ZEBRA TECHNOLOGIES CORP.

CARD PRINTER WITH RFID ENCODER

Model: P640I & P630I

Issued Date: 15 December 2009 Report No.: SL08012102-ZBR-007 (15.247) (M5e) (This report supersedes NONE)

Modifications made to the product : None

This Test Report is Issued Under the Authority of:					
and.	Bie				
Choon Sian Ooi	Leslie Bai				
Test Engineer	Engineering Reviewer				

To: FCC Part 15.247 & IC R

SIEMIC, INC. Accesses groat marees

This test report may be reproduced in full only. Test result presented in this test report is applicable to the representative sample only.

 Serial#
 SL08012102-ZBR-007 (15.247) (M5e

 Issue Date
 15 December 2009

 Page
 2 of 65

Laboratory Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to <u>testing</u> and <u>certification</u>, SIEMIC provides initial design reviews and <u>compliance</u> <u>management</u> through out a project. Our extensive experience with <u>China</u>, <u>Asia Pacific</u>, <u>North America</u>, <u>European</u>, <u>and international</u> compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the <u>global markets</u>.

Country/Region	Accreditation Body	Scope				
USA	FCC, A2LA	EMC , RF/Wireless , Telecom				
Canada IC, A2LA, NIST		EMC, RF/Wireless, Telecom				
Taiwan BSMI , NCC , NIST		EMC, RF, Telecom , Safety				
Hong Kong	OFTA , NIST	RF/Wireless ,Telecom				
Australia	NATA, NIST	EMC, RF, Telecom , Safety				
Korea	KCC/RRA, NIST	EMI, EMS, RF, Telecom, Safety				
Japan	VCCI, JATE, TELEC, RFT	EMI, RF/Wireless, Telecom				
Mexico	NOM, COFETEL, Caniety	Safety, EMC, RF/Wireless, Telecom				
Europe	A2LA, NIST	EMC, RF, Telecom , Safety				

Accreditations for Conformity Assessment

Accreditations for Product Certifications

Country	Accreditation Body	Scope		
USA	FCC TCB, NIST	EMC , RF , Telecom		
Canada	IC FCB , NIST	EMC , RF , Telecom		
Singapore	iDA, NIST	EMC , RF , Telecom		

erial#	SL08012102-ZBR-007 (15.247) (M5e
sue Date	15 December 2009
age	3 of 65
	www.siemic.com

This page has been left blank intentionally.

CONTENTS

1	EXECUTIVE SUMMARY & EUT INFORMATION
2	TECHNICAL DETAILS
3	MODIFICATION
4	TEST SUMMARY9
5	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS
ANN	EX A. TEST INSTRUMENT & METHOD40
ANN	EX B EUT AND TEST SETUP PHOTOGRAPHS44
ANN	EX C. TEST SETUP AND SUPPORTING EQUIPMENT44
ANNI	EX D USER MANUAL, BLOCK & CIRCUIT DIAGRAM

 Serial#
 SL08012102-ZBR-007 (15.247) (M5e)

 Issue Date
 15 December 2009

 Page
 5 of 65

 Manual science com

This page has been left blank intentionally.

 Serial#
 SL08012102-ZBR-007 (15.247)

 Issue Date
 15 December 2009

 Page
 6 of 65

1 Executive Summary & EUT information

The purpose of this test programme was to demonstrate compliance of the Zebra Technologies Corp., model:P640I & P630I against the current Stipulated Standards. The RFID Encoder have demonstrated compliance with the FCC 15.247 2007 & IC RSS210 Issue 7: 2007.

	EUT Information	
EUT Description	For high volume, high security applications, choose the Zebra [®] P640i dual-sided laminating printer. Zebra's industry-leading security printers are used in over 50 countries to print tens of millions of ID cards annually. The P640i printer's dual-sided printing and "one pass" dual-sided lamination provide the maximum amount of flexibility in protecting driver's licenses, national voter registration cards, and other types of secure IDs. With its high throughput, superior print quality and best total cost of ownership in its class, the P640i is the right choice for issuing durable and highly secure ID cards.	d
	Ribbon recognition and security is maintained through RFID technology within the printer. The RFID board and the contactless smartcards use separate transmitters each operating at a frequency of 13.56 MHz in the ISM band.	e
	The Zebra M5e is a RFID encoder that can read and encode RFID smart tags. Smart tags car embedded ultra-thin UHF RFID transponders. Transponders contain thin antennas and integrated circuits that can be read, programmed, and reprogrammed using non-contact radio waves. RFID smart tags allow for non- line of sight reading of the data contained in the IC and feature anti collision technology, which allows RFID readers to scan and identify several object simultaneously, such as totes of supplies. The RFID subsystem is comprised of a ThingMagic Mercury 5e multi protocol UHF RFID encoder, a coupler/antenna connected to the encoder via a coaxial cable and an adaptor PCB that provides the operating voltage and communications to the RFID encoder. The RFID encoder powers and communicates with RFID smart cards via the coupler/antenna. The encoder contains a digital processor and analog signal conditioning circuitry. Instructions from the host system to encode/read a smart label are sent to the RFID encoder via a serial communication link. The encoder responds to the host with data read and/or a status message The UHF RF signals generated by the encoder are turned on only during a host commanded read or encode operation. The RF signal is an amplitude-modulated frequency-hopping carried operating between 902MHz and 928MHz. The modulation pattern is governed by the selected UHF RFID protocol. The reader supports EPC Class1 Gen 2/ISO18000-6C UHF RFID protocol.	ry I cts e. r I ools.
Model No	M5e	
Serial No	N/A	
Input Power	5 VDC	
Per Stipulated Test Standard	Frequency Hopping Spread Spectrum / Device	

SIEMIC, INC. Accessing global markets RF Test Report of Zebra Technologies Corp. Model P6401 & P6301 FCC 15.247 2007, IC RSS210 Issue 7: 2007

 Serial#
 SL08012102-ZBR-007 (15.247) (M5e)

 Issue Date
 15 December 2009

 Page
 7 of 65

 www.siemic.com

	2 <u>TECHNICAL DETAILS</u>
Purpose	Compliance testing of RFID Encoder with stipulated standard
Applicant / Client	ZEBRA TECHNOLOGIES CORP.
Manufacturer	Zebra Technologies Corp. 333 Corporate Woods Parkway Vernon Hills, IL 60061 USA
Laboratory performing the tests	SIEMIC Laboratories
Test report reference number	SL08012102-ZBR-007 (15.247) (M5e)
Date EUT received	28 October 2008
Standard applied	47 CFR §15.247: 2007 & RSS 210 Issue 7: 2007
Dates of test (from – to)	January 01 to January 07, 2009
No of Units:	2
Equipment Category:	DSS
Trade Name:	Zebra Technologies Corp.
Model :	P640I & P630I
RF Operating Frequency (ies)	902 MHz to 928 MHz
Number of Channels :	50
Modulation :	ISO 18000-6C
FCC ID :	I28 -640I-UHF
IC ID :	3798B-P640I

 Serial#
 SL08012102-ZBR-007 (15.247) (M5e)

 Issue Date
 15 December 2009

 Page
 8 of 65

3 MODIFICATION

NONE

 Serial#
 SL08012102-ZBR-007 (15.247) (M5e)

 Issue Date
 15 December 2009

 Page
 9 of 65

4 TEST SUMMARY

The product was tested in accordance with the following specifications. All testing has been performed according to below product classification:

Frequency Hopping Spread Spectrum / Device

Test Standard		Description	Decc / Fail	
47 CFR Part 15.247: 2007	RSS 210 Issue 7: 2007	Description	Pass / Fall	
15.203		Antenna Requirement	Pass	
15.205	RSS210(A8.5)	Restricted Band of Operation	Pass	
15.207(a)	RSS Gen (7.2.2)	AC Line Conducted Emissions Voltage	Pass	
15.247(a) (1)	RSS210(A8.1)	Channel Separation	Pass	
15.247(a)(1)	RSS210(A8.1)	Occupied Bandwidth	Pass	
15.247(a) (2)	RSS210 (A8.2)	6dB Bandwidth	N/A	
15.247(a) (1) (i)	RSS210(A8.1)	Number of Hopping Channels	Pass	
15.247(a) (1) (i)	RSS210(A8.1)	Time of Occupancy	Pass	
15.247(b) (2)	RSS210(A8.4)	Output Power	Pass	
15.247(c)	RSS210(A8.4)	Antenna Gain > 6 dBi	Pass	
15.247(d)	RSS210(A8.5)	Antenna Port Conducted Spurious Emissions	Pass	
15.209; 15.247(d)	RSS210(A8.5)	Radiated Spurious Emissions	Pass	
15.247(e)	RSS210(A8.3)	Power Spectral Density	N/A	
15.247(f)	RSS210(A8.3)	Hybrid System Requirement	N/A	
15.247(g)	RSS210(A8.1)	Hopping Capability	Pass	
15.247(h)	RSS210(A8.1)	Hopping Coordination Requirement	Pass	
15.247(i) §2.1091& §2.1093	RSSGen(5.5)	Maximum Permissible Exposure	Pass	
15.247 (d)		100 kHz Bandwidth of Frequency Band Edge	Pass	
	RSSGen(4.8)	Receiver Spurious Emissions	Pass	

ANSI C63.4: 2003/ RSS-Gen Issue 2: 2007

PS: All measurement uncertainties are not taken into consideration for all presented test result.

 Serial#
 SL08012102-ZBR-007 (15.247) (M56)

 Issue Date
 15 December 2009

 Page
 10 of 65

5 MEASUREMENTS, EXAMINATION AND DERIVED RESULTS

5.1 Antenna Requirement

Requirement(s): 47 CFR §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna requirement must meet at least one of the following:

- a) Antenna must be permanently attached to the device.
- b) Antenna must use a unique type of connector to attach to the device.
- c) Device must be professionally installed. Installer shall be responsible for ensuring that the correct antenna is employed with the device.
- 1) The UHF antenna has a unique connector and installed inside on the chassis with a gain of -20dBi which meets the requirement.

5.2 Conducted Emissions Voltage

	Conducted limit (dBµV)		
Frequency of emission (MHz)	Quasi-peak	Average	
0.15–0.5	66 to 56*	56 to 46*	
0.5–5	56	46	
5–30	60	50	

Requirement:

*Decreases with the logarithm of the frequency.

Procedures:

- 1. All possible modes of operation were investigated. Only the 6 worst case emissions measured, using the correct CISPR and Average detectors, are reported. All other emissions were relatively insignificant.
- 2. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.

 3. <u>Conducted Emissions Measurement Uncertainty</u> All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 9kHz – 30MHz (Average & Quasi-peak) is ±3.5dB.
 4. Environmental Conditions Temperature 23°C - 25°C Relative Humidity 50% Atmospheric Pressure 1019mbar

Test Date : January 01 to January 07, 2009 Tested By :Choon Sian Ooi

Phase Line Plot at 120Vac, 60Hz

Line Under Test	Frequency (MHz)	Corrected Amplitude (dBuV) QP	Limit (dBuV) QP	Margin (dB) QP	Corrected Amplitude (dBuV) AVG	Limit (dBuV) AVG	Margin (dB) AVG
Phase	0.27	48.46	61.21	-12.75	47.81	51.21	-3.41
Phase	0.23	49.83	62.72	-12.88	49.00	52.72	-3.72
Phase	0.35	38.33	59.11	-20.78	35.26	49.11	-13.86
Phase	1.17	35.88	56.00	-20.12	32.55	46.00	-13.45
Phase	16.48	31.58	60.00	-28.42	25.21	50.00	-24.79
Phase	16.21	31.23	60.00	-28.77	25.21	50.00	-24.79

Neutral Line Plot at 120Vac, 60Hz

Line Under Test	Frequency (MHz)	Corrected Amplitude (dBuV) QP	Limit (dBuV) QP	Margin (dB) QP	Corrected Amplitude (dBuV) AVG	Limit (dBuV) AVG	Margin (dB) AVG
Neutral	0.23	49.28	62.72	-13.44	48.32	52.72	-4.40
Neutral	0.27	48.17	61.21	-13.04	47.52	51.21	-3.69
Neutral	1.17	36.16	56.00	-19.84	33.22	46.00	-12.78
Neutral	0.35	38.81	59.11	-20.30	35.74	49.11	-13.37
Neutral	0.50	29.18	56.03	-26.85	27.14	46.03	-18.89
Neutral	0.59	32.49	56.00	-23.51	30.26	46.00	-15.74

Serial# SL08012102-ZBR-007 (15.247) (M56 Issue Date 15 December 2009 Page 14 of 65

5.3 Channel Separation

1.	Conducted Measurement					
	EUT was set for low , mid, high cl	nannel with modulated mode and highe	est RF output power.			
	The spectrum analyzer was conn	ected to the antenna terminal.				
2	Environmental Conditions	Temperature	23°C - 25°C			
		Relative Humidity	50%			
		Atmospheric Pressure	1019mbar			
3	Conducted Emissions Measurem	ent Uncertainty				
	All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a					
	confidence level of approximately	95% (in the case where distributions a	re normal), with a coverage factor of 2, in the			
	range 30MHz – 20GHz is ±1.5dE					
4	Test Date : January 01 to Januar	v 07. 2009				

4 Test Date : January 01 to January 07, 2009 Tested By :Choon Sian Ooi

Requirement(s): 47 CFR §15.247(a)(1)(i)

Procedures: The Channel Separation was measured conducted using a spectrum analyzer at low, mid, and hi channels.

Frequency hopping systems in the 902-928 MHz shall have, hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies.

Channel	Channel Frequency (MHz)	Channel Separation (MHz)	20 dB Channel Bandwidth (KHz)
Low	902.750	0.507	76.30
Mid	915.250	0.503	74.50
High	927.250	0.503	73.40

 Serial#
 SL08012102-ZBR-007 (15.247) (M5e)

 Issue Date
 15 December 2009

 Page
 15 of 65

 WHAN Signific comp

Channel Separation - Low Channel

Channel Separation – Mid Channel

 Serial#
 SL08012102-ZBR-007 (15.247) (M5e)

 Issue Date
 15 December 2009

 Page
 16 of 65

Channel Separation – High Channel

 Serial#
 SL08012102-ZBR-007 (15.247) (M5e)

 Issue Date
 15 December 2009

 Page
 17 of 65

5.4 20dB Occupied Bandwidth

1.	Conducted Measurement		
	EUT was set for low, mid, high ch	annel with modulated mode and higher	st RF output power.
	The spectrum analyzer was conne	ected to the antenna terminal.	
2	Environmental Conditions	Temperature	23°C - 25°C
		Relative Humidity	50%
		Atmospheric Pressure	1019mbar
3	Conducted Emissions Measurem	ent Uncertainty	
	All test measurements carried out	are traceable to national standards. T	he uncertainty of the measurement at a
	confidence level of approximately	95% (in the case where distributions a	re normal), with a coverage factor of 2, in the
	range 30MHz – 20GHz is ±1.5dB		-
4	Test Date : January 01 to Januar	y 07, 2009	
	Tested By :Choon Sian Ooi	-	

Requirement(s): 47 CFR §15.247(a)(1)(i)

Procedures: The 20dB bandwidths were measured conducted using a spectrum analyzer at low, mid, and hi channels.

Note: The maximum allowed 20 dB bandwidth of the hopping is 500 kHz.

Channel	Channel Frequency (MHz)	20 dB Channel Bandwidth (KHz)	99% Channel Bandwidth (KHz)
Low	902.750	76.30	71.90
Mid	915.250	74.50	71.90
High	927.250	73.40	70.40

Refer to the attached plots.

 Serial#
 SL08012102-ZBR-007 (15.247) (M5e)

 Issue Date
 15 December 2009

 Page
 18 of 65

20dB Bandwidth - Low Channel

99% Bandwidth - Low Channel

 Serial#
 SL08012102-ZBR-007 (15.247) (M5e)

 Issue Date
 15 December 2009

 Page
 19 of 65

99% Bandwidth - Mid Channel

 Serial#
 SL08012102-ZBR-007 (15.247) (M5e)

 Issue Date
 15 December 2009

 Page
 20 of 65

 Water science comp

99% Bandwidth - High Channel

 Serial#
 SL08012102-ZBR-007 (15.247) (M5e)

 Issue Date
 15 December 2009

 Page
 21 of 65 www.siemic.com

5.5 Number of Hopping Channel

1. Conducted Measurement EUT was set for low , mid, high channel with modulated mode and highest RF output power. The spectrum analyzer was connected to the antenna terminal. 2 Conducted Emissions Measurement Uncertainty All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz - 20GHz is $\pm 1.5dB$. Environmental Conditions 3 23°C - 25°C Temperature Relative Humidity 50% Atmospheric Pressure 1019mbar Test Date : January 01 to January 07, 2009 4 Tested By : Choon Sian Ooi

Standard Requirement: 47 CFR §15.247(a)(1)(iii)

For frequency hopping systems operating in the 902–928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

Procedures: The Number of Hopping Channel measurement was taken conducted using a spectrum analyzer.

RBW=30 KHz, VBW > RBW

Test Result:

Total Channel: 50 Channels

 Serial#
 SL08012102-ZBR-007 (15.247) (M5e)

 Issue Date
 15 December 2009

 Page
 22 of 65

Number of Hopping Channel

902 - 928 MHz: 50 Channels

 Serial#
 SL08012102-ZBR-007 (15.247) (M5e)

 Issue Date
 15 December 2009

 Page
 23 of 65

 Unsure statement and and the series

5.6 Time of Occupancy

- 1. Conducted Measurement EUT was set for low, mid, high channel with modulated mode and highest RF output power. The spectrum analyzer was connected to the antenna terminal. Conducted Emissions Measurement Uncertainty 2 All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz - 20GHz is ±1.5dB. Environmental Conditions 3 Temperature 23°C - 25°C Relative Humidity 50% Atmospheric Pressure 1019mbar
- 4 Test Date : January 01 to January 07, 2009 Tested By :Choon Sian Ooi

Standard Requirement: 47 CFR §15.247(a)(1)

For frequency hopping systems operating in the 902–928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period.

Procedures: The Time of Occupancy measurement was taken conducted using a spectrum analyzer.

Test	Result:

Channel	Channel Frequency (MHz)	Dwell Time (sec)	Limit (sec)
Low	902.750	0.234	0.4
Mid	915.250	0.231	0.4
High	927.250	0.238	0.4

 Serial#
 SL08012102-ZBR-007 (15.247) (M5e)

 Issue Date
 15 December 2009

 Page
 24 of 65

Low Channel

 Serial#
 SL08012102-ZBR-007 (15.247) (M5e)

 Issue Date
 15 December 2009

 Page
 25 of 65

Mid Channel

 Serial#
 SL08012102-ZBR-007 (15.247) (M5e)

 Issue Date
 15 December 2009

 Page
 26 of 65

High Channel

 Serial#
 SL08012102-ZBR-007 (15.247) (M5e)

 Issue Date
 15 December 2009

 Page
 27 of 65

5.7 Peak Output Power

Conducted Measurement 1. EUT was set for low , mid, high channel with modulated mode and highest RF output power. The spectrum analyzer was connected to the antenna terminal. 2 Conducted Emissions Measurement Uncertainty All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz - 40GHz is ±1.5dB. **Environmental Conditions** 23°C - 25°C 3 Temperature **Relative Humidity** 50% Atmospheric Pressure 1019mbar Test Date : January 01 to January 07, 2009 4 Tested By : Choon Sian Ooi

Standard Requirement : 47 CFR §15.247(b)

Procedures: The peak output power was measured conducted using a spectrum analyzer at low, mid, and hi channels. Peak detector was set to measure the power output. The power is converted from watt to dBm, therefore, 1 watt = 30 dBm. The highest antenna gain that will be used is -20dBi.

Note: For frequency hopping systems operating in the 902–928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

reat neault .

Channel	Channel Frequency (MHz)	Measured Output Power (dBm)	Peak Output Power Limit (dBm)
Low	902.750	29.50	30
Mid	915.250	29.50	30
High	927.250	29.67	30

 Serial#
 SL08012102-ZBR-007 (15.247) (M5e)

 Issue Date
 15 December 2009

 Page
 28 of 65

Output Power Mid Channel

 Serial#
 SL08012102-ZBR-007 (15.247) (M5e)

 Issue Date
 15 December 2009

 Page
 29 of 65

 www.siemic.com

Output Power High Channel

 Serial#
 SL08012102-ZBR-007 (15.247) (M5e)

 Issue Date
 15 December 2009

 Page
 30 of 65

5.8 100 kHz Bandwidth of Frequency Band Edge

1.	Conducted Measurement		
	EUT was set for low, mid, high ch	annel with modulated mode and higher	st RF output power.
	The spectrum analyzer was conn	ected to the antenna terminal.	
2	Conducted Emissions Measurem	ent Uncertainty	
	All test measurements carried ou confidence level of approximately range 30MHz – 20GHz is ±1.5df	t are traceable to national standards. T 95% (in the case where distributions a 3.	he uncertainty of the measurement at a re normal), with a coverage factor of 2, in the
3	Environmental Conditions	Temperature	23°C - 25°C
		Relative Humidity	50%
		Atmospheric Pressure	1019mbar
4	Test Date : January 01 to Januar	y 07, 2009	
	Tested By :Choon Sian Ooi		

Standard Requirement : 47 CFR §15.247(b)

Procedures: in any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in §15.209(a) is not required.

Test Result:

 Serial#
 SL08012102-ZBR-007 (15.247) (M5e)

 Issue Date
 15 December 2009

 Page
 31 of 65

Low Channel

High Channel

 Serial#
 SL08012102-ZBR-007 (15.247) (M5e)

 Issue Date
 15 December 2009

 Page
 32 of 65

5.9 Antenna Port Emission

1.	Conducted Measurement		
	EUT was set for low , mid, high chann	el with modulated mode and highest RF	output power.
	The spectrum analyzer was connected	d to the antenna terminal.	
2	Conducted Emissions Measurement L	<u>Jncertainty</u>	
	All test measurements carried out are	traceable to national standards. The ur	ncertainty of the measurement at a
	confidence level of approximately 95%	6 (in the case where distributions are no	rmal), with a coverage factor of 2, in the
	range 30MHz – 20GHz is ±1.5dB.		
3	Environmental Conditions	Temperature	23°C - 25°C
		Relative Humidity	50%
		Atmospheric Pressure	1019mbar
4	Test Date : January 01 to January 07,	2009	
	Tested By :Choon Sian Ooi		

Standard Requirement : 47 CFR §15.247(c)

Procedures: The conducted spurious emissions were measured conducted using a spectrum analyzer at low, mid, and hi channels. The limit was determined by attenuating 20 dB of the RF peak power output

Test Result:

 Serial#
 SL08012102-ZBR-007 (15.247) (M5e)

 Issue Date
 15 December 2009

 Page
 34 of 65 www.siemic.com

5.10 Radiated Spurious Emission < 1GHz

- 1. <u>All possible modes of operation were investigated</u>. Only the 6 worst case emissions measured, using the correct CISPR detectors, are reported. All other emissions were relatively insignificant.
- CISPR detectors, are reported. All other emissions were relatively insignificant.

 A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
 Radiated Emissions Measurement Uncertainty All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz – 1GHz (QP only @ 3m & 10m) is +5.6dB/-4.5dB (for EUTs < 0.5m X 0.5m X 0.5m).
 Environmental Conditions Temperature 23°C - 25°C

Relative Humidity Atmospheric Pressure 23°C - 25° 50% 1019mbar

Test Date : January 01 to January 07, 2009 Tested By :Choon Sian Ooi

Standard Requirement : 47 CFR §15.247(c)

Procedures: Radiated emissions were measured according to ANSI C63.4. The EUT was set to transmit at the highest output power. The EUT was set to transmit at mid channel. Note that setting the channel other than mid, the spurious emissions are the same.

The limit is converted from microvolts/meter to decibel microvolts/meter.

Sample Calculation: Corrected Amplitude = Raw Amplitude (dBµV/m) + ACF(dB) + Cable Loss(dB)

Test Result:

 Serial#
 SL08012102-ZBR-007 (15.247) (M5e)

 Issue Date
 15 December 2009

 Page
 35 of 65

 Water series comp

Radiated Emission Plot (Receive mode)

Test Data

Frequency (MHz)	Quasi-Peak (dBµV/m)	Antenna height (cm)	Polarity	Turntable position (deg)	Limit (dBµV/m)	Margin (dB)
824.76	41.50	144.00	V	184.00	46.00	-4.50
240.03	43.08	127.00	Н	215.00	46.00	-2.92
467.25	38.60	208.00	Н	318.00	46.00	-7.40
124.95	37.71	227.00	Н	3.00	43.50	-5.79
846.07	40.40	398.00	Н	154.00	46.00	-5.60
375.03	42.20	137.00	V	186.00	46.00	-3.80

 Serial#
 SL08012102-ZBR-007 (15.247) (M5e)

 Issue Date
 15 December 2009

 Page
 36 of 65

Radiated Emission Plot (Transmit mode)

Test Data

Frequency (MHz)	Quasi-Peak (dBµV/m)	Antenna height (cm)	Polarity	Turntable position (deg)	Limit (dBµV/m)	Margin (dB)
125.00	38.19	146.00	V	166.00	46.00	-5.31
105.72	35.53	109.00	V	335.00	43.50	-7.97
250.01	41.39	136.00	Н	296.00	46.00	-4.61
375.01	43.76	130.00	V	256.00	46.00	-2.24
623.97	41.03	102.00	Н	263.00	46.00	-4.97
191.97	34.12	149.00	V	175.00	46.00	-9.38

SL08012102-ZBR-007 (15.247) (M5e) Serial# Issue Date 15 December 2009 37 of 65 Page www.siemic.com

50%

1019mbar

5.12 Radiated Spurious Emissions > 1GHz

- 1. All possible modes of operation were investigated. Only the 6 worst case emissions measured, using the correct CISPR detectors, are reported. All other emissions were relatively insignificant.

2. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency. Radiated Emissions Measurement Uncertainty 3. All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 1GHz – 20GH is +5.6dB/-4.5dB (for EUTs < 0.5m X 0.5m X 0.5m). 23°C - 25°C

Environmental Conditions 4. Temperature **Relative Humidity** Atmospheric Pressure Test Date : January 01 to January 07, 2009

Tested By : Choon Sian Ooi

Standard Requirement: 47 CFR §15.247(d)

Equipment was setup in a semi-anechoic chamber. For measurements above 1 GHz an Procedures: average measurement was taken with a 10Hz video bandwidth. The EUT was tested at low, mid and high with the highest output power. Investigated up to 10th harmonics of the operating frequency.

Sample Calculation:

EUT Field Strength = Raw Amplitude(dBµV/m) – Amplifier Gain(dB) + Antenna Factor(dB) + Cable Loss(dB) + Filter Attenuation(dB, if used)

NOTE: All the test was done when the both radio was turn on to simulate the worst case.

Test Result:

RF Test Report of Zebra Technologies Corp. Model P640I & P630I FCC 15.247 2007, IC RSS210 Issue 7: 2007

 Serial#
 SL08012102-ZBR-007 (15.247) (M5e)

 Issue Date
 15 December 2009

 Page
 38 of 65

Host EUT RASOR 600

Frequency	Reading	Direction	Height	Polar	Antenna Loss	Cable loss	Amplifier	Corrected Reading	Limit	Margin	
1.831	61.5	200	1	V	26.4	2.16	31.98	58.08	74	-15.92	Peak
1.831	55.39	187	1.2	h	26.4	2.16	31.98	51.97	74	-22.03	Peak
1.831	52.53	200	1	V	26.4	2.16	31.98	49.11	54	-4.89	Ave
1.831	43.66	187	1.2	h	26.4	2.16	31.98	40.24	54	-13.76	Ave
2.745	46.25	271	1	V	29.8	2.72	32.08	46.69	74	-27.31	Peak
2.745	50.25	159	1	h	29.8	2.72	32.08	50.69	74	-23.31	Peak
2.745	34.49	271	1.3	V	29.8	2.72	32.08	34.93	54	-19.07	Ave
2.745	40.05	159	1.4	h	29.8	2.72	32.08	40.49	54	-13.51	Ave
3.661	44.82	190	1.1	V	32.5	3.435	32.37	48.385	74	-25.615	Peak
3.661	46.58	271	1.7	h	32.5	3.435	32.37	50.145	74	-23.855	Peak
3.661	34.53	190	1.1	V	32.5	3.435	32.37	38.095	54	-15.905	Ave
3.661	36.94	271	1.7	h	32.5	3.435	32.37	40.505	54	-13.495	Ave

@ 902.750MHz @ 3 Meter

Emission was scanned up to 10GHz.

Frequency	Reading	Direction	Height	Polar	Antenna Loss	Cable loss	Amplifier	Corrected Reading	Limit	Margin	
1.83	44.01	180	155	V	26.4	2.16	31.98	40.59	74	-33.41	Peak
1.83	41.67	180	155	h	26.4	2.16	31.98	38.25	74	-35.75	Peak
1.83	31.93	180	155	V	26.4	2.16	31.98	28.51	54	-25.49	Ave
1.83	30.56	180	155	h	26.4	2.16	31.98	27.14	54	-26.86	Ave
2.74	40.23	180	155	V	29.8	2.72	32.08	40.67	74	-33.33	Peak
2.74	40.14	180	155	h	29.8	2.72	32.08	40.58	74	-33.42	Peak
2.74	29.56	180	155	V	29.8	2.72	32.08	30	54	-24	Ave
2.74	29.45	180	155	h	29.8	2.72	32.08	29.89	54	-24.11	Ave
3.66	40.67	180	155	V	32.5	3.435	32.37	44.235	74	-29.765	Peak
3.66	40.23	180	155	h	32.5	3.435	32.37	43.795	74	-30.205	Peak
3.66	29.61	180	155	V	32.5	3.435	32.37	33.175	54	-20.825	Ave
3.66	29.12	180	155	h	32.5	3.435	32.37	32.685	54	-21.315	Ave

@ 915.250MHz @ 3Meter

Emission was scanned up to 10GHz.

SIEMIC, INC. Accessing global markets

Title:

То

RF Test Report of Zebra Technologies Corp. Model P640I & P630I FCC 15.247 2007, IC RSS210 Issue 7: 2007

Frequency	Reading	Direction	Height	Polar	Antenna Loss	Cable loss	Amplifier	Corrected Reading	Limit	Margin	
1.855	58.32	24	1	V	26.4	2.16	31.98	54.9	74	-19.1	Peak
1.855	54.83	102	1	h	26.4	2.16	31.98	51.41	74	-22.59	Peak
1.855	48.69	24	1	V	26.4	2.16	31.98	45.27	54	-8.73	Ave
1.855	44.79	180	1.3	h	26.4	2.16	31.98	41.37	54	-12.63	Ave
2.782	60.61	115	1.1	V	29.8	2.72	32.08	61.05	74	-12.95	Peak
2.782	50.43	235	1.7	h	29.8	2.72	32.08	50.87	74	-23.13	Peak
2.782	49.39	115	1.1	V	29.8	2.72	32.08	49.83	54	-4.17	Ave
2.782	39.73	235	1.7	h	29.8	2.72	32.08	40.17	54	-13.83	Ave
3.709	44.83	190	1.1	V	32.5	3.435	32.37	48.395	74	-25.605	Peak
3.709	45.27	271	1.7	h	32.5	3.435	32.37	48.835	74	-25.165	Peak
3.709	31.83	190	1.1	V	32.5	3.435	32.37	35.395	54	-18.605	Ave
3.709	35.61	271	1.7	h	32.5	3.435	32.37	39.175	54	-14.825	Ave

@ 927.250MHz @ 3Meter

Emission was scanned up to 10GHz.

 Serial#
 SL08012102-ZBR-007 (15.247) (M5e)

 Issue Date
 15 December 2009

 Page
 40 of 65

Annex A. TEST INSTRUMENT & METHOD

Annex A.i. TEST INSTRUMENTATION & GENERAL PROCEDURES

Instrument	Model	Serial #	Calibration Due
AC Conducted Emissions			
R&S EMI Test Receiver	ESIB40	100179	04/25/2009
R&S LISN	ESH2-Z5	861741/013	04/24/2009
CHASE LISN	MN2050B	1018	04/24/2009
Radiated Emissions			
R&S EMI Test Receiver	ESIB40	100179	04/25/2009
Com Power Corp Horn Antenna (18GHz to 40GHz)	AH-840	101013	03/19/2010
EMCO Horn Antenna (1-18GHz)	3115	10SL0059	01/04/2009
Sunol Sciences, Inc. antenna (30MHz~2GHz)	JB1	A030702	10/04/2009
Wiltron Signal Generator (10MHz to 40GHz)	68169B	973407	04/25/2009
Com Power Preamplifier (18GHz to 40GHz)	PA-840	181250	05/21/2009
HP Preamplifier (1-18GHz)	8449B	3008A00715	04/24/2009
HP Preamplifier (0.1-1300MHz)	8447F	1937A01160	04/24/2009
Millitech, External Mixer	MHB-06- RD3A0	9259	N/A
MILITECH, External Mixer (Above 40GHz)	MHB-06- RD3AO	9259	N/A
MILITGECH, Horn Antenna (above 40GHz)	WT-KaD	WT28-6	N/A

Note: No calibration required.

 Serial#
 SL08012102-ZBR-007 (15.247) (M5e)

 Issue Date
 15 December 2009

 Page
 41 of 65

Annex A.ii. CONDUCTED EMISSIONS TEST DESCRIPTION

Test Set-up

- 1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m x 1m x 0.8m high, non-metallic table, as shown in <u>Annex B</u>.
- 2. The power supply for the EUT was fed through a $50\Omega/50\mu$ H EUT LISN, connected to filtered mains.
- 3. The RF OUT of the EUT LISN was connected to the EMI test receiver via a low-loss coaxial cable.
- 4. All other supporting equipments were powered separately from another main supply.

Test Method

- 1. The EUT was switched on and allowed to warm up to its normal operating condition.
- 2. A scan was made on the NEUTRAL line (for AC mains) or Earth line (for DC power) over the required frequency range using an EMI test receiver.
- 3. High peaks, relative to the limit line, were then selected.
- 4. The EMI test receiver was then tuned to the selected frequencies and the necessary measurements made with a receiver bandwidth setting of 10 KHz. For FCC tests, only Quasi-peak measurements were made; while for CISPR/EN tests, both Quasi-peak and Average measurements were made.
- 5. Steps 2 to 4 were then repeated for the LIVE line (for AC mains) or DC line (for DC power).

Sample Calculation Example

At 20 MHz	limit = 250 μ V = 47.96 dB μ V
Transducer factor of LISN, pulse limiter & cable loss at 20 MHz = 7	11.20 dB
Q-P reading obtained directly from EMI Receiver = 40.00 dB μ V (Calibrated for s	system losses)
Therefore, Q-P margin = 47.96 - 40.00 = 7.96	i.e. 7.96 dB below limit

 Serial#
 SL08012102-ZBR-007 (15.247) (M5e)

 Issue Date
 15 December 2009

 Page
 42 of 65 www.siemic.com

Annex A. iii RADIATED EMISSIONS TEST DESCRIPTION

EUT Characterisation

EUT characterisation, over the frequency range from 30MHz to 10th Harmonic , was done in order to minimise radiated emissions testing time while still maintaining high confidence in the test results.

The EUT was placed in the chamber, at a height of about 0.8m on a turntable. Its radiated emissions frequency profile was observed, using a spectrum analyzer /receiver with the appropriate broadband antenna placed 3m away from the EUT. Radiated emissions from the EUT were maximised by rotating the turntable manually, changing the antenna polarisation and manipulating the EUT cables while observing the frequency profile on the spectrum analyzer / receiver. Frequency points at which maximum emissions occurred, clock frequencies and operating frequencies were then noted for the formal radiated emissions test at the Open Area Test Site (OATS).

Test Set-up

- 1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m X 1.0m X 0.8m high, non-metallic table.
- 2. The filtered power supply for the EUT and supporting equipment were tapped from the appropriate power sockets located on the turntable.
- 3. The relevant broadband antenna was set at the required test distance away from the EUT and supporting equipment boundary.

 Serial#
 SL08012102-ZBR-007 (15.247) (M5e)

 Issue Date
 15 December 2009

 Page
 43 of 65 www.siemic.com

Test Method

The following procedure was performed to determine the maximum emission axis of EUT:

1. With the receiving antenna is H polarization, rotate the EUT in turns with three orthogonal axes to determine the axis of maximum emission.

2. With the receiving antenna is V polarization, rotate the EUT in turns with three orthogonal axes to determine the axis of maximum emission.

3. Compare the results derived from above two steps. So, the axis of maximum emission from EUT was determined and the configuration was used to perform the final measurement.

Final Radiated Emission Measurement

1. Setup the configuration according to figure 1. Turn on EUT and make sure that it is in normal function.

2. For emission frequencies measured below 1 GHz, a pre-scan is performed in a shielded chamber to determine the accurate frequencies of higher emissions will be checked on a open test site. As the same purpose, for emission frequencies measured above 1 GHz, a pre-scan also be performed with a 1 meter measuring distance before final test.

3. For emission frequencies measured below and above 1 GHz, set the spectrum analyzer on a 100 kHz and 1 MHz resolution bandwidth respectively for each frequency measured in step 2.

4. The search antenna is to be raised and lowered over a range from 1 to 4 meters in horizontally polarized orientation. Position the highness when the highest value is indicated on spectrum analyzer, then change the orientation of EUT on test table over a range from 0, to 360, with a speed as slow as possible, and keep the azimuth that highest emission is indicated on the spectrum analyzer. Vary the antenna position again and record the highest value as a final reading.

5. Repeat step 4 until all frequencies need to be measured were complete.

6. Repeat step 5 with search antenna in vertical polarized orientations.

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	Peak	100 kHz	100 kHz
Abovo 1000	Peak	1 MHz	1 MHz
	Average	1 MHz	10 Hz

Sample Calculation Example

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. For the limit is employed average value, therefore the peak value can be transferred to average value by subtracting the duty factor. The basic equation with a sample calculation is as follows:

Peak = Reading + Corrected Factor

where

Corr. Factor = Antenna Factor + Cable Factor - Amplifier Gain (if any) And the average value is Average = Peak Value + Duty Factor or

Set RBW = 1MHz, VBW = 10Hz.

Note :

If the measured frequencies are fall in the restricted frequency band, the limit employed must be quasi peak value when frequencies are below or equal to 1 GHz. And the measuring instrument is set to quasi peak detector function.

 Serial#
 SL08012102-ZBR-007 (15.247) (N

 Issue Date
 15 December 2009

 Page
 44 of 65

 MANN signific com

Annex B EUT AND TEST SETUP PHOTOGRAPHS

Please see the attachment

Annex C. TEST SETUP AND SUPPORTING EQUIPMENT

EUT TEST CONDITIONS

Annex C. i. SUPPORTING EQUIPMENT DESCRIPTION

The following is a description of supporting equipment and details of cables used with the EUT.

Equipment Description (Including Brand Name)	Model & Serial Number	Cable Description (List Length, Type & Purpose)
PC Laptop / DELL	Latitude DS520	Serial Cable , 1meter From PC Laptop to EUT

Block Configuration Diagram for Radiated Emission

Block Configuration Diagram for Conducted Emission

 Serial#
 SL08012102-ZBR-007 (15.247) (M5e)

 Issue Date
 15 December 2009

 Page
 47 of 65

Annex C.ii. EUT OPERATING CONDITIONS

The following is the description of how the EUT is exercised during testing.

Test	Description Of Operation
Emissions Testing	The EUT was controlled via PC Laptop using Agency Testing Program provided by applicant.
Others Testing	The EUT was controlled via PC Laptop using Agency Testing Program provided by applicant.

 Serial#
 SL08012102-ZBR-007 (15.247) (M5e)

 Issue Date
 15 December 2009

 Page
 48 of 65

 WHAN slowing comp

Annex D USER MANUAL, BLOCK & CIRCUIT DIAGRAM

Please see attachment

 Serial#
 SL08012102-ZBR-007 (15.247) (M5e)

 Issue Date
 15 December 2009

 Page
 49 of 65 www.siemic.com

Annex E. SIEMIC ACCREDITATION CERTIFICATES

SIEMIC ACREDITATION DETAILS: A2LA Certificate Number: 2742.01

 Serial#
 SL08012102-ZBR-007 (15.247) (M5e)

 Issue Date
 15 December 2009

 Page
 50 of 65

	SIEMIC INC.	
	2206 Ringwood Ave.	
Mr. Snall I same (Auth	San Jose, CA 95131	
Mr. Shen Leong (Auth	www.siemic.com	
	www.stellie.com	
PRODUCT CERTIFICATION	ON CONFORMITY ASSESSMENT BODY (CAB)	
Valid to: September 30, 2010	Certificate Number: 2	742.02
In recognition of the successful completi- evaluation, including the US Federal Cor Singapore (IDA) requirements for the inc this organization to perform the following	on of the A2LA Certification Body Accreditation Program mmunications Commission (FCC), Industry Canada (IC) dicated types of product certifications, accreditation is gra g product certification schemes:	n and inted to
Economy	Scope	
Federal Communication Commission -	- (FCC)	
Unlicensed Radio Frequency Devices	A1, A2, A3, A4	
Unlicensed Radio Frequency Devices Licensed Radio Frequency Devices	A1, A2, A3, A4 B1, B2, B3, B4	
Unlicensed Radio Frequency Devices Licensed Radio Frequency Devices Telephone Terminal Equipment	A1, A2, A3, A4 B1, B2, B3, B4 C	
Unlicensed Radio Frequency Devices Licensed Radio Frequency Devices Telephone Terminal Equipment *Please refer to FCC TCB Program Roles an roles and responsibilities. http://www.fcc.gov	A1, A2, A3, A4 B1, B2, B3, B4 C nd Responsibilities, v04, released February 14, 2008 detailing v/oet/ea/FCC-Overview-TCB-Program.pdf	scopes,
Unlicensed Radio Frequency Devices Licensed Radio Frequency Devices Telephone Terminal Equipment *Please refer to FCC TCB Program Roles an roles and responsibilities. http://www.fcc.gov Industry Canada - (IC)	A1, A2, A3, A4 B1, B2, B3, B4 C nd Responsibilities, v04, released February 14, 2008 detailing v/oet/ea/FCC-Overview-TCB-Program.pdf	scopes,
Unlicensed Radio Frequency Devices Licensed Radio Frequency Devices Telephone Terminal Equipment *Please refer to FCC TCB Program Roles an roles and responsibilities. <u>http://www.fcc.gov</u> Industry Canada - (IC) Radio	A1, A2, A3, A4 B1, B2, B3, B4 C and Responsibilities, v04, released February 14, 2008 detailing v/oet/ea/FCC-Overview-TCB-Program.pdf All Radio Standards Specifications (RSS) in Cate Equipment Standards List Radio	scopes, egory I
Unlicensed Radio Frequency Devices Licensed Radio Frequency Devices Telephone Terminal Equipment *Please refer to FCC TCB Program Roles an roles and responsibilities. <u>http://www.fcc.gov</u> Industry Canada - (IC) Radio *Please refer to Industry Canada (IC) websit	A1, A2, A3, A4 B1, B2, B3, B4 C and Responsibilities, v04, released February 14, 2008 detailing v/oet/ea/FCC-Overview-TCB-Program.pdf All Radio Standards Specifications (RSS) in Cate Equipment Standards List Radio te at: http://www.ic.gc.ca/epic/site/smt-gst.nsf/en/h_sf01342e.html	scopes, egory I <u>tml</u>
Unlicensed Radio Frequency Devices Licensed Radio Frequency Devices Telephone Terminal Equipment *Please refer to FCC TCB Program Roles an roles and responsibilities. <u>http://www.fcc.gov</u> Industry Canada - (IC) Radio *Please refer to Industry Canada (IC) websit IDA - Singapore	A1, A2, A3, A4 B1, B2, B3, B4 C and Responsibilities, v04, released February 14, 2008 detailing w/oet/ea/FCC-Overview-TCB-Program.pdf All Radio Standards Specifications (RSS) in Cate Equipment Standards List Radio te at: http://www.ic.gc.ca/epic/site/smt-gst.nsf/en/h_sf01342e.h	scopes, egory I <u>tml</u>
Unlicensed Radio Frequency Devices Licensed Radio Frequency Devices Telephone Terminal Equipment *Please refer to FCC TCB Program Roles an roles and responsibilities. <u>http://www.fcc.gov</u> Industry Canada - (IC) Radio *Please refer to Industry Canada (IC) websit IDA – Singapore Line Terminal Equipment	A1, A2, A3, A4 B1, B2, B3, B4 C and Responsibilities, v04, released February 14, 2008 detailing v/oet/ea/FCC-Overview-TCB-Program.pdf All Radio Standards Specifications (RSS) in Cate Equipment Standards List Radio te at: <u>http://www.ic.gc.ca/epic/site/smt-gst.nsf/en/h_sf01342e.h</u> All Technical Specifications for Line Terminal	scopes, egory I t <u>ml</u>
Unlicensed Radio Frequency Devices Licensed Radio Frequency Devices Telephone Terminal Equipment *Please refer to FCC TCB Program Roles an roles and responsibilities. <u>http://www.fcc.gov</u> Industry Canada - (IC) Radio *Please refer to Industry Canada (IC) websit IDA – Singapore Line Terminal Equipment	A1, A2, A3, A4 B1, B2, B3, B4 C and Responsibilities, v04, released February 14, 2008 detailing v/oet/ea/FCC-Overview-TCB-Program.pdf All Radio Standards Specifications (RSS) in Cate Equipment Standards List Radio te at: http://www.ic.gc.ca/epic/site/smt-gst.nsf/en/h_sf01342e.h All Technical Specifications for Line Terminal Equipment – Table 1 of IDA MRA Recognition	scopes, egory I t <u>ml</u>
Unlicensed Radio Frequency Devices Licensed Radio Frequency Devices Telephone Terminal Equipment *Please refer to FCC TCB Program Roles an roles and responsibilities. <u>http://www.fcc.gov</u> Industry Canada - (IC) Radio *Please refer to Industry Canada (IC) websit IDA – Singapore Line Terminal Equipment	A1, A2, A3, A4 B1, B2, B3, B4 C and Responsibilities, v04, released February 14, 2008 detailing <u>v/oet/ea/FCC-Overview-TCB-Program.pdf</u> All Radio Standards Specifications (RSS) in Cate Equipment Standards List Radio te at: <u>http://www.ic.gc.ca/epic/site/smt-gst.nsf/en/h_sf01342e.h</u> All Technical Specifications for Line Terminal Equipment – Table 1 of IDA MRA Recognition Scheme: 2008, Annex 2	scopes, egory I <u>tml</u>
Unlicensed Radio Frequency Devices Licensed Radio Frequency Devices Telephone Terminal Equipment *Please refer to FCC TCB Program Roles an roles and responsibilities. <u>http://www.fcc.gov</u> Industry Canada - (IC) Radio *Please refer to Industry Canada (IC) websit IDA – Singapore Line Terminal Equipment Radio-Communication Equipment	A1, A2, A3, A4 B1, B2, B3, B4 C and Responsibilities, v04, released February 14, 2008 detailing w/oet/ea/FCC-Overview-TCB-Program.pdf All Radio Standards Specifications (RSS) in Cate Equipment Standards List Radio te at: http://www.ic.gc.ca/epic/site/smt-gst.nsf/en/h_sf01342e.h All Technical Specifications for Line Terminal Equipment – Table 1 of IDA MRA Recognition Scheme: 2008, Annex 2 All Technical Specifications for Radio-Commun	scopes, egory I <u>ml</u> ication
Unlicensed Radio Frequency Devices Licensed Radio Frequency Devices Telephone Terminal Equipment *Please refer to FCC TCB Program Roles an roles and responsibilities. <u>http://www.fcc.gov</u> Industry Canada - (IC) Radio *Please refer to Industry Canada (IC) websit IDA – Singapore Line Terminal Equipment Radio-Communication Equipment	A1, A2, A3, A4 B1, B2, B3, B4 C and Responsibilities, v04, released February 14, 2008 detailing w/oet/ea/FCC-Overview-TCB-Program.pdf All Radio Standards Specifications (RSS) in Cate Equipment Standards List Radio te at: http://www.ic.gc.ca/epic/site/smt-gst.nsf/en/h_sf01342e.h All Technical Specifications for Line Terminal Equipment – Table 1 of IDA MRA Recognition Scheme: 2008, Annex 2 All Technical Specifications for Radio-Commun Equipment – Table 2 of IDA MRA Recognition	scopes, egory I <u>ml</u> ication

(A2LA Cert. No. 2742.02) 01/09/09

Page 1 of 1

 Serial#
 SL08012102-ZBR-007 (15.247) (M5e)

 Issue Date
 15 December 2009

 Page
 51 of 65

 www.wisi.usinging.com

SIEMIC ACREDITATION DETAILS: FCC Test Site Registration No. 783147

FEDERAL COMMUNICATIONS COMMISSION

Laboratory Division 7435 Oakland Mills Road Columbia, MD 21046

December 20, 2007

Registration Number: 783147

SIEMIC Laboratories 2206 Ringwood Avenue, San Jose, CA 95131

Attention: Leslie Bai

Re:

Measurement facility located at San Jose 3 & 10 meter site Date of Renewal: December 20, 2007

Dear Sir or Madam:

Your request for renewal of the registration of the subject measurement facility has been received. The information submitted has been placed in your file and the registration has been renewed. The name of your organization will remain on the list of facilities whose measurement data will be accepted in conjunction with applications for Certification under Parts 15 or 18 of the Commission's Rules. Please note that the file must be updated for any changes made to the facility and the registration must be renewed at least every three years.

Measurement facilities that have indicated that they are available to the public to perform measurement services on a fee basis may be found on the FCC website <u>www.fcc.gov</u> under E-Filing, OET Equipment Authorization Electronic Filing, Test Firms.

Sincerely,

Phyllis Parrish Industry Analyst

Accessing global markets RF Test Report of Zebra Technologies Corp. Model P640I & P630I FCC 15.247 2007, IC RSS210 Issue 7: 2007

 Serial#
 SL08012102-ZBR-007 (15.247) (M5e)

 Issue Date
 15 December 2009

 Page
 52 of 65 www.siemic.com

SIEMIC ACREDITATION DETAILS: Industry of Canada CAB ID : US0160

UNITED STATES DEPARTMENT OF COMMERCE National Institute of Standards and Technology Gaithersburg, Maryland 20899-

March 4, 2009

Mr. Leslie Bai SIEMIC, Inc. 2206 Ringwood Avenue San Jose, CA 95131

Dear Mr. Bai:

NIST is pleased to inform you that your laboratory has been recognized by Industry Canada (IC), under the Asia Pacific Economic Cooperation for Telecommunications Equipment Mutual Recognition Arrangement (APEC Tel MRA). Your laboratory is now designated to act as a Conformity Assessment Body (CAB) under Appendix B, **Phase I** Procedures, of the APEC Tel MRA. The pertinent information about your laboratory's designation is as follows:

CAB Name:	SIEMIC, Inc.
Physical Location:	2206 Ringwood Avenue, San Jose, CA 95131 USA
Identification No .:	US0160
Recognized Scope:	CS-03 Part I, II, V, VI, VII and VIII

You may submit test data to IC to verify that the equipment to be imported into Canada satisfies the applicable requirements. The designation of your organization will remain in force as long as its accreditation for the designated scope remains valid and comply with the designation requirements.

Recognized CABs are listed on the NIST website at http://ts.nist.gov/mra. Please contact Ms. Ramona Saar at (301) 975-5521 or <u>ramona.saar@nist.gov</u> if you have any questions.

Sincerely,

Parial In Alda

David F. Alderman Group Leader, Standards Coordination and Conformity Group Standards Services Division

Enclosure

cc: CAB Program Manager

 Serial#
 SL08012102-ZBR-007 (15.247) (M5e)

 Issue Date
 15 December 2009

 Page
 53 of 65 www.siemic.com

OUR FILE: 46405-4842

Submission No: 126429

SIEMIC ACREDITATION DETAILS: Industry of Canada Test Site Registration No. 4842-1

Andustry Industrie Canada Canada

May 23rd, 2008

Siemie Inc. 2206 Ringwood Ave. San Jose CA 95131 USA

Attention: Leslie Bai

Dear Sir/Madame:

The Bureau has received your application for the registration / renewal of a 3/10m OATS. Be advised that the information received was satisfactory to Industry Canada. The following number(s) is now associated to the site(s) for which registration / renewal was sought (4842A-1). Please reference the appropriate site number in the body of test reports containing measurements performed on the site. In addition, please be informed that the Bureau is now utilizing a **new site numbering scheme** in order to simplify the electronic filing process. Our goal is to reduce the number of secondary codes associated to one particular company. The following changes have been made to your record.

- Your primary code is: 4842

- The company number associated to the site(s) located at the above address is: 4842A

- The table below is a summary of the changes made to the unique site registration number(s):

New Site	Obsolete Site	Description of Site	Expiry Date
Number	Number		(YYYY-MM-DD)
4842A-1	4842-1	3m Chamber	2010-05-23

Furthermore, to obtain or renew a unique site number, the applicant shall demonstrate that the site has been accredited to ANSI C63.4-2003 or later. A scope of accreditation indicating the accreditation by a recognized accreditation body to ANSI C63.4-2003 shall be accepted. Please indicate in a letter the previous assigned site number if applicable and the type of site (example: 3 meter OATS or 3 meter chamber). If the test facility is not accredited to ANSI C63.4-2003 or later, the test facility shall submit test data demonstrating full compliance with the ANSI standard. The Bureau will evaluate the filing to determine if recognition shall be granted.

The frequency for re-validation of the test site and the information that is required to be filed or retained by the testing party shall comply with the requirements established by the accrediting organization. However, in all cases, test site re-validation shall occur on an interval not to exceed two years. There is no fee or form associated with an OATS filing. OATS submissions are encouraged to be submitted electronically to the Bureau using the following URL; http://strategis.ic.ge.ea/epic/internet/inceb-blist.nst/en/h_t00052e.html.

If you have any questions, you may contact the Bureau by e-mail at <u>certification.bureau@ic.gc.c</u> Please reference our file and submission number above for all correspondence.

Yours sincerely,

Shi.

5. Proulx Test & Measurement Specialist Certification and Engineering Bureau 3701 Carling Ave., Building 94 Ontuwa, Ontario K2H 852

 Serial#
 SL08012102-ZBR-007 (15.247) (M5e)

 Issue Date
 15 December 2009

 Page
 54 of 65

 Water series comp

SIEMIC ACREDITATION DETAILS: FCC DOC CAB Recognition : US1109

	FEDERAL COMMUNICATIONS COMMISSION						
	7435 Oakland Mills Road						
	Columbia, MD 21046						
	Columbia, http://www.						
	August 28, 2008						
Siemic Labor	atories						
2206 Ringwo	od Ave.,						
San Jose, CA	San Jose, CA 95131						
Attention:	Leslie Bai						
Re:	Accreditation of Siemic Laboratories						
	Designation Number: US1109						
	Test Firm Registration #: 540430						
Dear Sir or M	ladam:						
We have been accredited as	a notified by American Association for Laboratory Accreditation that Siemic Laboratories has been a Conformity Assessment Body (CAB).						
At this time S	iemic I aboratories is hereby designated to perform compliance testing on equipment subject to						
Declaration C	of Conformity (DOC) and Certification under Parts 15 and 18 of the Commission's Rules.						
	· · · · · · · · · · · · · · · · · · ·						
This designat	ion will expire upon expiration of the accreditation or notification of withdrawal of designation.						
	Sincerely,						
	11						
	George Tennahul						
	Gaorge Tannshill						
	George Tanhann						

Electronics Engineer

Accessing global markets RF Test Report of Zebra Technologies Corp. Model P6401 & P6301 FCC 15.247 2007, IC RSS210 Issue 7: 2007

 Serial#
 SL08012102-ZBR-007 (15.247) (M5e)

 Issue Date
 15 December 2009

 Page
 55 of 65 www.siemic.com

SIEMIC ACREDITATION DETAILS: Australia CAB ID : US0160

UNITED STATES DEPARTMENT OF COMMERCE National Institute of Standards and Technology Gaithersburg, Maryland 20899-

November 20, 2008

Mr. Leslie Bai SIEMIC, Inc. 2206 Ringwood Avenue San Jose, CA 95131

Dear Mr. Bai:

NIST is pleased to inform you that your laboratory has been recognized by the Australian Communications and Media Authority (ACMA) under the Asia Pacific Economic Cooperation for Telecommunications Equipment Mutual Recognition Arrangement (APEC Tel MRA). Your laboratory is now designated to act as a Conformity Assessment Body (CAB) under Appendix B, **Phase I** Procedures, of the APEC Tel MRA. The pertinent information about your laboratory's designation is as follows:

CAB Name: Siemic, Inc. Physical Location: 2206 Ringwood Avenue, San Jose, CA 95131 Identification No.: US0160 Recognized Scope: EMC: AS/NZS 4251.1 (until 5/31/2009), AS/NZS 4251.2 (until 5/31/2009), AS/NZS CISPR 11, AS/NZS CISPR 14.1, AS/NZS CISPR 22, AS/NZS 61000.6.3, AS/NZS 61000.6.4 Radiocommunications: AS/NZS 4281, AS/NZS 4268, AS/NZS 4280.1, AS/NZS 4280.2, AS/NZS 4295, AS/NZS 4582, AS/NZS 4583, AS/NZS 4769.1, AS/NZS 4769.2, AS/NZS 4770, AS/NZS 4771 Telecommunications: AS/ACIF S002:05, AS/ACIF S003:06, AS/ACIF S004:06, AS/ACIF S006:01, AS/ACIF S016:01, AS/ACIF S031:01, AS/ACIF S038:01, AS/ACIF S040:01, AS/ACIF S041:05, AS/ACIF S043.2:06, AS/NZS 60950.1

You may submit test data to ACMA to verify that the equipment to be imported into Australia satisfies the applicable requirements. The designation of your organization will remain in force as long as its accreditation for the designated scope remains valid and comply with the designation requirements. Recognized CABs are listed on the NIST website at http://ts.nist.gov/mra. Please contact Ms. Ramona Saar, at (301) 975-5521 or ramona.saar@nist.gov if you have questions.

Sincerely,

Daniel I. alder

David F. Alderman Group Leader, Standards Coordination and Conformity Group Standards Services Division

Enclosure

cc: Snell Leong, Siemic, Inc.; Ramona Saar, NIST

Accessing global markets RF Test Report of Zebra Technologies Corp. Model P6401 & P6301 FCC 15.247 2007, IC RSS210 Issue 7: 2007

 Serial#
 SL08012102-ZBR-007 (15.247) (M5e)

 Issue Date
 15 December 2009

 Page
 56 of 65 www.siemic.com

SIEMIC ACREDITATION DETAILS: Korea CAB ID: US0160

UNITED STATES DEPARTMENT OF COMMERCE National Institute of Standards and Technology Gaithersburg, Maryland 20899

October 1, 2008

Mr. Leslie Bai SIEMIC, Inc. 2206 Ringwood Avenue San Jose, CA 95131

Dear Mr. Bai:

NIST is pleased to inform you that your laboratory has been recognized by the Radio Research Agency (RRA) Korea Communications Commission (KCC) under the Asia Pacific Economic Cooperation for Telecommunications Equipment Mutual Recognition Arrangement (APEC Tel MRA). Your laboratory is now designated to act as a Conformity Assessment Body (CAB) under Appendix B, **Phase I** Procedures, of the APEC Tel MRA. The pertinent information about your laboratory's designation is as follows:

CAB Name: Physical Location: Identification No.: Recognized Scope: SIEMIC, Inc.
2206 Ringwood Avenue, San Jose, CA 95131
US0160
EMI: KCC Notice 2008-39, RRL Notice 2008-3: CA Procedures for EMI KN22: Test Method for EMI
EMS: KCC Notice 2008-38, RRL Notice 2008-4: CA Procedures for EMS KN24, KN-61000-4-2, -4-3, -4-4, -4-5, -4-6, -4-8, -4-11: Test Method for EMS Wireless: RRL Notice 2008-26, RRL Notice 2008-2, RRL Notice 2008-10, RRL Notice 2007-49, RRL Notice 2007-20, RRL Notice 2007-21, RRL Notice 2007-80, RRL Notice 2004-68
Wired: President Notice 20664, RRL Notice 2007-30, RRL Notice 2008-7 with attachments 1, 3, 5, 6
President Notice 20664, RRL Notice 2008-7 with attachment 4

You may submit test data to RRA/KCC to verify that the equipment to be imported into Korea satisfies the applicable requirements. The designation of your organization will remain in force as long as its accreditation for the designated scope remains valid and comply with the designation requirements.

Recognized CABs are listed on the NIST website at http://ts.nist.gov/mra. If you have any questions please contact Ramona Saar at (301) 975-5521 or ramona.saar@nist.gov.

Sincerely,

Panil To alde

David F. Alderman Group Leader, Standards Coordination and Conformity Group Standards Services Division

Enclosure

cc: Ramona Saar

SIEMIC, INC. Accessing global markets RF Test Report of Zebra Technologies Corp. Model P6401 & P6301 FCC 15.247 2007, IC RSS210 Issue 7: 2007

 Serial#
 SL08012102-ZBR-007 (15.247) (M5e)

 Issue Date
 15 December 2009

 Page
 57 of 65

 www.wiemijc.com

SIEMIC ACREDITATION DETAILS: Taiwan BSMI Accreditation No. SL2-IN-E-1130R

		٢	UNITED STATES DEPARTMENT OF COMMERCE National Institute of Standards and Technology Gethersburg, Maryland 20899
м	lay 3, 2006		
M 51 22 8a	lr, Leslie Bai EMIC Laboratorics 206 Ringwood Avenue m Jose, CA 95131		
D	ear Mr. Bai:		a second s
1 a Ba Ca de Pr ex de de de	am pleased to inform you t ureau of Standards, Metrol ooperation (APEC) Mutual esignated to act as a Confo rocedures, of the APEC Te pulpment to be imported in esignation of your organiza esignated scope remains va- esignation information is a	hat your laboratory h logy, and Inspection (1 Recognition Arrang mity Assessment Bo 1 MRA. You may su to Chinese Taipei sat stion will remain in fe did and comply with s follows:	as been recognized by the Chinese Taipei's BSMI) under the Asia Pacific Economic ement (MRA). Your laboratory is now dy (CAB) under Appendix B, Phase I bmit test data to BSMI to verify that the isfies the applicable requirements. The ree as long as its accreditation for the the designation requirements. The pertinent
	BSMI number: U.S Identification No:	SL2-IN-E-1130R US0160	Must be applied to the test reports)
	Scope of Designation: Authorized signatory:	CNS 13438 Mr. Leslie Bai	
Th If co	he names of all recognized you have any questions, p intinued interest in our infi	CABs will be posted lease contact Mr. Dhi emational conformity	on the NIST website at http://ts.nist.gov/mra. llon at 301-975-5521. We appreciate your assessment activities.
Si	incerely,		
	Part 20	cla	- 23
D G	avid F. Alderman rosip Leader, Standards Co	sordination and Confe	emity Group
ee	n Jogindar Dhillon		
			NIST

Accessing global markets RF Test Report of Zebra Technologies Corp Model P640I & P630I FCC 15.247 2007, IC RSS210 Issue 7: 2007

 Serial#
 SL08012102-ZBR-007 (15.247) (M5e)

 Issue Date
 15 December 2009

 Page
 58 of 65 www.siemic.com

SIEMIC ACREDITATION DETAILS: Taiwan NCC CAB ID: US0160

Accessing global markets RF Test Report of Zebra Technologies Corp. Model P6401 & P6301 FCC 15.247 2007, IC RSS210 Issue 7: 2007

 Serial#
 SL08012102-ZBR-007 (15.247) (M5e)

 Issue Date
 15 December 2009

 Page
 59 of 65

 WHAN slowing com

SIEMIC ACREDITATION DETAILS: Mexico NOM Recognition

Laboratorio Valentín V. Rivero CANIETI CAMARA NACIONAL BE LATROLSTRA BLOCTHONICA, DE TELEDOMENICACIONEL E INFORMATICA Máxico D.F. a 18 de octubre de 2006. LESLIE BAI DIRECTOR OF CERTIFICATION SIEMIC LABORATORIES, INC. ACCESSING GLOBAL MARKETS PRESENTE En contestación a su escrito de fecha 5 de septiembre del año en curso, le comento que estamos muy interesados en su intención de firmar un Acuerdo de Reconocimiento Mutuo, para lo cual adjunto a este escrito encontrara el Acuando en idioma ingles y español prelienado de los cuales le pido sea revisado y en su caso corregido, para que si esta de ecuerdo poder firmarlo para mandario con las autoridades Mexicanas para su visto bueno y así podar ejercer dicho acuerdo Aprovecho este escrito para mencionarle que nuestro intermediano gestor será la empresa Isatel de México, S. A. de C. V., empresa que ha colaborado durante mucho tiempo con nosotros en lo refecionado a la evaluación de la conformidad y que cuenta con amplia experiencia en la gastoria de la cartificación de cumplimiento con Normas Oficiales Mexicanas de producto en México. Me despido de ustad enviêndole un cordial saludo y esperando sus comentanos al Acuerdo que nos ocupa Atentamente 79 Ing. Fausting Borriez Conzález Gerente Atenico del Laboratorio de CANIEN Collacate In Hashineesi Cooldata Centro Masero, C.F. Ter 12208-0000 con 12 Meeta Fas-12284-1249

Accessing global markets RF Test Report of Zebra Technologies Corp. Model PA401 & PA301

Model P640I & P630I FCC 15.247 2007, IC RSS210 Issue 7: 2007
 Serial#
 SL08012102-ZBR-007 (15.247) (M5e)

 Issue Date
 15 December 2009

 Page
 60 of 65 www.siemic.com

SIEMIC ACREDITATION DETAILS: Hong Kong OFTA CAB ID : US0160

UNITED STATES DEPARTMENT OF COMMERCE National Institute of Standards and Technology Gaithersburg, Maryland 20899-

December 8, 2008

Mr. Leslie Bai SIEMIC, Inc. 2206 Ringwood Avenue San Jose, CA 95131

Dear Mr. Bai:

NIST is pleased to inform you that your laboratory has been recognized by the Office of the Telecommunications Authority (OFTA) under the Asia Pacific Economic Cooperation for Telecommunications Equipment Mutual Recognition Arrangement (APEC Tel MRA). Your laboratory is now designated to act as a Conformity Assessment Body (CAB) under Appendix B, **Phase I** Procedures, of the APEC Tel MRA. The pertinent information about your laboratory's designation is as follows:

CAB Name:	SIEMIC, Inc.
Physical Location:	2206 Ringwood Avenue, San Jose, California 95131 USA
Identification No .:	US0160
Recognized Scope:	Radio: HKTA 1002, 1007, 1008, 1010, 1015, 1016, 1020, 1022, 1026,
	1027, 1029, 1030, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1039, 1041,
	1042, 1043, 1044, 1046, 1047, 1048, 1049, 1051
	Telecom: HKTA 2011, 2012, 2013, 2014, 2017, 2018, 2022, 2024, 2026.
	2027, 2028, 2029, 2030, 2031, 2032, 2033

You may submit test data to OFTA to verify that the equipment to be imported into Hong Kong satisfies the applicable requirements. The designation of your organization will remain in force as long as its accreditation for the designated scope remains valid and comply with the designation requirements.

Recognized CABs are listed on the NIST website at http://ts.nist.gov/mra. If you have any questions please contact Ramona Saar at (301) 975-5521 or ramona.saar@nist.gov.

Sincerely,

David I alden

David F. Alderman Group Leader, Standards Coordination and Conformity Group Standards Services Division

Enclosure

cc: Ramona Saar

 Serial#
 SL08012102-ZBR-007 (15.247) (M5e)

 Issue Date
 15 December 2009

 Page
 61 of 65 www.siemic.com

SIEMIC ACREDITATION DETAILS: Australia ACMA CAB ID: US0160

UNITED STATES DEPARTMENT OF COMMERCE National Institute of Standards and Technology Gaithersburg, Maryland 20899-

November 20, 2008

Mr. Leslie Bai SIEMIC, Inc. 2206 Ringwood Avenue San Jose, CA 95131

Dear Mr. Bai:

NIST is pleased to inform you that your laboratory has been recognized by the Australian Communications and Media Authority (ACMA) under the Asia Pacific Economic Cooperation for Telecommunications Equipment Mutual Recognition Arrangement (APEC Tel MRA). Your laboratory is now designated to act as a Conformity Assessment Body (CAB) under Appendix B, **Phase I** Procedures, of the APEC Tel MRA. The pertinent information about your laboratory's designation is as follows:

CAB Name: Siemic, Inc. Physical Location: 2206 Ringwood Avenue, San Jose, CA 95131 Identification No.: US0160 Recognized Scope: EMC: AS/NZS 4251.1 (until 5/31/2009), AS/NZS 4251.2 (until 5/31/2009), AS/NZS CISPR 11, AS/NZS CISPR 14.1, AS/NZS CISPR 22, AS/NZS 61000.6.3, AS/NZS 61000.6.4 Radiocommunications: AS/NZS 4281, AS/NZS 4268, AS/NZS 4280.1, AS/NZS 4280.2, AS/NZS 4295, AS/NZS 4582, AS/NZS 4583, AS/NZS 4769.1, AS/NZS 4769.2, AS/NZS 4770, AS/NZS 4771 Telecommunications: AS/ACIF S002:05, AS/ACIF S003:06, AS/ACIF S004:06, AS/ACIF S006:01, AS/ACIF S016:01, AS/ACIF S031:01, AS/ACIF S038:01, AS/ACIF S040:01, AS/ACIF S041:05, AS/ACIF S043.2:06, AS/NZS 60950.1

You may submit test data to ACMA to verify that the equipment to be imported into Australia satisfies the applicable requirements. The designation of your organization will remain in force as long as its accreditation for the designated scope remains valid and comply with the designation requirements. Recognized CABs are listed on the NIST website at http://ts.nist.gov/mra. Please contact Ms. Ramona Saar, at (301) 975-5521 or ramona.saar@nist.gov if you have questions.

Sincerely,

Daniel I. alder

David F. Alderman Group Leader, Standards Coordination and Conformity Group Standards Services Division

Enclosure

cc: Snell Leong, Siemic, Inc.; Ramona Saar, NIST

 Serial#
 SL08012102-ZBR-007 (15.247) (M5e)

 Issue Date
 15 December 2009

 Page
 62 of 65 www.siemic.com

SIEMIC ACREDITATION DETAILS: Australia NATA Recognition

coessing global markets Model P640I & P630I FCC 15.247 2007, IC RSS210 Issue 7: 2007

Issue Date 15 December 2009 Page

Accessing global markets Model P640I & P630I FCC 15.247 2007, IC RSS210 Issue 7: 2007

Issue Date 15 December 2009 Page

SIEMIC ACREDITATION DETAILS: VCCI Conducted (Main Port) Test Site Registration No. C-3421

coessing global markets Model P640I & P630I FCC 15.247 2007, IC RSS210 Issue 7: 2007

Issue Date 15 December 2009 Page

SIEMIC ACREDITATION DETAILS: VCCI Conducted (Telecom Port) Test Site Registration No. T-1597

