

FCC RADIO TEST REPORT

FCC ID :	I28-WYSBHVDXP
Equipment :	WLAN/BTLE module
Brand Name :	ZEBRA
Model Name :	WYSBHVDXP
Applicant :	Zebra Technologies Corporation
	3 Overlook Point, Lincolnshire, IL 60069, United States
Manufacturer :	Zebra Technologies Corporation
	3 Overlook Point, Lincolnshire, IL 60069, United States
Standard :	FCC Part 15 Subpart C §15.247

The product was received on Jun. 24, 2021 and testing was started from Jul. 05, 2021 and completed on Jul. 14, 2021. We, Sporton International Inc. EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this variant report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Louis Win

Reviewed by: Louis Wu Sporton International Inc. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.)

Table of Contents

His	tory o	f this test report	3
Sur	nmary	of Test Result	4
1	Gene	ral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Product Specification of Equipment Under Test	6
	1.3	Modification of EUT	6
	1.4	Testing Location	6
	1.5	Applicable Standards	7
2	Test	Configuration of Equipment Under Test	8
	2.1	Carrier Frequency Channel	8
	2.2	Test Mode	9
	2.3	Connection Diagram of Test System	.12
	2.4	Support Unit used in test configuration and system	.12
	2.5	EUT Operation Test Setup	.12
3	Test	Result	.13
	3.1	Output Power Measurement	.13
	3.2	Radiated Band Edges and Spurious Emission Measurement	.15
	3.3	Antenna Requirements	.19
4	List o	f Measuring Equipment	20
5	Unce	rtainty of Evaluation	22
Арр	oendix	A. Radiated Spurious Emission	
Арр	oendix	B. Radiated Spurious Emission Plots	
Арр	pendix	C. Duty Cycle Plots	

Appendix D. Setup Photographs

History of this test report

Report No.	Version	Description	Issued Date
FR0D2423-01A	01	Initial issue of report	Jul. 22, 2021

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
-	15.247(a)(1)	Number of Channels	Not Required	-
-	15.247(a)(1)	Hopping Channel Separation	Not Required	-
-	15.247(a)(1)	Dwell Time of Each Channel	Not Required	-
-	15.247(a)(1)	20dB Bandwidth	Not Required	-
-	2.1049	99% Occupied Bandwidth	Not Required	-
3.1	15.247(b)(1)	Peak Output Power	Pass	-
-	15.247(d)	Conducted Band Edges	Not Required	-
-	15.247(d)	Conducted Spurious Emission	Not Required	-
3.2	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	Pass	Under limit 10.09 dB at 382.110 MHz
-	15.207	AC Conducted Emission	Not Required	-
3.3	15.203 & 15.247(b)	Antenna Requirement Pass		-

Note:

1. Not required means after assessing, test items are not necessary to carry out.

 This is a variant report by changing Bluetooth RF trace. All the test cases were performed on original report which can be referred to Sporton Report Number FR0D2423A. Based on the original report, the test cases were verified.

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Wei Chen Report Producer: Cindy Liu

1 General Description

1.1 Product Feature of Equipment Under Test

Product Feature				
Equipment	WLAN/BTLE module			
Brand Name	ZEBRA			
Model Name	WYSBHVDXP			
FCC ID	I28-WYSBHVDXP			
EUT supports Radios application	WLAN 11a/b/g/n HT20/HT40 WLAN 11ac VHT20/VHT40/VHT80 WLAN 11ax HE20/HE40/HE80 Bluetooth BR/EDR/LE			
HW Version	Revision F			
SW Version	17.68.01.p13			
EUT Stage	Identical Prototype			

Remark: The above EUT's information was declared by manufacturer.

Supported Unit Used in Test Configuration and System						
Printer	Brand Name	ZEBRA	Model Name	ZQ521		
Battery	Brand Name	ZEBRA	Part Number	P1089503-003		
AC Adapter	Brand Name	ZEBRA	Model Name	FSP025-DYAA3		
Bluetooth Antenna 1	Brand Name	gigaAnt	Model Name	3030A5645-01		
Bluetooth Antenna 2	Brand Name	TAIYO YUDEN	Model Name	AH 168M245001		
Bluetooth Antenna 3	Brand Name	Johanson Technology	Model Name	2450AT07A0100		
WLAN Antenna 1	Brand Name	Laird	Model Name	RD2458-5		
WLAN Antenna 2	Brand Name	Pulse	Model Name	W3006		
WLAN Antenna 3	Brand Name	Auden	Model Name	220370-09		
WLAN Antenna 4	Brand Name	Auden	Model Name	B91882-30		

1.2 Product Specification of Equipment Under Test

Product Specification subjective to this standard				
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz			
Number of Channels	79			
Carrier Frequency of Each Channel	2402+n*1 MHz; n=0~78			
	Bluetooth BR (1Mbps): 11.75 dBm / 0.0150 W			
Maximum Output Power to Antenna	Bluetooth EDR (2Mbps): 11.06 dBm / 0.0128 W			
	Bluetooth EDR (3Mbps): 11.33 dBm / 0.0136 W			
	<3030A5645-01>: Monopole Antenna with gain 2.7 dBi			
Antenna Type / Gain	<ah 168m245001="">: Monopole Antenna with gain 3.0 dBi</ah>			
	<2450AT07A0100>: Monopole Antenna with gain 1.0 dBi			
	Bluetooth BR (1Mbps) : GFSK			
Type of Modulation	Bluetooth EDR (2Mbps) : π /4-DQPSK			
	Bluetooth EDR (3Mbps) : 8-DPSK			

Remark: The above EUT's information was declared by manufacturer. Please refer to Comments and Explanations in report summary.

1.3 Modification of EUT

No modifications are made to the EUT during all test items.

1.4 Testing Location

Test Site	Sporton International Inc. EMC & Wireless Communications Laboratory
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978
Test Site No.	Sporton Site No.
Test Site NO.	TH02-HY
Test Site	Sporton International Inc. Wensan Laboratory
	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist.,
Test Site Location	Taoyuan City 333010, Taiwan (R.O.C.)
	TEL: +886-3-327-0868
	FAX: +886-3-327-0855
Test Site No.	Sporton Site No.
	03CH13-HY (TAF Code: 3786)
Remark	The Radiated Spurious Emission test item subcontracted to Sporton International Inc. Wensan Laboratory

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW1190 and TW3786

1.5 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
2400-2483.5 MHz	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

2.2 Test Mode

		Blue	tooth Average Output Po	ower	
Channel	Frequency		GFSK / 1Mbps		
DH1			DH3	DH5	
Ch00	2402MHz	<mark>11.69</mark> dBm	11.67 dBm	11.67 dBm	
Ch39	2441MHz	11.45 dBm	11.44 dBm	11.44 dBm	
Ch78	2480MHz	11.36 dBm	11.33 dBm	11.32 dBm	

		Blue	tooth Average Output Po	ower		
Channel Frequency π/4-DQPSK / 2Mbps						
		2DH1 2DH3 2DH5				
Ch00	2402MHz	<mark>8.66</mark> dBm	8.64 dBm	8.64 dBm		
Ch39	2441MHz	8.38 dBm	8.37 dBm	8.37 dBm		
Ch78	2480MHz	8.31 dBm	8.30 dBm	8.29 dBm		

	Bluetooth Average Output Power			ower		
Channel Frequency 8-DPSK / 3Mbps						
		3DH1 3DH3 3DH				
Ch00	2402MHz	<mark>8.68</mark> dBm	8.67 dBm	8.66 dBm		
Ch39	2441MHz	8.40 dBm	8.39 dBm	8.39 dBm		
Ch78	2480MHz	8.32 dBm	8.31 dBm	8.30 dBm		

		Bluetooth Peak Output Power					
Channel	Frequency	GFSK / 1Mbps					
		DH1	DH3	DH5			
Ch00	2402MHz	<mark>11.75</mark> dBm	11.74 dBm	11.74 dBm			
Ch39	2441MHz	11.51 dBm	11.50 dBm	11.50 dBm			
Ch78	2480MHz	11.42 dBm	11.41 dBm	11.40 dBm			

		Bluetooth Peak Output Power π/4-DQPSK / 2Mbps					
Channel	Frequency						
		2DH1	2DH3	2DH5			
Ch00	2402MHz	<mark>11.06</mark> dBm	11.05 dBm	11.05 dBm			
Ch39	2441MHz	10.80 dBm	10.79 dBm	10.79 dBm			
Ch78	2480MHz	10.69 dBm	10.68 dBm	10.67 dBm			

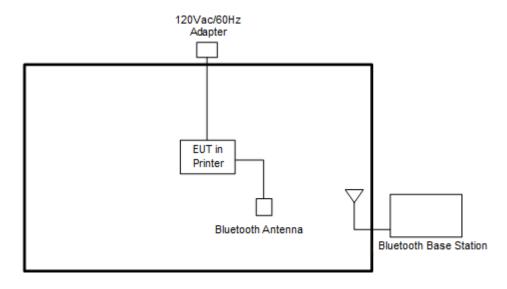
		Bluetooth Peak Output Power 8-DPSK / 3Mbps					
Channel	Frequency						
		3DH1	3DH3	3DH5			
Ch00	2402MHz	<mark>11.33</mark> dBm	11.32 dBm	11.32 dBm			
Ch39	2441MHz	11.07 dBm	11.06 dBm	11.06 dBm			
Ch78	2480MHz	10.97 dBm	10.96 dBm	10.96 dBm			

Remark: The data rate was set in 1Mbps for all the test items due to the highest RF output power.

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). The measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in two antenna polarization (Horizontal and Vertical), and adjusting the measurement antenna orientation, following C63.10 exploratory test procedures and find Ant. Horizontal as worst plane, and the worst mode of radiated spurious emissions is Bluetooth 1Mbps mode, and recorded in this report.

The following summary table is showing all test modes to demonstrate in compliance with the standard.

	Summary table of Test Cases					
Test Item	Data Rate / Modulation					
	Bluetooth BR 1Mbps GFSK					
Radiated	Mode 1: CH00_2402 MHz					
Test Cases	Mode 2: CH39_2441 MHz					
	Mode 3: CH78_2480 MHz					
Remark:						


1. For Radiated Test Cases, the worst mode data rate 1Mbps was reported only since the highest RF output power in the preliminary tests. The conducted spurious emissions and conducted band edge measurement for other data rates were not worse than 1Mbps, and no other significantly frequencies found in conducted spurious emission.

2. For Radiated Test Cases, the tests were performed with Bluetooth Antenna (AH 168M245001).

2.3 Connection Diagram of Test System

<Bluetooth Tx Mode>

2.4 Support Unit used in test configuration and system

ltem	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Bluetooth Base Station	R&S	CBT32	N/A	N/A	Unshielded, 1.8 m

2.5 EUT Operation Test Setup

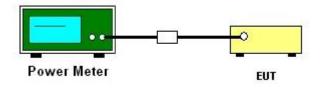
The RF test items, utility "Toolbox_Version 1.84" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to contact with base station to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

3 Test Result

3.1 Output Power Measurement

3.1.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.


3.1.2 Measuring Instruments

See list of measuring equipment of this test report.

3.1.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.1.4 Test Setup

3.1.5 Test Result of Peak Output Power

Test Enginee	ar · Es	ason Huang		Temperature :	21~25 ℃
		ason naang		Relative Humidity :	51~54%
DH	CH.	Νтх	Peak Power (dBm)	Power Limit (dBm)	Test Result
	0	1	11.75	20.97	Pass
DH1	39	1	11.51	20.97	Pass
	78	1	11.42	20.97	Pass
2DH	CH.	Νтх	Peak Power (dBm)	Power Limit (dBm)	Test Result
	0	1	11.06	20.97	Pass
2DH1	39	1	10.80	20.97	Pass
	78	1	10.69	20.97	Pass
3DH	CH.	Νтх	Peak Power (dBm)	Power Limit (dBm)	Test Result
	0	1	11.33	20.97	Pass
3DH1	39	1	11.07	20.97	Pass
	78	1	10.97	20.97	Pass

3.1.6 Test Result of Average Output Power (Reporting Only)

Test Enginee	er: E	Eason Huang	Temperate Relative H		21~25℃ 51~54%
			Relative I	iumany .	51~5476
DH	CH.	Νтх	Average Power (dBm)	Dut	y Factor (dB)
	0	1	11.69		5.13
DH1	39	1	11.45		5.13
	78	1	11.36		5.13
2DH	CH.	Ντχ	Average Power (dBm)	Dut	y Factor (dB)
	0	1	8.66		5.08
2DH1	39	1	8.38		5.08
	78	1	8.31		5.08
3DH	CH.	Νтх	Average Power (dBm)	Dut	y Factor (dB)
	0	1	8.68		5.08
3DH1	39	1	8.40		5.08
	78	1	8.32		5.08

3.2 Radiated Band Edges and Spurious Emission Measurement

3.2.1 Limit of Radiated Band Edges and Spurious Emission

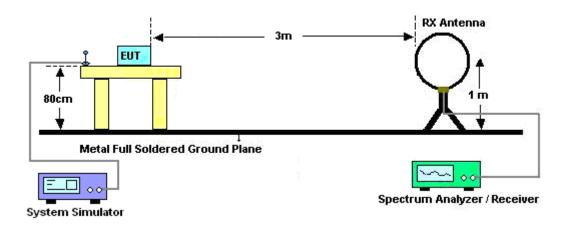
In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics / spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 - 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

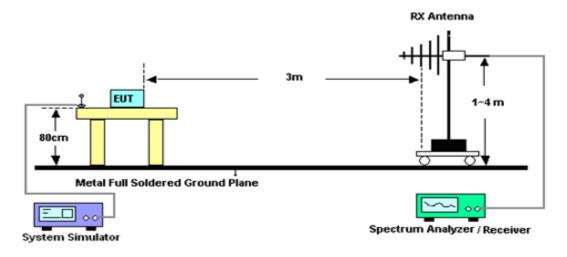
3.2.2 Measuring Instruments

See list of measuring equipment of this test report.

3.2.3 Test Procedures

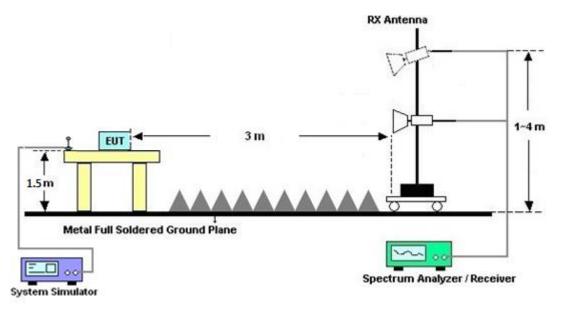

- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1 GHz and 1.5 meter for frequency above 1 GHz respectively above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set the maximum power setting and enable the EUT to transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW = 100 kHz for f < 1 GHz, RBW = 1 MHz for f>1 GHz ; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c). Duty cycle = On time/100 milliseconds On time = N₁*L₁+N₂*L₂+...+N_{n-1}*LN_{n-1}+N_n*L_n Where N₁ is number of type 1 pulses, L₁ is length of type 1 pulses, etc. Average Emission Level = Peak Emission Level + 20*log(Duty cycle)
- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. For testing below 1 GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 8. For testing above 1 GHz, the emission level of the EUT in peak mode was 20 dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (-24.76dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.



3.2.4 Test Setup

For radiated test below 30MHz


For radiated test from 30MHz to 1GHz

TEL : 886-3-327-3456	Page Number	: 17 of 22
FAX : 886-3-328-4978	Issued Date	: Jul. 22, 2021
Report Template No.: BU5-FR15CBT Version 2.4	Report Version	: 01

For radiated test above 1GHz

3.2.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is adequate comparison measurement of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

3.2.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix A and B.

3.2.7 Duty Cycle

Please refer to Appendix C.

3.2.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix A and B.

3.3 Antenna Requirements

3.3.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6 dBi, the power shall be reduced by the same level in dB comparing to gain minus 6 dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.3.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.3.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

List of Measuring Equipment 4

la eta ant	Drand Nama	Madal Na	Carial No.	Chanastariatias	Calibration	To at Data	Due Dete	Demerik
Instrument	Brand Name	Model No.	Serial No.	Characteristics	Date	Test Date	Due Date	Remark
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100315	9 kHz~30 MHz	Jan. 04, 2021	Jul. 13, 2021~ Jul. 14, 2021	Jan. 03, 2022	Radiation (03CH13-HY)
Amplifier	Sonoma-Instru ment	310 N	187282	9KHz~1GHz	Dec. 16, 2020	Jul. 13, 2021~ Jul. 14, 2021	Dec. 15, 2021	Radiation (03CH13-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-022 94	1GHz ~ 18GHz	Jun. 23, 2021	Jul. 13, 2021~ Jul. 14, 2021	Jun. 22, 2022	Radiation (03CH13-HY)
Preamplifier	MITEQ	AMF-7D-0010 1800-30-10P	1590074	1GHz~18GHz	May 18, 2021	Jul. 13, 2021~ Jul. 14, 2021	May 17, 2022	Radiation (03CH13-HY)
Preamplifier	Keysight	83017A	MY532701 47	1GHz~26.5GHz	Oct. 28, 2020	Jul. 13, 2021~ Jul. 14, 2021	Oct. 27, 2021	Radiation (03CH13-HY)
Signal Generator	Anritsu	MG3694C	163401	0.1Hz~40GHz	Jan. 31, 2021	Jul. 13, 2021~ Jul. 14, 2021	Jan. 30, 2022	Radiation (03CH13-HY)
Spectrum Analyzer	Keysight	N9010A	MY553705 26	10Hz~44GHz	Mar. 18, 2021	Jul. 13, 2021~ Jul. 14, 2021	Mar. 17, 2022	Radiation (03CH13-HY)
Controller	EMEC	EM1000	N/A	Control Turn table & Ant Mast	N/A	Jul. 13, 2021~ Jul. 14, 2021	N/A	Radiation (03CH13-HY)
Antenna Mast	EMEC	AM-BS-4500- B	N/A	1m~4m	N/A	Jul. 13, 2021~ Jul. 14, 2021	N/A	Radiation (03CH13-HY)
Turn Table	EMEC	TT2000	N/A	0~360 Degree	N/A	Jul. 13, 2021~ Jul. 14, 2021	N/A	Radiation (03CH13-HY)
Software	Audix	E3 6.2009-8-24	RK-00099 2	N/A	N/A	Jul. 13, 2021~ Jul. 14, 2021	N/A	Radiation (03CH13-HY)
Preamplifier	EMEC	EM18G40G	060715	18GHz ~ 40GHz	Dec. 11, 2020	Jul. 13, 2021~ Jul. 14, 2021	Dec. 10, 2021	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 126E	0030/126E	30M-18G	Feb. 10, 2021	Jul. 13, 2021~ Jul. 14, 2021	Feb. 09, 2022	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	804793/4	30M-18G	Feb. 10, 2021	Jul. 13, 2021~ Jul. 14, 2021	Feb. 09, 2022	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	505134/2	30M~40GHz	Feb. 22, 2021	Jul. 13, 2021~ Jul. 14, 2021	Feb. 21, 2022	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY4274/2	30MHz~40GHz	Mar. 11, 2021	Jul. 13, 2021~ Jul. 14, 2021	Mar. 10, 2022	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY24961/ 4	30M-18G	Feb. 10, 2021	Jul. 13, 2021~ Jul. 14, 2021	Feb. 09, 2022	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY9837/4 PE	9kHz~30MHz	Mar. 11, 2021	Jul. 13, 2021~ Jul. 14, 2021	Mar. 10, 2022	Radiation (03CH13-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA9170 584	18GHz- 40GHz	Dec. 11, 2020	Jul. 13, 2021~ Jul. 14, 2021	Dec. 10, 2021	Radiation (03CH13-HY)
Hygrometer	TECPEL	DTM-303B	TP200879	N/A	Oct. 22, 2020	Jul. 13, 2021~ Jul. 14, 2021	Oct. 21, 2021	Radiation (03CH13-HY)
Filter	Wainwright	WHKX8-5872. 5-6750-18000 -40ST	Sn5	6.75GHz High Pass Filter	Mar. 11, 2021	Jul. 13, 2021~ Jul. 14, 2021	Mar. 10, 2022	Radiation (03CH13-HY)
Filter	Wainwright	WHKX12-270 0-3000-18000 -60SS	SN2	3GHz High Pass Filter	Jul. 12, 2021	Jul. 13, 2021~ Jul. 14, 2021	Jul. 11, 2022	Radiation (03CH13-HY)

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Hygrometer	Testo	608-H1	34893241	N/A	Mar. 02, 2021	Jul. 05, 2021	Mar. 01, 2022	Conducted (TH02-HY)
Power Meter	Agilent	E4416A	GB412923 44	N/A	Jan. 14, 2021	Jul. 05, 2021	Jan. 13, 2022	Conducted (TH02-HY)
Power Sensor	Agilent	E9327A	US404415 48	50MHz~18GHz	Jan. 14, 2021	Jul. 05, 2021	Jan. 13, 2022	Conducted (TH02-HY)
Signal Analyzer	Rohde & Schwarz	FSV40	101566	10Hz ~ 40GHz	Jul. 22, 2020	Jul. 05, 2021	Jul. 21, 2021	Conducted (TH02-HY)
BT Base Station	Rohde & Schwarz	СВТ	101135	BT 3.0	Sep. 15, 2020	Jul. 05, 2021	Sep. 14, 2022	Conducted (TH02-HY)
Switch Box & RF Cable	EM Electronics	EMSW18SE	SW200302	N/A	Mar. 17, 2021	Jul. 05, 2021	Mar. 16, 2022	Conducted (TH02-HY)

5 Uncertainty of Evaluation

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.3 dB
of 95% (U = 2Uc(y))	5.5 UB

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.8 dB
of 95% (U = 2Uc(y))	

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	3.9 dB
of 95% (U = 2Uc(y))	3.9 dB

Appendix A. Radiated Spurious Emission

Test Engineer :	Daniel Lee, Jacky Hung and Wilson Wu	Temperature :	20~25°C
Test Engineer .		Relative Humidity :	50~60%

2.4GHz 2400~2483.5MHz

BT (Band Edge @ 3m)

вт	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2324.7	45.76	-28.24	74	42.4	27.1	4.12	27.86	393	20	Р	Н
		2324.7	21	-33	54	-	-	-	-	-	-	А	н
	*	2402	98.95	-	-	95.28	27.31	4.2	27.84	393	20	Р	Н
	*	2402	74.19	-	-	-	-	-	-	-	-	А	Н
вт													Н
CH00													Н
2402MHz		2324.49	46.66	-27.34	74	43.3	27.1	4.12	27.86	368	219	Ρ	V
240211112		2324.49	21.9	-32.1	54	-	-	-	-	-	-	А	V
	*	2402	99.32	-	-	95.65	27.31	4.2	27.84	368	219	Р	V
	*	2402	74.56	-	-	-	-	-	-	-	-	А	V
													V
													V
		2363.76	46.65	-27.35	74	43.18	27.16	4.16	27.85	370	39	Р	Н
		2363.76	21.89	-32.11	54	-	-	-	-	-	-	А	Н
	*	2441	97.59	-	-	93.73	27.46	4.23	27.83	370	39	Ρ	Н
	*	2441	72.83	-	-	-	-	-	-	-	-	А	Н
57		2495.03	44.27	-29.73	74	40.13	27.68	4.28	27.82	370	39	Ρ	н
ВТ СН 39		2495.03	19.51	-34.49	54	-	-	-	-	-	-	А	н
сп зэ 2441MHz		2363.62	47.42	-26.58	74	43.96	27.15	4.16	27.85	361	221	Ρ	V
2441101112		2363.62	22.66	-31.34	54	-	-	-	-	-	-	А	V
	*	2441	100.06	-	-	96.2	27.46	4.23	27.83	361	221	Р	V
	*	2441	75.3	-	-	-	-	-	-	-	-	А	V
		2494.33	43.96	-30.04	74	39.82	27.68	4.28	27.82	361	221	Р	V
		2494.33	19.2	-34.8	54	-	-	-	-	-	-	А	V

	*	2480	95.6	-	-	91.54	27.62	4.26	27.82	398	45	Р	Н
	*	2480	70.84	-	-	-	-	-	-	-	-	А	Н
		2496.68	45.16	-28.84	74	41.01	27.69	4.28	27.82	398	45	Ρ	Н
		2496.68	20.4	-33.6	54	-	-	-	-	-	-	А	Н
DT													Н
ВТ СН 78													Н
2480MHz	*	2480	97.38	-	-	93.32	27.62	4.26	27.82	400	223	Р	V
24001112	*	2480	72.62	-	-	-	-	-	-	-	-	А	V
		2484	45.4	-28.6	74	41.31	27.64	4.27	27.82	400	223	Р	V
		2484	20.64	-33.36	54	-	-	-	-	-	-	А	V
													V
													V
Remark		o other spurious		Peak and	Average lir	nit line.							

2.4GHz 2400~2483.5MHz

вт	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		4804	49.83	-24.17	74	68.22	32.22	6.48	57.09	100	0	Р	Н
		4804	25.07	-28.93	54	-	-	-	-	-	-	Α	Н
вт													Н
CH 00													Н
2402MHz		4804	48.55	-25.45	74	66.94	32.22	6.48	57.09	100	0	Р	V
		4804	23.79	-30.21	54	-	-	-	-	-	-	А	V
													V
													V
		4882	50.9	-23.1	74	68.45	32.59	6.81	56.95	100	0	Ρ	Н
		4882	26.14	-27.86	54	-	-	-	-	-	-	Α	Н
DT		7323	43.88	-30.12	74	55.41	36.75	8.64	56.92	100	0	Р	Н
ВТ СН 39		7323	19.12	-34.88	54	-	-	-	-	-	-	А	Н
2441MHz		4882	48.88	-25.12	74	66.43	32.59	6.81	56.95	100	0	Р	V
2		4882	24.12	-29.88	54	-	-	-	-	-	-	А	V
		7323	44.04	-29.96	74	55.57	36.75	8.64	56.92	100	0	Р	V
		7323	19.28	-34.72	54	-	-	-	-	-	-	А	V
		4960	47.92	-26.08	74	64.57	33.02	7.14	56.81	100	0	Р	Н
		4960	23.16	-30.84	54	-	-	-	-	-	-	А	Н
DT		7440	44.04	-29.96	74	56.37	36.22	8.62	57.17	100	0	Р	Н
ВТ СН 78		7440	19.28	-34.72	54	-	-	-	-	-	-	А	Н
2480MHz		4960	47.61	-26.39	74	64.26	33.02	7.14	56.81	100	0	Р	V
24001112		4960	22.85	-31.15	54	-	-	-	-	-	-	А	V
		7440	44.23	-29.77	74	56.56	36.22	8.62	57.17	100	0	Ρ	V
		7440	19.47	-34.53	54	-	-	-	-	-	-	А	V
Remark		o other spurious		Peak and	l Average lim	it line.							

BT (Harmonic @ 3m)

Emission below 1GHz

BT	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	-	
-		107.6	28.16	-15.34	43.5	42.77	16.65	0.97	32.23	-	-	P	Н
-		263.77	33.98	-12.02	46	44.79	19.71	1.49	32.01	-	-	Р	Н
_		382.11	35.91	-10.09	46	44.74	21.05	1.72	31.6	100	0	Р	Н
-		593.57	35.53	-10.47	46	40.5	25.39	2.18	32.54	-	-	Р	Н
_		726.46	32.7	-13.3	46	35.4	26.76	2.42	31.88	-	-	Р	Н
_		957.32	33.34	-12.66	46	30.6	30.67	2.82	30.75	-	-	Р	Н
													Н
													Н
													Н
													Н
_													н
2.4GHz													н
BT		35.82	28.45	-11.55	40	38.62	21.5	0.57	32.24	100	0	Р	V
LF -		120.21	26.86	-16.64	43.5	40.57	17.5	1.03	32.24	-	-	Р	V
		395.69	31.12	-14.88	46	39.37	21.55	1.75	31.55	-	-	Р	V
		593.57	34.36	-11.64	46	39.33	25.39	2.18	32.54	-	-	Р	V
		875.84	31.5	-14.5	46	31.15	28.79	2.68	31.12	-	-	Р	V
		958.29	32.61	-13.39	46	29.81	30.73	2.82	30.75	-	-	Р	V
													V
													V
													V
													V
													V
F													V

Note symbol

* Fundamental Frequency which can be ignored. However, the level of any unwanted emissions					
	exceed the level of the fundamental frequency.				
!	Test result is over limit line.				
P/A	Peak or Average				
H/V	Horizontal or Vertical				

A calculation example for radiated spurious emission is shown as below:

ВТ	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
вт		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 00													
2402MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level(dBµV/m) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Over $Limit(dB) = Level(dB\mu V/m) - Limit Line(dB\mu V/m)$

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- = 55.45 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

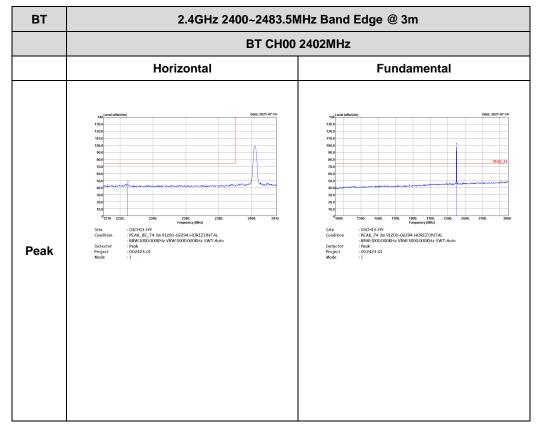
For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 42.6(dBµV) 35.86 (dB)
- = 43.54 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dB μ V/m) Limit Line(dB μ V/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

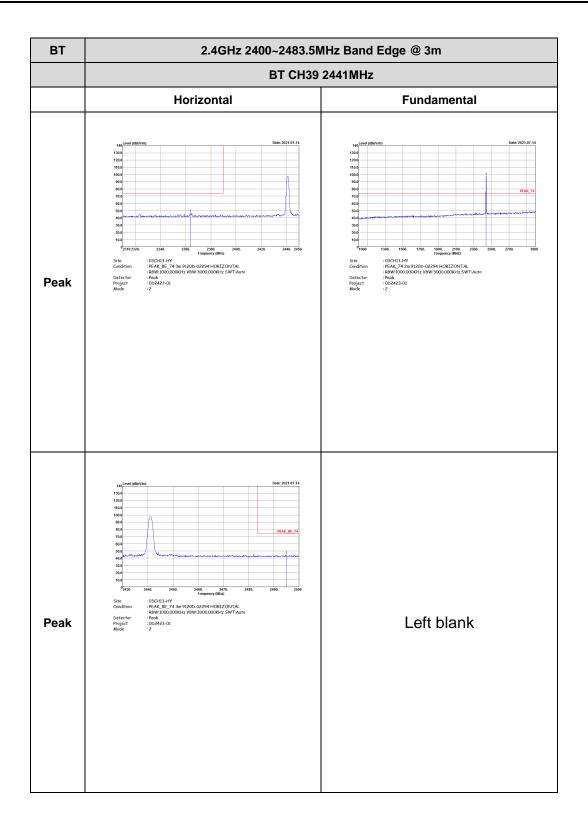
Appendix B. Radiated Spurious Emission Plots

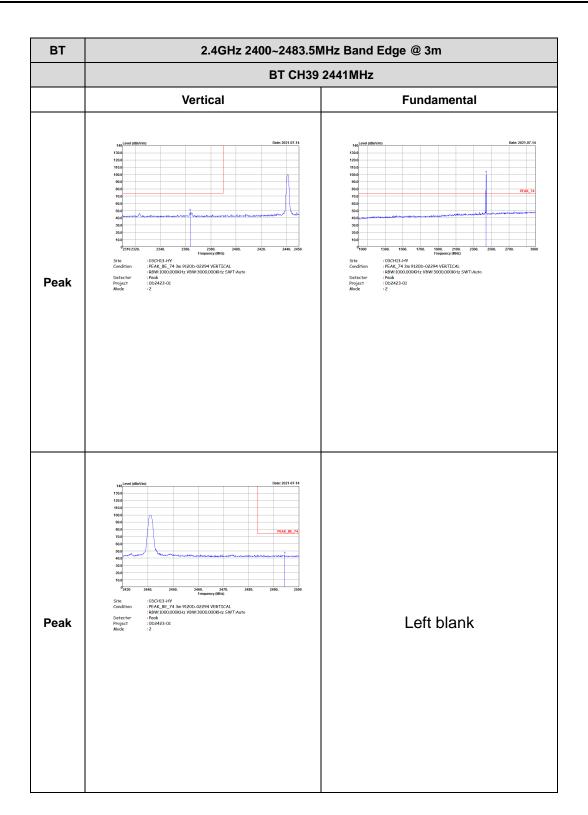
Test Engineer	st Engineer : Daniel Lee, Jacky Hung and Wilson Wu	Temperature :	20~25°C
Test Engineer .		Relative Humidity :	50~60%


Note symbol

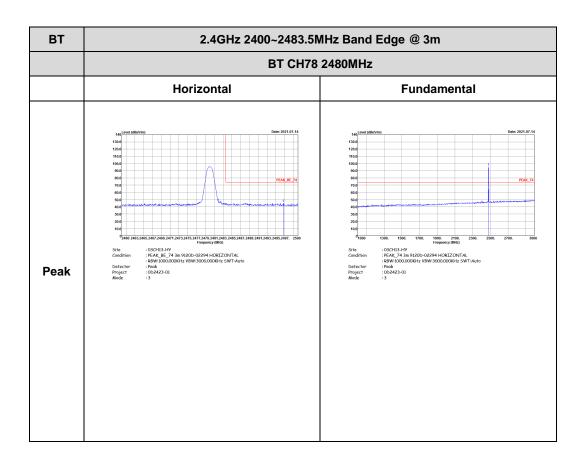
-L	Low channel location
-R	High channel location

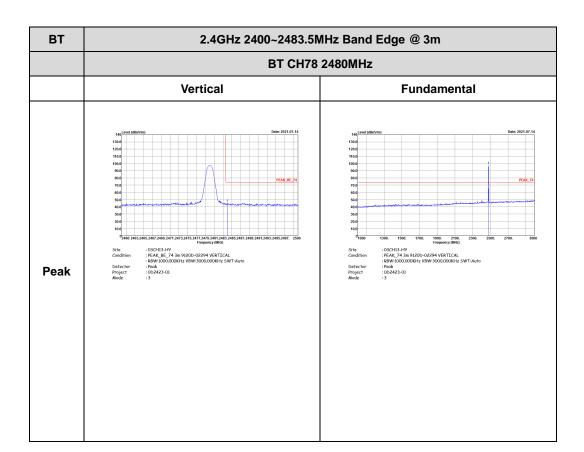
2.4GHz 2400~2483.5MHz

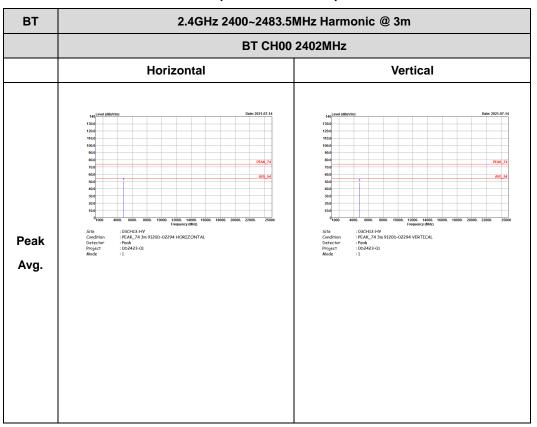


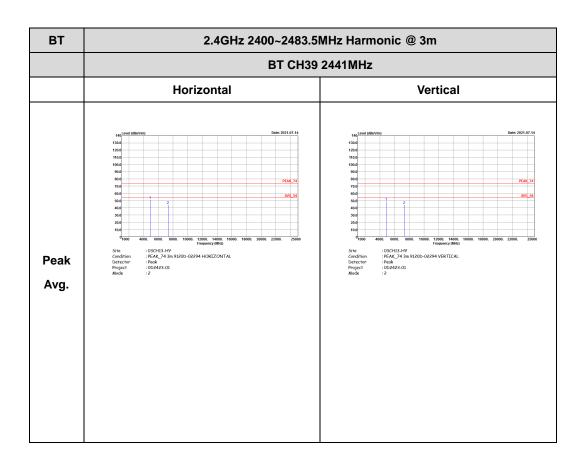


вт	2.4GHz 2400~2483.5MHz Band Edge @ 3m BT CH00 2402MHz										
	Vertical	Fundamental									
Peak	Image: set of the set of	144 Event (SMIN) Detr. 2021 A714 104 1									

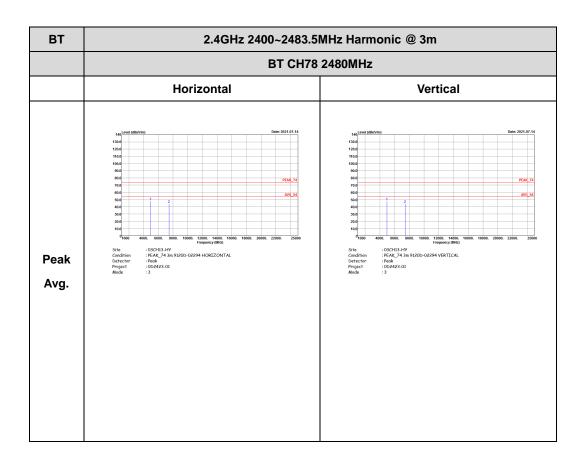




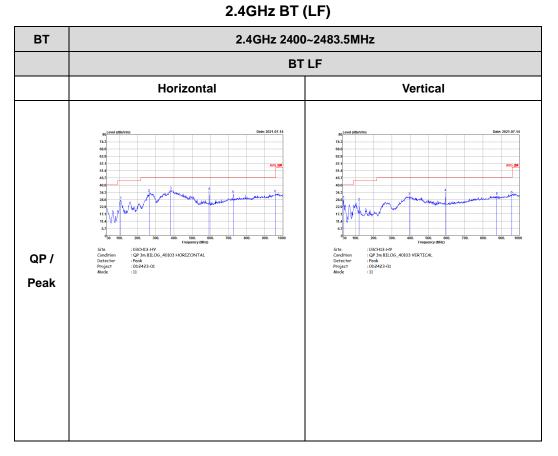




2.4GHz 2400~2483.5MHz



BT (Harmonic @ 3m)



Emission below 1GHz

Appendix C. Duty Cycle Plots

DH5 on time (One Pulse) Plot on	on time (Count Pulses) Plot on Channel 39					
#Avg Type: RMS PNO: Fast Trig: Free Run	9:20:36 AM Jul 14, 2021 TRACE 1 2 3 4 5 6 TYPE WWWWWW	Marker	Keysight Spectrum Analyzer - Swept SA R RF 50 Ω DC Marker 1 11.8000 ms	PNO: Fast Trig: Free Run	ALIGN OFF 09:21:30 AM Jul 14, 2021 #Avg Type: RMS TRACE 133 45 6 TYPE WWWWW DET P P P P P	Peak Search
10 dB/div Ref 116.99 dBuV	kr4 1.980 ms 95.76 dBµV	Select Marker 4 ▲	10 dB/div Ref 116.99 dBµV	IFGain:Low Atten: 20 dB	Мкт1 11.80 ms 95.96 dBµV	NextPeak
		Normal	107			Next Pk Right
		Delta	97.0 87.0			Next Pk Left
27 0	and white	Fixed▶	67.0			Marker Delta
	Span 0 Hz 0 ms (1001 pts) FUNCTION WALUE	Off	57.0			Mkr→CF
1 Δ2 t (Δ) 2.890 ms (Δ) -0.18 dB 2 N t 1.975 ms 95.76 dBuV 3 Δ4 t (Δ) 3.750 ms (Δ) -0.02 dB 4 F t 1.980 ms 95.76 dBuV 5 5 5 5	E	Properties►	27.0 (2000) (200	denserative require. I been to have not all the	lan analise na landera ann an thuir an straidh an di thail	Mkr→RefLv
5 7 8 9 10			27.0 Center 2.4410000000 GHz		Span 0 Hz	More 1 of 2
eso Suffix not allowed status	,		Res BW 1.0 MHz	#VBW 1.0 MHz	Sweep 100.0 ms (1001 pts)	

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = 2 * 2.89 / 100 = 5.78 %
- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.76 dB
- 3. **DH5** has the highest duty cycle worst case and is reported.

Duty Cycle Correction Factor Consideration for AFH mode:

Bluetooth normal hopping rate is 1600Hz and reduced to 800Hz in AFH mode; due to the reduced number of hopping frequencies, with the same packet configuration the dwell time in each channel frequency within 100msec period is longer in AFH mode than normal mode.

In AFH mode, the minimum hopping frequencies are 20, to get the longest dwell time DH5 packet is observed; the period to have DH5 packet completing one hopping sequence is

2.89 ms x 20 channels = 57.6 ms

There cannot be 2 complete hopping sequences within 100ms period, considering the random hopping behavior, maximum 2 hops can be possibly observed within the period. [100 ms / 57.6 ms] = 2 hops Thus, the maximum possible ON time:

2.89 ms x 2 = 5.76 ms

Worst case Duty Cycle Correction factor, which is derived from the maximum possible ON time,

 $20 \times \log(5.76 \text{ ms}/100 \text{ ms}) = -24.76 \text{ dB}$