Antenna Type	Manufacturer	Model Number	Mid-band Gain (dBi)	Notes
1 Foot Flat Panel	Gabriel	DFPD1-52	23.5	
2 Foot Flat Panel	Gabriel	DFPD2-52	28	
	RSI	A57A24-U	26.5	Not rated @ 5.2 GHz
2 Foot Parabolic	Gabriel	SSP2-52B	28.5	
	RSI	P-57C24	29	Not rated @ 5.2 GHz
	Radio Waves	SP2-5.2	28.3	
3 Foot Parabolic	Radio Waves	SP3-5.2	31.4	
4 Foot Parabolic	Gabriel	SSP4-52A	34.2	
	RSI	P-57B48	34.7	Not rated @ 5.2 GHz
	Radio Waves	SP4-5.2	34.6	
6 Foot Parabolic	Gabriel	SSP6-52A	37.5	
	RSI	P-57A72	38.2	Not rated @ 5.2 GHz
	Radio Waves	SP6-5.2	37.7	
8 Foot Parabolic	Gabriel	DRFB8-55ASE	40.7	Not rated @ 5.2 GHz
	RSI	P-57A96	40.8	Not rated @ 5.2 GHz

Feeder Loss Type	Manufacturer	Model Number	Loss/100'	Notes
1/2" foam coax	Andrew	LDF 4-50	6.6 dB	add ~0.25 dB per connector
5/8" foam coax	Andrew	LDF 4.5-50	4.7 dB	add ~0.25 dB per connector
Waveguide	Andrew	EW-52	1.2 dB	does not include transitions

Formula for determining maximum output power setting for 5.2 GHz U-NII (LE-LAN) Transmitters (@ EIRP=30dBm):

Max Tx (dBm) = 30 - G + FL

where: G = Antenna Gain

FL = Feeder Loss including connectors

Formula for determining maximum output power setting for 5.7 GHz U-NII (LE-LAN) Transmitters (@ EIRP=53dBm):

Max Tx (dBm) = 53 - G + FL

where: G = Antenna Gain

FL = Feeder Loss including connectors

Note: All Western Multiplex radios require professional installation.

Note: Western Multiplex U-NII devices have a built-in calibrated Tx Power Output Voltage port to aid in setting the output power correctly, without the use of an RF power meter. The measurement in Volts is multiplied by 10 for a measurement in dBm. e.g. 1.0 V = 10 dBm; 2.0 V = 20 dBm, 1.5 V = 15 dBm; 0.5 V = 5 dBm; etc.