

FCC RADIO TEST REPORT

FCC ID :	I28-WYSBHVDXP
Equipment :	WLAN/BTLE module
Brand Name :	ZEBRA
Model Name :	WYSBHVDXP
Applicant :	Zebra Technologies Corporation
	3 Overlook Point, Lincolnshire, IL 60069, United States
Manufacturer :	Zebra Technologies Corporation
	3 Overlook Point, Lincolnshire, IL 60069, United States
Standard :	FCC Part 15 Subpart C §15.247

The product was received on Mar. 08, 2021 and testing was started from Mar. 12, 2021 and completed on Apr. 27, 2021. We, Sporton International Inc. Wensan Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. Wensan Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Reviewed by: Louis Wu Sporton International Inc. Wensan Laboratory No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.)

Table of Contents

His	tory o	f this test report	3
Sur	-	v of Test Result	
1	Gene	ral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Product Specification of Equipment Under Test	6
	1.3	Modification of EUT	6
	1.4	Testing Location	7
	1.5	Applicable Standards	7
2	Test	Configuration of Equipment Under Test	8
	2.1	Carrier Frequency Channel	8
	2.2	Test Mode	9
	2.3	Connection Diagram of Test System	12
	2.4	Support Unit used in test configuration and system	
	2.5	EUT Operation Test Setup	13
	2.6	Measurement Results Explanation Example	13
3	Test	Re sult	14
	3.1	Number of Channel Measurement	
	3.2	Hopping Channel Separation Measurement	16
	3.3	Dwell Time Measurement	21
	3.4	20dB and 99% Bandwidth Measurement	
	3.5	Output Power Measurement	32
	3.6	Conducted Band Edges Measurement	34
	3.7	Conducted Spurious Emission Measurement	39
	3.8	Radiated Band Edges and Spurious Emission Measurement	46
	3.9	AC Conducted Emission Measurement	50
		Antenna Requirements	
4	List o	f Measuring Equipment	53
5		rtainty of Evaluation	55
Арр	pendix	A. AC Conducted Emission Test Result	
		B. Radiated Spurious Emission	
App	pendix	C. Radiated Spurious Emission Plots	
Арр	pendix	D. Duty Cycle Plots	

Appendix E. Setup Photographs

History of this test report

Report No.	Version	Description	Issued Date
FR0D2423A	01	Initial issue of report	May 05, 2021

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(1)	Number of Channels	Pass	-
3.2	15.247(a)(1)	Hopping Channel Separation	Pass	-
3.3	15.247(a)(1)	Dwell Time of Each Channel	Pass	-
3.4	15.247(a)(1)	20dB Bandwidth	Pass	-
3.4	2.1049	99% Occupied Bandwidth Reporting only		-
3.5	15.247(b)(1)	Peak Output Power Pass		-
3.6	15.247(d)	Conducted Band Edges	Pass	-
3.7	15.247(d)	Conducted Spurious Emission	Pass	-
3.8	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	Pass	Under limit 9.53 dB at 402.480 MHz
3.9	15.207	AC Conducted Emission	Pass	Under limit 9.58 dB at 13.241 MHz
3.10	15.203 & 15.247(b)	Antenna Requirement	Pass	-

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Wii Chang

Report Producer: Lucy Wu

1 General Description

1.1 Product Feature of Equipment Under Test

Product Feature				
Equipment	WLAN/BTLE module			
Brand Name	ZEBRA			
Model Name	WYSBHVDXP			
FCC ID	I28-WYSBHVDXP			
	WLAN 11a/b/g/n HT20/HT40			
EUT supports Radios application	WLAN 11ac VHT20/VHT40/VHT80			
EOT supports Radios application	WLAN 11ax HE20/HE40/HE80			
	Bluetooth BR/EDR/LE			
HW Version	Revision F			
SW Version	17.68.01.p13			
EUT Stage	Identical Prototype			

Remark: The above EUTs information was declared by manufacturer.

Supported Unit Used in Test Configuration and System						
Printer	Brand Name	ZEBRA	Model Name	ZQ521		
Battery	Brand Name	ZEBRA	Part Number	P1089503-003		
AC Adapter	Brand Name	ZEBRA	Model Name	FSP025-DYAA3		
Bluetooth Antenna 1	Brand Name	gigaAnt	Model Name	3030A5645-01		
Bluetooth Antenna 2	Brand Name	TAIYO YUDEN	Model Name	AH 168M245001		
Bluetooth Antenna 3	Brand Name	Johanson Technology	Model Name	2450AT07A0100		
WLAN Antenna 1	Brand Name	Laird	Model Name	RD2458-5		
WLAN Antenna 2	Brand Name	Pulse	Model Name	W3006		
WLAN Antenna 3	Brand Name	Auden	Model Name	220370-09		
WLAN Antenna 4	Brand Name	Auden	Model Name	B91882-30		

1.2 Product Specification of Equipment Under Test

Product Specification subjective to this standard				
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz			
Number of Channels 79				
Carrier Frequency of Each Channel	2402+n*1 MHz; n=0~78			
	Bluetooth BR (1Mbps): 11.72 dBm / 0.0149 W			
Maximum Output Power to Antenna	Bluetooth EDR (2Mbps): 11.05 dBm / 0.0127 W			
	Bluetooth EDR (3Mbps): 11.32 dBm / 0.0136 W			
	Bluetooth BR (1Mbps): 0.856MHz			
99% Occupied Bandwidth	Bluetooth EDR (2Mbps): 1.163MHz			
	Bluetooth EDR (3Mbps): 1.160MHz			
	<3030A5645-01>: Monopole Antenna with gain 2.7 dBi			
Antenna Type / Gain	<ah 168m245001="">: Monopole Antenna with gain 3.0 dBi</ah>			
	<2450AT07A0100>: Monopole Antenna with gain 1.0 dBi			
	Bluetooth BR (1Mbps) : GFSK			
Type of Modulation	Bluetooth EDR (2Mbps) : π /4-DQPSK			
	Bluetooth EDR (3Mbps) : 8-DPSK			

Remark: The above EUT's information was declared by manufacturer. Please refer to Comments and Explanations in report summary.

1.3 Modification of EUT

No modifications are made to the EUT during all test items.

1.4 Testing Location

Test Site	Sporton International Inc. Wensan Laboratory		
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855		
Test Site No. Sporton Site No. TH05HY, CO07-HY, 03CH13-HY			

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW3786

1.5 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- + FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.
- 3. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

Test Configuration of Equipment Under Test 2

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
2400-2483.5 MHz	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

2.2 Test Mode

		Bluetooth Average Output Power				
Channel	Frequency		GFSK / 1Mbps			
		DH1	DH3	DH5		
Ch00	2402MHz	<mark>11.66</mark> dBm	8.65 dBm	11.64 dBm		
Ch39	2441MHz	11.65 dBm	11.64 dBm	11.63 dBm		
Ch78	2480MHz	11.56 dBm	11.55 dBm	11.52 dBm		
		Blue	tooth Average Output Po	ower		
Channel	Frequency		π/4-DQPSK / 2Mbps			
		2DH1	2DH3	2DH5		
Ch00	2402MHz	<mark>8.81</mark> dBm	8.75 dBm	8.69 dBm		
Ch39	2441MHz	8.76 dBm	8.73 dBm	8.64 dBm		
Ch78	2480MHz	8.59 dBm	8.56 dBm	8.52 dBm		
		Bluetooth Average Output Power				

		Blue	tooth Average Output Po	ower	
Channel	Channel Frequency 8-DPSK / 3Mbps				
		3DH1 3DH3 3DH5			
Ch00	2402MHz	<mark>8.83</mark> dBm	8.81 dBm	8.74 dBm	
Ch39	2441MHz	8.77 dBm	8.76 dBm	8.65 dBm	
Ch78	2480MHz	8.63 dBm	8.60 dBm	8.54 dBm	

		Blu	etooth Peak Output Pov	ver
Channel Frequency GFSK / 1Mbps				
		DH1	DH3	DH5
Ch00	2402MHz	<mark>11.72</mark> dBm	11.71 dBm	11.69 dBm
Ch39	2441MHz	11.67 dBm	11.66 dBm	11.65 dBm
Ch78	2480MHz	11.51 dBm	11.50 dBm	11.48 dBm

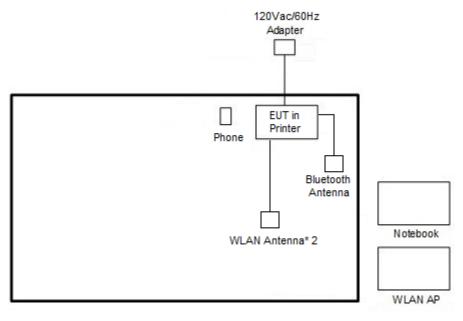
		Blu	uetooth Peak Output Pow	ver		
Channel	Frequency		π/4-DQPSK / 2Mbps			
		2DH1	2DH3	2DH5		
Ch00	2402MHz	<mark>11.05</mark> dBm	11.04 dBm	11.03 dBm		
Ch39	2441MHz	10.99 dBm	10.98 dBm	10.94 dBm		
Ch78	2480MHz	10.77 dBm 10.75 dBm 10.74 dBm				

		Blu	etooth Peak Output Pow	ver			
Channel	Frequency		8-DPSK / 3Mbps				
		3DH1	3DH3	3DH5			
Ch00	2402MHz	<mark>11.32</mark> dBm	11.31 dBm	11.30 dBm			
Ch39	2441MHz	11.22 dBm	11.21 dBm	11.20 dBm			
Ch78	2480MHz	11.08 dBm 11.06 dBm 11.05 dBm					

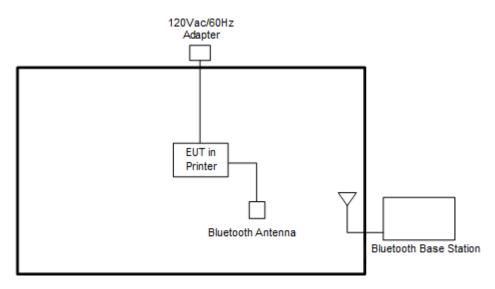
Remark: The data rate was set in 1Mbps for all the test items due to the highest RF output power.

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in two config (Ant. Horizontal and Ant. Vertical). The worst cases (Ant. Horizontal) were recorded in this report, and the worst mode of radiated spurious emissions is Bluetooth 1Mbps mode, and recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

The following summary table is showing all test modes to demonstrate in compliance with the standard.


	Summary table of Test Cases									
Test Item		Data Rate / Modulation								
	Bluetooth BR 1MbpsBluetooth EDR 2MbpsBluetooth EDR 3MbGFSKπ /4-DQPSK8-DPSK									
Conducted	Mode 1: CH00_2402 MHz	Mode 4: CH00_2402 MHz	Mode 7: CH00_2402 MHz							
Test Cases	Mode 2: CH39_2441 MHz	Mode 5: CH39_2441 MHz	Mode 8: CH39_2441 MHz							
	Mode 3: CH78_2480 MHz	Mode 6: CH78_2480 MHz	Mode 9: CH78_2480 MHz							
	Bluetooth BR 1Mbps GFSK									
Radiated		Mode 1: CH00_2402 MHz								
Test Cases		Mode 2: CH39_2441 MHz								
		Mode 3: CH78_2480 MHz								
AC Conducted	Mode 1 :WLAN (2.4GHz)	Link + Bluetooth Link + Prir	nter + AC Adapter + WLAN							
Emission	Antenna *2 + Blue	etooth Antenna								
 Remark: 1. For Radiated Test Cases, the worst mode data rate 1Mbps was reported only since the highest RF output power in the preliminary tests. The conducted spurious emissions and conducted band edge measurement for other data rates were not worse than 1Mbps, and no other significantly frequencies found in conducted spurious emission. 										

2. For Radiated Test Cases, the tests were performed Bluetooth Antenna (AH 168M245001).



2.3 Connection Diagram of Test System

<AC Conducted Emission Mode>

<Bluetooth Tx Mode>

2.4 Support Unit used in test configuration and system

ltem	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Phone	SUGAR	Y12s	FCC DoC	N/A	N/A
2.	WLAN AP	ASUS	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded, 1.8 m
3.	Notebook	DELL	Latitude 3400	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
4.	Bluetooth Base Station	R&S	CBT32	N/A	N/A	Unshielded, 1.8 m

2.5 EUT Operation Test Setup

The RF test items, utility "Toolbox_Version 1.84" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to contact with base station to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor. $Offset = RF \ cable \ loss + \ attenuator \ factor.$ Following shows an offset computation example with cable loss 4.2 dB and 10 dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

= 4.2 + 10 = 14.2 (dB)

3 Test Result

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

3.1.2 Measuring Instruments

See list of measuring equipment of this test report.

3.1.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = the frequency band of operation;
 RBW = 300 kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.

3.1.4 Test Setup

EUT

Spectrum Analyzer

3.1.5 Test Result of Number of Hopping Frequency

Engineer : Rebea	ca Li, Hank Hsu and Tommy Le	Temperature : Relative Humidity :	21~25℃ 51~54%
mber of Hopping (Channel)	Adaptive Frequency Hopp (Channel)	ing Limits (Channel)	Pass/Fai
79	20	> 15	Pass
Numbe	er of Hopping Channel Plot on	Channel 00 - 78	
Spectrur	\equiv		
👄 Att	el 20.00 dBm Offset 25.00 dB ● RBW 300 kHz 20 dB SWT 37.9 µs ● VBW 300 kHz M	ode Auto FFT	
● 1Pk Max			
10 dBm	1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	ากกลุกกลุกกลุกกลุกกลุ	MAN
0 dBm	<u> </u>	<u>, , , , , , , , , , , , , , , , , , , </u>	
-10 dBm			
-20 dBm			
-30 dBm			
.240 dBm—			
-50 dBm			
-60 dBm			
-70 dBm			
Start 2.4	GHz 691 pts	Stop 2.	441 GHz
Date: 20.M	AR.2021 21:42:06		
Spectrur	n		
👄 Att	I 20.00 dBm Offset 25.00 dB ● RBW 300 kHz 20 dB SWT 38.1 µs ● VBW 300 kHz M	ode Auto FFT	
●1Pk Max			
12)dBm7f	ากกุฬกุฬกุฬกุฬกุฬกุฬกุฬกุฬ	งการการการการการการการการการการการการการก	~
ĕ d≱m <u>⊢⊬</u>	<u>n 8 a n b 8 a n a 8 a n a 8 a n a 8 </u> 8 a n	╻┇╺╺╢╣┍╸╢╣┍╢╢	
-10 dBm			
-20 dBm			
-30 dBm			
-40 dBm			
-50 dBm			
-60 dBm			
-70 dBm			
Start 2.44	1 GHz 691 pts	Stop 2.4	835 GHz

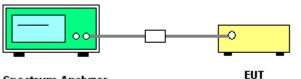
Page Number Issued Date Report Version : 15 of 55

: May 05, 2021 : 01

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.


3.2.2 Measuring Instruments

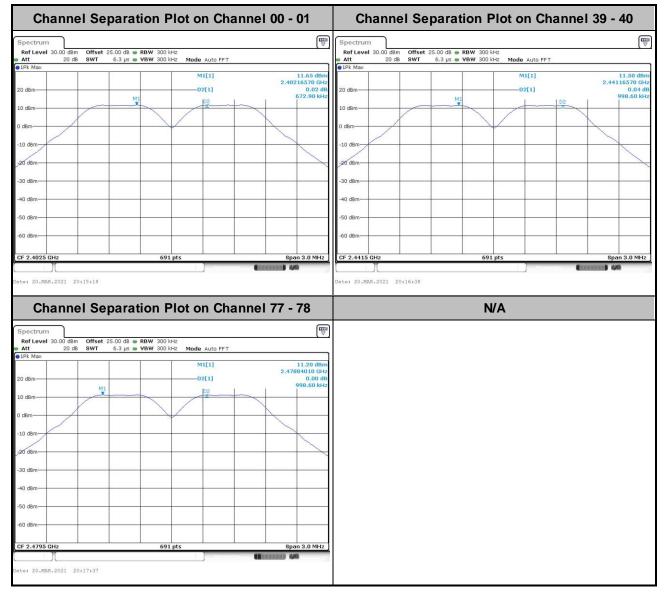
See list of measuring equipment of this test report.

3.2.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.2.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels;
 RBW = 300 kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

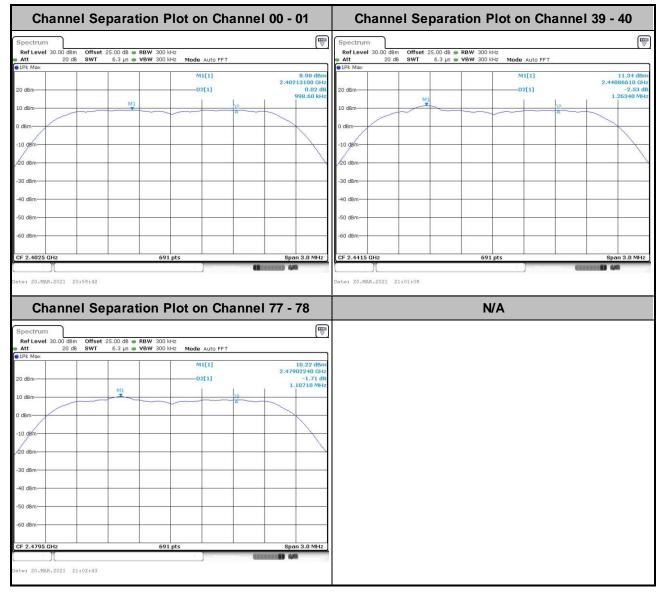
3.2.4 Test Setup

Spectrum Analyzer

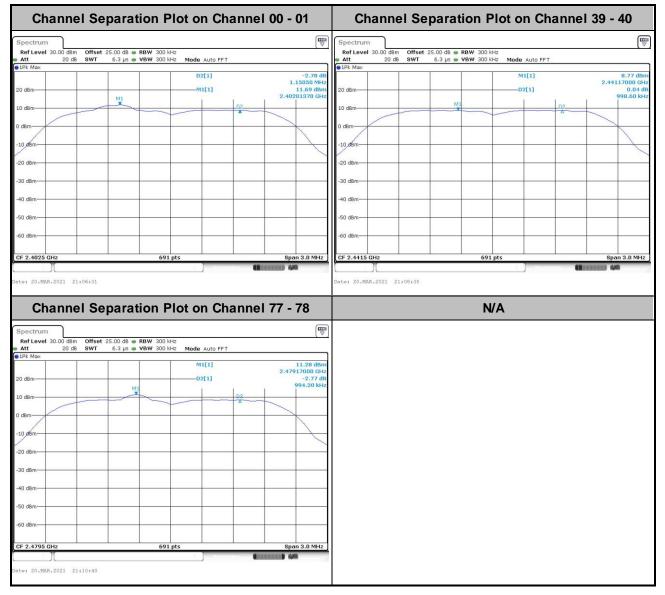


3.2.5 Test Result of Hopping Channel Separation

Test I	Enginee	er: Rebecca Li, Hank Hsu and Tommy Lee				21~25℃ 51~54%		
Mod.	Data Rate	Ντχ	CH.	Freq. (MHz)	Hopping Channel Separation Measurement (MHz)	Hopping Channel S Measureme Limit (MHz	ent	Pass/Fail
DH	1Mbps	1	0	2402	0.672	0.6227		Pass
DH	1Mbps	1	39	2441	0.998	0.6247		Pass
DH	1Mbps	1	78	2480	0.998	0.6213		Pass
2DH	2Mbps	1	0	2402	0.998	0.8273		Pass
2DH	2Mbps	1	39	2441	1.263	0.8273		Pass
2DH	2Mbps	1	78	2480	1.107	0.8620		Pass
3DH	3Mbps	1	0	2402	1.150	0.8393		Pass
3DH	3Mbps	1	39	2441	0.998	0.8393		Pass
3DH	3Mbps	1	78	2480	0.994	0.8420		Pass



<1Mbps>



<2Mbps>

<3Mbps>

3.3 Dwell Time Measurement

3.3.1 Limit of Dwell Time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

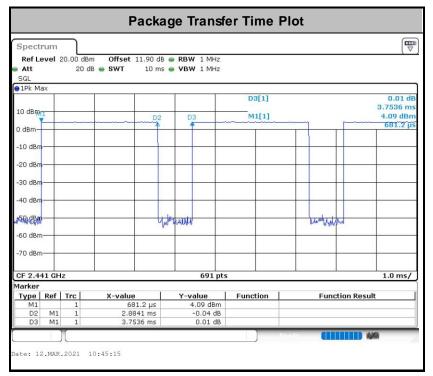
3.3.2 Measuring Instruments

See list of measuring equipment of this test report.

3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.4.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.3.4 Test Setup



Spectrum Analyzer

3.3.5 Test Result of Dwell Time

Test Engi	neer :	Rebeco	ca Li, Hank Hsu a	nd Tommv Lee	Temperature : Relative Humidity	y :	21~25℃ 51~54%	
Mod.	Hoppi Chanr Numb Rate	nel Der	Hops Over Occupancy Time(hops)	Package Transfer Time (msec) (MHz)	Dwell Time (sec)		imits (sec)	Pass/Fail
Nomal	79		106.67	2.88	0.31		0.4	Pass
AFH	20		53.33	2.88	0.15		0.4	Pass

Remark:

1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s),Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.

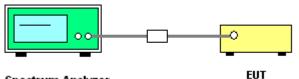
2. In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4×20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops.

3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

3.4 20dB and 99% Bandwidth Measurement

3.4.1 Limit of 20dB and 99% Bandwidth

Reporting only


3.4.2 Measuring Instruments

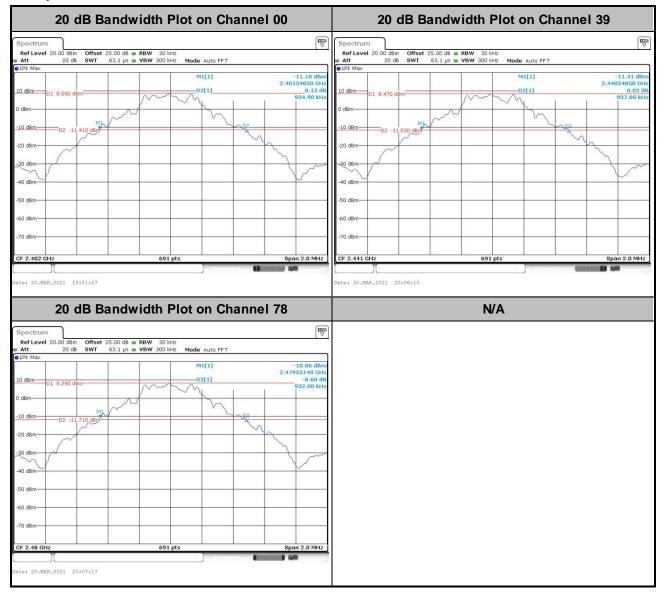
See list of measuring equipment of this test report.

3.4.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Use the following spectrum analyzer settings for 20 dB Bandwidth measurement.
 Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel;
 RBW ≥ 1% of the 20 dB bandwidth; VBW ≥ RBW; Sweep = auto; Detector function = peak;
 Trace = max hold.
- 5. Use the following spectrum analyzer settings for 99 % Bandwidth measurement.
 Span = approximately 1.5 to 5 times the 99% bandwidth, centered on a hopping channel;
 RBW ≥ 1-5% of the 99% bandwidth; VBW ≥ 3 * RBW; Sweep = auto; Detector function = peak;
 Trace = max hold.
- 6. Measure and record the results in the test report.

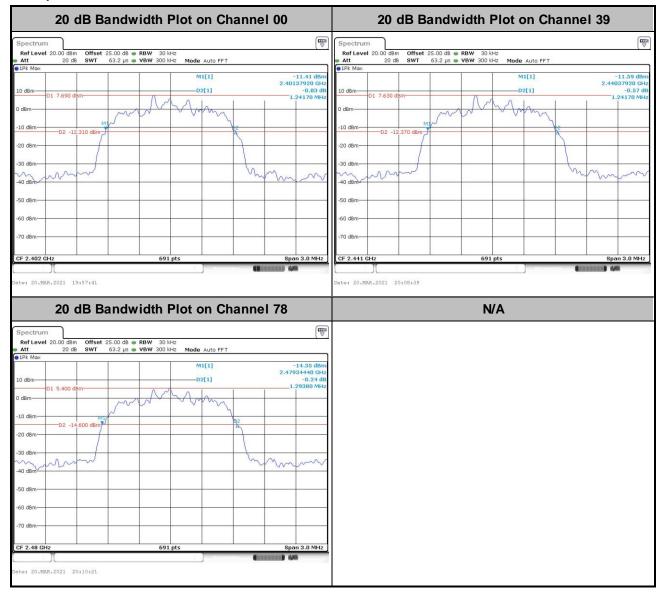
3.4.4 Test Setup

Spectrum Analyzer

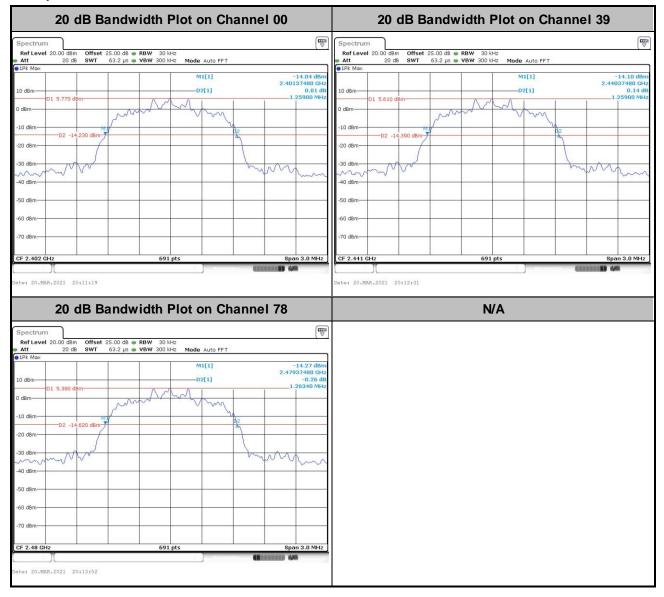


3.4.5 Test Result of 20dB Bandwidth

Test Engine	eer:	Rebecca	a Li, Ha	ink Hsu and	Tommy Lee Relative	ature : Humidity :	21~25℃ 51~54%
Mod.	Data	Rate	Nтх	CH.	Freq. (MHz)	20db BW (MH	lz) Pass/Fail
DH	1M	bps	1	0	2402	0.934	Pass
DH	1M	bps	1	39	2441	0.937	Pass
DH	1M	bps	1	78	2480	0.932	Pass
2DH	2M	bps	1	0	2402	1.241	Pass
2DH	2M	bps	1	39	2441	1.241	Pass
2DH	2M	bps	1	78	2480	1.293	Pass
3DH	3M	bps	1	0	2402	1.259	Pass
3DH	3M	bps	1	39	2441	1.259	Pass
3DH	3M	bps	1	78	2480	1.263	Pass

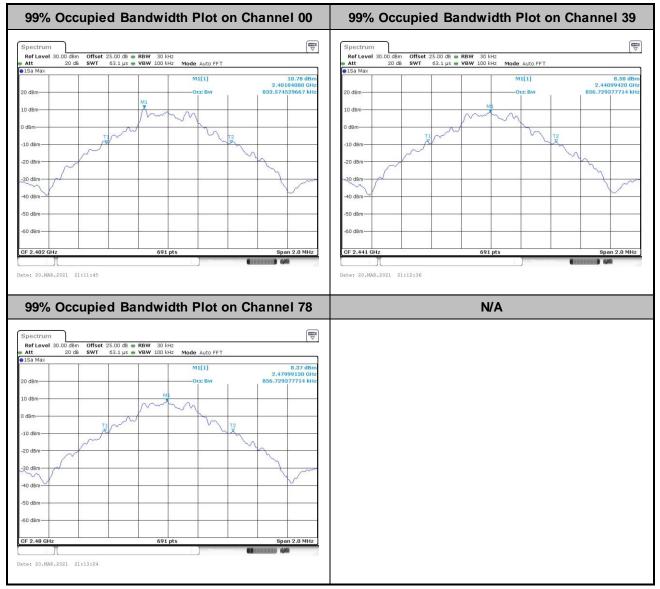


<1Mbps>



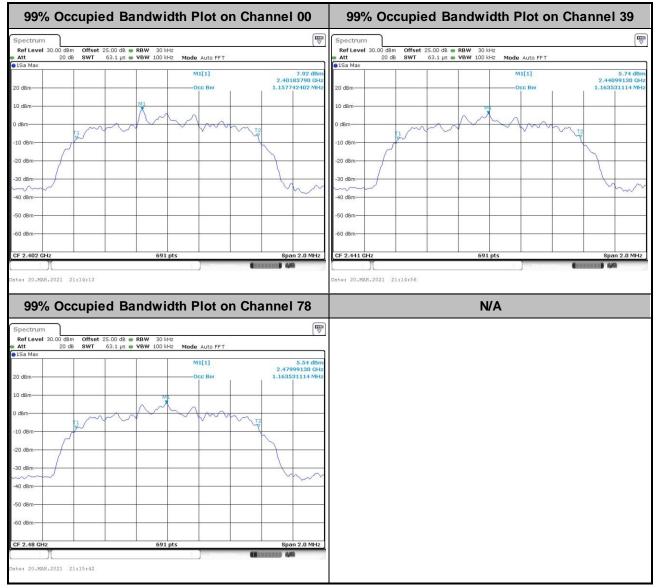
<2Mbps>

<3Mbps>

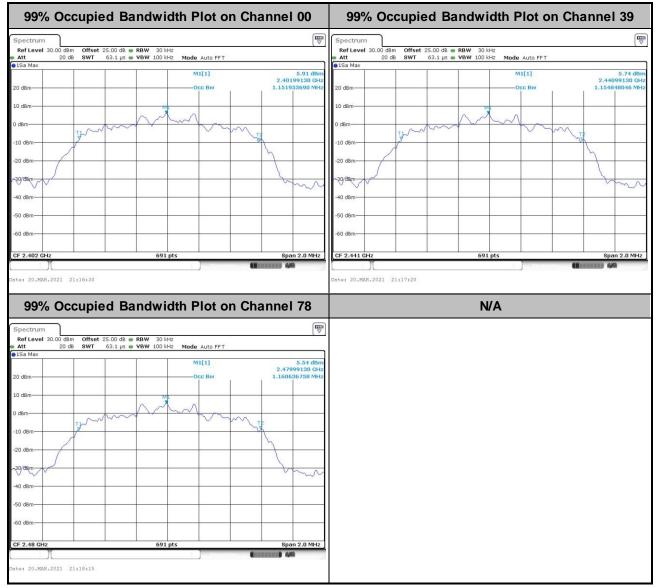


3.4.6 Test Result of 99% Occupied Bandwidth

Test Engin	Test Engineer : F		cca Li,	Hank	Hsu and Tommy	/ Lee	Temperature : Relative Humidity :	21~2 51~5	-
	1								170
Mod.	Data F	Rate	Nтх	CH.	Freq. (MHz)		99% Bandwidth (MHz)		Pass/Fail
DH	1Mb	os	1	0	2402		0.833		Pass
DH	1Mbps		1	39	2441		0.856		Pass
DH	1Mbps		1	78	2480		0.856		Pass
2DH	2Mbj	os	1	0	2402		1.157		Pass
2DH	2Mb	os	1	39	2441		1.163		Pass
2DH	2Mb	os	1	78	2480		1.163		Pass
3DH	3Mb	os	1	0	2402	1.151			Pass
3DH	3Mb	os	1	39	2441		1.154		Pass
3DH	3DH 3Mbps		1	78	2480		1.160		Pass


<1Mbps>

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.


<2Mbps>

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

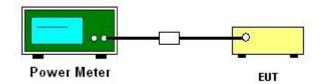
<3Mbps>

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

3.5 Output Power Measurement

3.5.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.


3.5.2 Measuring Instruments

See list of measuring equipment of this test report.

3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.5.4 Test Setup

Test Enginee	Test Engineer :		lank Hsu and Tommy Lee	Temperature :	21~25℃
loot _lighted		11000000 21, 1		Relative Humidity :	51~54%
DH	CH.	Мтх	Peak Power (dBm)	Power Limit (dBm)	Test Result
	0	1	11.72	20.97	Pass
DH1	39	1	11.67	20.97	Pass
	78	1	11.51	1.51 20.97	
2DH	CH.	Мтх	Peak Power (dBm)	Power Limit (dBm)	Test Result
	0	1	11.05	20.97	Pass
2DH1	39	1	10.99	20.97	Pass
	78	1	10.77	20.97	Pass
3DH	CH.	Мтх	Peak Power (dBm)	Power Limit (dBm)	Test Result
	0	1	11.32	20.97	Pass
3DH1	39	1	11.22	20.97	Pass
	78	1	11.08	20.97	Pass

3.5.5 Test Result of Peak Output Power

3.5.6 Test Result of Average Output Power (Reporting Only)

Test Engineer :		Rebecca Li. Hank Hsu and Tommy Lee		Temperature : Relative Humidity :		21~25℃ 51~54%	
DH	CH.	Νтх		Average Power (d	lBm)	Duty	/ Factor (dB)
	0	1		11.66			5.15
DH1	39	1		11.65			5.15
	78	1		11.56			5.15
2DH	CH.	Νтх		Average Power (c	IBm)	Duty	/ Factor (dB)
	0	1		8.81			5.15
2DH1	39	1		8.76			5.15
	78	1		8.59			5.15
3DH	CH.	Νтх		Average Power (c	IBm)	Duty	/ Factor (dB)
	0	1		8.83			5.13
3DH1	39	1		8.77			5.13
	78	1		8.63			5.13

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

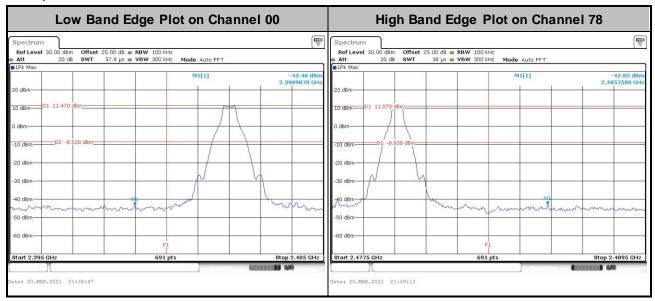
3.6.2 Measuring Instruments

See list of measuring equipment of this test report.

3.6.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.6.
- 2. Set the maximum power setting and enable the EUT to transmit continuously.
- 3. Set RBW = 100 kHz, VBW = 300 kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2 and 3.
- 5. Measure and record the results in the test report.

3.6.4 Test Setup


Spectrum Analyzer

3.6.5 Test Result of Conducted Band Edges

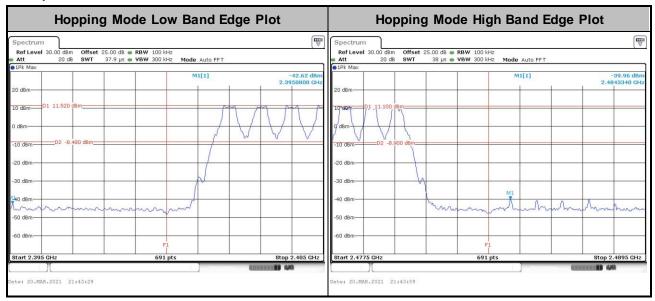
Test Engineer :	Rebecca Li, Hank Hsu and Tommy Lee	Temperature :	21~25 ℃
rest Engineer .		Relative Humidity :	51~54%

<1Mbps>

<2Mbps>

Low Band	High Band Edge Plot on Channel 78						
	B ● RBW 100 kHz s ● VBW 300 kHz Mode Auto FFT		Spectrum Ref Level 30.00 der Att 20 der 1Pk Max		RBW 100 kHz VBW 300 kHz Mode	Auto FFT	
20 d8m	M1[1]	-42.79 dBm 2.3998550 GHz	20 dBm		MI	1[1]	-44.29 dBm 2.4853410 GHz
10 dBm01 8.710 dBm	mm		10 dBm 01 8.210 g	BM			
-10 dBmD2 -11.290 dBm			10 d8m	1.790 dBm			
-30 dBm		har	-30 dBm	hang		MI	
-50 dBm	mmut	www	-50 dBm-		mann		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-60 dBm	F1		-60 dBm		F1		
Start 2.395 GHz	691 pts	Stop 2.405 GHz	Start 2.4775 GHz		691 pts		Stop 2.4895 GHz
Date: 20.MAR.2021 21:39:50			Date: 20.MAR.2021 2	1:40:16			

<3Mbps>


Low Band Ed	lge Plot on Channe	el 00	High Band Edge Plot on Channel 78				
	RBW 100 kHz YBW 300 kHz Mode Auto FFT		🖷 Att 20 dB SWT	et 25.00 dB 👄 RBW 100 kHz Γ 38 μs 👄 VBW 300 kHz Mode Auto FF	(₩) Ţ		
1Pk Max 20 dBm-	M1[1]	-40.26 dBm 2.3997250 GHz	1Pk Max 20 dBm	M1[1]	-43.50 dBm 2.4847850 GHz		
10 dBm 01 8.680 dBm 0 dBm 0 dBm 01 8.680 dBm 0 dBm 0 dBm 00 0 -11.320 dBm 00 -11.320 dBm 00 -11.320 dBm			10 dBm 01 8.310 dBm 0 dBm10 dBm1.690 dB				
-20 dBm	M1	they -	-20 dBm	4			
-40 dBm	T I	Jum	-40 d8m	Warman Min	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
Start 2.395 GHz	F1 691 pts	Stop 2.405 GHz)	Start 2.4775 GHz	691 pts	Stop 2.4895 GHz		
Date: 20.MAR.2021 21:40:45			Date: 20.MAR.2021 21:41:14	4			

3.6.6 Test Result of Conducted Hopping Mode Band Edges

Test Engineer :	Rebecca Li, Hank Hsu and Tommy Lee	Temperature :	21~25 ℃
rest Engineer.	Rebecca Li, Halik Hsu anu Tommy Lee	Relative Humidity :	51~54%

<1Mbps>

<2Mbps>

Hopping I	Mode Low Band Edge	Plot	Н	opping Mo	de High B	and Edge	Plot
	0 dB ● RBW 100 kHz 9 µs ● VBW 300 kHz Mode Auto FFT		Spectrum Ref Level 30.00 d Att 20		RBW 100 kHz VBW 300 kHz Mod	e Auto FFT	
10 dBm 01 8.670 dBm 01 8.670 dBm 01 dBm 02 -11 330 dBm -20 dBm		-43.48 dBm 2.3972210 GHz	20 dBm 10 dBm 0 dBm 10 dBm 10 dBm 10 dBm	-11.720 dBm		M1[1]	-43.87 dBm 2.4883100 GHz
-30 dBm	Fi G91 pts		-30 dBm		F1 691 pts		Stop 2.4895 GHz
Date: 20.MAR.2021 21:45:14	Mexercities	((((((((((((((((((((((((((((((((((((((Date: 20.MAR.2021	21:45:42		Movereing.	

<3Mbps>

Hopping Mode Low Band Edge Plot	Hopping Mode High Band Edge Plot
Spectrum Image: Construction of the sector of	Spectrum (™) Ref Level 30.00 dBm Offset 25.00 dB ● RBW 100 kHz (♥) Att 20 dB SWT 38 µs ● VBW 300 kHz Mode Auto FFT DtM Max 0 0 kHz (♥) 00 kHz (♥)
20 d8m	20 dBm M1[1]43.94 dBm2.4879280 GHz
10 dBm 01 8.630 dBm 0 dBm	10 dBm 01 8,270 dBm
-20 dBm-02 -11,370 dBm-	-10 dBm D2 -11,730 dBm
-30 dBm	-30 dBm
-50 dbm	-50 dBm
Normation (Internet) 449	Start 2.4775 GHz 691 pts Stop 2.4895 GHz Date: 20.MAR.2021 21:47:34 21:47:34 21:47:34

3.7 Conducted Spurious Emission Measurement

3.7.1 Limit of Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

3.7.2 Measuring Instruments

See list of measuring equipment of this test report.

3.7.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.8.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Set RBW = 100 kHz, VBW = 300 kHz, scan up through 10th harmonic. All harmonics / spurious must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

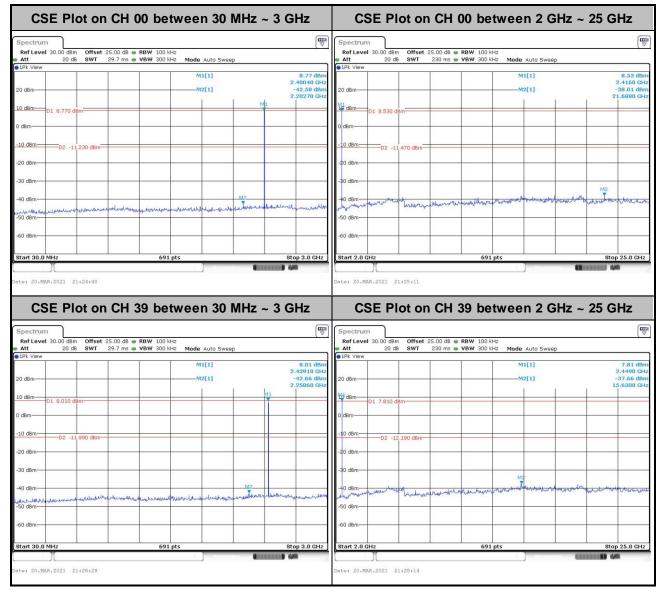
3.7.4 Test Setup

TEL : 886-3-327-0868 FAX : 886-3-327-0855 Report Template No.: BU5-FR15CBT Version 2.4

3.7.5 Test Result of Conducted Spurious Emission

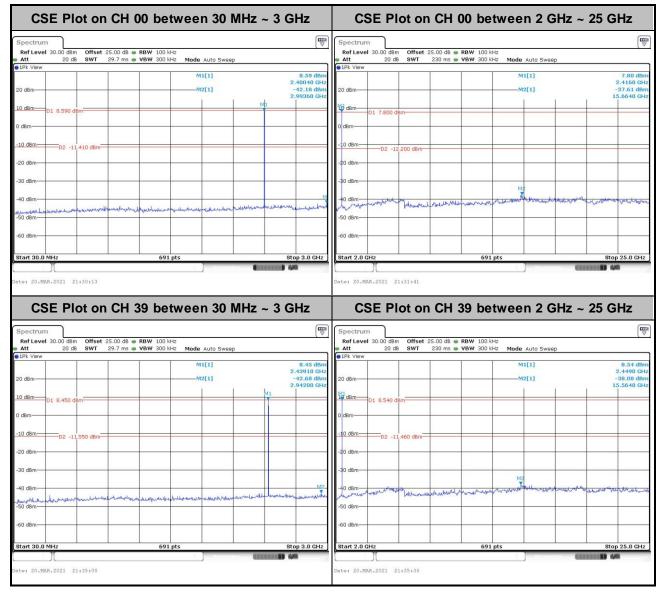
Test Engineer : Re	Rebecca Li. Hank Hsu and Tommy Lee	Temperature :	21~25 ℃
		Relative Humidity :	51~54%

<1Mbps>


		m				G
ipectrum Ref Level 30.00 dBm Offset 25.00 dB @	RBW 100 kHz		Ref Level 30.00 dBm Offset	25.00 dB 👄 RBW 100 kHz		[1
	VBW 300 kHz Mode Auto Sweep		Att 20 dB SWT Drk View	230 ms 🖷 VBW 300 kHz	Mode Auto Sweep	
	M1[1]	11.66 dBm			M1[1]	11.44 dE
) dBm	-M2[1]	2.40040 GHz -39.87 dBm	20 dBm		-M2[1]	2.4160 G -37.44 df
		M1 2.48640 GHz	M1			15.5970 G
dBm D1 11.660 dBm			10 dBm01 11.440 dBm			
IBm			0 dBm			
and the second s						
0 dBm D2 -8.340 dBm			-10 dBmD2 -8.560 dBm			
) dBm			-20 dBm			
0 dBm			-30 dBm		MS	
0 d8m		M2	-40 dBm-		V	when when the when the when the
a har she again and a solar manager a land a	www.www.redonarrenover.hoursector	alwordshipsongroupson	al mandre and and	more how all and the second and	the and the second a thready	Martin Alarman
0 dBm			-50 dBm-			
0 d8m			-60 dBm-			
art 30.0 MHz	691 pts	Stop 3.0 GHz	Start 2.0 GHz	691 pts		Stop 25.0 GF
Y	Mossueins.	444			Moximino	444
CSE Plot on CH 3	39 between 30 MH			n CH 39 betw	veen 2 GHz	
CSE Plot on CH :		lz ~ 3 GHz	CSE Plot or	n CH 39 betw 25.00 dB • RBW 100 kHz	veen 2 GHz	
CSE Plot on CH :			CSE Plot or Spectrum Ref Level 30.00 dBm Offset Att 20 dB SWT			z ~ 25 GHz [¹
CSE Plot on CH :	RBW 100 kHz	(₩) 11.22 dBm	CSE Plot or	25.00 dB @ RBW 100 kHz		11.40 di
CSE Plot on CH 3	RBW 100 kHz VBW 300 kHz Mode Auto Sweep	11.22 dBm 2.43910 GHz -41.39 dHz	CSE Plot or Spectrum Ref Level 30.00 dBm Offset Att 20 dB SWT	25.00 dB @ RBW 100 kHz	Mode Auto Sweep	11.40 df 2.4490 G -38.23 df
CSE Plot on CH :	RBW 100 kHz VBW 300 kHz Mode Auto Sweep M1[1]	11.22 dBm 2.43910 GHz	CSE Plot or	25.00 dB @ RBW 100 kHz	Mode Auto Sweep	11.40 di 2.4490 (-38.23 di
CSE Plot on CH :	RBW 100 kHz VBW 300 kHz Mode Auto Sweep M1[1]	11.22 dBm 2.43910 GHz -41.39 dHz	CSE Plot or	25.00 dB @ RBW 100 kHz	Mode Auto Sweep	11.40 di 2.4490 G -38.23 di
CSE Plot on CH 3	RBW 100 kHz VBW 300 kHz Mode Auto Sweep M1[1]	11.22 dBm 2.43910 GHz -41.39 dHz	CSE Plot or	25.00 dB @ RBW 100 kHz	Mode Auto Sweep	11.40 df 2.4490 G -38.23 df
CSE Plot on CH :	RBW 100 kHz VBW 300 kHz Mode Auto Sweep M1[1]	11.22 dBm 2.43910 GHz -41.39 dHz	CSE Plot or	25.00 dB @ RBW 100 kHz	Mode Auto Sweep	11.40 di 2.4490 G -38.23 di
CSE Plot on CH : bectrum ter Level 30.00 dBm 0 dB SWT 20 dB SWT 29.7 ms dBm 01 11.220 dBm	RBW 100 kHz VBW 300 kHz Mode Auto Sweep M1[1]	11.22 dBm 2.43910 GHz -41.39 dHz	CSE Plot or Spectrum Ref Level 30.00 dBm Offset Att 20 dB SWT PIPk View 20 dBm 10 dBm 01 11.400 dBm	25.00 dB @ RBW 100 kHz	Mode Auto Sweep	11.40 di 2.4490 G -38.23 di
CSE Plot on CH : pectrum ter Level 30.00 dbm Offset 25.00 db • 20 db SWT 29.7 ms • Pk View dbm 01 11.220 dbm dbm 01 11.220 dbm dbm 01 10.20 dbm	RBW 100 kHz VBW 300 kHz Mode Auto Sweep M1[1]	11.22 dBm 2.43910 GHz -41.39 dHz	CSE Plot or	25.00 dB @ RBW 100 kHz	Mode Auto Sweep	11.40 df 2.4490 G -38.23 df
CSE Plot on CH : pectrum Ref Lovel 30.00 dbm Offset 25.00 db : 20 db SWT 29.7 ms Pk View Image: SWT 29.7 ms I dbm Image: SWT </td <td>RBW 100 kHz VBW 300 kHz Mode Auto Sweep M1[1]</td> <td>11.22 dBm 2.43910 GHz -41.39 dHz</td> <td>CSE Plot or Spectrum Ref Level 30.00 dBm Offset 20 dB SWT ID dBm D1 11.400 dBm 0 dBm D2 48.000 dBm -10 dBm D2 -8.000 dBm</td> <td>25.00 dB @ RBW 100 kHz</td> <td>Mode Auto Sweep</td> <td>11.40 df 2.4490 G -38.23 df</td>	RBW 100 kHz VBW 300 kHz Mode Auto Sweep M1[1]	11.22 dBm 2.43910 GHz -41.39 dHz	CSE Plot or Spectrum Ref Level 30.00 dBm Offset 20 dB SWT ID dBm D1 11.400 dBm 0 dBm D2 48.000 dBm -10 dBm D2 -8.000 dBm	25.00 dB @ RBW 100 kHz	Mode Auto Sweep	11.40 df 2.4490 G -38.23 df
CSE Plot on CH : pectrum kef Level 30.00 dbm 20 db SWT 29.7 ms PR View dBm dBm 01 11.220 dbm dbm 02 -8.780 dbm	RBW 100 kHz VBW 300 kHz Mode Auto Sweep M1[1]	11.22 dBm 2.43910 GHz -41.39 dHz	Spectrum Ref Level 30.00 dBm Offset 10 dBm 20 dB SWT 10 dBm 01 11.400 dBm 0 dBm 0 dBm 02 -8.600 dBm 0 dBm	25.00 dB @ RBW 100 kHz	Mode Auto Sweep	11.40 di 2.4490 G -38.23 di
CSE Plot on CH : pectrum tert Level 30.00 dBm 20 dB SWT 20 dB SWT 20 dB gBm 01 11.220 dBm dBm 02 -B.780 dBm 0 dBm 0 dBm	RBW 100 kHz VBW 300 kHz Mode Auto Sweep M1[1] M2[1]	11.22 dbm 2.43910 GHz -41.39 dbm 2.35310 GHz	CSE Plot or Spectrum Ref Level 30.00 dBm 20 dB Offset 20 dBm 0 dBm 10 dBm -20 dBm -30 dBm	25.00 dB • RBW 100 kHz 230 ms • VBW 300 kHz	Mode Auto Sweep M1[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1]	11.40 df 2.4490 G
Offset 25.00 dbm Offset 25.00 db Constraint Ref Level 30.00 dbm Offset 25.00 db 8 8WT 29.7 ms 9 Job 30 db SWT 29.7 ms 9	RBW 100 kHz VBW 300 kHz Mode Auto Sweep M1[1] M2[1]	11.22 dBm 2.43910 GHz -1.39 dHz 2.35310 GHz	CSE Plot or Spectrum Ref Level 30.00 dbm Offset 10 dbm 20 db 10 dbm 01 11.400 dbm 10 dbm D2 48.000 dbm 20 dbm	25.00 dB @ RBW 100 kHz	Mode Auto Sweep M1[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1]	11.40 dt 2.4490 G
Offset 25.00 dbm Offset 25.00 db Constraint Ref Level 30.00 dbm Offset 25.00 db 8 8WT 29.7 ms 9 Job 30 db SWT 29.7 ms 9	RBW 100 kHz VBW 300 kHz Made Auto Sweep M1[1] M2[1]	11.22 dbm 2.43910 GHz -41.39 dbm 2.35310 GHz	CSE Plot or Spectrum Ref Level 30.00 dBm 20 dB Offset 20 dBm 0 dBm 10 dBm -20 dBm -30 dBm	25.00 dB • RBW 100 kHz 230 ms • VBW 300 kHz	Mode Auto Sweep M1[1]M2[1]	11.40 df 2.4490 G
CSE Plot on CH : pectrum Ref Level 30.00 dBm Offset 25.00 dB WW Pk View o dBm 0 dBm	RBW 100 kHz VBW 300 kHz Made Auto Sweep M1[1] M2[1]	11.22 dbm 2.43910 GHz -41.39 dbm 2.35310 GHz	CSE Plot or Spectrum Ref Level 30.00 dbm Offset 10 dbm 20 db 10 dbm 01 11.400 dbm 10 dbm D2 48.000 dbm 20 dbm	25.00 dB • RBW 100 kHz 230 ms • VBW 300 kHz	Mode Auto Sweep M1[1]M2[1]	11.40 df 2.4490 G
pectrum Ref Level 30.00 dBm Offset 25.00 dB Att 20 dB 9 dBm 0 0 dBm 01 11.220 dBm 0 dBm 01 11.220 dBm 0 dBm 01 11.220 dBm 0 dBm 00 dBm 0 dBm 00 dBm 0 dBm 00 dBm 0 dBm 00 dBm	RBW 100 kHz VBW 300 kHz Made Auto Sweep M1[1] M2[1]	11.22 dbm 2.43910 GHz -41.39 dbm 2.35310 GHz	CSE Plot or Spectrum Ref Level 30.00 dbm 20 db Offset 20 db 10 dbm 10 dbm 20 db 20 db 30 dbm 20 dbm 30 dbm 30 dbm 30 dbm 40 dbm	25.00 dB • RBW 100 kHz 230 ms • VBW 300 kHz	Mode Auto Sweep M1[1]M2[1]	11.40 df 2.4490 G
CSE Plot on CH : pectrum Ref Level 30.00 dbm 20 db SWT	RBW 100 kHz VBW 300 kHz Made Auto Sweep M1[1] M2[1]	11.22 dbm 2.43910 GHz -41.39 dbm 2.35310 GHz	CSE Plot or Spectrum Ref Level 30.00 dbm 20 db Offset 20 db 10 dbm 10 dbm 20 db 20 db 30 dbm 20 dbm 30 dbm 30 dbm 30 dbm 40 dbm	25.00 dB • RBW 100 kHz 230 ms • VBW 300 kHz	Mode Auto Sweep M1[1]	11.40 df 2.4490 G
CSE Plot on CH : pectrum Ref Level 30.00 dBm Offset 25.00 dB WW Pk View o dBm 0 dBm	RBW 100 kHz Mode Auto Sweep VBW 300 kHz Mode Auto Sweep M1[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1]	11.22 dbm 2.43910 GHz -41.39 dbm 2.35310 GHz 1 	CSE Plot or Spectrum Ref Level 30.00 dBm Offset 10 dBm 20 dB 10 dBm D1 11.400 dBm 10 dBm D2 48.000 dBm 20 dBm 0 dBm 20 dBm D2 48.000 dBm 0 dBm D2 48.000 dBm 20 dBm D4 400 dBm	25.00 dB @ RBW 100 kHz 230 ms @ VBW 300 kHz	Mode Auto Sweep M1[1]	11.40 df 2.4490 G

Ref Level 30.00 dBm Offset 25.00 dB @ RBW Att 20 dB SWT 29.7 ms @ VBW			Spectrum Ref Level 30.00 dBm Offset 3 Att 20 dB SWT	25.00 dB ● RBW 100 kHz 230 ms ● VBW 300 kHz Mode Auto Swee	
Att 20.08 SWI 29.7 ms • VBW 1Pk View	300 kHz Mode Auto Sweep		Att 20 dB SW1	230 ms • VBW 300 kHz Mode Auto Swee	ep
0 dBm 01 11.210 dBm	M1[1] M2[1]	11.21 dBm 2.47780 GHz -39.82 dBm 2.38320 GHz	20 dBm M1 10 dBm 01 11.160 dBm	M1[1] M2[1]	11.16 dE 2.4830 G -37.39 dE 15.5970 G
d8m			0 dBm		
20 d8m			-20 dBm		
10 dBm	and when a source of the state	M3 methodoralian un so traited	-0 dBm- March March	Ma and the second the second the second	douter har and the and the second
50 dBm			-60 dBm		
tart 30.0 MHz	691 pts	Stop 3.0 GHz	Start 2.0 GHz	691 pts	Stop 25.0 GH

<2Mbps>



Spectrum			Spectrum		E.
Ref Level 30.00 dBm Offset 25.00 dB # Att 20 dB SWT 29.7 ms # 1Pk View	VBW 300 kHz Mode Auto Sweep]	Ref Level 30.00 dBm Offse Att 20 dB SWT		2. Sector
20 dBm	M1[1] M2[1]	8.33 dBm 2.47780 GHz -42.70 dBm 2.50360 GHz M1	20 dBm	M1[1 M2[1	2.4830 GF
01 8.330 dBm			0 dBm		
-D2 -11.670 dBm			-10 dBm		
30 dBm	an allow of a same to have a series of a	202 Anerosofic and the Son Section of the	-30 dBm	Mit and a second and	and and a second and
60 dBm			-60 dBm		
Start 30.0 MHz	691 pts	Stop 3.0 GHz	Start 2.0 GHz	691 pts	Stop 25.0 GH

<3Mbps>

Spectrum			Spectrum			
	100 kHz 300 kHz Mode Auto Sweep		Att 20 dB SW	fset 25.00 dB ⊛ RBW 100 kH /T 230 ms ⊛ VBW 300 kH		N
10 dBm 01 8.230 dBm	M1[1] M2[1]	8.23 dBm 2.47780 GHz -42.55 dBm 2.52510 GHz M1	1Pk View 20 dBm D1 7.310 dBm		M1[1] M2[1]	7.31 dBr 2.4830 GH -37.93 dBr 15.5970 GH
0 dBm D2 -11,770 dBm 20 dBm 30 dBm			0 dBm -10 dBm -20 dBm -20 dBm -30 dBm	IBm		
40 dBm	subphration of the solution of the	ms restaberget and all all all all all all all all all al		www.la.charlower.charles	Ma annang annang annang	the the walk has been been the
tart 30.0 MHz	691 pts	Stop 3.0 GHz	Start 2.0 GHz	691	ats	Stop 25.0 GH

3.8 Radiated Band Edges and Spurious Emission Measurement

3.8.1 Limit of Radiated Band Edges and Spurious Emission

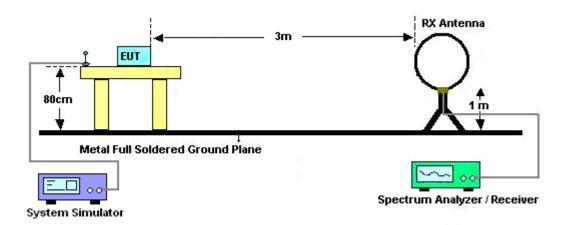
In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics / spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

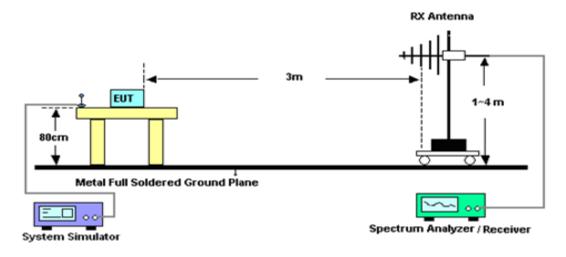
3.8.2 Measuring Instruments

See list of measuring equipment of this test report.

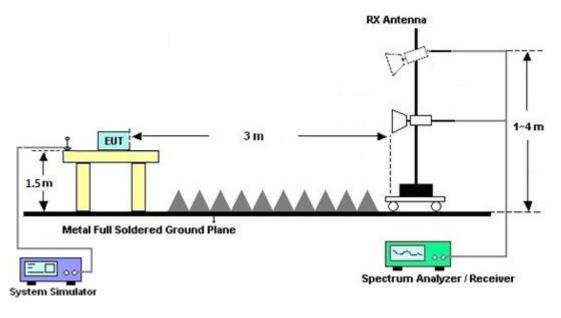
3.8.3 Test Procedures


- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1 GHz and 1.5 meter for frequency above 1 GHz respectively above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set the maximum power setting and enable the EUT to transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW = 100 kHz for f < 1 GHz, RBW = 1 MHz for f>1 GHz ; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c). Duty cycle = On time/100 milliseconds On time = N₁*L₁+N₂*L₂+...+N_{n-1}*LN_{n-1}+N_n*L_n Where N₁ is number of type 1 pulses, L₁ is length of type 1 pulses, etc. Average Emission Level = Peak Emission Level + 20*log(Duty cycle)
- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. For testing below 1 GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 8. For testing above 1 GHz, the emission level of the EUT in peak mode was 20 dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (-24.79dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.



3.8.4 Test Setup


For radiated test below 30MHz

For radiated test from 30MHz to 1GHz

For radiated test above 1GHz

3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

3.8.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix B and C.

3.8.7 Duty Cycle

Please refer to Appendix D.

3.8.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix B and C.

3.9 AC Conducted Emission Measurement

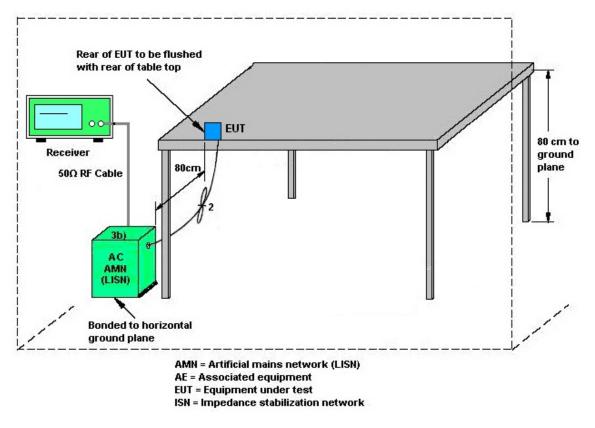
3.9.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MUT)	Conducted limit (dBµV)				
Frequency of emission (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

*Decreases with the logarithm of the frequency.

3.9.2 Measuring Instruments


See list of measuring equipment of this test report.

3.9.3 Test Procedures

- The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN shall be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.9.4 Test Setup

3.9.5 Test Result of AC Conducted Emission

Please refer to Appendix A.

3.10 Antenna Requirements

3.10.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6 dBi, the power shall be reduced by the same level in dB comparing to gain minus 6 dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.10.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.10.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Loop Antenna	Rohde & Schw arz	HFH2-Z2	100488	9 kHz~30 MHz	Jul. 14, 2020	Mar. 24, 2021~ Apr. 14, 2021	Jul. 13, 2021	Radiation (03CH13-HY)
Bilog Antenna	TESEQ	CBL 6111D & 00800N1D01 N-06	40103 & 07	30MHz~1GHz	Apr. 29, 2020	Mar. 24, 2021~ Apr. 14, 2021	Apr. 28, 2021	Radiation (03CH13-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-124 1	1GHz~18GHz	Jul. 15, 2020	Mar. 24, 2021~ Apr. 14, 2021	Jul. 14, 2021	Radiation (03CH13-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA9170 576	18GHz~40GHz	May 22, 2020	Mar. 24, 2021~ Apr. 14, 2021	May 21, 2021	Radiation (03CH13-HY)
Preamplifier	MITEQ	AMF-7D-0010 1800-30-10P	1590074	1GHz~18GHz	May 19, 2020	Mar. 24, 2021~ Apr. 14, 2021	May 18, 2021	Radiation (03CH13-HY)
Preamplifier	Keysight	83017A	MY 532701 47	1GHz~26.5GHz	Oct. 28, 2020	Mar. 24, 2021~ Apr. 14, 2021	Oct. 27, 2021	Radiation (03CH13-HY)
Preamplifier	EMEC	EM18G40G	0600789	18GHz~40GHz	Jul. 31, 2020	Mar. 24, 2021~ Apr. 14, 2021	Jul. 30, 2021	Radiation (03CH13-HY)
Spectrum Analyzer	Keysight	N9010B	MY 602405 20	10Hz~44GHz	Dec. 02, 2020	Mar. 24, 2021~ Apr. 14, 2021	Dec. 01, 2021	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY 9837/4 PE	9kHz~30MHz	Mar. 11, 2021	Mar. 24, 2021~ Apr. 14, 2021	Mar. 10, 2022	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY 4274/2	30MHz~40GHz	Mar. 11, 2021	Mar. 24, 2021~ Apr. 14, 2021	Mar. 10, 2022	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 126E	0030/126E	30MHz~18GHz	Feb. 10, 2021	Mar. 24, 2021~ Apr. 14, 2021	Feb. 09, 2022	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	804793/4	30MHz~18GHz	Feb. 10, 2021	Mar. 24, 2021~ Apr. 14, 2021	Feb. 09, 2022	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY24961/ 4	30MHz~18GHz	Feb. 10, 2021	Mar. 24, 2021~ Apr. 14, 2021	Feb. 09, 2022	Radiation (03CH13-HY)
Antenna Mast	EMEC	AM-BS-4500- B	N/A	1m~4m	N/A	Mar. 24, 2021~ Apr. 14, 2021	N/A	Radiation (03CH13-HY)
Turn Table	EMEC	TT2000	N/A	0~360 Degree	N/A	Mar. 24, 2021~ Apr. 14, 2021	N/A	Radiation (03CH13-HY)
Softw are	AUDIX	E3 6.2009-8-24c	RK-001124	N/A	N/A	Mar. 24, 2021~ Apr. 14, 2021	N/A	Radiation (03CH13-HY)
EMI Test Receiver	Keysight	N9038A(MXE)	MY 532900 45	20MHz~8.4GHz	Jan. 13, 2021	Mar. 24, 2021~ Apr. 14, 2021	Jan. 12, 2022	Radiation (03CH13-HY)
Filter	Wainw right	WHKX12-270 0-3000-18000 -60SS	SN2	3GHz High Pass Filter	Jul. 13, 2020	Mar. 24, 2021~ Apr. 14, 2021	Jul. 12, 2021	Radiation (03CH13-HY)
Filter	Wainw right	WHKX8-5872. 5-6750-18000 -40ST	SN5	6.75GHz High Pass Filter	Mar. 11, 2021	Mar. 24, 2021~ Apr. 14, 2021	Mar. 10, 2022	Radiation (03CH13-HY)
Amplifier	Sonoma-Instru ment	310 N	187282	9KHz~1GHz	Dec. 16, 2020	Mar. 24, 2021~ Apr. 14, 2021	Dec. 15, 2021	Radiation (03CH13-HY)
Filter	Wainw right	WLK4-1000-1 530-8000-40S S	SN12	1.53GHz Low Pass Filter	Sep. 15, 2020	Mar. 24, 2021~ Apr. 14, 2021	Sep. 14, 2021	Radiation (03CH13-HY)

: 53 of 55

: May 05, 2021 : 01

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Hygrometer	Testo	608-H1	34893241	N⁄A	Mar. 02, 2021	Mar. 12, 2021~ Mar. 20, 2021	Mar. 01, 2022	Conducted (TH05-HY)
Pow er Meter	Anritsu	ML2495A	1036004	N⁄A	Aug. 12, 2020	Mar. 12, 2021~ Mar. 20, 2021	Aug. 11, 2021	Conducted (TH05-HY)
Pow er Sensor	Anritsu	MA2411B	1027253	300MHz~40GH z	Aug. 12, 2020	Mar. 12, 2021~ Mar. 20, 2021	Aug. 11, 2021	Conducted (TH05-HY)
Signal Analyzer	Rohde & Schwarz	FSV40	101566	10Hz ~ 40GHz	Jul. 22, 2020	Mar. 12, 2021~ Mar. 20, 2021	Jul. 21, 2021	Conducted (TH05-HY)
BT Base Station	Rohde & Schwarz	CBT	101135	BT 3.0	Sep. 15, 2020	Mar. 12, 2021~ Mar. 20, 2021	Sep. 14, 2022	Conducted (TH05-HY)
Switch Control Manframe	E-IUSTRUME NT	ETF-1405-0	EC190015 7	N⁄A	Aug. 15, 2020	Mar. 12, 2021~ Mar. 20, 2021	Aug. 14, 2021	Conducted (TH05-HY)
AC Pow er Source	ACPOWER	AFC-11003G	F3170400 33	N⁄A	N/A	Apr. 27, 2021	N/A	Conduction (CO07-HY)
Softw are	Rohde & Schwarz	EMC32 V10.30	N/A	N⁄A	N/A	Apr. 27, 2021	N/A	Conduction (CO07-HY)
Pulse Limiter	SCHWARZBE CK	VTSD 9561-F N	9561-F N00373	9kHz-200MHz	Nov. 02, 2020	Apr. 27, 2021	Nov. 01, 2021	Conduction (CO07-HY)
RF Cable	HUBER + SUHNER	RG 214/U	1358175	9kHz~30MHz	N/A	Apr. 27, 2021	N/A	Conduction (CO07-HY)
Tw o-Line V-Netw ork	TESEQ	NNB 51	45051	N/A	Feb. 01, 2021	Apr. 27, 2021	Jan. 31, 2022	Conduction (CO07-HY)
EMI Test Receiver	Rohde & Schw arz	ESR3	102317	9kHz~3.6GHz	Sep. 11, 2020	Apr. 27, 2021	Sep. 10, 2021	Conduction (CO07-HY)

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.2
of 95% (U = 2Uc(y))	2.2

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

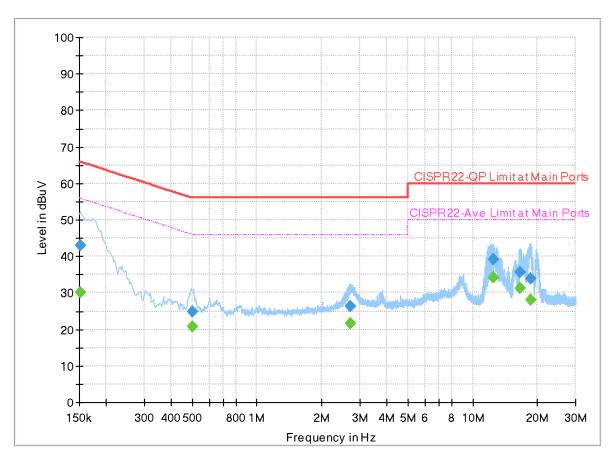
Measuring Uncertainty for a Level of Confidence	4.8
of 95% (U = 2Uc(y))	4.8

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	E 1
of 95% (U = 2Uc(y))	5.1

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	4.6
of 95% (U = 2Uc(y))	4.0

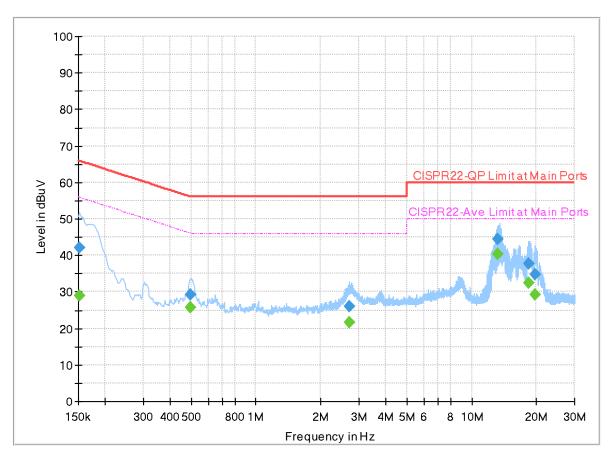


Appendix A. AC Conducted Emission Test Results

Test Engineer	Tom Loo	Temperature :	23~26 ℃
Test Engineer :	Iom Lee	Relative Humidity :	40~50%

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 0D2423 Mode 1 120Vac/60Hz Line


FullSpectrum

Final_Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dB)			(dB)
0.152250		30.20	55.88	25.68	L1	OFF	20.0
0.152250	43.10		65.88	22.78	L1	OFF	20.0
0.501000		20.89	46.00	25.11	L1	OFF	20.0
0.501000	24.80		56.00	31.20	L1	OFF	20.0
2.719500		21.73	46.00	24.27	L1	OFF	20.1
2.719500	26.27		56.00	29.73	L1	OFF	20.1
12.491250		34.11	50.00	15.89	L1	OFF	20.2
12.491250	39.22		60.00	20.78	L1	OFF	20.2
16.599750		31.27	50.00	18.73	L1	OFF	20.2
16.599750	35.77		60.00	24.23	L1	OFF	20.2
18.577500		28.03	50.00	21.97	L1	OFF	20.2
18.577500	33.94		60.00	26.06	L1	OFF	20.2

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 0D2423 Mode 1 120Vac/60Hz Neutral

FullSpectrum

Final_Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dB)			(dB)
0.152250		28.98	55.88	26.90	Ν	OFF	20.0
0.152250	42.14		65.88	23.74	Ν	OFF	20.0
0.494250		25.79	46.10	20.31	Ν	OFF	20.0
0.494250	29.15		56.10	26.95	Ν	OFF	20.0
2.717250		21.69	46.00	24.31	Ν	OFF	20.1
2.717250	26.08		56.00	29.92	Ν	OFF	20.1
13.240500		40.42	50.00	9.58	Ν	OFF	20.2
13.240500	44.44		60.00	15.56	Ν	OFF	20.2
18.462750		32.39	50.00	17.61	Ν	OFF	20.3
18.462750	37.75		60.00	22.25	Ν	OFF	20.3
19.770000		29.33	50.00	20.67	Ν	OFF	20.3
19.770000	34.78		60.00	25.22	Ν	OFF	20.3

Appendix B. Radiated Spurious Emission

Test Engineer :	Daniel Lee, Jacky Hung and Wilson Wu	Temperature :	20~25°C
lest Engineer .		Relative Humidity :	50~60%

2.4GHz 2400~2483.5MHz

BT (Band Edge @ 3m)

ВТ	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2326.59	47.84	-26.16	74	43.81	27.75	4.13	27.85	328	99	Р	Н
		2326.59	23.05	-30.95	54	-	-	-	-	-	-	А	Н
	*	2402	98.47	-	-	94.51	27.6	4.2	27.84	328	99	Р	Н
	*	2402	73.68	-	-	-	-	-	-	-	-	А	Н
вт													Н
CH00													Н
2402MHz		2326.695	47.18	-26.82	74	43.15	27.75	4.13	27.85	374	61	Р	V
		2326.695	22.39	-31.61	54	-	-	-	-	-	-	А	V
	*	2402	96.09	-	-	92.13	27.6	4.2	27.84	374	61	Р	V
	*	2402	71.3	-	-	-	-	-	-	-	-	А	V
													V
													V
		2338.42	48.73	-25.27	74	44.72	27.72	4.14	27.85	312	100	Р	н
		2338.42	23.94	-30.06	54	-	-	-	-	-	-	А	Н
	*	2441	98.11	-	-	94.19	27.52	4.23	27.83	312	100	Р	н
	*	2441	73.32	-	-	-	-	-	-	-	-	А	Н
57		2484.6	45.11	-28.89	74	41.16	27.5	4.27	27.82	312	100	Ρ	Н
BT		2484.6	20.32	-33.68	54	-	-	-	-	-	-	А	Н
CH 39 2441MHz		2353.4	46.46	-27.54	74	42.47	27.69	4.15	27.85	363	58	Р	V
		2353.4	21.67	-32.33	54	-	-	-	-	-	-	А	V
	*	2441	94.64	-	-	90.72	27.52	4.23	27.83	363	58	Р	V
	*	2441	69.85	-	-	-	-	-	-	-	-	Α	V
		2491.04	44.72	-29.28	74	40.77	27.5	4.27	27.82	363	58	Р	V
		2491.04	19.93	-34.07	54	-	-	-	-	-	-	А	V

	*	2480	97.44	-	-	93.5	27.5	4.26	27.82	308	97	Р	Н
	*	2480	72.65	-	-	-	-	-	-	-	-	А	Н
		2483.52	45.74	-28.26	74	41.79	27.5	4.27	27.82	308	97	Р	Н
		2483.52	20.95	-33.05	54	-	-	-	-	-	-	А	Н
вт													н
ы СН 78													Н
2480MHz	*	2480	94.22	-	-	90.28	27.5	4.26	27.82	352	58	Р	V
	*	2480	69.43	-	-	-	-	-	-	-	-	А	V
		2488.72	44.51	-29.49	74	40.56	27.5	4.27	27.82	352	58	Р	V
		2488.72	19.72	-34.28	54	-	-	-	-	-	-	А	V
													V
													V
Remark		o other spurious I results are PA		Peak and	Average lin	nit line.							

2.4GHz 2400~2483.5MHz

BT	Note	Frequency											
		Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		/ • • • • •		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	4180
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		
		4804	46.25	-27.75	74	66.12	31.11	6.51	57.49	100	0	Р	Н
		4804	21.46	-32.54	54	-	-	-	-	-	-	A	Н
вт													Н
CH 00													Н
2402MHz		4804	47.82	-26.18	74	67.69	31.11	6.51	57.49	100	0	Р	V
		4804	23.03	-30.97	54	-	-	-	-	-	-	А	V
													V
													V
		4882	49.11	-24.89	74	68.39	31.2	6.84	57.32	100	0	Р	н
		4882	24.32	-29.68	54	-	-	-	-	-	-	А	н
BT CH 39		7323	44.27	-29.73	74	55.9	36.75	8.72	57.1	100	0	Р	Н
		7323	19.48	-34.52	54	-	-	-	-	-	-	А	Н
		4882	51.14	-22.86	74	70.42	31.2	6.84	57.32	100	0	Р	V
2441MHz		4882	26.35	-27.65	54	-	-	-	-	-	-	А	V
		7323	44.09	-29.91	74	55.72	36.75	8.72	57.1	100	0	Р	V
		7323	19.3	-34.7	54	-	-	-	-	-	-	А	V
		4960	50.15	-23.85	74	68.72	31.42	7.17	57.16	100	0	Р	Н
		4960	25.36	-28.64	54	-	-	-	-	-	-	А	Н
рт		7440	45.09	-28.91	74	56.85	36.82	8.7	57.28	100	0	Р	Н
ВТ СН 78		7440	20.3	-33.7	54	-	-	-	-	-	-	А	Н
		4960	52.26	-21.74	74	70.83	31.42	7.17	57.16	100	0	Р	V
2480MHz		4960	27.47	-26.53	54	-	-	-	-	-	-	А	V
		7440	45.05	-28.95	74	56.81	36.82	8.7	57.28	100	0	Р	V
		7440	20.26	-33.74	54	-	-	-	-	-	-	А	V
Remark		o other spurious results are PA		eak and	Average lim	t line.							

BT (Harmonic @ 3m)

Emission below 1GHz

BT	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Po
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz) 30	(dBµV/m) 22.15	(dB)	(dBμV/m) 40	(dBµV) 29.27	(dB/m) 24.59	(dB) 0.51	(dB)	(cm)	(deg)	(P/A) P	H) (H
									32.22			P	ł
		257.95	33.17	-12.83	46	44.26	19.47	1.47	32.03	-	-		r
		320.03	31.79	-14.21	46	42.46	19.51	1.62	31.8	-	-	P	
		402.48	36.47	-9.53	46	44.26	21.99	1.77	31.55	100	0	P	
		859.35	31.58	-14.42	46	31.08	29.01	2.65	31.16	-	-	Р	
		937.92	32.39	-13.61	46	30.67	29.79	2.78	30.85	-	-	Р	
.4GHz													
BT													
LF		30.97	21.75	-18.25	40	29.25	24.21	0.52	32.23	-	-	Ρ	
		72.68	29.82	-10.18	40	48.51	12.78	0.79	32.26	100	0	Ρ	
		259.89	25.61	-20.39	46	36.38	19.77	1.48	32.02	-	-	Ρ	
		409.27	30.55	-15.45	46	38.1	22.25	1.78	31.58	-	-	Ρ	
		837.04	31.07	-14.93	46	31.01	28.66	2.62	31.22	-	-	Ρ	
		944.71	32.25	-13.75	46	30.05	30.23	2.79	30.82	-	-	Ρ	

2.4GHz BT (LF)

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

ВТ	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
вт		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 00													
2402MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level(dB μ V/m) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Over $Limit(dB) = Level(dB\mu V/m) - Limit Line(dB\mu V/m)$

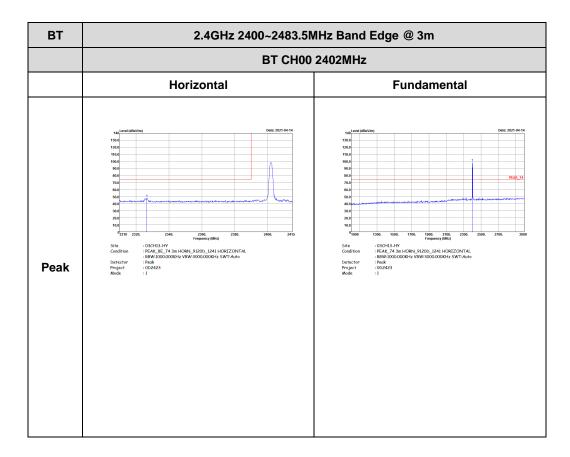
For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 54.51(dBµV) 35.86 (dB)
- = 55.45 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- = 43.54 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dB μ V/m) Limit Line(dB μ V/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

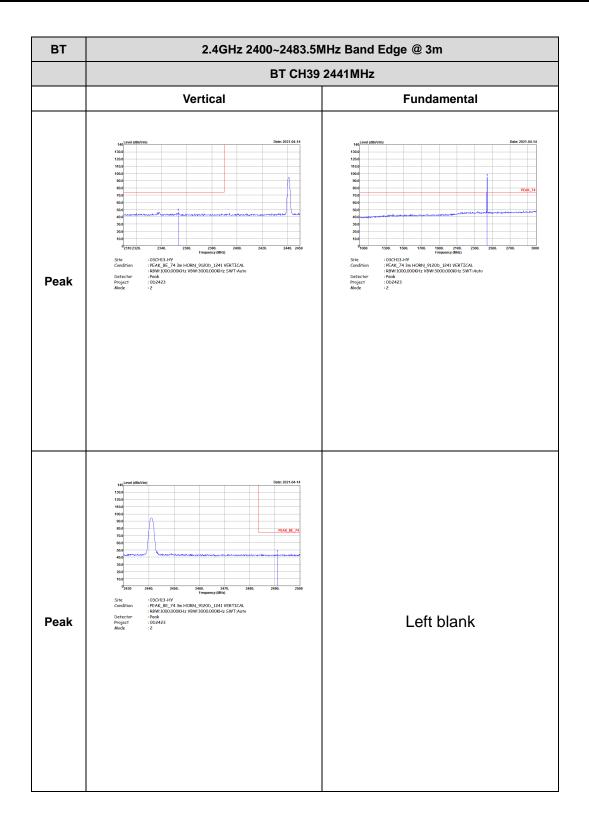


Appendix C. Radiated Spurious Emission Plots

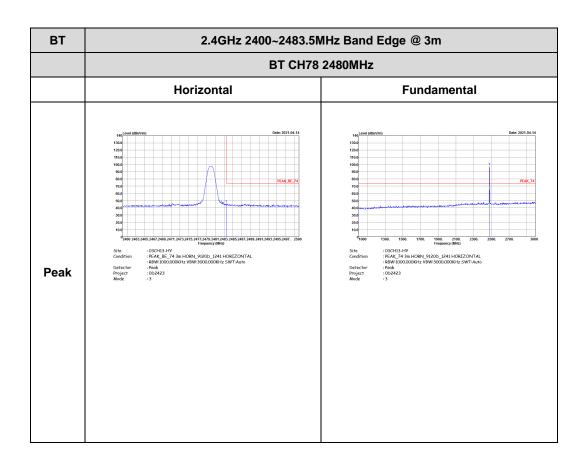
Test Engineer :	Daniel Lee, Jacky Hung and Wilson Wu	Temperature :	20~25°C	
rest Engineer.		Relative Humidity :	50~60%	

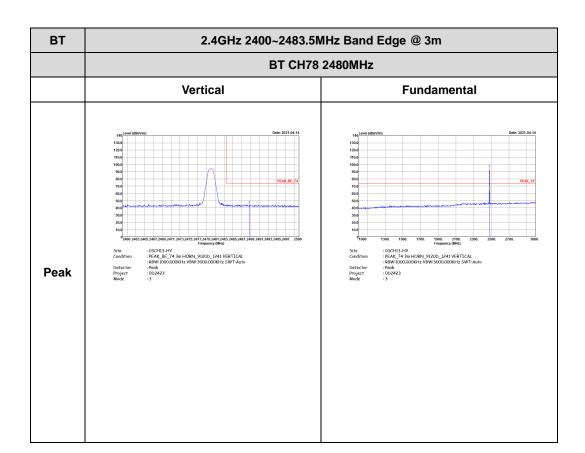
2.4GHz 2400~2483.5MHz

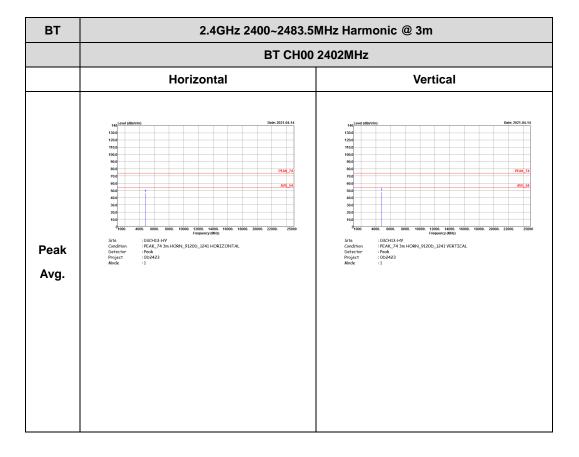
BT (Band Edge @ 3m)

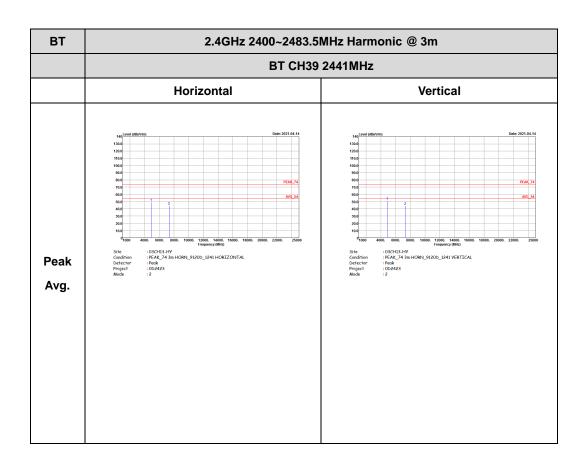


вт	2.4GHz 2400~2483.5MHz Band Edge @ 3m											
	BT CH00 2402MHz											
	Vertical	Fundamental										
Peak	1 1 0	14 Image: Control of the second sec										

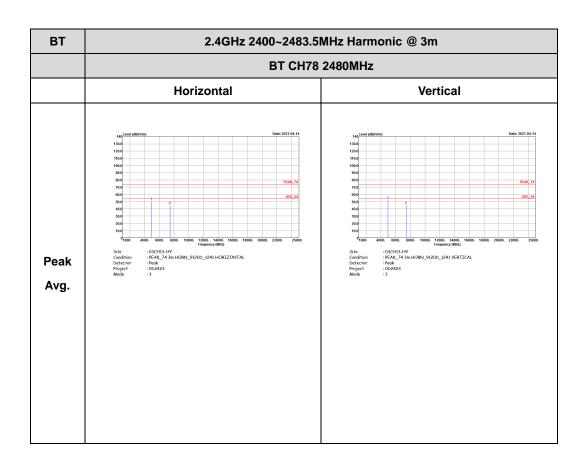


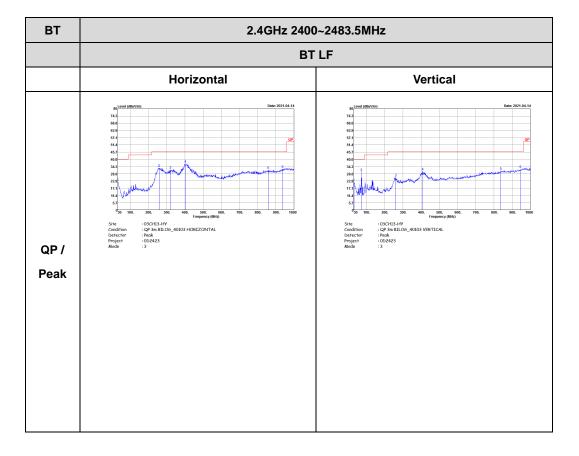






2.4GHz 2400~2483.5MHz


BT (Harmonic @ 3m)



Emission below 1GHz

Appendix D. Duty Cycle Plots

DH5 on time (One Pulse) Plot on Channel 39							on time (Count Pulses) Plot on Channel 39						
Keysight Spec	trum Analyzer - Swept SA RF 50 Ω DC	PNO: Fast	SENSE:INT	ALIGN OFF #Avg Type: RMS	05:54:49 AM Apr 14, 2021 TRACE 1 2 3 4 5 6 TYPE WWWWWW	Marker	UN RL	Spectrum Analyzer - Swept SA RF 50 Ω DC 1 44.2000 ms		SENSE:INT	ALIGN OFF #Avg Type: RMS	05:58:37 AM Apr 14, 2021 TRACE 12 3 4 5 6 TYPE	Peak Search
10 dB/div	Ref 116.99 dBµV	IFGain:Low	Atten: 20 dB		Mkr4 1.920 ms 93.96 dBµV	Select Marker 4	10 dB/div	Ref 116.99 dBµ\	IFGain:Low A	tten: 20 dB		ост ^{р р р р р р р} Mkr1 44.20 ms 93.97 dBµV	NextPeak
107 97.0	×4			Δ4		Normal	107						Next Pk Right
87.0 77.0 67.0 57.0						Delta	97.0 87.0						Next Pk Left
47.0 37.0 27.0	a want		in the		And When	Fixed►	67.0						Marker Delta
Center 2.4 Res BW 1.		#VBW 1	Y FUN	Sweep 1	Span 0 Hz 0.00 ms (1001 pts) FUNCTION VALUE	Off	67.0						Mkr→CF
1 Δ2 1 2 N 1 3 Δ4 1 4 F 1 5	t	3.750 ms (A)	-0.33 dB 93.96 dBµV 0.02 dB 93.96 dBµV		=	Properties►	37.0	hihidalaridining gliptany fol	hland, Hayboor An My 2 Har Val	(hashipping)	hanna hanna hanna	hallandaariyyaay	Mkr→RefLvl
7 8 9 10 11						More 1 of 2		2.441000000 GHz				Span 0 Hz	More 1 of 2
MSG				STATU	\$		Res BW	1.0 MHz	#VBW 1.0	MHz	Sweep	100.0 ms (1001 pts) ^{US}	

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = 2 * 2.88 / 100 = 5.76 %
- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.79 dB
- 3. DH5 has the highest duty cycle worst case and is reported.

Duty Cycle Correction Factor Consideration for AFH mode:

Bluetooth normal hopping rate is 1600Hz and reduced to 800Hz in AFH mode; due to the reduced number of hopping frequencies, with the same packet configuration the dwell time in each channel frequency within 100msec period is longer in AFH mode than normal mode.

In AFH mode, the minimum hopping frequencies are 20, to get the longest dwell time DH5 packet is observed; the period to have DH5 packet completing one hopping sequence is

2.88 ms x 20 channels = 57.6 ms

There cannot be 2 complete hopping sequences within 100ms period, considering the random hopping behavior, maximum 2 hops can be possibly observed within the period. [100 ms / 57.6 ms] = 2 hops Thus, the maximum possible ON time:

2.88 ms x 2 = 5.76 ms

Worst case Duty Cycle Correction factor, which is derived from the maximum possible ON time,

 $20 \times \log(5.76 \text{ ms}/100 \text{ ms}) = -24.79 \text{ dB}$