

FCC ID: HZB-U58-100

4.6 Transmitter Radiated Emissions FCC Rule 15.407(b), 15.209, 15.205

Radiated emission measurements were performed from 30 MHz to 40,000 MHz. Spectrum Analyzer Resolution Bandwidth is 100 kHz or greater for frequencies 30 MHz to 1000 MHz, 1 MHz - for frequencies above 1000 MHz.

The EUT is placed on the wooden turntable. If the EUT attaches to peripherals, they are connected and operational (as typical as possible). During testing, all cables were manipulated to produce worst case emissions. The signal is maximized through rotation. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters.

Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance. All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance.

Data is included of the worst case configuration (the configuration which resulted in the highest emission levels). A sample calculation, configuration photographs and data tables of the emissions are included. All measurements were performed with peak detection unless otherwise specified.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG

Where $FS = Field Strength in dB\mu V/m$

RA = Receiver Amplitude (including preamplifier) in dBµV

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows:

FS = RR + LF

Where $FS = Field Strength in dB\mu V/m$

 $RR = RA - AG \text{ in } dB\mu V$ LF = CF + AF in dB

Assume a receiver reading of 52.0 dB μ V is obtained. The antennas factor of 7.4-dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

 $RA = 52.0 \text{ dB}\mu\text{V}$

 $AF = 7.4 \text{ dB} \qquad \qquad RR = 23.0 \text{ dB}\mu\text{V}$ $CF = 1.6 \text{ dB} \qquad \qquad LF = 9.0 \text{ dB}$

AG = 29.0 dB

FS = RR + LF

 $FS = 23 + 9 = 32 \ dB\mu V/m$

Level in $\mu V/m = Common Antilogarithm [(32 dB<math>\mu V/m)/20] = 39.8 \mu V/m$

FCC ID: HZB-U58-100

Date of Test: Nov. 28-30, Dec. 7, 2001

Test Result

The data on the following pages list the significant emission frequencies, the limit and the margin of compliance:

Data sheets #1 and #2 - with antenna DFPD1-52 Data sheets #3 and #4 - with antenna DFPD2-52 Data sheets #5 and #6 - with antenna SSP2-52B Data sheets #7 and #8 - with antenna SSD8-52

FCC ID: HZB-U58-100

Date of Test: Nov. 28-30, Dec. 7, 2001

Radiated Emissions Test Data

Company:	Western Multiplex Corporation	Model #:	28010-XXXX	Standard	FCC § 15.	407
EUT:	U-NII radio w/DFPD1-52 antenna	FCC ID:	HZB-U58-100	Limits	11	
Project #:	3013884	Test Date:	Novemb. 30, 2001	Test Distance	3	meters
Test Mode:	transmitting @ 5.747 GHz	Engineer:	Xi-Ming Y.	Duty Relaxation	0	dB

	Antenna Used			Pre-Amp Used			(Cable Us	Transducer Used	
Number:	21	8	22	10	13	12	10	0	0	0
Model:	EMCO	EMCO	EMCO	AFT	ACO/400	ACO/180	NPS72-1	None	None	None
	3160-9	3115	3160-10	18855						

Frequency	Reading	Detector	Ant	Amp.	Ant.	Ant. Factor	Pre-Amp	Insert.	D. C.	Net	Limit @3m	Margin
					Pol.			Loss	F.			
MHz	dB(μV)	P/A/Q	#	#	H/V	dB(1/m)	dB	dB	dB	$dB(\muV/m)$	$dB(\mu V/m) \\$	dB
11494	38.5	Peak	8	10	Ι	39.3	39.5	7.0	0.0	46.3	74.0	-27.7
11494	31.0	Ave.	8	10	Ι	39.3	39.5	7.0	0.0	37.8	54.0	-16.2
17241	38.8	Peak	8	10	Ι	41.2	38.4	8.7	0.0	50.3	74.0	-23.7
17241	28.9	Ave.	8	10	Ι	41.2	38.4	8.7	0.0	40.4	54.0	-13.6
22988	39.0	Peak	21	12	Ι	40.3	32.2	2.0	-9.5	39.6	74.0	-34.4
22988	28.4	Ave.	21	12	Ι	40.3	32.2	2.0	-9.5	29.0	54.0	-25.0
28735	40.1	Peak	22	13	>	43.4	24.2	2.4	-9.5	52.1	74.0	-21.9
28735	30.1	Ave.	22	13	>	43.4	24.2	2.4	-9.5	42.1	54.0	-11.9
34482	45.3	Peak	22	13	V	43.5	25.9	2.8	-9.5	56.2	74.0	-17.8
34482	35.1	Ave.	22	13	V	43.5	25.9	2.8	-9.5	46.0	54.0	-8.0

Notes:

- a) D.C.F.:Distance Correction Factor
- b) Insert. Loss (dB) = Cable A + Cable B + Cable C .
- c) Net (dB) = Reading + Antenna Factor Pre-amp + Insert. Loss Duty Relaxation (transmitter only).
- d) Negative signs (-) in Margin column signify levels below the limits.
- e) All other emissions not reported are below the equipment noise floor which is at least 3 dB below the limits.
- f) Test at frequencies above 19 GHz was made at 1m distance. Readings are noise floor.

FCC ID: HZB-U58-100

Date of Test: Nov. 28-30, Dec. 7, 2001

Radiated Emissions Test Data

#2

Company:	Western Multiplex Corporation	Model #:	28010-XXXX	Standard	FCC § 15.	407
EUT:	U-NII radio w/ DFPD1-52 antenna	FCC ID:	HZB-U58-100	Limits	11	
Project #:	3013884	Test Date:	Novemb. 30, 2001	Test Distance	3	meters
Test Mode:	transmitting @ 5.803 GHz	Engineer:	Xi-Ming Y.	Duty	0	dB
				Relaxation		

	Antenna Used			Pre-Amp Used			Cable Used		Transducer Used		
Number:	21	8	22	10	13	12	12	0	0	0	
Model:	EMCO	EMCO	EMCO	AFT	ACO/400	ACO/180	NPS366	None	None	None	
	3160-9	3115	3160-10	18855							

Frequency	Reading	Detector	Ant	Amp.	Ant.	Ant. Factor	Pre-Amp	Insert.	D. C.	Net	Limit @3m	Margin
					Pol.			Loss	F.			
MHz	dB(µV)	P/A/Q	#	#	H/V	dB(1/m)	dB	dB	dB	$dB(\muV/m)$	$dB(\mu V/m) \\$	dB
11606	39.8	Peak	8	10	Ι	40.4	39.7	7.3	0.0	47.8	74.0	-26.2
11606	30.6	Ave.	8	10	Ι	40.4	39.7	7.3	0.0	38.6	54.0	-15.4
17409	38.8	Peak	8	10	Ι	42.2	38.8	9.2	0.0	51.4	74.0	-22.6
17409	28.7	Ave.	8	10	Ι	42.2	38.8	9.2	0.0	41.3	54.0	-12.7
23212	39.0	Peak	21	12	Ι	40.4	32.2	2.2	-9.5	39.9	74.0	-34.1
23212	28.4	Ave.	21	12	Ι	40.4	32.2	2.2	-9.5	29.3	54.0	-24.7
29015	39.8	Peak	22	13	>	43.4	24.2	2.6	-9.5	52.1	74.0	-21.9
29015	29.5	Ave.	22	13	>	43.4	24.2	2.6	-9.5	41.8	54.0	-12.2
34818	45.0	Peak	22	13	>	43.6	23.8	3.0	-9.5	58.2	74.0	-15.8
34818	35.0	Ave.	22	13	>	43.6	23.8	3.0	-9.5	48.2	54.0	-5.8

Notes:	a) D.C.F.:DIS

- a) D.C.F.:Distance Correction Factor
- b) Insert. Loss (dB) = Cable A + Cable B + Cable C .
- c) Net (dB) = Reading + Antenna Factor Pre-amp + Insert. Loss Duty Relaxation (transmitter only).
- d) Negative signs (-) in Margin column signify levels below the limits.
- e) All other emissions not reported are below the equipment noise floor which is at least 3 dB below the limits.
- f) Test at frequencies above 19 GHz was made at 1m distance. Readings are noise floor.

FCC ID: HZB-U58-100

Radiated Emissions #3 Test Data

Company:	Western Multiplex Corporation	Model #:	28010-XXXX	Standard	FCC § 15.	407
EUT:	U-NII radio w/ DFPD2-52 antenna	FCC ID:	HZB-U58-100	Limits	11	
Project #:	3013884	Test Date:	Novemb. 30, 2001	Test Distance	3	meters
Test Mode:	transmitting @ 5.747GHz	Engineer:	Xi-Ming Y.	Duty Relaxation	0	dB

	Antenna Used			Pre-Amp Used				Cable Us	Transducer Used		
Number:	21	8	22	10	13	12	10	0	0	0	
Model:	EMCO	EMCO	EMCO	AFT	ACO/400	ACO/180	NPS72-1	None	None	None	
	3160-9	3115	3160-10	18855							

Frequency	Reading	Detector	Ant	Amp.	Ant.	Ant. Factor	Pre-Amp	Insert.	D. C.	Net	Limit @3m	Margin
					Pol.			Loss	F.			
MHz	$dB(\mu V)$	P/A/Q	#	#	H/V	dB(1/m)	dB	dB	dB	$dB(\muV/m)$	$dB(\mu V/m) \\$	dB
11494	40.6	Peak	8	10	Ι	39.3	39.5	7.0	0.0	47.4	74.0	-26.6
11494	31.0	Ave.	8	10	Ι	39.3	39.5	7.0	0.0	37.8	54.0	-16.2
17241	38.8	Peak	8	10	Ι	41.2	38.4	8.7	0.0	50.3	74.0	-23.7
17241	29.0	Ave.	8	10	Ι	41.2	38.4	8.7	0.0	40.5	54.0	-13.5
22988	38.0	Peak	21	12	Н	40.3	32.2	2.0	-9.5	38.6	74.0	-35.4
22988	28.0	Ave.	21	12	Н	40.3	32.2	2.0	-9.5	28.6	54.0	-25.4
28735	40.5	Peak	22	13	>	43.4	24.2	2.4	-9.5	52.5	74.0	-21.5
28735	30.1	Ave.	22	13	V	43.4	24.2	2.4	-9.5	42.1	54.0	-11.9
34482	45.0	Peak	22	13	>	43.5	25.9	2.8	-9.5	55.9	74.0	-18.1
34482	35.0	Ave.	22	13	>	43.5	25.9	2.8	-9.5	45.9	54.0	-8.1

Notes:	a) D.C.F.:Distance Correction Factor
	b) Insert. Loss (dB) = Cable A + Cable B + Cable C.
	c) Net (dB) = Reading + Antenna Factor - Pre-amp + Insert. Loss - Duty Relaxation
	(transmitter only).
	d) Negative signs (-) in Margin column signify levels below the limits.
	e) All other emissions not reported are below the equipment noise floor which is at least 3 dB below the limits.
	f) Test at frequencies above 19 GHz was made at 1m distance. Readings are noise floor.

FCC ID: HZB-U58-100

Radiated Emissions #4 Test Data

Company:	Western Multiplex Corporation	Model #:	28010-XXXX	Standard	FCC § 15.	407
EUT:	U-NII radio w/ DFPD2-52 antenna	FCC ID:	HZB-U58-100	Limits	11	
Project #:	3013884	Test Date:	Novemb. 30, 2001	Test Distance	3	meters
Test Mode:	transmitting @ 5.803 GHz	Engineer:	Xi-Ming Y.	Duty Relaxation	0	dB

	Antenr	na Used		Pre-A	Amp Used		(Cable Us	Transducer Used		
Number:	21	8	22	10	13	12	12	0	0	0	
Model:	EMCO	EMCO	EMCO	AFT	ACO/400	ACO/180	NPS366	None	None	None	
	3160-9	3115	3160-10	18855							

Frequency	Reading	Detector	Ant	Amp.	Ant.	Ant. Factor	Pre-Amp	Insert.	D. C.	Net	Limit @3m	Margin
					Pol.			Loss	F.			
MHz	$dB(\mu V)$	P/A/Q	#	#	H/V	dB(1/m)	dB	dB	dB	$dB(\muV/m)$	$dB(\mu V/m) \\$	dB
11606	40.2	Peak	8	10	Ι	40.4	39.7	7.3	0.0	48.2	74.0	-25.7
11606	30.1	Ave.	8	10	Ι	40.4	39.7	7.3	0.0	38.1	54.0	-15.9
17409	39.0	Peak	8	10	Ι	42.2	38.8	9.2	0.0	51.6	74.0	-22.4
17409	28.8	Ave.	8	10	Ι	42.2	38.8	9.2	0.0	41.4	54.0	-12.6
23212	40.0	Peak	21	12	Ι	40.4	32.2	2.2	-9.5	40.9	74.0	-33.1
23212	29.0	Ave.	21	12	Ι	40.4	32.2	2.2	-9.5	29.9	54.0	-24.1
29015	39.8	Peak	22	13	>	43.4	24.2	2.6	-9.5	52.1	74.0	-21.9
29015	30.0	Ave.	22	13	V	43.4	24.2	2.6	-9.5	42.3	54.0	-11.7
34818	45.0	Peak	22	13	>	43.6	23.8	3.0	-9.5	58.2	74.0	-15.8
34818	35.0	Ave.	22	13	>	43.6	23.8	3.0	-9.5	48.2	54.0	-5.8

Notes:	a) D.C.F.:Distance Correction Factor
	b) Insert. Loss (dB) = Cable A + Cable B + Cable C.
	c) Net (dB) = Reading + Antenna Factor - Pre-amp + Insert. Loss - Duty Relaxation
	(transmitter only).
	d) Negative signs (-) in Margin column signify levels below the limits.
	e) All other emissions not reported are below the equipment noise floor which is at least 3 dB below the limits.
	f) Test at frequencies above 19 GHz was made at 1m distance. Readings are noise floor.

FCC ID: HZB-U58-100

Radiated Emissions #5 Test Data

Company:	Western Multiplex Corporation	Model #:	28010-XXXX	Standard	FCC § 15.	407
EUT:	U-NII radio w/ SSP2-52B antenna	FCC ID:	HZB-U58-100	Limits	11	
Project #:	3013884	Test Date:	Novemb. 30, 2001	Test Distance	3	meters
Test Mode:	transmitting @ 5.747 GHz	Engineer:	Xi-Ming Y.	Duty Relaxation	0	dB

	Anteni	na Used		Pre-A	mp Used		C	Cable Us	Transducer Used		
Number:	21	8	22	10	13	12	12	0	0	0	
Model:	EMCO	EMCO	EMCO	AFT	ACO/400	ACO/180	NPS366	None	None	None	
	3160-9	3115	3160-10	18855							

Frequency	Reading	Detector	Ant	Amp	Ant. Pol.	Ant. Factor	Pre-Amp	Insert.	D. C.	Net	Limit @3m	Margin
MII-	JD(V)	D/A/O	ш	ш	11/37	JD (1 /)	ID.	Loss	F.	1D(X/)	1D(V/)	ID.
MHz	dB(μV)	P/A/Q	#	#	H/V	dB(1/m)	dB	dB	dB	$dB(\mu V/m)$	$dB(\mu V/m)$	dB
11494	40.3	Peak	8	10	Н	39.3	39.5	7.0	0.0	47.2	74.0	-26.8
11494	31.0	Ave.	8	10	Н	39.3	39.5	7.0	0.0	37.8	54.0	-16.2
17241	39.1	Peak	8	10	Н	41.2	38.4	8.7	0.0	50.6	74.0	-23.4
17241	29.2	Ave.	8	10	Н	41.2	38.4	8.7	0.0	40.7	54.0	-13.3
22988	38.0	Peak	21	12	Н	40.3	32.2	2.0	-9.5	38.6	74.0	-35.4
22988	28.0	Ave.	21	12	Н	40.3	32.2	2.0	-9.5	28.6	54.0	-25.4
28735	40.0	Peak	22	13	V	43.4	24.2	2.4	-9.5	52.0	74.0	-22.0
28735	30.1	Ave.	22	13	V	43.4	24.2	2.4	-9.5	42.1	54.0	-11.9
34482	45.0	Peak	22	13	V	43.5	25.9	2.8	-9.5	55.9	74.0	-18.1
34482	35.0	Ave.	22	13	V	43.5	25.9	2.8	-9.5	45.9	54.0	-8.1
												•

Notes:	a) D.C.F.:Distance Correction Factor
	b) Insert. Loss (dB) = Cable A + Cable B + Cable C.
	c) Net (dB) = Reading + Antenna Factor - Pre-amp + Insert. Loss - Duty Relaxation
	(transmitter only).
	d) Negative signs (-) in Margin column signify levels below the limits.
	e) All other emissions not reported are below the equipment noise floor which is at least 3 dB below the
	limits.
	f) Test at frequencies above 19 GHz was made at 1m distance. Readings are noise floor.

FCC ID: HZB-U58-100

Date of Test: Nov. 28-30, Dec. 7, 2001

Radiated Emissions Test Data

#6

Company:	Western Multiplex Corporation	Model #:	28010-XXXX	Standard	FCC § 15.	407
EUT:	U-NII radio w/ SSP2-52B antenna	FCC ID:	HZB-U58-100	Limits	11	
Project #:	3013884	Test Date:	Novemb. 30, 2001	Test Distance	3	meters
Test Mode:	transmitting @ 5.803 GHz	Engineer:	Xi-Ming Y.	Duty	0	dB
				Relaxation		

	Anteni	na Used		Pre-Amp Used				Cable U	Transducer Used		
Number:	21	8	22	10	13	12	12	0	0	0	
Model:	EMCO	EMCO	ЕМСО	AFT	ACO/400	ACO/180	NPS366	None	None	None	
	3160-9	3115	3160-10	18855							

Frequency	Reading	Detector	Ant	Amp.	Ant.	Ant. Factor	Pre-Amp	Insert.	D. C.	Net	Limit @3m	Margin
					Pol.			Loss	F.			
MHz	dB(µV)	P/A/Q	#	#	H/V	dB(1/m)	dB	dB	dB	$dB(\muV/m)$	$dB(\mu V/m) \\$	dB
11606	39.8	Peak	8	10	Η	40.4	39.7	7.3	0.0	47.8	74.0	-26.2
11606	30.8	Ave.	8	10	Ι	40.4	39.7	7.3	0.0	38.8	54.0	-15.2
17409	39.5	Peak	8	10	Ι	42.2	38.8	9.2	0.0	52.1	74.0	-21.9
17409	28.5	Ave.	8	10	Ι	42.2	38.8	9.2	0.0	41.1	54.0	-12.9
23212	40.5	Peak	21	12	Ι	40.4	32.2	2.2	-9.5	41.4	74.0	-32.6
23212	29.0	Ave.	21	12	Ι	40.4	32.2	2.2	-9.5	29.9	54.0	-24.1
29015	39.8	Peak	22	13	>	43.4	24.2	2.6	-9.5	52.1	74.0	-21.9
29015	30.1	Ave.	22	13	>	43.4	24.2	2.6	-9.5	42.4	54.0	-11.6
34818	45.0	Peak	22	13	>	43.6	23.8	3.0	-9.5	58.2	74.0	-15.8
34818	35.2	Ave.	22	13	V	43.6	23.8	3.0	-9.5	48.4	54.0	-5.6

١	Notes:	a) D.C.F.:Distance Correction Factor
		b) Insert. Loss (dB) = Cable A + Cable B + Cable C.
Ì		c) Net (dB) = Reading + Antenna Factor - Pre-amp + Insert. Loss - Duty Relaxation
Į		(transmitter only).
		d) Negative signs (-) in Margin column signify levels below the limits.
		e) All other emissions not reported are below the equipment noise floor which is at least 3 dB below the
		limits.
		f) Test at frequencies above 19 GHz was made at 1m distance. Readings are noise floor.

FCC ID: HZB-U58-100

Radiated Emissions #7 Test Data

Company:	Western Multiplex Corporation	Model #:	28010-XXXX	Standard	FCC § 15.40	07
EUT:	U-NII radio w/SSD8-52 antenna	FCC ID:	HZB-U58-100	Limits	11	
Project #:	3013884	Test Date:	Novemb 29, 2001	Test Distance	3	meters
Test Mode:	transmitting at 5.747GHz	Engineer:	Barry Smith	Duty Relaxation	0	dB

	Antenr	na Used		Pre-Ai	mp Used			Cable Use	ed	Transduc	er Used
Number:	21	8	22	10	12	13	12	0	0	0	
Model:	EMCO 3160-9	EMCO 3115	EMCO 3160-10	AFT 18855	ACO/180	ACO/400	NPS366	None	None	None	

Frequency	Reading	Detector	Ant	Amp	Ant. Pol.	Ant. Factor	Pre-Amp	Insert.	D. C. F.	Net	Limit @3m	Margin
								Loss				
MHz	dB(µV)	P/A/Q	#	#	H/V	dB(1/m)	dB	dB	dB	$dB(\muV/m)$	$dB(\mu V/m)$	dB
11494	41.0	Peak	8	10	V	40.6	39.7	7.3	0.0	49.2	74.0	-24.8
11494	31.9	Ave.	8	10	V	40.6	39.7	7.3	0.0	40.1	54.0	-13.9
17241	39.0	Peak	8	10	V	42.0	38.8	9.2	0.0	51.4	74.0	-22.6
17241	32.1	Ave.	8	10	V	42.0	38.8	9.2	0.0	44.5	54.0	-9.5
22988	38.0	Peak	21	12	V	40.4	32.2	2.2	-9.5	36.7	74.0	-35.1
22988	29.2	Ave.	21	12	Ι	40.4	32.2	2.2	-9.5	27.9	54.0	-23.9
28735	41.3	Peak	22	13	Ι	43.4	24.2	2.6	-9.5	51.0	74.0	-20.4
28735	29.9	Ave.	22	13	Ι	43.4	24.2	2.6	-9.5	39.6	54.0	-11.8
34482	41.5	Peak	22	13	Ι	43.6	23.8	3.0	-9.5	51.7	74.0	-19.3
34482	32.4	Ave.	22	13	Ι	43.6	23.8	3.0	-9.5	42.6	54.0	-8.4

Notes:	a) D.C.F.:Distance Correction Factor
	b) Insert. Loss (dB) = Cable A + Cable B + Cable C.
	c) Net (dB) = Reading + Antenna Factor - Pre-amp + Insert. Loss - Duty Relaxation
	(transmitter only).
	d) Negative signs (-) in Margin column signify levels below the limits.
	e) All other emissions not reported are below the equipment noise floor which is at least 3 dB below the limits.
	f) Test at frequencies above 19 GHz was made at 1m distance. Readings are noise floor.

FCC ID: HZB-U58-100

Date of Test: Nov. 28-30, Dec. 7, 2001

Radiated Emissions Test Data

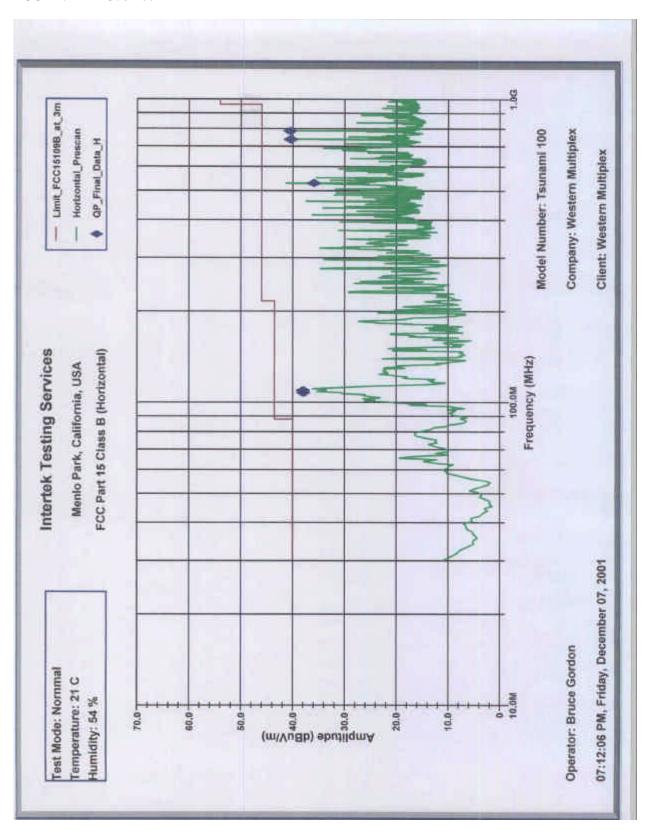
#8

Company:	Western Multiplex Corporation	Model #:	28010-XXXX	Standard	FCC § 15.4	07
EUT:	U-NII radio w/SSD8-52 antenna	FCC ID	HZB-U58-100	Limits	11	
Project #:	3013884	Test Date:	Novemb. 29, 2001	Test Distance	3	meters
Test Mode:	transmitting at 5.803 GHz	Engineer:	Barry Smith	Duty Relaxation	0	dB

	Antenn	a Used			Pre-A	mp Used		C	Cable Use	ed	Transducer Used
Number:	21	8	22	10	12	13	12	0	0	0	·
Model:	EMCO	EMCO		1CO	AFT	ACO/180	ACO/400	NPS366	None	None	None
	3160-9	3115	316	0 - 10	18855						

Frequency	Reading	Detector	Ant	Amp	Ant. Pol.	Ant. Factor	Pre-Amp	Insert.	D. C.	Net	Limit @3m	Margin
								Loss	F.			
MHz	$dB(\mu V)$	P/A/Q	#	#	H/V	dB(1/m)	dB	dB	dB	$dB(\muV/m)$	$dB(\mu V/m)$	dB
11606	41.2	Peak	8	10	V	40.6	39.7	7.3	0.0	49.4	74.0	-24.6
11606	32.3	Ave.	8	10	V	40.6	39.7	7.3	0.0	40.5	54.0	-13.5
17409	39.5	Peak	8	10	V	42.0	38.8	9.2	0.0	51.9	74.0	-22.1
17409	32.3	Ave.	8	10	V	42.0	38.8	9.2	0.0	44.7	54.0	-9.3
23212	38.0	Peak	21	12	V	40.4	32.2	2.2	-9.5	36.7	74.0	-35.1
23212	29.2	Ave.	21	12	Ι	40.4	32.2	2.2	-9.5	27.9	54.0	-23.9
29015	41.3	Peak	22	13	Ι	43.4	24.2	2.6	-9.5	51.0	74.0	-20.4
29015	29.9	Ave.	22	13	Ι	43.4	24.2	2.6	-9.5	39.6	54.0	-11.8
34818	41.5	Peak	22	13	Ι	43.6	23.8	3.0	-9.5	51.7	74.0	-19.3
34818	32.4	Ave.	22	13	Н	43.6	23.8	3.0	-9.5	42.6	54.0	-8.4

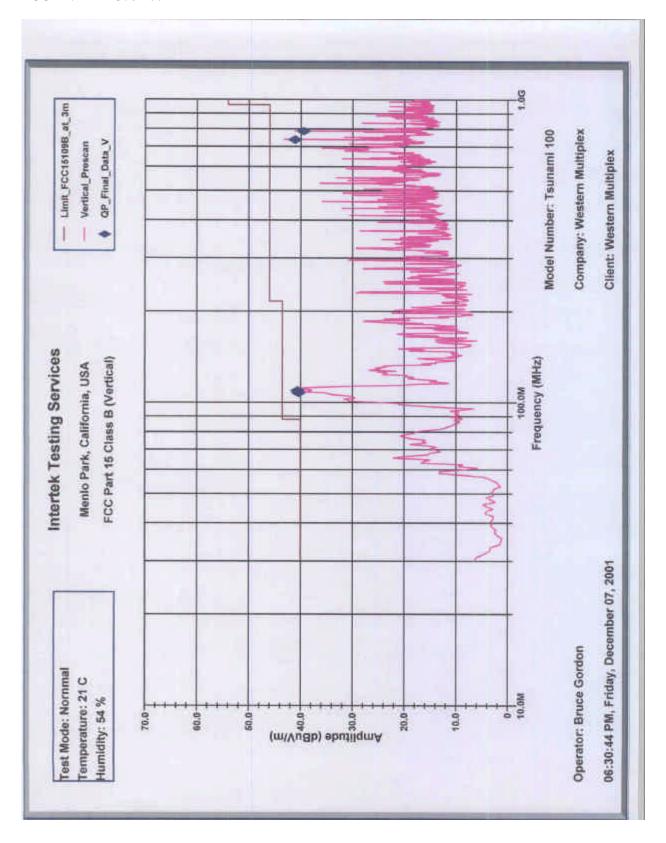
Notes:	a) D.C.F.:Distance Correction Factor
	b) Insert. Loss (dB) = Cable A + Cable B + Cable C.
	c) Net (dB) = Reading + Antenna Factor - Pre-amp + Insert. Loss - Duty Relaxation
	(transmitter only).
	d) Negative signs (-) in Margin column signify levels below the limits.
	e) All other emissions not reported are below the equipment noise floor which is at least 3 dB below the
	limits.
	f) Test at frequencies above 19 GHz was made at 1m distance. Readings are noise floor.


FCC ID: HZB-U58-100

Date of Test: Nov. 28-30, Dec. 7, 2001

4.7 Radiated Emissions from Digital Section and Receiver FCC Rule 15.209

The data on the following page list the significant emission frequencies, the limit and the margin of compliance.


FCC ID: HZB-U58-100

FCC ID: HZB-U58-100

Menlo Park, California, USA. FCC Pert 15 Class B (Horizontal) FCC		Sunami 1 Multipl n Multip																						
Totertek Testing Services Wenlo Park, California, USA FCC Part 15 Class B (Horizontal) Limit (dHuV/m) 40.0 43.5 46.0 46.0 46.0 54.0		Model Number: T Client: Western Company: Wester																						
Interpretation of the part of	ritek Testing Services Park, California, USA t 15 Class B (Horizontal)	2001																						page 1
	Inte Menlo FCC Per		12	Limit	(dBuV/m)	40.0	43.5	43.5	43.5	46.0	46.0	46.0	46,0	54.0				Ī						
Operator: Bruce Gordon 07:15:2D PM, Friday, December 1 Erequency DF Level (MHz)		ce Gordon Friday, December 07,	1	OP Level	(dBuV/m)		37.9	38.0		35.9	4014	40.5			nma]	0.1								

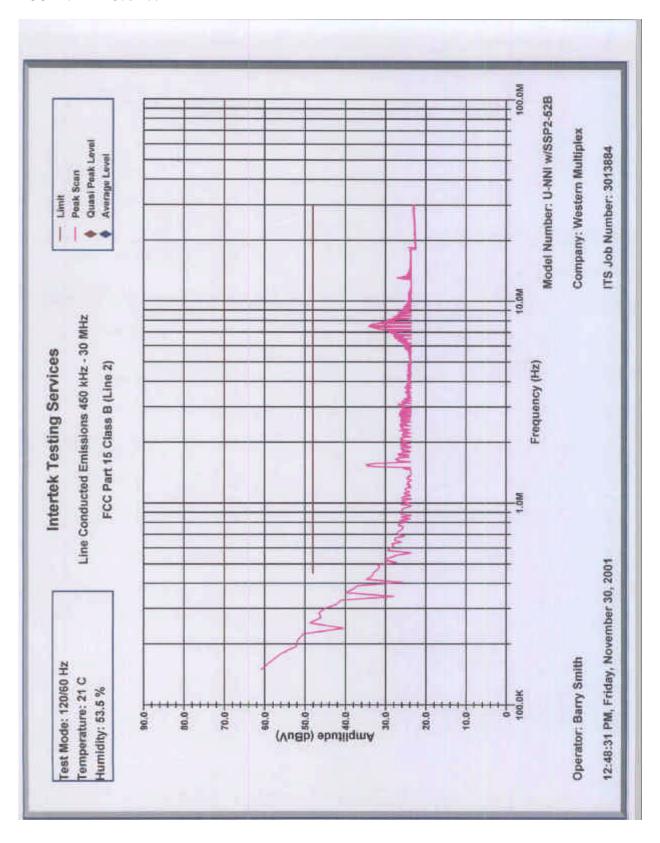
FCC ID: HZB-U58-100

FCC ID: HZB-U58-100

Intertek Testing Services Menlo Park, Callfornia, USA FCC Part 15 Class B (Vertical)	Wodel Number: Tsunami 100 Client: Western Multiplex Company: Western Multiplex	.01	Dimit	(dBuV/m)	43.5	43.5	0.94	46.0				
	Operator: Bruce Gordon 06:50:04 PM, Friday, December 07,		Frequency Amplitude in QF			55 MHz 40,6		785.4338 MHz 39.4	Test Mode: Normmal	ature: 21 C	Humidity: 54 %	

Date of Test: Nov. 28-30, Dec. 7, 2001

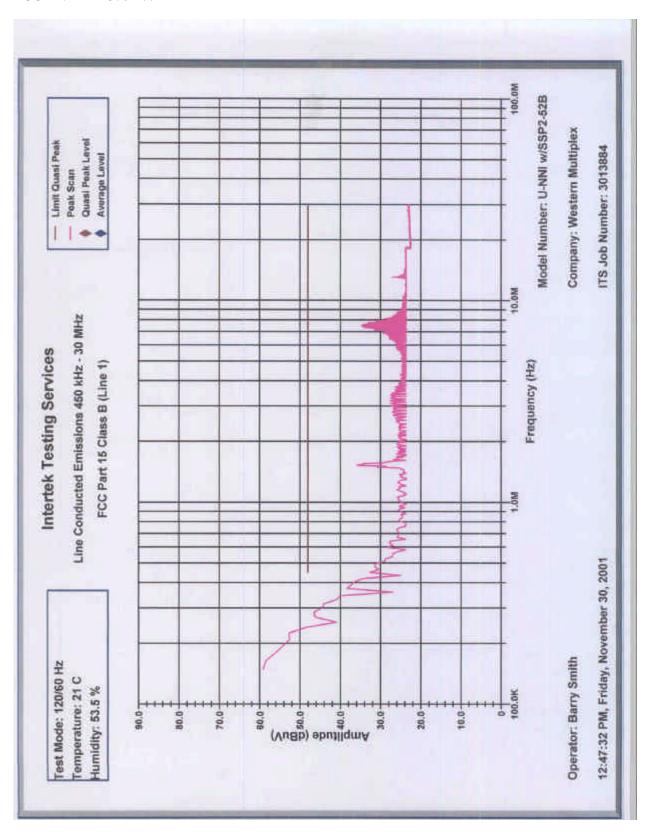
Western Multiplex, Model No: 28010-XXXX


FCC ID: HZB-U58-100

4.8 AC Line Conducted Emission FCC Rule 15.207

AC line conducted emission test was performed according the ANSI C63.4 standard. The EUT was connected to DC Power Supply which was connected to AC Line through the LISNs.

For the test result, see attached plot.


FCC ID: HZB-U58-100

FCC ID: HZB-U58-100

	en			Ī			Ì				T	i	T						
	Model Number: U-NNI w/SSP2-52B ITS Job Number: 3013884 Company: Western Multiplex													l					
	Model Number: U-NNI w/SSF2 ITS Job Number: 3013884 Company: Western Multiplex	1		l					ŀ					l					
	umber: Vestern	i							۱		ı		ı	ŀ					
	Job N. Pany: V																		
- 30 MHz 2)		in S	OF MATGIN	A september of the															
ng Services is 450 kHz -		4	(dRuV)	-13.3	-17.4	-14.4	****												
Line Conducted Emissions 450 kHz - FCC Part 15 Class D (Line 2)	2001		LABIT		48.0		2000												7
Inte fcc Pa	ry Smith Friday, November 30, 2001	2	Or Level	Tanasa I															
10	y Smith riday, Mov		CARLACTION OF THE PROPERTY OF	34.7	30.6	33.6	******	60 Hz	IJ a										
	Operator: Barry Smith 12:48:33 PM, Friday, 1		requency MH+	1.538025 MHz	946 MHz	7.418475 MHz	7000	t Mode: 120/	Temperature: 21 C	realization of the contract of									

FCC ID: HZB-U58-100

FCC ID: HZB-U58-100

Intertek Testing Line Conducted Emissions Smith day, November 30, 2001 Level OF Level Limit Pk BuV) (dBuV) (dBuV) (dBuV) 35.8 30.4 48.0 -1 48.0	Services 450 kHz - 30 MHz 8 (Line I)	Model Number: U-NNI w/SSP2-528 ITS Job Number: 3013884 Company: Western Multiplex		9	(CHRAV)																		
Inthe Carlotte Carlotte Cay, November Cay, N	estons 450 Class B (L							ı															
Inne Camith day, November Day,	ducted Emil TC Part 15				9	0.00	48.0	48.0	48+0	48.0	48,0	48,0	48.0						1				
/ Smith clday, Pt Leve (dBuV) 35.8 36.4 31.6 31.2 34.7 34.7 34.7	0	fovember		-1	(GBUV)																		
E G		Operator: Barry Smith 12:47:33 PM, Eriday, b	-1	Pk Leve	(dBuV)	20.0	71.6	32.9	34.2	34.3	34.7	33.2	31.2	7/60 83	O T	Humidity; 53.5 %							

Date of Test: Nov. 28-30, Dec. 7, 2001

Western Multiplex, Model No: 28010-XXXX

FCC ID: HZB-U58-100

4.9 Transmitter Duty Cycle Calculation / Measurements FCC Rule 15.35(b), (c)

The EUT antenna output port was connected to the input of the spectrum analyzer. The analyzer center frequency was set to EUT RF channel carrier. The SWEEP function on the analyzer was set to ZERO SPAN. The transmitter ON time was determined from the resultant time-amplitude display:

Duty cycle = Maximum ON time in 100 msec/100

Duty cycle correction, dB = 20 * log (DC)

	See attached spectrum analyzer chart(s) for transmitter timing			
	See transmitter timing diagram provided by manufacturer			
X	Not applicable.			

FCC ID: HZB-U58-100

Date of Test: Nov. 28-30, Dec. 7, 2001

5.0 List of Test Equipment

EQUIPMENT	MANUFACTURER	MODEL NUMBER	SERIAL NUMBER	CAL. INTERVAL	CAL. DUE
Spectrum Analyzer w/85650	Hewlett Packard	8566B	2416A00317	12	4/6/02
QP Adapter			2043A00251		
Spectrum Analyzer w/8650	Hewlett Packard	8568B	1912A0053	12	2/23/02
QP Adapter			2521A01021		
Spectrum Analyzer	Tektronix	2784	B3020108	12	8/8/02
Double-ridged Horn Antenna	EMCO	3115	9107-3712	12	3/17/02
BI-Log Antenna	EMCO	3143	9509-1164	12	3/4/03
Horn Antenna	EMCO	3160-09	Not Labeled	#	#
Horn Antenna	EMCO	3160-10	Not Labeled	#	#
Pre-Amplifier	CDI	P950	ITS009	12	7/2/02
Pre-Amplifier	Sonoma Inst.	310	185634	12	4/25/02
Pre-Amplifier	CDI	P1000	N/A	12	12/06/02
Pre-Amplifier	Avantek	AFT-18855	8723H705	12	12/5/02
Pre-amplifier	CTT	ACO/400	47526	12	12/5/02
Power Meter	Hewlett Packard	8900D	3607U00673	12	8/8/02
LISN	Solar Electronics	8025-50-TS-24-	912434	12	6/11/02
		BNC			
LISN	Solar Electronics	8028-50-TS-24-	941502	12	2/7/02
		BNC			

[#] No Calibration Required

FCC ID: HZB-U58-100

Date of Test: Nov. 28-30, Dec. 7, 2001

Appendix

January 22, 2002

Subject: Statement of Compliance to FCC 15.407 (C)

To Whom It May Concern:

llestin

The HZB-U58-100 radio was designed with networking capability, which demands the radio to carry networking traffic (polling, reporting) on a constant basis. Therefore, the radio is designed to transmit all the time (when operational). We designed the product in such a way that whenever a radio hardware failure is detected, the system firmware turns off the radio transmitter.

Caroline Yu

Homologation Product Manager Western Multiplex Corporation

FCC ID: HZB-U58-100

Compliance with 15.407(g) frequency stability

The following table shows the specifications of the determining oscillators and the total frequency stability of the equipment at 5.725-5.825 GHz band over the full operating temperature range. The data shown on the table covers the worst frequency shift situation within the full operating temperature range of -30 to $+65^{\circ}$ C specified for the equipment under application. The oscillators are crystal types.

	5.747 GHz Transmitter	5.803 GHz Transmitter	
Fundamental Oscillator	140MHz±10ppm	140MHz±10ppm	
	or ±1.4 kHz	or ±1.4 kHz	
Secondary Oscillator	(109MHz±30ppm)x5	(109MHz±30ppm) x5	
	or ±16.4kHz	or ±16.4kHz	
RF reference Oscillator	(105.4583MHz±10ppm)x48	(106.6250MHz±10ppm)x48	
	or ±50.62kHz	or 51.18kHz	
Total Frequency Stability	±11.91ppm	±11.83ppm	
	or ±68.42kHz	or ±68.98kHz	

The supporting reasoning for the claim is as follows:

- a) The lowest channel center frequency is 5747 MHz, with a 26dBc width of 29.1 MHz. The margin below the 26dBc points to the band edge is 8 MHz.
- b) The highest channel center frequency is 5803 MHz with a 26dBc width of 29.4 MHz. The margin above 26dBc points to the band edge is 7 MHz.
- c) Therefore, the frequency stability of the frequency-determining element must be no worse than 0.139% (8 MHz/5747 MHz) over the normal operating range to maintain the emissions within the allowed band. From the above table, it can be seen that the frequency-determining components offer much superior stability to ensure the compliance to 15.407(g).

Caroline Yu

Homologation Product Manager Western Multiplex Corporation