20 dBm																		
-30 dBm																		
-40 dBm																		
-50 dBm																		
60 d8m																		
-60 dBm																		
CF 2.44 GH	lz			1001	l pts			Span	987.0 kHz									
	opt	Inou	3 LIII	133101	501	112~1		FIOL			opui	1003	Liinse		5112~20.	30121	101	
Spectrum	ı									Spectrun	, I							
Ref Level Att	l 30.00 dBr 20 d	n Offset 3 SWT	23.70 dB 30.1 ms	• RBW 100 k • VBW 300 k	Hz Hz Mode	Sweep				Ref Level	30.00 dBm 20 dB	Offset SWT	23.70 dB 👄 RI 255 ms 👄 VI	BW 100 kHz BW 300 kHz	Mode Sweep			
⊖1Pk View					M	1[1]			-42.84 dBm	●1Pk View					M1[1]		2	.72 dBm
20 dBm							+	82	2.5440 MHZ	20 dBm					M2[1]		-38	.66 dBm 880 GHz
10 dBm										10 dBm							-+	
0 dBm				<u> </u>						0 dBm								
-10 dBm-										-10 dBm								
-10 00111																		
-20 dBm	01 -27.010	dBm								-20 dBm	01 -27.010	dBm						
-30 dBm	01 -27.010			+						-30 dBm	01 -27.010	M2						
-40 dBm-			1				a de contacto	M3 Maria Maketa	distance of the s	-40 dBm	ا محملون أوراق	and the state		الانتاق وبالطباط	In the second second		Weighter, and	Malanad.
pedated bird		ale e la parila	iyo ada Tabladi iyo			1	n an	MAXIMUM OF A	a na th' air at sea an a	water dBm	and and a start of the start of	4,2,41	and Annual Bart Is.	and a standard and a standard and a standard	http://www.andiana		Market Contraction	Nillippeed,
-60 dBm										-60 dBm								
Start 30.0	MHz			3000	1 pts	Measu		ste	op 1.0 GHz	Start 1.0 G	Hz][30001 pt	s Measu	ring	Stop 26	5.5 GHz
Date: 25.JU	Date: 25.JUL.2023 22:11:05									Date: 25.JU	L.2023 2	2:11:32						1111

<2Mbps>

Channel 19							
100kHz PSD reference Level Plot	Middle Channel Plot						
Spectrum Image: Constraint of the second secon							
-30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -60 dBm -60 dBm -60 dBm Date: 25.JUL.2023 22:18:40							
Spurious Emission 30MHz~1GHz Plot	Spurious Emission 1GHz~26.5GHz Plot						
Snectrum	Spectrum						
RefLevel 30.00 dBm Offset 23.70 dB ● RBW 100 kHz Att 20 dB SWT 30.1 ms ● VBW 300 kHz	RefLevel 30.00 dBm Offset 23.70 dB ● RBW 100 kHz Att 20 dB SWT 255 ms ● VBW 300 kHz						
1Pk View 10 10	P1Pk View M1[1] 2.82 dBm 2.440280 GHz -38.79 dBm 6.988480 GHz						
10 dBm	10 dbm						
-20 d8m	-20 d8m 01 -27.030 d8m 01 -27.030 d8m						
-60 dBm	-60 dBm Btart 1.0 GHz 30001 pts Stop 26.5 GHz						
Date: 25.JUL.2023 22:10:59	Date: 25.JUL.2023 22:19:14						

Appendix B. Radiated Spurious Emission

Tost Engineer -	John Chuang, David Dai and Howard Huang	Temperature :	18.6~22.4°C
rest Engineer .	Sonn Chuang, David Dai and Howard Huang	Relative Humidity :	66.8~69.2%

<EUT with Bluetooth Antenna (RD2458-5)>

<1Mbps>

2.4GHz 2400~2483.5MHz

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MU-7)	(dBu)//m)		Line		Factor		Factor	Pos	Pos	Avg.	/⊔//
		2354.52	<u>(авруля)</u> 49.76	-24.24	<u>(аврула)</u> 74	(авру) 39.94	27.31	(UB) 18.56	36.05	310	(deg)	P	H
		2376.045	40.87	-13.13	54	30.97	27.35	18.6	36.05	310	69	Α	н
	*	2402	101.97	-	-	91.97	27.41	18.65	36.06	310	69	Р	н
	*	2402	101.41	-	-	91.41	27.41	18.65	36.06	310	69	Α	н
BLE													н
CH 00		2376.045	52.06	-21.94	74	42.16	27.35	18.6	36.05	395	12	Р	V
2402MHz		2376.045	41.7	-12.3	54	31.8	27.35	18.6	36.05	395	12	Α	V
	*	2402	98.1	-	-	88.1	27.41	18.65	36.06	395	12	Р	V
	*	2402	97.63	-	-	87.63	27.41	18.65	36.06	395	12	А	V
													V
		2381.36	50.13	-23.87	74	40.21	27.36	18.61	36.05	305	70	Р	н
		2376.08	40.99	-13.01	54	31.09	27.35	18.6	36.05	305	70	А	н
	*	2440	101.42	-	-	91.2	27.56	18.73	36.07	305	70	Р	н
	*	2440	100.94	-	-	90.72	27.56	18.73	36.07	305	70	А	н
515		2484.48	50.8	-23.2	74	40.33	27.74	18.82	36.09	305	70	Р	н
BLE		2492.64	41.14	-12.86	54	30.62	27.77	18.84	36.09	305	70	А	н
СП 19 2440МН 7		2354.32	49.72	-24.28	74	39.9	27.31	18.56	36.05	343	31	Р	V
244010112		2375.6	40.82	-13.18	54	30.92	27.35	18.6	36.05	343	31	А	V
	*	2440	97.75	-	-	87.53	27.56	18.73	36.07	343	31	Р	V
	*	2440	97.26	-	-	87.04	27.56	18.73	36.07	343	31	А	V
		2498.56	50.07	-23.93	74	39.52	27.79	18.85	36.09	343	31	Р	V
		2496.32	40.87	-13.13	54	30.33	27.79	18.84	36.09	343	31	А	V

	*	2480	100.6	-	-	90.15	27.72	18.81	36.08	296	67	Р	н
BLE CH 39 2480MHz	*	2480	100.13	-	-	89.68	27.72	18.81	36.08	296	67	А	Н
		2483.84	52.62	-21.38	74	42.15	27.74	18.82	36.09	296	67	Р	Н
		2488.36	42.62	-11.38	54	32.13	27.75	18.83	36.09	296	67	А	Н
51.5													Н
BLE													Н
CH 39	*	2480	96.87	-	-	86.42	27.72	18.81	36.08	300	29	Ρ	V
240010112	*	2480	96.4	-	-	85.95	27.72	18.81	36.08	300	29	А	V
		2484.44	50.72	-23.28	74	40.25	27.74	18.82	36.09	300	29	Р	V
		2487.76	41.35	-12.65	54	30.86	27.75	18.83	36.09	300	29	А	V
													V
													V
	1. N	o other spuriou	s found.										
Remark	2. Al	ll results are PA	SS against I	Peak and	Average lim	iit line.							

							/						
BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBuV/m)	(dB)	Line (dBuV/m)	Level (dBuV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		4804	45.1	-28.9	74	37.09	32.32	12.89	37.2	-	-	P	Η
													н
													н
													н
													н
													н
													н
													н
													н
													н
BLE CH 00													н
													н
		4804	43.54	-30.46	74	35.53	32.32	12.89	37.2	-	-	Р	V
2402MHz													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
	1		1	1	1		1		1			1	

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	(dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		4880	43.66	-30.34	74	35.15	32.66	13.11	37.26	-	-	Р	Н
		7320	48.75	-25.25	74	34.21	36.82	15.89	38.17	313	65	Р	н
		7320	39.34	-14.66	54	24.8	36.82	15.89	38.17	313	65	А	Н
													Н
													н
													н
													н
													Н
													Н
													Н
BLE CH 19 2440MHz													Н
													Н
		4880	44.36	-29.64	74	35.85	32.66	13.11	37.26	-	-	Р	V
-		7320	48.89	-25.11	74	34.35	36.82	15.89	38.17	384	11	Р	V
		7320	39.78	-14.22	54	25.24	36.82	15.89	38.17	384	11	Α	V
													V
													V
													V
													V
													V
													V
	<u> </u>												V
													V
													V

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
			(dDu)//m)		Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	(110.0)
		(MHZ)	(авµv/m)	(ab)	(авµv/m)	(GRHA)	(dB/m)	(ab)	(GB)	(cm)	(aeg)	(P/A)	(H/V) ⊔
		4960	44.43	-29.57	74	30.40	32.94	13.34	37.33	-	-	P	
		7440	47.43	-26.57	74	33.25	36.42	16.01	38.25	-	-	P	Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													н
													Н
BLE													Н
CH 39		4960	44.72	-29.28	74	35.77	32.94	13.34	37.33	-	-	Р	V
24801VIHZ		7440	47.3	-26.7	74	33.12	36.42	16.01	38.25	-	-	Ρ	V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
	1. No	o other spurious	s found.										
Daniel	2. All	results are PA	.SS against F	Peak and	l Average lim	it line.							
Remark	3. Th	e emission pos	sition marked	las "-" m	eans no sus	pected em	ission found	d with suff	icient mar	gin agai	inst limit	line or	noise
	flo	or only.											

<2Mbps>

2.4GHz 2400~2483.5MHz

				В	LE (Band	Edge @	3m)						
BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2385.6	50.23	-23.77	74	40.3	27.37	18.62	36.06	311	70	Ρ	Н
		2386.86	41.93	-12.07	54	32	27.37	18.62	36.06	311	70	А	Н
	*	2402	102.24	-	-	92.24	27.41	18.65	36.06	311	70	Р	Н
	*	2402	100.94	-	-	90.94	27.41	18.65	36.06	311	70	А	н
													н
													Н
2402MH-		2357.775	50.1	-23.9	74	40.26	27.32	18.57	36.05	400	13	Ρ	V
240211112		2375.94	42.45	-11.55	54	32.55	27.35	18.6	36.05	400	13	А	V
	*	2402	98.02	-	-	88.02	27.41	18.65	36.06	400	13	Ρ	V
	*	2402	96.7	-	-	86.7	27.41	18.65	36.06	400	13	А	V
													V
													V
		2351.6	49.64	-24.36	74	39.83	27.3	18.56	36.05	306	70	Р	Н
		2320.08	41.37	-12.63	54	31.62	27.3	18.49	36.04	306	70	А	Н
	*	2440	101.7	-	-	91.48	27.56	18.73	36.07	306	70	Р	н
	*	2440	100.39	-	-	90.17	27.56	18.73	36.07	306	70	А	Н
		2487.36	50.22	-23.78	74	39.74	27.75	18.82	36.09	306	70	Ρ	Н
		2490.64	41.54	-12.46	54	31.04	27.76	18.83	36.09	306	70	А	Н
СП 19 2440МН -		2347.92	50.19	-23.81	74	40.38	27.3	18.55	36.04	344	12	Ρ	V
2440101112		2376.08	42.93	-11.07	54	33.03	27.35	18.60	36.05	344	12	А	V
	*	2440	98.26		-	88.04	27.56	18.73	36.07	344	12	Ρ	V
	*	2440	96.95	-	-	86.73	27.56	18.73	36.07	344	12	А	V
		2499.76	50.62	-23.38	74	40.06	27.8	18.85	36.09	344	12	Ρ	V
		2493.36	41.51	-12.49	54	30.99	27.77	18.84	36.09	344	12	А	V

	*	2480	101.19	-	-	90.74	27.72	18.81	36.08	295	68	Р	н
BLE CH 39 2480MHz	*	2480	99.86	-	-	89.41	27.72	18.81	36.08	295	68	А	н
		2483.72	53.27	-20.73	74	42.81	27.73	18.82	36.09	295	68	Ρ	н
		2487	43.43	-10.57	54	32.95	27.75	18.82	36.09	295	68	А	Н
													Н
BLE CH 20													Н
СП 39 2480МН 7	*	2480	96.77	-	-	86.32	27.72	18.81	36.08	301	28	Ρ	V
24001112	*	2480	95.47	-	-	85.02	27.72	18.81	36.08	301	28	А	V
		2487.44	50.74	-23.26	74	40.26	27.75	18.82	36.09	301	28	Р	V
		2486	42.02	-11.98	54	31.55	27.74	18.82	36.09	301	28	А	V
													V
													V
Remark	1. No 2. Al	o other spurious	s found. SS against	Peak and	Average lin	nit line.							

							-						
BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	(dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		4804	46.16	-27.84	74	38.15	32.32	12.89	37.2	-	-	Р	Н
													н
													н
													н
													н
													н
													н
													н
													н
													н
BLE CH 00													н
													н
		4804	42.93	-31.07	74	34.92	32.32	12.89	37.2	-	-	Р	V
2402MHZ													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
	1		1	1	1	1	1	1	1		1	1	1

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBuV/m)	(dB)	Line (dBuV/m)	Level (dBuV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(н/v)
		4880	43.54	-30.46	74	35.03	32.66	13.11	37.26	-	-	P	H
		7320	49.55	-24.45	74	35.01	36.82	15.89	38.17	300	63	Р	н
		7320	39.89	-14.11	54	25.35	36.82	15.89	38.17	300	63	А	Н
													н
													Н
													Н
													н
													н
													н
													Н
BLE CH 19 2440MHz													Н
													Н
		4880	42.73	-31.27	74	34.22	32.66	13.11	37.26	-	-	Р	V
		7320	49.88	-24.12	74	35.34	36.82	15.89	38.17	400	19	Р	V
		7320	39.48	-14.52	54	24.94	36.82	15.89	38.17	400	19	А	V
													V
													V
													V
													V
													V
													V
													V
													V
													V

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
			(dBu)//m)		Line		Factor	Loss	Factor	Pos	Pos	Avg.	
		(WITZ)	(абр v/m) Л5 Л1	-28 59	(авµ v/m) 74	(авµv) 36.46	(GD/III)	(UD)	(UD) 37.33	(cm)	(deg)	(F/A)	<u>(п/v)</u> н
		7440	40.77	-20.09	74	20.40	02.94	10.04	07.00	-	-		
		7440	46.77	-21.23	74	32.59	36.42	16.01	38.25	-	-	Р	н
													н
													H
													Н
													Н
													Н
													Н
													Н
													Н
DI E													Н
													Н
2480MH-		4960	44.53	-29.47	74	35.58	32.94	13.34	37.33	-	-	Р	V
240010112		7440	47.85	-26.15	74	33.67	36.42	16.01	38.25	-	-	Р	V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
	1. No	o other spurious	s found.								<u> </u>	<u> </u>	<u>.</u>
	2. All	results are PA	SS against F	Peak and	Average lim	it line.							
Remark	3. Th	e emission pos	sition marked	las "-" m	eans no sus	pected emi	ission found	d with suff	icient mar	gin agai	nst limit	line or	noise
	flo	or only.											

Emission above 18GHz

2.4GHz BLE (SHF)

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		24986	42.6	-31.4	74	36.22	39.69	19.8	53.11	-	-	Р	Н
													Н
													Н
													Н
													Н
													Н
													Н
													н
													н
													Н
0.4011-													Н
Z.4GHZ													н
		24566	42.28	-31.72	74	36.4	39.67	19.57	53.36	-	-	Р	V
511													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
	1. Nc	o other spurious	s found.										
Remark	2. All	results are PA	SS against li	mit line.									
Komun	3. Th	e emission pos	sition marked	l as "-" m	eans no susp	pected em	ission found	d with suf	ficient mar	gin agai	nst limit	line or	noise
	flo	or only.											

Emission below 1GHz

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	4100
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		30.97	23.06	-16.94	40	33.34	24.17	1.31	35.76	-	-	Р	H
		62.01	22.22	-17.78	40	44.54	11.85	1.54	35.71	-	-	Р	Н
		335.55	38.58	-7.42	46	50.32	20.05	3.39	35.18	-	-	Р	Н
		662.44	29.77	-16.23	46	32.98	26.31	4.73	34.25	-	-	Ρ	Н
		792.42	33.36	-12.64	46	33.89	28.05	5.18	33.76	-	-	Р	Н
		952.47	35.64	-10.36	46	32.2	30.85	5.71	33.12	-	-	Р	н
													н
													н
													Н
													н
2 4011-													Н
Z.4GHZ													Н
JE		34.85	28.34	-11.66	40	40.48	22.38	1.24	35.76	-	-	Ρ	V
		62.01	23.1	-16.9	40	45.42	11.85	1.54	35.71	-	-	Ρ	V
		329.73	30.25	-15.75	46	42.17	19.91	3.37	35.2	-	-	Р	V
		494.63	30.54	-15.46	46	37.28	23.93	4.12	34.79	-	-	Р	V
		792.42	33.73	-12.27	46	34.26	28.05	5.18	33.76	-	-	Р	V
		949.56	35.32	-10.68	46	32.03	30.72	5.7	33.13	-	-	Р	V
													V
													V
													V
													V
													V
													V
	1. No	o other spurious	s found.										
Remark	2. All	results are PA	SS against li	mit line.									
	3. Th	e emission pos	sition marked	l as "-" m	eans no sus	pected err	nission foun	d and em	ission leve	el has at	t least 60	dB mai	rgin
	ag	ainst limit or er	mission is no	ise floor	only.								

2.4GHz BLE (LF)

<EUT with Bluetooth Antenna (B53026-90)>

<1Mbps>

2.4GHz 2400~2483.5MHz

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2311.575	50.09	-23.91	74	40.34	27.3	18.48	36.03	150	147	Ρ	Н
		2375.94	40.83	-13.17	54	30.93	27.35	18.6	36.05	150	147	А	Н
	*	2402	98.68	-	-	88.68	27.41	18.65	36.06	150	147	Ρ	Н
	*	2402	98.19	-	-	88.19	27.41	18.65	36.06	150	147	А	Н
													Н
													Н
2402MU-		2359.455	51.02	-22.98	74	41.18	27.32	18.57	36.05	400	183	Ρ	V
240211112		2376.15	40.79	-13.21	54	30.89	27.35	18.6	36.05	400	183	А	V
	*	2402	95.97	-	-	85.97	27.41	18.65	36.06	400	183	Ρ	V
-	*	2402	95.53	-	-	85.53	27.41	18.65	36.06	400	183	А	V
													V
													V
		2357.52	49.86	-24.14	74	40.02	27.32	18.57	36.05	100	143	Ρ	Н
		2376.08	40.52	-13.48	54	30.62	27.35	18.6	36.05	100	143	А	Н
	*	2440	98.23	-	-	88.01	27.56	18.73	36.07	100	143	Ρ	Н
	*	2440	97.78	-	-	87.56	27.56	18.73	36.07	100	143	А	Н
		2492.56	50.21	-23.79	74	39.69	27.77	18.84	36.09	100	143	Ρ	Н
		2490.96	40.74	-13.26	54	30.24	27.76	18.83	36.09	100	143	А	Н
2440MH 7		2373.52	50.38	-23.62	74	40.48	27.35	18.6	36.05	300	183	Ρ	V
244010112		2375.92	40.48	-13.52	54	30.58	27.35	18.6	36.05	300	183	А	V
	*	2440	95.96	-	-	85.74	27.56	18.73	36.07	300	183	Р	V
	*	2440	95.5	-	-	85.28	27.56	18.73	36.07	300	183	А	V
		2495.2	50.46	-23.54	74	39.93	27.78	18.84	36.09	300	183	Р	V
		2493.92	40.79	-13.21	54	30.26	27.78	18.84	36.09	300	183	А	V

		1					1		1				
	*	2480	97.5	-	-	87.05	27.72	18.81	36.08	300	147	Р	Н
	*	2480	96.97	-	-	86.52	27.72	18.81	36.08	300	147	А	Н
		2484.88	50.87	-23.13	74	40.4	27.74	18.82	36.09	300	147	Ρ	Н
		2487.6	41.71	-12.29	54	31.22	27.75	18.83	36.09	300	147	А	Н
51.5													Н
BLE													Н
	*	2480	94.64	-	-	84.19	27.72	18.81	36.08	300	178	Ρ	V
240010172	*	2480	94.18	-	-	83.73	27.72	18.81	36.08	300	178	А	V
		2487.88	50.76	-23.24	74	40.27	27.75	18.83	36.09	300	178	Ρ	V
		2497.68	40.98	-13.02	54	30.43	27.79	18.85	36.09	300	178	А	V
													V
													V
	1. N	o other spurious	s found.										
Remark	2. A	Il results are PA	SS against I	Peak and	Average lim	it line.							

					ι.		/						
BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	(dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		4804	43.52	-30.48	74	35.51	32.32	12.89	37.2	-	-	Р	Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													н
BLE													Н
CH 00		4804	43.02	-30.98	74	35.01	32.32	12.89	37.2	-	-	Р	V
240211112													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
	1		i.	1	1	1	1		1		1	1	

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	(dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		4880	43.48	-30.52	74	34.97	32.66	13.11	37.26	-	-	Р	Н
		7320	49.23	-24.77	74	34.69	36.82	15.89	38.17	100	252	Р	Н
		7320	39.47	-14.53	54	24.93	36.82	15.89	38.17	100	252	Α	Н
													Н
													н
													Н
													Н
													Н
													Н
													Н
DIE													Н
													Н
2440MHz		4880	44.81	-29.19	74	36.3	32.66	13.11	37.26	-	-	Р	V
244011112		7320	48.97	-25.03	74	34.43	36.82	15.89	38.17	100	49	Р	V
		7320	39.53	-14.47	54	24.99	36.82	15.89	38.17	100	49	Α	V
													V
													V
													V
													V
													V
													V
													V
													V
													V

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MLI)	(dBu)//m)		Line		Factor	Loss	Factor	Pos	Pos	Avg.	
		4960	(авµ v/m) 45.05	-28.95	(авµ v/m) 74	(авµv) 36.1	(db/m) 32 94	(UD)	(UD) 37 33	(cm)	(deg)	(F/A)	(п/v) Н
		7440	47.00	-20.33	74	22.00	02.04	10.04	07.00	_	_	- '	
		7440	47.86	-26.14	74	33.68	36.42	16.01	38.25	-	-	Р	н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
DI E													Н
													Н
2480MH-		4960	44.76	-29.24	74	35.81	32.94	13.34	37.33	-	-	Р	V
240010112		7440	47.79	-26.21	74	33.61	36.42	16.01	38.25	-	-	Р	V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
	1. No	o other spurious	s found.										
	2. All	results are PA	SS against F	Peak and	Average lim	it line.							
Remark	3. Th	e emission pos	sition marked	las "-" m	eans no sus	pected emi	ission found	d with suff	icient mar	gin agai	inst limit	line or	noise
	flo	or only.											

<2Mbps>

2.4GHz 2400~2483.5MHz

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2348.535	50.57	-23.43	74	40.76	27.3	18.55	36.04	150	148	Р	Н
		2376.045	41.39	-12.61	54	31.49	27.35	18.6	36.05	150	148	А	Н
	*	2402	98.61	-	-	88.61	27.41	18.65	36.06	150	148	Р	Н
	*	2402	97.27	-	-	87.27	27.41	18.65	36.06	150	148	А	Н
DIE													Н
DLC													н
CH 00		2380.56	50.43	-23.57	74	40.51	27.36	18.61	36.05	400	183	Р	V
240211112		2384.76	41.23	-12.77	54	31.3	27.37	18.62	36.06	400	183	А	V
	*	2402	96.03	-	-	86.03	27.41	18.65	36.06	400	183	Р	V
	*	2402	94.59	-	-	84.59	27.41	18.65	36.06	400	183	А	V
													V
													V
		2347.6	50.02	-23.98	74	40.21	27.3	18.55	36.04	150	146	Р	Н
		2375.76	41.18	-12.82	54	31.28	27.35	18.6	36.05	150	146	А	Н
	*	2440	98.23	-	-	88.01	27.56	18.73	36.07	150	146	Р	Н
	*	2440	96.9	-	-	86.68	27.56	18.73	36.07	150	146	А	Н
DIE		2487.6	50.43	-23.57	74	39.94	27.75	18.83	36.09	150	146	Р	Н
		2484.56	41.39	-12.61	54	30.92	27.74	18.82	36.09	150	146	А	Н
2440MH7		2342.32	50.25	-23.75	74	40.45	27.3	18.54	36.04	300	182	Р	V
244010112		2376.08	41.43	-12.57	54	31.53	27.35	18.6	36.05	300	182	А	V
	*	2440	95.79	-	-	85.57	27.56	18.73	36.07	300	182	Р	V
	*	2440	94.4	-	-	84.18	27.56	18.73	36.07	300	182	А	V
		2488	50.2	-23.8	74	39.71	27.75	18.83	36.09	300	182	Р	V
		2499.36	41.69	-12.31	54	31.13	27.8	18.85	36.09	300	182	А	V

				1			1	1		1		1	
	*	2480	97.67	-	-	87.22	27.72	18.81	36.08	150	147	Р	Н
	*	2480	96.36	-	-	85.91	27.72	18.81	36.08	150	147	А	Н
		2484	51.31	-22.69	74	40.84	27.74	18.82	36.09	150	147	Р	Н
		2487.16	42.27	-11.73	54	31.79	27.75	18.82	36.09	150	147	А	Н
													Н
BLE CH 20													Н
СП 39 2480МН 7	*	2480	94.57	-	-	84.12	27.72	18.81	36.08	300	179	Р	V
24001112	*	2480	93.26	-	-	82.81	27.72	18.81	36.08	300	179	А	V
		2491.04	50.18	-23.82	74	39.68	27.76	18.83	36.09	300	179	Р	V
		2487.84	41.85	-12.15	54	31.36	27.75	18.83	36.09	300	179	А	V
													V
													V
Remark	1. N 2 A	o other spurious	s found. SS against l	Peak and	Average lim	iit line							
	,		ee agamer	ountand	, worago iin								

					ι.		/						
BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	(dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		4804	43.63	-30.37	74	35.62	32.32	12.89	37.2	-	-	Ρ	Н
													Н
													Н
													н
													н
													н
													н
													н
													н
													н
													н
BLE													н
CH 00		4804	43.93	-30.07	74	35.92	32.32	12.89	37.2	-	-	Р	V
240211112													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBuV/m)	(dB)	Line (dBuV/m)	Level (dBuV)	Factor	Loss (dB)	Factor	Pos	Pos (deg)	Avg. (P/A)	(н/у)
		4880	44.35	-29.65	74	35.84	32.66	13.11	37.26	-	-	P	н
		7320	48.85	-25.15	74	34.31	36.82	15.89	38.17	100	241	Р	н
		7320	39.78	-14.22	54	25.24	36.82	15.89	38.17	100	241	А	н
													н
													Н
													н
													Н
													Н
													Н
													Н
													н
													н
2440MH 7		4880	43.71	-30.29	74	35.2	32.66	13.11	37.26	-	-	Р	V
244010112		7320	48.51	-25.49	74	33.97	36.82	15.89	38.17	100	128	Р	V
		7320	39.55	-14.45	54	25.01	36.82	15.89	38.17	100	128	А	V
													V
													V
													V
													V
													V
													V
													V
													V
													V

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBuV/m)	(dB)	Line (dBuV/m)	Level (dBuV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		4960	44.09	-29.91	74	35.14	32.94	13.34	37.33	-	-	P	H
		7440	47.1	-26.9	74	32.92	36.42	16.01	38.25	-	-	Р	Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
2480MH7		4960	44.65	-29.35	74	35.7	32.94	13.34	37.33	-	-	Р	V
24000012		7440	48.76	-25.24	74	34.58	36.42	16.01	38.25	100	17	Р	V
		7440	39.05	-14.95	54	24.87	36.42	16.01	38.25	100	17	А	V
													V
													V
													V
													V
													V
													V
													V
													V
													V
	1. Nc	o other spurious	s found.										
Remark	2. All	results are PA	SS against F	eak and	Average lim	it line.	ingion forma	1	liciont	ain a==:	not limit	line	noise
	s. in flo	e emission pos or only.	Sillon marked	ias - M	eans no sus	Jeclea em	ISSION TOUN(a with SUT	icient mar	yın agal	nstimit	ine or	noise

Emission above 18GHz

2.4GHz BLE (SHF)

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		24440	42.18	-31.82	74	36.67	39.46	19.5	53.45	-	-	Р	Н
													Н
													Н
													Н
													Н
													н
													Н
													Н
													Н
													н
													н
2.4GHz													н
BLE		24791.5	43.02	-30.98	74	36.94	39.62	19.69	53.23	-	-	Р	V
SHF													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													v
	1 No	o other spuriou	s found										v
	2. All	l results are PA	SS against li	mit line.									
Remark	3. Th	e emission pos	sition marked	las"-"m	eans no susi	pected em	ission found	d with suf	ficient mar	gin agai	inst limit	line or	noise
	flo	or only.								0			

Emission below 1GHz

			1			(/						
BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		30.97	23.67	-16.33	40	33.95	24.17	1.31	35.76	-	-	Р	Н
		62.01	21.81	-18.19	40	44.13	11.85	1.54	35.71	-	-	Р	Н
		457.77	30.97	-15.03	46	38.58	23.33	3.95	34.89	-	-	Р	Н
		525.67	31.64	-14.36	46	38.04	24.04	4.25	34.69	-	-	Р	Н
		741.01	31.48	-14.52	46	32.5	27.9	5.01	33.93	-	-	Р	Н
		955.38	35.15	-10.85	46	31.51	31.03	5.72	33.11	-	-	Р	Н
													Н
													Н
													Н
													Н
2 4 6 4 7													Н
BI F													Н
IF		35.82	29.25	-10.75	40	41.94	21.83	1.24	35.76	-	-	Р	V
LI		62.01	24.02	-15.98	40	46.34	11.85	1.54	35.71	-	-	Р	V
		310.33	24.82	-21.18	46	37.42	19.38	3.27	35.25	-	-	Р	V
		451.95	31.11	-14.89	46	38.91	23.17	3.93	34.9	-	-	Р	V
		754.59	32.26	-13.74	46	33.12	27.97	5.05	33.88	-	-	Р	V
		958.29	36.2	-9.8	46	32.48	31.1	5.72	33.1	-	-	Р	V
													V
													V
													V
													V
													V
													V
	1. No	o other spuriou	s found.										
Remark	2. All	results are PA	SS against li	mit line.									
	3. Th	e emission po	sition marked	las"-"m	ieans no sus	pected err	hission foun	d and em	ission leve	el has at	least 60	dB mai	rgin
	ag	ainst limit or er	mission is no	ise floor	only.								

2.4GHz BLE (LF)

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any					
	unwanted emissions shall not exceed the level of the fundamental frequency.					
!	Test result is Margin line.					
P/A	Peak or Average					
H/V	Horizontal or Vertical					

A calculation example for radiated spurious emission is shown as below:

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
BLE		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 00													
2402MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	A	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Margin (dB) = Level(dBµV/m) – Limit Line(dBµV/m)

For Peak Limit @ 2390MHz:

- 1. Level(dB μ V/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- = 55.45 (dBµV/m)
- 2. Margin (dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- = 43.54 (dBµV/m)
- 2. Margin (dB)
- = Level(dB μ V/m) Limit Line(dB μ V/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

Appendix C. Radiated Spurious Emission Plots

Tost Engineer -	John Chuang, David Dai and Howard Huang	Temperature :	18.6~22.4°C
rest Engineer .	Sonn Chuang, David Dai and Howard Huang	Relative Humidity :	66.8~69.2%

Note symbol

-L	Low channel location
-R	High channel location

<EUT with Bluetooth Antenna (RD2458-5)>

<1Mbps>

2.4GHz 2400~2483.5MHz

BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m					
	BLE CH19 2	2440MHz - R				
	Horizontal	Fundamental				
Peak	100 2011 2012 2013 1300 1	Left blank				
Avg.	Image: instantion Detter 2024 of 20 Image: instantion Detter 2024 of 2024 o	Left blank				

BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m					
	BLE CH19 2440MHz - R					
	Vertical	Fundamental				
Peak	A constraint of the second	Left blank				
Avg.	Merrison merr	Left blank				

<2Mbps>

2.4GHz 2400~2483.5MHz

BLE (Band Edge @ 3m)

BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m	
	BLE CH19 2	2440MHz - R
	Horizontal	Fundamental
Peak	10 101 201 27 13 13 14 14 14 14 14 14 14 15 15 15 15 15 15 15 15 15 16	Left blank
Avg.	Methoda and a state of the state of	Left blank

BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m	
	BLE CH19 2	2440MHz - R
	Vertical	Fundamental
Peak	<pre>set = set = s</pre>	Left blank
Avg.	Interview intervie	Left blank

2.4GHz 2400~2483.5MHz

BLE (Harmonic @ 3m)

Emission above 18GHz

2.4GHz BLE (SHF @ 1m)

Emission below 1GHz

2.4GHz BLE (LF)

<EUT with Bluetooth Antenna (B53026-90)>

<1Mbps>

2.4GHz 2400~2483.5MHz

BLE (Band Edge @ 3m)

BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m		
	BLE CH19 2440MHz - R		
	Horizontal	Fundamental	
Peak	<pre>bet:201.07.07</pre>	Left blank	
Avg.	<pre>emetabolic image im</pre>	Left blank	

BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m	
	BLE CH19 2	2440MHz - R
	Vertical	Fundamental
Peak	<pre></pre>	Left blank
Avg.	Image:	Left blank

2.4GHz 2400~2483.5MHz

BLE (Harmonic @ 3m)

<2Mbps>

2.4GHz 2400~2483.5MHz

BLE (Band Edge @ 3m)

BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m					
	BLE CH19 2440MHz - R					
	Horizontal	Fundamental				
Peak	<pre>executive function for the function of th</pre>	Left blank				
Avg.	<pre>important important i</pre>	Left blank				

BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m					
	BLE CH19 2440MHz - R					
	Vertical	Fundamental				
Peak	Image:	Left blank				
Avg.	minimum Difference difference Difference differe Differe	Left blank				

2.4GHz 2400~2483.5MHz

BLE (Harmonic @ 3m)

Emission above 18GHz

2.4GHz BLE (SHF @ 1m)

Emission below 1GHz

2.4GHz BLE (LF)

Appendix D. Duty Cycle Plots

<EUT with Bluetooth Antenna (RD2458-5)>

Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting
Bluetooth –LE for 1Mbps	61.66	386	2.59	2.7kHz
Bluetooth –LE for 2Mbps	32.59	204	4.90	5.1kHz

<EUT with Bluetooth Antenna (B53026-90)>

Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting
Bluetooth –LE for 1Mbps	61.54	384	2.60	2.7kHz
Bluetooth –LE for 2Mbps	32.21	201	4.98	5.1kHz

