

FCC PART 15.225 TEST REPORT

for

CARD PRINTER with RFID & HID Model: P330I FCC ID: I28-P330I

Prepared for

ZEBRA TECHNOLOGIES CORP. 1001 FLYNN RD CAMARILLO, CA 93012

Prepared by: _____

REYNALD O. RAMIREZ

Approved by: _____

RUBY A. HALL

COMPATIBLE ELECTRONICS INC. 2337 TROUTDALE DRIVE AGOURA, CALIFORNIA 91301 (818) 597-0600

DATE: OCTOBER 24, 2006

	REPORT	APPENDICES			TOTAL		
	BODY	A	В	С	D	E	
PAGES	18	2	2	2	12	23	59

This report shall not be reproduced except in full, without the written approval of Compatible Electronics.

TABLE OF CONTENTS

Section / Title	PAGE
GENERAL REPORT SUMMARY	4
SUMMARY OF TEST RESULTS	4
1. PURPOSE	5
2. ADMINISTRATIVE DATA	6
2.1 Location of Testing	6
2.2 Traceability Statement	6
2.3 Cognizant Personnel	6
2.4 Date Test Sample was Received	6
2.5 Disposition of the Test Sample	6
2.6 Abbreviations and Acronyms	6
3. APPLICABLE DOCUMENTS	7
4. Description of Test Configuration	8
4.1 Description of Test Configuration - EMI	8
4.1.1 Photograph of Test Configuration – EMI	9
4.1.2 Cable Construction and Termination	10
5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT	11
5.1 EUT and Accessory List	11
5.2 EMI Test Equipment	12
6. TEST SITE DESCRIPTION	14
6.1 Test Facility Description	14
6.2 EUT Mounting, Bonding and Grounding	14
7. Test Procedures	15
7.1 RF Emissions	15
7.1.1 Conducted Emissions Test	15
7.1.2 Radiated Emissions Test	16
7.1.3 Radiated Emissions – Frequency Tolerance	17
8. TEST PROCEDURE DEVIATIONS	18
9. CONCLUSIONS	18

LIST OF APPENDICES

APPENDIX	TITLE			
А	Laboratory Accreditations			
В	Modifications to the EUT			
С	Additional Models Covered Under This Report			
D	Diagrams, Charts and Photos			
	Test Setup Diagrams			
	Antenna and Amplifier Gain Factors			
	Radiated and Conducted Emissions Photos			
Е	Data Sheets			

LIST OF FIGURES

FIGURE	TITLE
1	Conducted Test Setup
2	Plot Map And Layout of Test Site

GENERAL REPORT SUMMARY

This electromagnetic emission report is generated by Compatible Electronics Inc., which is an independent testing and consulting firm. The test report is based on testing performed by Compatible Electronics personnel according to the measurement procedures described in the test specifications given below and in the "Test Procedures" section of this report.

The measurement data and conclusions appearing herein relate only to the sample tested and this report may not be reproduced in any form except in full, without the written permission of Compatible Electronics.

This report must not be used to claim product endorsement by NVLAP or any other agency of the U.S. Government.

Device Tested:	Card Printer with RFID & HID Model: P330I S/N: P330013903
Product Description:	This is a card printer that can print on one side of a PVC card in one pass through the printer.
Modifications:	The EUT was not modified during the testing.
Manufacturer:	Zebra Technologies, Corp. 1001 Flynn Rd. Camarillo, CA 93012
Test Dates:	October 11, 12 & 19, 2006
Test Specifications:	EMI requirements FCC CFR Title 47, Part 15 Subpart C Test Procedure: ANSI C63.4: 2003.

SUMMARY OF TEST RESULTS

TEST	DESCRIPTION	RESULTS
1	Radiated RF Emissions, 9kHz to 1GHz	The RFID & HID Complies with the limits of FCC CFR Title 47, Part 15 Subpart C 15.209, 15.225 and 15.205 Subpart A 15.31(e)
2	Conducted RF Emissions, 150 kHz – 30 MHz	The RFID & HID Complies with the limits of FCC CFR Title 47, Part 15 Subpart C 15.207 (a).

PURPOSE

1.

This document is a Qualification test report based on the Electromagnetic Interference (EMI) tests performed on the Card Printer with RFID & HID Model: P330I. The EMI measurements were performed according to the measurement procedure described in ANSI C63.4: 2003. The tests were performed in order to determine whether the electromagnetic emissions from the RFID portion of the equipment under test, referred to as EUT hereafter, are within the specification limits defined in FCC CFR Title 47, Subpart C 15.207 (a), 15.209, 15.205 and 15.225 and Subpart A 15.31(e)

2. ADMINISTRATIVE DATA

2.1 Location of Testing

The EMI tests described herein were performed at the test facility of Compatible Electronics, 2337 Troutdale Drive, Agoura, California 91301. The temperature cycle testing was performed at the test facility of Compatible Electronics, 114 Olinda Drive, Brea, California 92823.

2.2 Traceability Statement

The calibration certificates of all test equipment used during the test are on file at the location of the test. The calibration is traceable to the National Institute of Standards and Technology (NIST).

2.3 Cognizant Personnel

Zebra Technologies, Corp.

Bernard Ryan Electrical Engineer

Compatible Electronics Inc.

Kyle Fujimoto	Test Engineer
Reynald O. Ramirez	Senior Test Engineer
Ruby A. Hall	Lab Manager

2.4 Date Test Sample was Received

The test sample was received on October 12, 2006.

2.5 Disposition of the Test Sample

The test sample remains at does not Compatible Electronics, Inc.

2.6 Abbreviations and Acronyms

The following abbreviations and acronyms may be used in this document.

RF	Radio Frequency
EMI	Electromagnetic Interference
EUT	Equipment Under Test
P/N	Part Number
S/N	Serial Number
HP	Hewlett Packard
ITE	Information Technology Equipment
CML	Corrected Meter Limit
LISN	Line Impedance Stabilization Network
RFID	Radio Frequency Identification

3. APPLICABLE DOCUMENTS

The following documents are referenced or used in the preparation of this EMI Test Report.

SPEC	TITLE				
FCC CFR Title 47, Subpart C	FCC Rules – Intentional Radiators.				
Subpart B	FCC Rules - Unintentional Radiators				
CISPR 16 1993	Specification for radio disturbance and immunity measuring apparatus and methods.				
ANSI C63.4 2003	Methods of measurement of radio-noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz.				

4. DESCRIPTION OF TEST CONFIGURATION

4.1 Description of Test Configuration - EMI

The Card Printer with RFID & HID was setup in a tabletop configuration. The EUT was connected to the laptop computer via the USB port. An Ethernet option was also tested but was determined that the USB option emitted the highest emissions. An accessory and a modem were also connected to the laptop computer via their respective ports. The Zebra P330I uses color dye-sublimination ribbons or thermal transfer ribbons to transfer digital images to a PVC card. Ribbon recognition and security is maintained through RFID technology within the printer. The RFID board and the contactless smartcards use separate transmitters each operating at a frequency of 13.56 MHz in the ISM band. The RFID system uses an I CODE1 format. The EUT was continuously printing & transmitting throughout the test.

The HID I-Class system use HID OEM50 modules. The iClass OEM50 exciter modulates a 13.56 MHz carrier signal in accordance with ISO/IEC 15693-2. The modulated carrier is then filtered to suppress harmonics before driving the antenna. The output impedance of the exciter is 50 ohms for driving remote antennas through a coax cable and the impedance matching network of the antenna matches the impedance for maximum power transfer.

The highest emissions were found when the EUT was running in the above configuration. The final radiated and conducted data was taken in this mode of operation. All initial investigations were performed with the spectrum analyzer in manual mode scanning the frequency range continuously. The EUT was setup and tested as shown in the photographs in Appendix D.

4.1.1 Photograph of Test Configuration – EMI

4.1.2 Cable Construction and Termination

- <u>Cable 1</u> This is a 1.5 meter, foil shielded, round USB cable connecting the EUT to the laptop computer. There is a USB connector at both ends of the cable. The cable was bundled to a length of 1 meter. The shield of the cable was grounded to the chassis via the connectors.
- <u>Cable 2</u> This is a 2 meter, braid and foil shielded, round parallel cable connecting the accessory printer to the laptop computer. There is a metallic 36 pin Centronics type connector at the printer end and a metallic DB-25 pin connector at the computer end of the cable. The shield of the cable was grounded to the chassis via the connectors.
- Cable 3
- This is a 2 meter, unshielded, round, RS232 cable that connects the modem to the Laptop computer. The cable has a D-25 pin serial connector at the modem end and a D-9 pin serial connector at the laptop end. The cable was bundled to a length of 1 meter.

5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT

5.1 EUT and Accessory List

#	EQUIPMENT TYPE	MANUFACTURER	MODEL	SERIAL NUMBER
1	CARD PRINTER with RFID & HID (EUT)	ZEBRA TECHNOLOGIES CORP.	P330I	FCC ID: I28-P330I
2	MODEM	HAYES	231AA	A05031083453
3	LAPTOP COMPUTER	DELL	PP17L	NONE
4	ACCESSORY PRINTER	HEWLETT PACKARD	C2162A	SG49R130MP

5.2 EMI Test Equipment

EQUIPMENT TYPE	MANU- FACTURER	MODEL NUMBER	SERIAL NUMBER	CAL. DATE	CAL. DUE DATE
Spectrum Analyzer	Hewlett Packard	8566B	2729A04566	Jan. 10, 2006	Jan. 10, 2007
Quasi-Peak Adapter	Hewlett Packard	85650A	2521A00682	Jan. 10, 2006	Jan. 10, 2007
Preamplifier	Com Power	PA-103	0161068	Dec. 8, 2005	Dec. 8, 2006
LISN	Com Power	LI-215	12037	Oct. 13, 2006	Oct. 13, 2007
LISN (Accessory)	Com Power	LI-115	02030	Oct. 13, 2006	Oct. 13, 2007
Transient Limiter	Com Power	HZ560	3549	Dec. 5, 2005	Dec. 5, 2006
Biconical Antenna	Com Power	AB-900	2819	Dec. 29, 2005	Dec. 29, 2006
Log Periodic Antenna	Com Power	AL-100	01116	Dec. 28, 2005	Dec. 28, 2006
EM Loop Antenna Active	Com-Power	AL-130	17067	Aug. 1, 2006	Aug. 1, 2007
Antenna Mast	Com Power	AM-400	N/A	N/A	N/A
Turntable	Com Power	TTW-595	N/A	N/A	N/A
Computer	Hewlett Packard	Pavilion 4530	US91912022	N/A	N/A
Printer	Hewlett Packard	C6427B	MY066160TW	N/A	N/A
Conducted Emissions Test Software	Compatible Electronics	SR21	N/A	N/A	N/A
Radiated Emissions Test Software	Compatible Electronics	VCAP1A	N/A	N/A	N/A
Harmonic Flicker Meter	Hewlett Packard	6842A	3531A00180	Mar. 03, 2006	Mar. 03, 2007

5.2.1 EMI Test Equipment (continued)

EQUIPMENT TYPE	MANU- FACTURER	MODEL NUMBER	SERIAL NUMBER	CAL. DATE	CAL. DUE DATE
Temperature Chamber	Despatch	MIC 6000	149857	May 4, 2006	May 4, 2007
Variable Autotransformer	Staco Energy Products	3PN1010	N/A	N/A	N/A
Multimeter	Fluke	87	956410240	Dec. 15, 2005	Dec. 15, 2006
EMI Receiver	Rohde & Schwarz	ESIB40	100172	Oct. 28, 2004	Oct. 28, 2006
Temperature Chamber	Despatch	MIC 6000	149857	May 4, 2006	May 4, 2007

6. TEST SITE DESCRIPTION

6.1 Test Facility Description

Please refer to section 2.1 and 7.1.2 of this report for EMI test location.

6.2 EUT Mounting, Bonding and Grounding

The EUT was mounted on a 1.0 by 1.5 meter non-conductive table 0.8 meters above the ground plane.

The EUT was grounded through the AC power cord.

7. TEST PROCEDURES

The following sections describe the test methods and the specifications for the tests. Test results are also included in this section.

7.1 **RF Emissions**

7.1.1 Conducted Emissions Test

The Spectrum Analyzer was used as a measuring meter along with the quasi-peak adapter. The data was collected with the Spectrum Analyzer in the peak detect mode with the "Max Hold" feature activated. The quasi-peak was used only where indicated in the data sheets. A 10 dB attenuation pad was used for the protection of the Spectrum Analyzer input stage, and the Spectrum Analyzer offset was adjusted accordingly to read the actual data measured. The LISN output was read by the Spectrum Analyzer. The output of the second LISN was terminated by a 50 ohm termination. The effective measurement bandwidth used for the conducted emissions test was 9 kHz.

Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The EUT was powered through the LISN, which was bonded to the ground plane. The LISN power was filtered and the filter was bonded to the ground plane. The EUT was set up with the minimum distances from any conductive surfaces as specified in ANSI C63.4: 2003. The excess power cord was wrapped in a figure eight pattern to form a bundle not exceeding 0.4 meters in length.

The initial test data was taken in manual mode while scanning the frequency ranges of 0.15 MHz to 1.6 MHz, 1.6 MHz to 5 MHz and 5 MHz to 30 MHz. The conducted emissions from the EUT were maximized for operating mode as well as cable placement. Once a predominant frequency (within 12 dB of the limit) was found, it was more closely examined with the spectrum analyzer span adjusted to 1 MHz.

The final data was collected under program control by the computer in several overlapping sweeps by running the spectrum analyzer at a minimum scan rate of 10 seconds per octave. The test data is located in Appendix E.

7.1.2 Radiated Emissions Test

The spectrum analyzer was used as a measuring meter along with a quasi-peak adapter. A Preamplifier was used to increase the sensitivity of the instrument. The Spectrum Analyzer was used in the peak detect mode with the "Max Hold" feature activated. In this mode, the spectrum analyzer records the highest measured reading over all the sweeps. This final reading is then recorded into the a Computer data recording program, which takes into account the cable loss, amplifier gain and antenna factors, so that a true reading is compared to the true limit. The quasi-peak was used only for those readings, which are marked accordingly on the data sheets. The effective measurement bandwidth used for the radiated emissions test was according to the frequency measured (200 Hz for 10kHz-150kHz, 9 kHz for 0.150kHz-30MHz and 120 kHz for 30-1000MHz).

Broadband loop, biconical and log periodic antennas were used as transducers during the measurement. The loop antenna was used from 9 kHz to 30 MHz the biconical antenna was used from 30 MHz to 300 MHz and the log periodic antenna was used from 300 MHz to 1 GHz. The final data was taken with a frequency span of 1 MHz. Furthermore, the frequency span was reduced during the preliminary investigations as deemed necessary.

In the frequency range of 9kHz to 30MHz, a calibrated loop antenna was used and positioned with its plane vertical at the specified distance from the EUT and rotated about its vertical axis for maximum response at each azimuth about the EUT. The loop antenna was also positioned horizontally at the specified distance from the EUT. The center of the loop shall be 1 m above the ground.

The open field test site of Compatible Electronics, Inc. was used for radiated emission testing. This test site is set up according to ANSI C63.4: 2003. Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The turntable supporting the EUT is remote controlled using a motor. The turntable permits EUT rotation of 360 degrees in order to maximize emissions. Also, the antenna mast allows height variation of the antenna from 1 meter to 4 meters. Data was collected in the worst case (highest emission) configuration of the EUT. At each reading, the EUT was rotated 360 degrees and the antenna height was varied from 1 to 4 meters (for E field radiated field strength).

The presence of ambient signals was verified by turning the EUT off. In case an ambient signal was detected, the measurement bandwidth was reduced temporarily and verification was made that an additional adjacent peak did not exist. This ensures that the ambient signal does not hide any emissions from the EUT. The EUT was tested at a test distance of 3 meters to obtain final test data. The test data is located in Appendix E.

Preliminary Testing and Monitoring:

Preliminary testing was done at a distance of 1 meter instead of 3 meters to determine the predominant harmonics and spurious emission frequencies. An open field test site was used for the preliminary investigations. Broadband antennas were used to scan large frequency bands while manipulating the unit. If and when any frequency was found to be above 30 microvolts/meter level (at a 1 meter distance), this frequency was recorded as a significant frequency. All significant frequencies were further examined carefully at a frequency span on the spectrum analyzer while changing the antenna height and EUT orientation. The EUT was tested again at a test distance of 3 meters to obtain the final test data. The bandwidth of the spectrum analyzer was varied to ensure that pulse desensitization did not occur.

7.1.3 Radiated Emissions – Frequency Tolerance

The EUT was placed in a temperature cycling chamber. The chamber was set for -20 degrees and the EUT was exposed to this temperature for a period of 30 minutes. The temperature was subsequently increased in 10 degree steps up to + 50 degrees with a 30 minute acclimation periods between each temperature. At each temperature step the EUT was checked with a Spectrum Analyzer to determine whether the carrier signal remained within 0.01% of the fundamental frequency at startup, 2 minutes, 5 minutes and 10 minutes after removal from the temperature chamber. The frequency tolerance of the carrier signal was maintained within 0.01% of the operating temperature variation testing -20 degrees to + 50 degrees C at normal voltage and variations at 85% to 100% at 20 degrees C.

8. TEST PROCEDURE DEVIATIONS

There were no deviations from the test procedures.

9. CONCLUSIONS

The Card Printer meets all of the requirements of the FCC CFR, Title 47, Part 15 Subpart A, Section 15.31(e), Subpart B 15.109, Subpart C 15.205, 15.207, 15.209, 15.225 and 15.31(e).

APPENDIX A

LABORATORY ACCREDITATIONS

LABORATORY ACCREDITATIONS AND RECOGNITIONS

For US, Canada, Australia/New Zealand, Taiwan and the European Union, Compatible Electronics is currently accredited by NVLAP to ISO/IEC 17025 an ISO 9002 equivalent. Please follow the link to the NIST site for each of our facilities NVLAP certificate and scope of accreditation.

Silverado/Lake Forest Division: <u>http://ts.nist.gov/ts/htdocs/210/214/scopes/2005270.htm</u> Brea Division: <u>http://ts.nist.gov/ts/htdocs/210/214/scopes/2005280.htm</u> Agoura Division: <u>http://ts.nist.gov/ts/htdocs/210/214/scopes/2000630.htm</u>

Compatible Electronics has been accredited by ANSI and appointed by the FCC to serve as a Telecommunications Certification Body (TCB). Compatible Electronics ANSI TCB listing can be found at: <u>http://www.ansi.org/public/ca/ansi_cp.html</u>

Compatible Electronics has been nominated as a Conformity Assessment Body (CAB) for EMC under the US/EU Mutual Recognition Agreement (MRA). Compatible Electronics NIST US/EU CAB listing can be found at: <u>http://ts.nist.gov/ts/htdocs/210/gsig/emc-cabs-mar02.pdf</u>

Compatible Electronics has been nominated as a Conformity Assessment Body (CAB) for Taiwan/BSMI under the US/APEC (Asia-Pacific Economic Cooperation) Mutual Recognition Agreement (MRA). Compatible Electronics NIST US/APEC CAB listing can be found at: http://ts.nist.gov/ts/htdocs/210/gsig/apec/bsmi-cabs-may02.pdf

Compatible Electronics has been validated by NEMKO against ISO/IEC 17025 under the NEMKO EMC Laboratory Authorization (ELA) program to all EN standards required by the European Union (EU) EMC Directive 89/336/EEC. Please follow the link to the Compatible Electronics' web site for each of our facilities NEMKO ELA certificate and scope of accreditation. <u>http://www.celectronics.com/certs.htm</u>

We are also certified/listed for IT products by the following country/agency:

Compatible Electronics VCCI listing can be found at: http://www.vcci.or.jp/vcci_e/member/tekigo/setsubi_index_id.html

Just type "Compatible Electronics" into the Keyword search box.

Compatible Electronics FCC listing can be found at: <u>https://gullfoss2.fcc.gov/prod/oet/index_ie.html</u>

Just type "Compatible Electronics" into the Test Firms search box.

Compatible Electronics IC listing can be found at: <u>http://spectrum.ic.gc.ca/~cert/labs/oats_lab_c_e.html</u>

APPENDIX B

MODIFICATIONS TO THE EUT

MODIFICATIONS TO THE EUT

There were no modifications made to the EUT during the test.

APPENDIX C

ADDITIONAL MODELS COVERED UNDER THIS REPORT

ADDITIONAL MODELS COVERED UNDER THIS REPORT

USED FOR THE PRIMARY TEST

CARD PRINTER WITH RFID & HID Model: P330I

There were no additional models covered under this report.

APPENDIX D

DIAGRAMS, CHARTS AND PHOTOS

Page D2

FIGURE 1: CONDUCTED EMISSIONS TEST SETUP (LAB F)

Page D3

FIGURE 2: PLOT MAP AND LAYOUT OF RADIATED SITE (LAB F)

OPEN LAND > 15 METERS

COM-POWER AL-130

ACTIVE LOOP ANTENNA

S/N: 17067

CALIBRATION DATE: AUGUST 1, 2006

FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
0.009	11.8	1	11.0
0.01	11.2	2	11.4
0.02	10.5	3	11.2
0.03	12.2	4	11.1
0.04	11.6	5	11.7
0.05	10.3	6	11.7
0.06	10.7	7	11.3
0.07	10.5	8	11.3
0.08	10.4	9	11.6
0.09	10.7	10	11.3
0.1	10.7	15	10.2
0.2	7.9	20	10.4
0.3	10.4	25	9.8
0.4	10.4	30	10.4
0.5	10.4		
0.6	11.0		
0.7	10.8		
0.8	10.6		
0.9	10.7		

COM-POWER AB-900

BICONICAL ANTENNA

S/N: 2819

CALIBRATION DATE: DEC. 29, 2005

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(MHz)	(dB)	(MHz)	(dB)
30	11.51	120	13.31
35	10.59	125	13.59
40	10.46	140	11.58
45	11.77	150	11.87
50	11.64	160	12.61
55	10.86	175	14.79
60	9.88	180	15.92
65	8.71	200	16.81
70	7.67	225	14.51
80	6.21	250	15.21
90	8.38	275	19.08
100	10.71	300	19.54

COM-POWER AL-100

LOG PERIODIC ANTENNA

S/N: 01116

CALIBRATION DATE: DEC. 28, 2005

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(MHz)	(dB)	(MHz)	(dB)
300	14.80	650	17.37
330	19.70	700	19.33
340	15.03	725	19.22
350	16.47	750	22.96
360	15.12	800	20.17
370	14.65	850	21.91
400	13.75	900	22.02
425	15.51	925	22.67
450	15.54	950	23.38
500	17.20	975	23.45
550	15.28	1000	23.58
600	18.12		

COM-POWER PA-103

PREAMPLIFIER

S/N: 161068

CALIBRATION DATE: DEC. 8, 2005

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(MHz)	(dB)	(MHz)	(dB)
30	32.7	300	32.1
40	32.5	350	32.0
50	32.4	400	32.1
60	32.5	450	31.8
70	32.5	500	31.4
80	32.4	550	32.0
90	32.4	600	31.6
100	32.3	650	31.4
125	32.4	700	31.5
150	32.2	750	32.1
175	32.4	800	31.0
200	32.2	850	31.3
225	32.4	900	31.5
250	32.3	950	31.2
275	32.1	1000	29.7

FRONT VIEW

ZEBRA TECHNOLOGIES CORP. CARD PRINTER with RFID & HID Model: P330I FCC PART 15 SUBPART C - RADIATED EMISSIONS – 10-12-06

REAR VIEW

ZEBRA TECHNOLOGIES CORP. CARD PRINTER with RFID & HID Model: P330I FCC PART 15 SUBPART C - RADIATED EMISSIONS – 10-12-06

FRONT VIEW

ZEBRA TECHNOLOGIES CORP. CARD PRINTER with RFID & HID Model: P330I FCC PART 15 SUBPART C - CONDUCTED EMISSIONS – 10-12-06

REAR VIEW

ZEBRA TECHNOLOGIES CORP. CARD PRINTER with RFID & HID Model: P330I FCC PART 15 SUBPART C - CONDUCTED EMISSIONS – 10-12-06

ZEBRA TECHNOLOGIES CORP. CARD PRINTER with RFID & HID Model: P330I FCC PART 15 SUBPART C – FREQUENCY TOLERANCE EMISSIONS – 10-20-06 PHOTOGRAPH SHOWING THE EUT CONFIGURATION FOR MAXIMUM EMISSIONS

APPENDIX E

DATA SHEETS

CALCULATION OF LIMIT:

Spec limit: 15,848 $uV/m = 15,848 \log x 20 = 83.99 dBuV/m$

30m to 3m =30/3=10logx40=40

LIMIT=123.99

Test Loca Customer Manufactu Eut name Model Serial # Specifica Distance Test Mode	ation arer ation correctio	: Compatibl : Bernie Ry : Zebra Teo : Card Prir : P330I : none : FCC pt. 1 : Qualifica Fundament Test Engi RFID	e Electi /an chnologio iter 15.225 fu 20 * log ition cal 13.50 neer: 1	ronics es Corp und. (test/spe 6 MHz R. Ramire	Tes ec)) Z	Pa Da Ti I I St Distanc	nge : nte : me : .ab : e : :	1/1 10/11/2006 11:51:35 AM F 3.00 Meters 0.00
Pol	Freq MHz	Readi ng dBuV	Cabl e l oss dB	Antenna factor dB	Amplifier gain dB	Corr'd rdg = R dBuV/m	Limit = L dBuV/1	Delta R-L n dB
1V 2H	13. 560 13. 563	39. 20 35. 40	1.53 1.53	10. 20 10. 20	0. 00 0. 00	50. 91 47. 11	124. 124.	00 - 73. 07 00 - 76. 87

Test Loca Customer Manufactu Eut name Model Serial # Specifica Distance Test Mode	ation urer ation correctio	: Compatibl : Bernie Ry : Zebra Teo : Card Prin : P330I : none : 15.225 2n on factor (: Qualifica 2nd Harma Test Engi RFID	e Elect: /an chnologi nter nd Harmo 20 * log ation onic neer:	ronics es Corp nic g(test/spe R. Ramire	Tes ac)) Z	Pa Da Ti I St Distanc	age : ate : ime : ime : ime : e : :	1/1 10/11/2006 12:02:09 PM F 3.00 Meters 0.00
Pol	Freq MHz	Readi ng dBuV	Cable loss dB	Antenna factor dB	Amplifier gain dB	Corr'd rdg = R dBuV/m	Li mi t = L dBuV/	Delta R-L m dB
1V 2H	27. 121 27. 121	21. 30 19. 20	2. 08 2. 08	9. 80 9. 80	0. 00 0. 00	33. 18 31. 08	69. 5 69. 5	4 - 36. 36 4 - 38. 46

Test L Custom Manufa Eut na Model Serial Specif Distan Test M	ocation er cturer me # ication ce correcti ode	: Compatibl : Bernie R : Zebra Tee : Card Prin : P330I : none : FCC Pt. on factor (: Qualifica Harmonica Test Engin RFID	le Elect yan chnologi nter 15- Clas 20 * log ation s i neer:	ronics es Corp s B g(test/spe R. Ramire:	Tes ec)) Z	Pa Da T.	age : 1/2 ate : 10, ime : 01; Lab : F ce : 3, : 0,	1 /11/2006 24:15 PM 00 Meters
Pol	Freq MHz	Readi ng dBuV	Cabl e l oss dB	Antenna factor dB	Amplifier gain dB	Corr'd rdg = R dBuV/m	Li mi t = L dBuV/m	Delta R-L dB
1V 2V 3V 4V 5V 6V 7V 8V 9H 10H 11H 12H	40. 680 54. 240 67. 800 81. 360 94. 920 108. 480 122. 040 135. 600 40. 680 54. 240 67. 800 81. 360	50. 20 $55. 00$ $51. 30$ $49. 30$ $56. 50$ $46. 20$ $43. 40$ $46. 30$ $46. 90$ $49. 20$ $48. 00$ $48. 70$	2. 31 2. 49 2. 68 2. 91 3. 05 3. 14 3. 19 3. 24 2. 31 2. 49 2. 68 2. 91	10. 6510. 978. 126. 529. 5611. 8713. 4312. 1510. 6510. 978. 126. 52	32. 49 32. 44 32. 50 32. 40 32. 35 32. 34 32. 39 32. 31 32. 49 32. 44 32. 50 32. 40	30. 66 36. 02 29. 60 26. 33 36. 76 28. 87 27. 63 29. 38 27. 36 30. 22 26. 30 25. 73	40.00 40.00 40.00 43.50 43.50 43.50 43.50 43.50 40.00 40.00 40.00	- 9. 34 - 3. 98 - 10. 40 - 13. 67 - 6. 74 - 14. 63 - 15. 87 - 14. 12 - 12. 64 - 9. 78 - 13. 70 - 14. 27
12H 13H 14H 15H 16H	81. 360 94. 920 108. 480 122. 040 135. 600	48. 70 57. 30 44. 60 44. 40 47. 70	2. 91 3. 05 3. 14 3. 19 3. 24	6. 52 9. 56 11. 87 13. 43 12. 15	32. 40 32. 35 32. 34 32. 39 32. 31	25. 73 37. 56 27. 27 28. 63 30. 78	40. 00 43. 50 43. 50 43. 50 43. 50	- 14. 27 - 5. 94 - 16. 23 - 14. 87 - 12. 72

Test Loca Customer Manufactu Eut name Model Serial # Specifica Distance Test Mode	ation arer ation correction	: Compatibl : Bernie Ry : Zebra Teo : Card Prir : P330I : none : FCC pt. 1 on factor (: Qualifica Fundament Test Engi HID	e Electi /an chnologie tter 5. 225 fu 20 * log ttion cal 13. 56 neer: l	ronics es Corp und. (test/spe 3 MHz R. Ramire	Tes ec)) Z	Pa Da Ti I t Distance	ge : te : me : ab : e : :	1/1 10/11/2006 09:16:17 AM F 3.00 Meters 0.00
Pol	Freq MHz	Readi ng dBuV	Cable loss dB	Antenna factor dB	Amplifier gain dB	Corr'd rdg = R dBuV/m	Limit = L dBuV/1	Delta R-L n dB
1V 2H	13. 560 13. 560	41. 80 42. 40	1. 53 1. 53	10. 20 10. 20	0. 00 0. 00	53. 53 54. 11	124. (124. (00 - 70. 47 00 - 69. 87

Test Loca Customer Manufactu Eut name Model Serial # Specifica Distance Test Mode	ation urer ation correctio	: Compatibl : Bernie Ry : Zebra Tec : Card Prin : P330I : none : 15.225 2n on factor (: Qualifica 2nd Harma Test Engi HID	e Elect /an chnologi nter nd Harmo 20 * log ntion onic neer:	ronics es Corp nic g(test/spe R. Ramire	Tes ac)) Z	Pa Da Ti st Distanc	age : ate : ime : Lab : se : :	1/1 10/11/2006 09:48:49 AM F 3.00 Meters 0.00
Pol	Freq MHz	Readi ng dBuV	Cable loss dB	Antenna factor dB	Amplifier gain dB	Corr'd rdg = R dBuV/m	Limit = I dBuV/	L Delta R-L m dB
1V 2H	27. 117 27. 118	23. 20 19. 50	2.08 2.08	9. 80 9. 80	0. 00 0. 00	35. 08 31. 38	69. 5 69. 5	54 - 34. 46 54 - 38. 16

Test L Custom Manufa Eut na Model Serial Specif Distan Test M	ocation er cturer me # ication ce correcti ode	: Compatib : Bernie R : Zebra Te : Card Prin : P330I : none : FCC Pt. on factor (: Qualifica Harmonica Test Eng HID	le Elect yan chnologi nter 15- Clas 20 * log ation s i neer:	ronics es Corp s B g(test/spe R. Ramire	Tes ac)) Z	Pa Da T.	age : 1/ ate : 10 ime : 10 Lab : F ce : 3 : 0	1 /11/2006 0:00:10 AM 0:00 Meters
Pol	Freq MHz	Readi ng dBuV	Cabl e l oss dB	Antenna factor dB	Amplifier gain dB	Corr'd rdg = R dBuV/m	Li mi t = L dBuV/m	Del ta R-L dB
1V 2V 3V 4V 5V 6V 7H 8V 9H 10V 11H 12H 13H 14H 15H	$\begin{array}{c} 40.\ 660\\ 54.\ 216\\ 67.\ 788\\ 81.\ 348\\ 94.\ 908\\ \hline 108.\ 468\\ 40.\ 670\\ 122.\ 028\\ 54.\ 216\\ 135.\ 588\\ \hline 67.\ 794\\ 81.\ 342\\ 94.\ 902\\ 108.\ 462\\ 122.\ 031\\ \hline \end{array}$	$\begin{array}{c} 55.\ 70\\ 55.\ 30\\ 55.\ 60\\ 56.\ 60\\ 55.\ 50\\ 44.\ 20\\ 44.\ 90\\ 38.\ 90\\ 49.\ 30\\ 43.\ 10\\ 52.\ 40\\ 57.\ 40\\ 56.\ 90\\ 42.\ 50\\ 40.\ 70\\ \end{array}$	$\begin{array}{c} 2. \ 31 \\ 2. \ 49 \\ 2. \ 68 \\ 2. \ 91 \\ 3. \ 05 \\ \end{array}$ $\begin{array}{c} 3. \ 14 \\ 2. \ 31 \\ 3. \ 19 \\ 2. \ 49 \\ 3. \ 24 \\ \end{array}$ $\begin{array}{c} 2. \ 68 \\ 2. \ 91 \\ 3. \ 05 \\ 3. \ 14 \\ 3. \ 19 \end{array}$	$10. 64 \\ 10. 98 \\ 8. 12 \\ 6. 52 \\ 9. 55 \\ 11. 87 \\ 10. 64 \\ 13. 42 \\ 10. 98 \\ 12. 15 \\ 8. 12 \\ 6. 52 \\ 9. 55 \\ 11. 87 \\ 13. 43 \\ 13. 43$	$\begin{array}{c} 32.\ 49\\ 32.\ 44\\ 32.\ 50\\ 32.\ 40\\ 32.\ 35\\ 32.\ 34\\ 32.\ 39\\ 32.\ 39\\ 32.\ 44\\ 32.\ 31\\ 32.\ 50\\ 32.\ 40\\ 32.\ 35\\ 32.\ 34\\ 32.\ 39\\ 32.\ 34\\ 32.\ 39\\ 32.\ 34\\ 32.\ 39\\ 32.\ 34\\ 32.\ 39\\ 32.\ $	$\begin{array}{c} 36.\ 16\\ 36.\ 32\\ 33.\ 90\\ 33.\ 63\\ 35.\ 76\\ \hline \\ 26.\ 87\\ 25.\ 36\\ 23.\ 12\\ 30.\ 32\\ 26.\ 18\\ \hline \\ 30.\ 70\\ 34.\ 43\\ 37.\ 15\\ 25.\ 17\\ 24.\ 93\\ \end{array}$	$\begin{array}{c} 40.\ 00\\ 40.\ 00\\ 40.\ 00\\ 43.\ 50\\ 43.\ 50\\ 43.\ 50\\ 40.\ 00\\ 43.\ 50\\ 40.\ 00\\ 43.\ 50\\ 40.\ 00\\ 43.\ 50\\ 40.\ 00\\ 43.\ 50\\ 43.\ 50\\ 43.\ 50\\ 43.\ 50\\ 43.\ 50\\ 43.\ 50\\ 43.\ 50\\ 43.\ 50\\ 43.\ 50\\ 43.\ 50\\ 43.\ 50\\ 43.\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\$	$\begin{array}{c} -3.84\\ -3.68\\ -6.10\\ -6.37\\ -7.74\\ -16.63\\ -14.64\\ -20.38\\ -9.68\\ -17.32\\ -9.30\\ -5.57\\ -6.35\\ -18.33\\ -18.57\\ \end{array}$
16H	135. 591	42.00	3. 24	12. 15	32. 31	25. 08	43. 50	- 18. 42

Test Loca Customer Manufactu Eut name Model Serial # Specifica Distance Test Mode	ation rer ation correctio	: Compatibl : Bernie Ry : Zebra Tec : Card Prir : P330I : none : fcc 15.22 on factor (: Qualifica Bandedge Test Engi RFID	e Elect /an chnol ogi tter 25 bande 20 * log iti on 13. 110 neer:	ronics es Corp dge g(test/spe - 14.010 M R. Ramire	Tes ec)) Hz Z	Pa Da Ti I I Uistanc	uge : me : wab : e :	1/1 10/11/2006 01:10:59 PM F 3.00 Meters 0.00
Pol	Freq MHz	Readi ng dBuV	Cable loss dB	Antenna factor dB	Amplifier gain dB	Corr'd rdg = R dBuV/m	Limit = L dBuV/n	Delta R-L n dB
1V 2V	13. 110 14. 010	33. 20 32. 50	1.52 1.55	10. 20 10. 20	0. 00 0. 00	44. 92 44. 25	69. 54 69. 54	- 24. 62 - 25. 29

EF	107	.0 dB	V ATT	EN 10	dB			MKI	33.2	O dB
										+
	EN	TER								
H	13.	11 M	Hz							+
	STEP	13.50	MHz							
										-
								1.00		
	man	in the second	and any	and sugar	man	anna	agrand	(souther a start	North Contraction	
										_
	ar por an	100mg/19.00.00	anna ann	gu-Menasjuar		And an Apple				

Test Loca Customer Manufactu Eut name Model Serial # Specifica Distance Test Mode	ation rer ation correctio	: Compatibl : Bernie Ry : Zebra Tec : Card Prir : P330I : none : fcc 15.22 on factor (: Qualifica Bandedge Test Engi HID	e Electi /an chnologi ater 25 banded 20 * log ttion 13.110- neer: 1	ronics es Corp dge f(test/spe 14.010 MH R. Ramire	Tes ac)) Z Z	Pa Da Ti I U Distanc	age : ate : ime : Lab : e : :	1/1 10/11/2006 11:24:21 AM F 3.00 Meters 0.00
Pol	Freq MHz	Readi ng dBuV	Cable loss dB	Antenna factor dB	Amplifier gain dB	Corr'd rdg = R dBuV/m	Limit = L dBuV/1	Delta R-L m dB
1V 2V	13. 110 14. 010	31. 60 33. 00	1.52 1.55	10. 20 10. 20	0. 00 0. 00	43. 32 44. 70	69. 54 69. 54	4 - 26. 22 4 - 24. 84

	107	.0 48		EN 10	dB			мкя	31.60	
dB/										
										_
	MAR	KER								_
	13.	110	MHz							
	31	.60	dBμV							
	-									
								_		
		-								
				100 C					Staute	10.445
	and the second	1	1 portante	- approximation	a stand	ALC: NO				
		-	-							
	-	-	-	-	-		-			
				1.0						
						· · · · ·		-	ANI 1 A	00 MH42

CALCULATION OF LIMIT: (9 KHz-30 MHz)

Spec limit: $30 \text{ uV/m} = 30 \log x 20 = 29.54 \text{dBuV/m} + 40$

LIMIT=69.54

Test Loc Customer Manufact Eut name Model Serial # Specific Distance Test Mod	ation urer ation correction e	: Compatib : Bernie R : Zebra Te : Card Pri : P330I : none : FCC Pt. on factor : Qualific 9 KHz-30 Test Eng Clocks:	le Electr yan chnologi nter 15- Class (20 * log ation MHz spun ineer: 1 10, 24,	ronics es Corp s B (test/spe rious emi: R. Ramire: 32, 25,	Tes ()) ssions z 13.56, 14.	Pa Da T: 1 t Distanc 74, 1.843	age : 1/ ate : 10 ime : 01 Lab : F :e : 3 : 0 32 MHz	1 /11/2006 :55:51 PM .00 Meters .00
Pol	Freq MHz	Readi ng dBuV	Cable loss dB	Antenna factor dB	Amplifier gain dB	Corr'd rdg = R dBuV/m	Li mi t = L dBuV/m	Delta R-L dB
1V 2V 3V 4V 5V 6H 7H 8H 9H 10H	16. 588 18. 432 20. 266 25. 000 29. 480 16. 588 18. 432 20. 266 25. 000 29. 480	$\begin{array}{c} 23.\ 40\\ 24.\ 30\\ 25.\ 30\\ 20.\ 70\\ 21.\ 40\\ 19.\ 30\\ 19.\ 20\\ 16.\ 60\\ 19.\ 80\\ 19.\ 00\\ \end{array}$	$1. 62 \\ 1. 66 \\ 1. 72 \\ 1. 98 \\ 2. 18 \\ 1. 62 \\ 1. 66 \\ 1. 72 \\ 1. 98 \\ 2. 18 \\ 2. 18 \\ 1. 98 \\ 2. 18 \\ 1. 98 \\ 2. 18 \\ 1. 100 $	$\begin{array}{c} 10.\ 40\\ 10.\ 40\\ 9.\ 80\\ 10.\ 40\\ 10.\ 40\\ 10.\ 40\\ 10.\ 40\\ 9.\ 80\\ 10.\ 40\\ 9.\ 80\\ 10.\ 40\\ \end{array}$	$\begin{array}{c} 0. \ 00\\ 0. \ 0. \$	35. 42 36. 36 37. 42 32. 48 33. 98 31. 32 31. 26 28. 72 31. 58 31. 58	$\begin{array}{c} 69.\ 54\\ 69.\ 54\\ 69.\ 54\\ 69.\ 54\\ 69.\ 54\\ 69.\ 54\\ 69.\ 54\\ 69.\ 54\\ 69.\ 54\\ 69.\ 54\\ 69.\ 54\\ 69.\ 54\\ 69.\ 54\\ \end{array}$	- 34. 12 - 33. 18 - 32. 12 - 37. 06 - 35. 56 - 38. 22 - 38. 28 - 40. 82 - 37. 96 - 37. 96

Test Location : Compatible Electronics Customer : Bernie Ryan Manufacturer : Zebra Technologies Corp Eut name : Card Printer Model : P330I Serial # : none Specification : FCC Pt 15 Class A Distance correction factor (20 * log(test/spec)) Test Mode : Qualification 30-1000 MHz spurious emission Test Engineer: R. Ramirez Clocks: 10, 24, 32, 25, 13.5						Tes ec)) sions z 13.56, 14.	Pa Da Ti 1 t Distanc 74, 1.843	age : 1/1 ate : 10/ ime : 03: Lab : F se : 10. : 0. 2 MHz	(11/2006 31:50 PM 00 Meters 00
Pol	Freq MHz]	Readi ng dBuV	Cable loss dB	Antenna factor dB	Amplifier gain dB	Corr'd rdg = R dBuV/m	Li mi t = L dBuV/m	Del ta R-L dB
1V 2V 3V 4V 5V 6V 7V 8V 9V 10V 11V 12H 13H 14H 15H 16H 17H 18H 19H 20H 21H 22H 23V 24V 25V 26V 27V 28H	$\begin{array}{c} 48.\ 002\\ 96.\ 002\\ 103.\ 220\\ 127.\ 982\\ 132.\ 702\\ 147.\ 442\\ 160.\ 002\\ 200.\ 002\\ 235.\ 842\\ 240.\ 002\\ 249.\ 987\\ 47.\ 987\\ 95.\ 985\\ 127.\ 969\\ 132.\ 708\\ 103.\ 208\\ 147.\ 439\\ 160.\ 008\\ 200.\ 008\\ 235.\ 908\\ 240.\ 011\\ 249.\ 983\\ 374.\ 980\\ 338.\ 953\\ 400.\ 024\\ 431.\ 943\\ 500.\ 012\\ 338.\ 978\\ \end{array}$		$\begin{array}{c} 41.\ 20\\ 39.\ 30\\ 52.\ 10\\ 38.\ 80\\ 36.\ 30\\ 39.\ 10\\ 35.\ 10\\ 42.\ 30\\ 36.\ 00\\ 35.\ 30\\ 46.\ 70\\ 42.\ 00\\ 43.\ 80\\ 40.\ 70\\ 45.\ 90\\ 43.\ 80\\ 40.\ 70\\ 45.\ 90\\ 43.\ 80\\ 37.\ 40\\ 39.\ 00\\ 38.\ 40\\ 37.\ 40\\ 39.\ 00\\ 36.\ 30\\ 45.\ 00\\ 44.\ 00\\ 41.\ 20\\ 40.\ 60\\ 41.\ 80\\ 38.\ 50\\ 38.\ 20\\ \end{array}$	$\begin{array}{c} 1.88\\ 2.42\\ 2.54\\ 2.83\\ 2.87\\ 2.98\\ 3.17\\ 3.30\\ 3.54\\ 3.56\\ 3.60\\ 1.88\\ 2.42\\ 2.83\\ 2.87\\ 2.54\\ 2.98\\ 3.17\\ 3.30\\ 3.54\\ 3.56\\ 3.60\\ 4.65\\ 4.62\\ 4.70\\ 5.42\\ 5.50\\ 4.62\end{array}$	$\begin{array}{c} 11.\ 69\\ 9.\ 81\\ 11.\ 16\\ 13.\ 17\\ 12.\ 53\\ 11.\ 80\\ 12.\ 61\\ 16.\ 81\\ 14.\ 82\\ 14.\ 94\\ 15.\ 21\\ 11.\ 69\\ 9.\ 80\\ 13.\ 17\\ 12.\ 53\\ 11.\ 16\\ 11.\ 80\\ 12.\ 61\\ 14.\ 82\\ 14.\ 94\\ 15.\ 21\\ 14.\ 82\\ 14.\ 94\\ 15.\ 21\\ 14.\ 50\\ 15.\ 51\\ 13.\ 75\\ 15.\ 52\\ 17.\ 20\\ 15.\ 50\\ \end{array}$	$\begin{array}{c} 32.\ 42\\ 32.\ 34\\ 32.\ 31\\ 32.\ 37\\ 32.\ 33\\ 32.\ 22\\ 32.\ 36\\ 32.\ 20\\ 32.\ 36\\ 32.\ 34\\ 32.\ 30\\ 32.\ 42\\ 32.\ 34\\ 32.\ 37\\ 32.\ 33\\ 32.\ 31\\ 32.\ 22\\ 32.\ 34\\ 32.\ 33\\ 32.\ 31\\ 32.\ 22\\ 32.\ 36\\ 32.\ 34\\ 32.\ 30\\ 32.\ 36\\ 32.\ $	$\begin{array}{c} 22.\ 35\\ 19.\ 19\\ 33.\ 49\\ 22.\ 42\\ 19.\ 36\\ \end{array}$ $\begin{array}{c} 21.\ 66\\ 18.\ 59\\ 30.\ 21\\ 22.\ 01\\ 21.\ 46\\ \end{array}$ $\begin{array}{c} 32.\ 81\\ 27.\ 85\\ 21.\ 89\\ 27.\ 43\\ 23.\ 76\\ \end{array}$ $\begin{array}{c} 27.\ 29\\ 25.\ 56\\ 21.\ 90\\ 25.\ 31\\ 25.\ 01\\ \end{array}$ $\begin{array}{c} 27.\ 29\\ 25.\ 56\\ 21.\ 90\\ 25.\ 31\\ 25.\ 01\\ \end{array}$ $\begin{array}{c} 22.\ 46\\ 31.\ 51\\ 31.\ 10\\ 29.\ 31\\ 26.\ 95\\ \end{array}$ $\begin{array}{c} 30.\ 83\\ 29.\ 80\\ 26.\ 30\\ \end{array}$	$\begin{array}{c} 39.\ 00\\ 43.\ 50\\ 44.\ 40\\ 46.\ 40\\ 40.\ 40\\ 40.\ 40\\ 40.\ 40\\ 40.\ 40\\ 40.\ 40\\ 40.\ 40\\ 40.\ 40\\ 40.\ 40\\ 40.\ 40\\ 40.\ 40\\ 40.\ 40\\ 40.\ 40\\ 40.\ 40\\ 40.\ 40\\ 40.\ 40\\ 40.\ $	$\begin{array}{c} -16.\ 65\\ -24.\ 31\\ -10.\ 01\\ -21.\ 08\\ -24.\ 14\\ \hline \\ -21.\ 84\\ -24.\ 91\\ -13.\ 29\\ -24.\ 91\\ -13.\ 29\\ -24.\ 39\\ -24.\ 94\\ \hline \\ -13.\ 59\\ -24.\ 94\\ \hline \\ -13.\ 59\\ -24.\ 94\\ \hline \\ -13.\ 59\\ -21.\ 61\\ -16.\ 07\\ -19.\ 74\\ \hline \\ -16.\ 21\\ -17.\ 94\\ -21.\ 60\\ -18.\ 19\\ -21.\ 39\\ \hline \\ -23.\ 94\\ -14.\ 89\\ -15.\ 30\\ -17.\ 09\\ -19.\ 45\\ \hline \\ -15.\ 57\\ -16.\ 60\\ -20.\ 10\\ \hline \end{array}$
29H 30H 31H 32H 33H	374. 984 399. 988 432. 013 480. 005 500. 028		44. 30 47. 20 43. 10 38. 10 41. 40	4. 65 4. 70 5. 42 5. 62 5. 50	14. 50 13. 75 15. 52 16. 56 17. 20	32. 05 32. 10 31. 90 31. 55 31. 40	31. 40 33. 55 32. 13 28. 72 32. 70	46. 40 46. 40 46. 40 46. 40 46. 40	- 15. 00 - 12. 85 - 14. 27 - 17. 68 - 13. 70

10/12/2006 8

8:04:12

EN 55022 Conducted Emissions Zebra Technologies Corp. Card Printer P330I 120V Line LI-215 Due 10-14-06 TEST ENGINEER : R. Ramirez

7 highest peaks above -50.00 dB of New FCC Class B (Avg) limit line Peak criteria : 3.00 dB, Curve : Peak Peak# Freq(MHz) Amp(dBuV) Limit(dB) Delta(dB) 13.559 43.25 50.00 -6.75 1 2 0.172 46.74 54.86 -8.12 з 0.217 41.24 52.91 -11.68 50.00 4 23.901 38.05 -11.95 5 0.263 38.54 51.33 -12.80 21.373 36.78 50.00 -13.22 6 7 0.150 40.94 56.00 -15.06

10/12/2006 8:

8:12:06

EN 55022 Conducted Emissions Zebra Technologies Corp. Card Printer P330I 120V Neut LI-215 Due 10-14-06 TEST ENGINEER : R. Ramirez

7 highest peaks above -50.00 dB of New FCC Class B (Avg) limit line Peak criteria: 0.00 dB, Curve: Peak Peak# Freq(MHz) Amp(dBuV) Limit(dB) Delta(dB) 0.175 46.88 54.72 -7.84 1 -8.02 2 0.171 46.88 54.90 з 0.170 46.58 54.98 -8.41 4 0.904 36.49 46.00 -9.51 5 13.559 40.30 50.00 -9.70 2.568 36.24 46.00 -9.76 6 7 0.150 40.18 56.00 -15.82

AC Conducted

Line

EUT:Card PrinterManufacturer:Zebra TechnologiesOperating Condition:120VTest Site:Lab EOperator:R. RamirezTest Specification:EN55022BComment:P330IStart of Test:HID

SCAN TABLE: "EN 55022 VoltageFin"

Short Desc	ription:	El	N 55022 Vol	tage		
Start	Stop	Step	Detector	Meas.	IF	Transducer
Frequency	Frequency	Width		Time	Bandw.	
150.0 kHz	30.0 MHz	4.0 kHz	QuasiPeak	1.0 s	9 kHz	LI-215
			CISPR AV			

12	/19/06 4:01	PM					
	Frequency	Level	Transd	Limit	Margin	Line	PE
	MHz	dBµV	dB	dBµV	dB		
	0.173000	40.30	10.3	65	24.5	1	
	0.174000	40.40	10.3	65	24.4	1	
	0.175000	39.70	10.3	65	25.0	1	
	13.560000	35.00	10.8	60	25.0	1	

MEASUREMENT RESULT: "vol_0001_fin AV"

12/19/06 4:01PM

PE	Line	Margin	Limit	Transd	Level	Frequency
		dB	dBµV	dB	dBµV	MHz
			-			
	1	20.1	55	10.3	34.90	0.170000
	1	18.1	55	10.3	36.80	0.171000
	1	16.6	55	10.3	38.20	0.172000
	1	15.8	55	10.3	39.00	0.173000
	1	15.7	55	10.3	39.00	0.174000
	1	16.2	55	10.3	38.50	0.175000
	1	17.3	55	10.3	37.40	0.176000
	1	19.5	55	10.3	35.20	0.177000
	1	21.7	55	10.3	32.90	0.178000
	1	24.2	55	10.3	30.40	0.179000
	1	21.0	46	10.3	25.00	0.709000
	1	21.9	46	10.3	24.10	0.712000
	1	18.6	50	10.8	31.40	13.556000
	1	15.4	50	10.8	34.60	13.560000
	1	22.2	50	10.8	27.80	13.564000

AC Conducted

Neutral

EUT:Card PrinterManufacturer:Zebra TechnologiesOperating Condition:120VTest Site:Lab EOperator:R. RamirezTest Specification:EN55022BComment:P330IStart of Test:HID

SCAN TABLE: "EN 55022 VoltageFin"

Short Desc	ription:	EI	J 55022 Vol	tage		
Start	Stop	Step	Detector	Meas.	IF	Transducer
Frequency	Frequency	Width		Time	Bandw.	
150.0 kHz	30.0 MHz	4.0 kHz	QuasiPeak	1.0 s	9 kHz	LI-215
			CISPR AV			

12/19/06	4:06P	M					
Freque	ncy	Level	Transd	Limit	Margin	Line	PE
	MHz	dBµV	dB	dBµV	dB		
0.170	000	40.00	10.3	65	25.0	1	
0.171	000	41.80	10.3	65	23.2	1	
0.172	000	42.90	10.3	65	21.9	1	
0.173	000	43.40	10.3	65	21.4	1	
0.174	000	43.20	10.3	65	21.5	1	
0.175	000	42.30	10.3	65	22.4	1	
0.176	000	40.80	10.3	65	23.9	1	
13.560	000	34.80	10.8	60	25.2	1	

MEASUREMENT RESULT: "vol_0001_fin AV"

12/19/06 4:06PM

/19/00 4.00	E M					
Frequency	Level	Transd	Limit	Margin	Line	PE
MHz	dBµV	dB	dBµV	dB		
0.169000	36.80	10.3	55	18.2	1	
0.170000	39.00	10.3	55	16.0	1	
0.171000	40.80	10.3	55	14.1	1	
0.172000	42.00	10.3	55	12.9	1	
0.173000	42.50	10.3	55	12.3	1	
0.174000	42.30	10.3	55	12.4	1	
0.175000	41.60	10.3	55	13.1	1	
0.176000	39.90	10.3	55	14.8	1	
0.177000	37.80	10.3	55	16.9	1	
0.178000	35.40	10.3	55	19.2	1	
0.216000	32.10	10.3	53	20.9	1	
0.217000	31.90	10.3	53	21.0	1	
0.709000	25.00	10.3	46	21.0	1	
13.556000	31.20	10.8	50	18.8	1	
13.560000	34.40	10.8	50	15.6	1	