

Test Report

Report #: 30361841 Project #: 3036184 Report Date: Date of Test: December 31, 2002 to January 31, 2003

Testing performed on the

Base Station Unit Models: 40400-25C, 40400-65C FCC ID: HZB-S58-B60C to

FCC Part 15.247 DSSS

for Proxim Corporation

emc

Prepared by: David

A2LA Certificate Number: 1755-01 hernomordik David Chernomordik, EMC Technical Manager

Date: 3/14/03

All services undertaken are subject to the following general policy: Reports are submitted for exclusive use of the client to whom they are addressed. Their significance is subject to the adequacy and representative character of the samples and to the comprehensiveness of the tests, examinations or surveys made. This report shall not be reproduced except in full, without written consent of Intertek Testing Services NA Inc. This report must not be used to claim product endorsement by A2LA, NIST nor any other agency of the U.S. Government.

FCC Part 15 DSSS Cert, Rev 01/01

Intertek Testing Services NA, Inc. 1365 Adams Court, Menlo Park, CA 94025

Telephone 650-463-2900 Fax 650-463-2910 Home Page www.etlsemko.com

Proxim Corporation

FCC ID: HZB-S58-B60C

TABLE OF CONTENTS

1.0	Summary of Tests		
FCC	ID: HZ	В-S58-B60С	3
2.0	Gene	eral Description	4
	2.1	Product Description	
	2.2	Related Submittal(s) Grants	5
	2.3	Test Methodology	5
	2.4	Test Facility	
3.0	Syste	em Test Configuration	6
	3.1	Support Equipment and description	6
	3.2	Block Diagram of Test Setup	6
	3.3	Justification	7
	3.4	Software Exercise Program	7
	3.5	Mode of operation during test	7
	3.6	Modifications required for Compliance	7
	3.7	Additions, deviations and exclusions from standards	7
4.0	Meas	surement Results	8
	4.1	Conducted Output Power at Antenna Terminals	
	4.2	6 dB RF Bandwidth	9
	4.3	Power Density	22
	4.4	Out-of-Band Conducted Emissions	
	4.7	Radiated Emissions from Digital Section of Transceiver	36
	4.8	Radiated Emissions from Receiver Section of Transceiver (L.O. Radiation)	39
	4.9	AC Line Conducted Emission	40
5.0	List	of test Equipment	45
6.0	Docu	ıment History	46
7.0	Арре	endix	47

1365 Adams Court Menlo Park, CA 94025

FCC ID: HZB-S58-B60C

1.0 Summary of Tests

TEST	REFERENCE	RESULTS
Output power	15.247(b)	Complies
6 dB Bandwidth	15.247(a)(2)	Complies
Power Density	15.247(d)	Complies
Out-of-band Antenna Conducted	15.247(c)	Complies
Emission		-
Out-of-band Radiated Emission (except	15.247(c)	Not Applicable. The EUT passed out-
emissions in restricted bands)		of-band antenna conducted emission
Radiated Emission in Restricted Bands	15.209, 15.205	Complies
AC Line-conducted Emission	15.207	Complies
Radiated Emission from Digital Part	15.109	Complies
Radiated Emission from Receiver L.O.	15.109	Not Applicable. The operating
		frequency is above 960 MHz
RF Exposure Requirement	2.1091	Complies, see exhibit "RF Exposure"
Antenna Requirement	15.203	Not Applicable; professional
_		installation is required

FCC ID: HZB-S58-B60C

1365 Adams Court Menlo Park, CA 94025 FCC ID: HZB-S58-B60C

Proxim Corporation

2.0 General Description

2.1 Product Description

The EUT, Models: 40400-25C, 40400-65C, FCC ID: HZB-S58-S60C consists of two major components: an outdoor unit (ODU) and an indoor power adapter (IPA). The two components are connected with a single category-5 cable (4 unshielded twisted pairs) to transfer direct-current power to the ODU and to transport 10/100BaseT Ethernet data to and from the ODU. The IPA provides an RJ-45 jack to connect the Ethernet data to either a computer or hub/switch.

Through an RF connector and an RF cable, the ODU is connected to an external antenna, from which the radio signal is transmitted.

Applicant name & address	Proxim Corporation 935 Stewart Drive, Sunnyvale, CA 94085 USA
Manufacturer	Proxim Corporation
Models	40400-25C, 40400-65C *
FCC Identifier	HZB-S58-B60C
Use of Product	Fixed Wireless Ethernet Access
Type of Transmission	TDD
Type of Modulation	QAM16, QAM8, QPSK 3/4, QPSK 1/2
Rated RF Output	18 dBm (peak)
Frequency Range	5740 – 5810 MHz
Number of Channel(s)	6 channels maximum
Antenna(s) & Gain	Omni, 7.5 dBi, model 5830AN (from Telex) Omni, 12 dBi, model MT-483003/N (from MTI) Flat Panel, 17 dBi, model SEC-5V/H-90-17 (from Radio Waves) Flat Panel, 18 dBi, model SEC-5V/H-60-18 (from Radio Waves)
Antenna Requirement	The EUT requires professional installation.

Overview of the Models: 40400-25C, 40400-65C FCC ID: HZB-S58-B60C

* The models differ by the type of modulation listed above.

A pre-production version of the EUT was received on Desember 30, 2002 in good operating condition. As declared by the Applicant, it is identical to the production units.

1365 Adams Court Menlo Park, CA 94025

FCC ID: HZB-S58-B60C

2.2 Related Submittal(s) Grants

None.

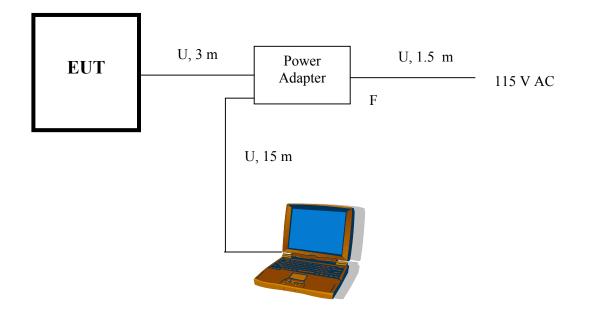
2.3 Test Methodology

Both AC mains line-conducted and radiated emissions measurements were performed according to the procedures in ANSI C63.4 (1992). Radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "Data Sheet" of this Application. All other measurements were made in accordance with the procedures in parts 2 and 15 of CFR 47.

2.4 Test Facility

The open area test site and conducted measurement facility used to collect the radiated data is site 1 (10-m semi-anechoic chamber). This test facility and site measurement data have been fully placed on file with the FCC and A2LA accredited.

Proxim Corporation


3.0 System Test Configuration

3.1 Support Equipment and description

Laptop computer: Hewlett Packard Omnibook 4150

3.2 Block Diagram of Test Setup

FCC ID: HZB-S58-B60C

$\mathbf{S} = $ Shielded	$\mathbf{F} = $ With Ferrite
$\mathbf{U} = \mathbf{U}$ nshielded	$\mathbf{m} = Meter$

3.3 Justification

For emission testing, the Equipment Under Test (EUT) was configured for testing in a typical fashion (as a customer would normally use it). During testing, all cables were manipulated to produce worst-case emissions.

For radiated emission measurements, the EUT is attached to a cardboard box (if necessary) and placed on the wooden turntable. If the EUT attaches to peripherals, they are connected and operational (as typical as possible). The EUT is wired to transmit full power.

The signal is maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters.

Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance. All readings are extrapolated back to the equivalent three-meter reading using inverse scaling with distance.

3.4 Software Exercise Program

The EUT exercise program used during radiated and conducted testing was designed to exercise the various system components in a manner similar to a typical use. For emissions testing, the units were setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing.

3.5 Mode of operation during test

Transmitting signal on different channels with different types of modulation.

3.6 Modifications required for Compliance

Intertek Testing Services installed no modifications during compliance testing in order to bring the product into compliance (Please note that this does not include changes made specifically by Proxim Cor. prior to compliance testing).

3.7 Additions, deviations and exclusions from standards

No additions, deviations or exclusion have been made from standard.

FCC ID: HZB-S58-B60C

4.0 Measurement Results

4.1 Conducted Output Power at Antenna Terminals FCC Rules 15.247(b):

Requirements

For systems operating in the 5725 - 5850 MHz band that are used exclusively for fixed, point-to-point operations, maximum allowed transmitter output is 1 watt (+30 dBm).

Procedure

The antenna port of the EUT was connected to the input of a peak power meter. Power was read directly from the power meter.

Test Results

Frequency MHz	Modulation	Output Power mW
	QAM16	63.0
5740	QAM8	61.0
	QPSK 3/4	65.7
	QPSK 1/2	65.3
	QAM16	62.9
5768	QAM8	65.1
	QPSK 3/4	64.8
	QPSK 1/2	64.2
	QAM16	63.2
5810	QAM8	65.3
	QPSK 3/4	65.9
	QPSK 1/2	63.0

Proxim Corporation

FCC ID: HZB-S58-B60C

4.2 6 dB RF Bandwidth FCC Rule 15.247(a)(2):

Requirements

The minimum 6-dB bandwidth shall be at least 500 kHz

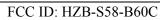

Procedure

The antenna port of the EUT was connected to the input of a spectrum analyzer. Analyzer RES BW was set to 100 kHz. For each RF output channel investigated, the spectrum analyzer center frequency was set to the channel carrier. A PEAK output reading was taken, a DISPLAY line was drawn 6 dB lower than PEAK level. The 6-dB bandwidth was determined from where the channel output spectrum intersected the display line.

Test Result

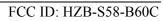
Frequency	Modulation	6-dB Bandwidth	Plot
MHz		MHz	
	QAM16	21.42	2.1
5740	QAM8	21.33	2.2
	QPSK 3/4	21.50	2.3
	QPSK 1/2	21.67	2.4
	QAM16	21.50	2.5
5768	QAM8	21.92	2.6
	QPSK 3/4	21.75	2.7
	QPSK 1/2	21.75	2.8
	QAM16	21.33	2.9
5810	QAM8	21.42	2.10
	QPSK 3/4	21.58	2.11
	QPSK 1/2	21.58	2.12

1365 Adams Court Menlo Park, CA 94025

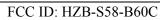


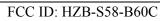
1365 Adams Court Menlo Park, CA 94025

1365 Adams Court Menlo Park, CA 94025




1365 Adams Court Menlo Park, CA 94025

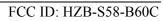


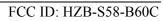


1365 Adams Court Menlo Park, CA 94025

1365 Adams Court Menlo Park, CA 94025

1365 Adams Court Menlo Park, CA 94025





1365 Adams Court Menlo Park, CA 94025

1365 Adams Court Menlo Park, CA 94025

1365 Adams Court Menlo Park, CA 94025

Proxim Corporation

FCC ID: HZB-S58-B60C

4.3 Power Density FCC Rule 15.247(d):

Requirements

The peak power spectral density shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

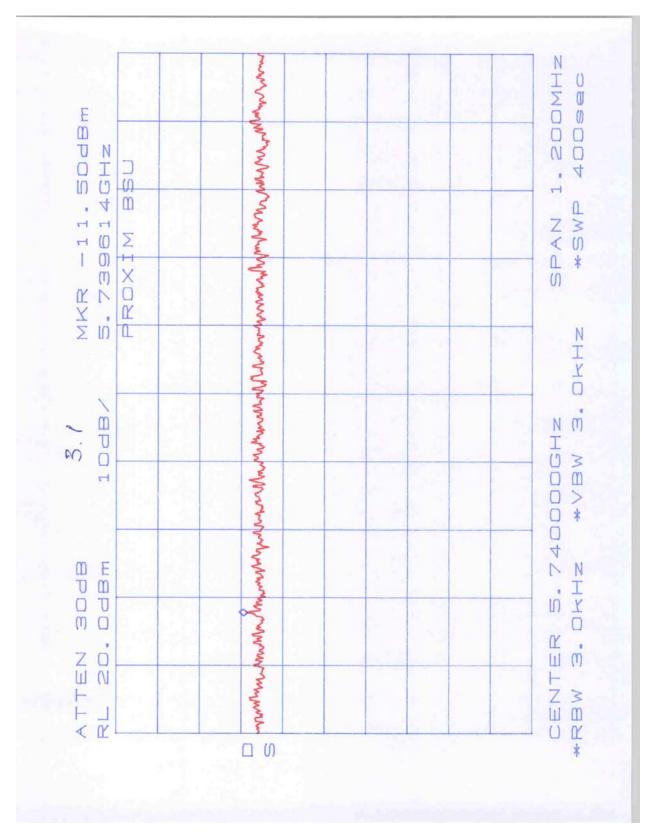
Procedure

Test Result

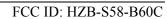
The spectrum analyzer RES BW was set to 3 kHz. The START and STOP frequencies were set to the band edges of the maximum output pass-band. If there is no clear maximum amplitude in any given portion of the band, it may be necessary to make measurements at a number of bands defined by several START and STOP frequency pairs. Total SWEEP TIME is calculated as follows:

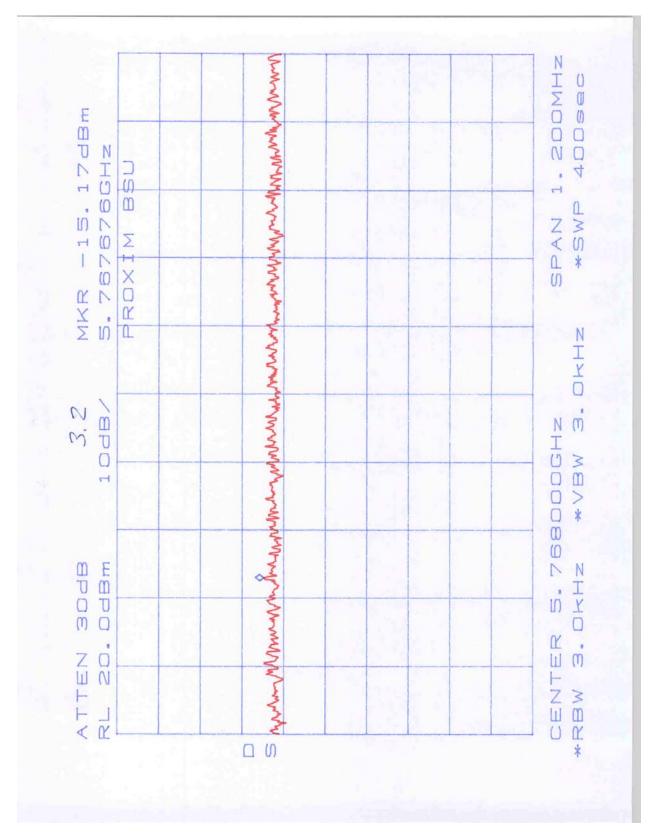
SWEEP TIME (SEC) = (Fstop, kHz - Fstart, kHz)/3 kHz

Antenna output of the EUT was coupled directly to spectrum analyzer; if an external attenuator and/or cable was used, these losses are compensated for with the analyzer OFFSET function.

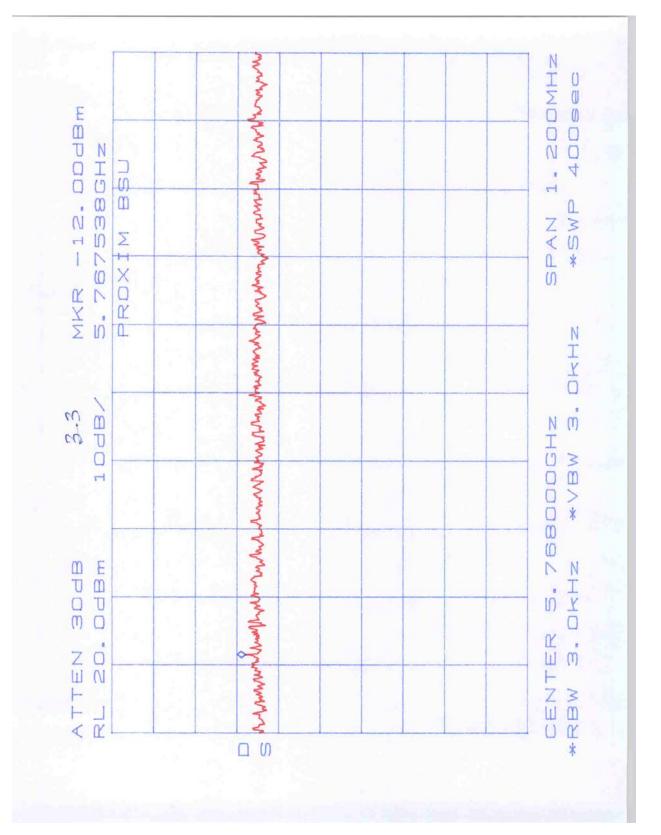

Frequency MHz	Modulation	Power Density dBm	Plot
5740	QPSK 3/4	-11.50	3.1
	QAM16	-15.17	3.2
5768	QAM8	-12.00	3.3
	QPSK 3/4	-11.50	3.4
	QPSK 1/2	-11.17	3.5
5810	QPSK 3/4	-11.17	3.6

Frequency Span	= 1200 kHz
Sweep Time	= Frequency Span/3 kHz = 400 Seconds

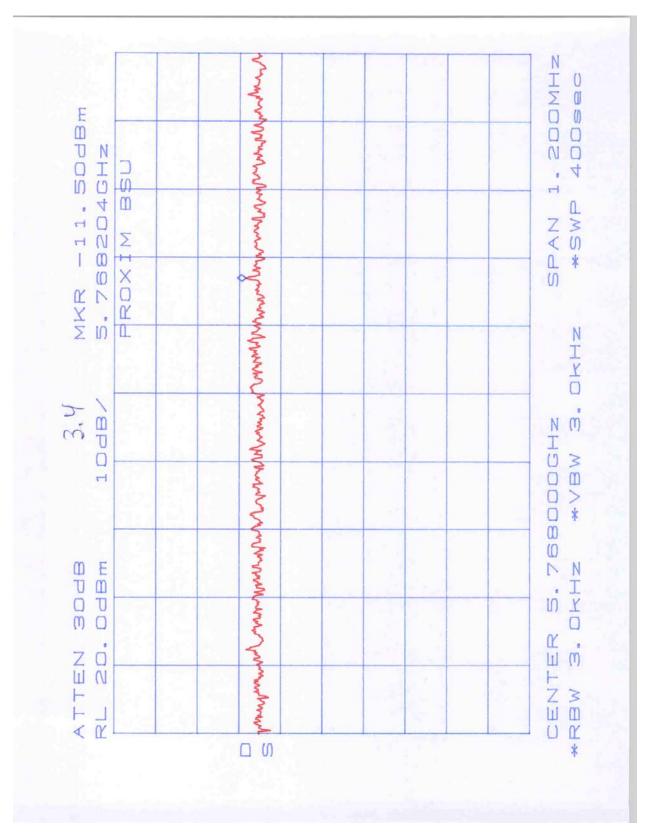


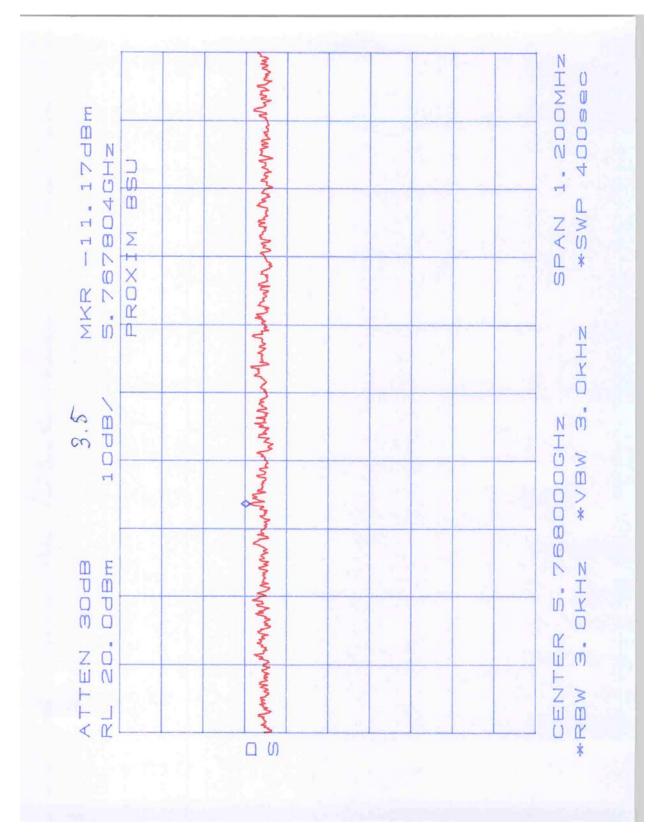

Proxim Corporation

FCC ID: HZB-S58-B60C

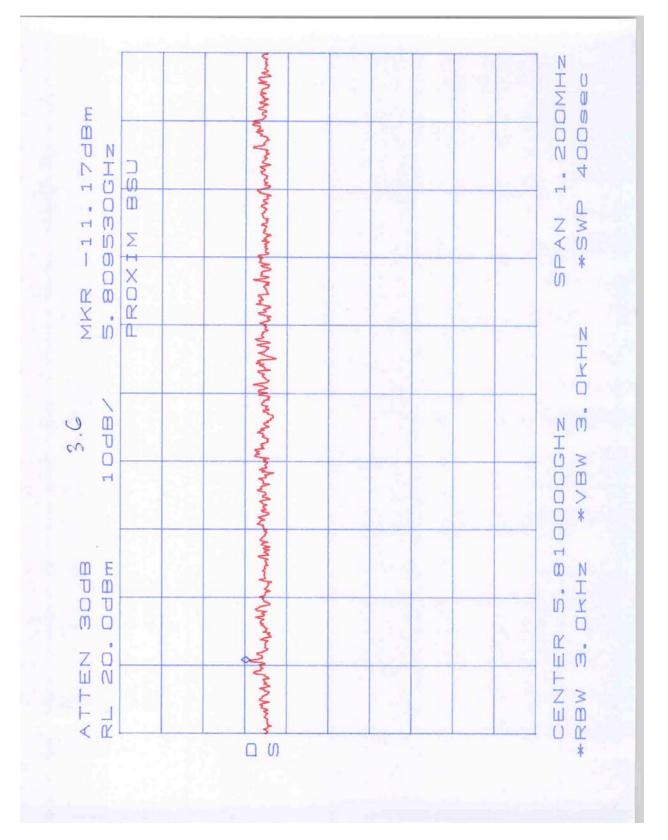


Proxim Corporation


FCC ID: HZB-S58-B60C


Proxim Corporation

FCC ID: HZB-S58-B60C



Proxim Corporation

FCC ID: HZB-S58-B60C

FCC ID: HZB-S58-B60C

Proxim Corporation

4.4 Out-of-Band Conducted Emissions FCC Rule 15.247(c):

Requirements

In any 100 kHz bandwidth outside the EUT passband, the RF power shall be at least 20 dB below that of the maximum in-band 100 kHz emission.

Procedure

A spectrum analyzer was connected to the antenna port of the transmitter. Analyzer Resolution Bandwidth was set to 100 kHz. For each channel investigated, the in-band and out-of-band emission measurements were performed. The out-of-band emissions were measured from 10 MHz to 40 GHz.

Test Result

Refer to the plots in the Appendix for the test result:

Low Channel

Out-of-Band conducted emissions			
Plot	Mode	Scan	
4.1.1	QPSK 3/4	30 MHz – 5 GHz	
4.1.2	QPSK 3/4	5 GHz – 5.725 GHz	
4.1.3	QPSK 3/4	5.725 GHz – 5.85 GHz	
4.1.4	QPSK 3/4	5.85 GHz – 10 GHz	
4.1.5	QPSK 3/4	10 GHz – 40 GHz	
4.1.6	QAM 16	1 GHz – 5 GHz	
4.1.7	QAM 16	5 GHz – 5.725 GHz	
4.1.8	QAM 16	5.725 GHz – 5.85 GHz	
4.1.9	QAM 8	5 GHz – 5.725 GHz	
4.1.10	QAM 8	5.725 GHz – 5.85 GHz	
4.1.11	QPSK 1/2	5 GHz – 5.725 GHz	
4.1.12	QPSK 1/2	5.725 GHz – 5.85 GHz	

Middle Channel

Out-of-Band conducted emissions			
Plot	Mode	Scan	
4.2.1	QPSK 3/4	30 MHz – 1 GHz	
4.2.2	QPSK 3/4	1 GHz – 5.725 GHz	
4.2.3	QPSK 3/4	5.725 GHz – 5.85 GHz	
4.2.4	QPSK 3/4	5.85 GHz – 10 GHz	
4.2.5	QPSK 3/4	10 GHz – 40 GHz	

Proxim Corporation

FCC ID: HZB-S58-B60C

Hi Channel

Out-of-Band conducted emissions			
Plot	Mode	Scan	
4.3.1	QPSK 3/4	30 MHz – 1 GHz	
4.3.2	QPSK 3/4	1 GHz – 5.725 GHz	
4.3.3	QPSK 3/4	5.725 GHz – 5.85 GHz	
4.3.4	QPSK 3/4	5.85 GHz – 10 GHz	
4.3.5	QPSK 3/4	10 GHz – 40 GHz	
4.3.6	QAM 16	5.725 GHz – 5.85 GHz	
4.3.7	QAM 16	5.85 GHz – 10 GHz	
4.3.8	QAM 8	5.725 GHz – 5.85 GHz	
4.3.9	QAM 8	5.85 GHz – 10 GHz	
4.3.10	QPSK 1/2	5.725 GHz – 5.85 GHz	
4.3.11	QPSK 1/2	5.85 GHz – 10 GHz	

The EUT passed by more than 30 dB.

4.6 Transmitter Radiated Emissions FCC Rules: 15.247 (c), 15.205, 15.209

Procedure

Radiated emission measurements were performed from 30 MHz to 40,000 MHz. Spectrum Analyzer Resolution Bandwidth is 100 kHz or greater for frequencies 30 MHz to 1000 MHz, 1 MHz - for frequencies above 1000 MHz.

The EUT is placed on the wooden turntable. If the EUT attaches to peripherals, they are connected and operational (as typical as possible). During testing, all cables were manipulated to produce worst case emissions. The signal is maximized through rotation. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters.

Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance. All readings are extrapolated back to the equivalent three-meter reading using inverse scaling with distance.

Data is included of the worst case configuration (the configuration which resulted in the highest emission levels). A sample calculation, configuration photographs and data tables of the emissions are included. All measurements were performed with peak detection unless otherwise specified.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$\label{eq:FS} \begin{split} FS &= RA + AF + CF - AG \\ Where \ FS &= Field \ Strength \ in \ dB(\mu V/m) \\ RA &= Receiver \ Amplitude \ (including \ preamplifier) \ in \ dB(\mu V) \\ CF &= Cable \ Attenuation \ Factor \ in \ dB \\ AF &= Antenna \ Factor \ in \ dB(1/m) \\ AG &= Amplifier \ Gain \ in \ dB \end{split}$$

Assume a receiver reading of 52.0 dB(μ V) is obtained. The antenna factor of 7.4 dB(1/m) and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving field strength of 32 dB(μ V/m). This value in dB(μ V/m) was converted to its corresponding level in μ V/m.

$RA = 52.0 dB(\mu V)$	AF = 7.4 dB(1/m)
CF = 1.6 dB	AG = 29.0 dB

FS = $52 + 7.4 + 1.6 - 29 = 32 \text{ dB}(\mu \text{V/m})$ Level in $\mu \text{V/m} = \text{Common Antilogarithm} [(32 \text{ dB}(\mu \text{V/m})/20] = 39.8 \ \mu \text{V/m}$

<u>Result</u>

The data on the following pages list the significant emission frequencies, the limit and the margin of compliance. The EUT passed by 20 dB.

Proxim Corporation

FCC ID: HZB-S58-B60C

Company:	PROXIM	FCC	CID: H	IZB-S58-B60	C Stand	Standard_		§ 15.2	47 (R.B.)		
EUT:	Base Station	S/N	#: N	lot labeled	Limit	ts_	2					
Project #:	3036052	Test	Date: Ja	inuary 30, 200	3 Test l	Test Distance_		meter				
Test Mode:	Тх	Engi	ineer: <mark>B</mark> i	ruce G.	Duty	Relaxation	0	dB				
	Ante	enna Used		Pre-Amp Used				Cable Used				
Number:	14	21	22	10	4	13	10)	0	0		
Model:	EMCO 3115	3160-9	3160-10	AFT18855	None	ACO/400	NPS	72-1	None	None		

Antenna SEC-5V/H-90-17

TX at 5740 MHz

Frequency	Reading	Detector	Ant.	Amp.	Ant. Pol.	Ant. Factor	Pre-Amp	Insert. Loss	D. C. F.	Net	Limit @3m	Margin
MHz	dB(µV)	P/A/Q	#	#	H/V	dB(1/m)	dB	dB	dB	$dB(\mu V/m)$	$dB(\mu V/m)$	dB
11480	32.3*	Ave.	14	10	V	40.7	39.9	1.4	-9.5	25.0	54.0	-29.0
11480	32.1*	Ave.	14	10	Н	40.7	39.9	1.4	-9.5	24.8	54.0	-29.2
22960	24.2*	Ave.	21	13	V	40.4	23.3	2.2	-9.5	34.0	54.0	-20.0
22960	24.2*	Ave.	21	13	Н	40.4	23.3	2.2	-9.5	34.0	54.0	-20.0

TX at 5768 MHz												
									D. C.			Margi
Frequency	Reading	Detector	Ant.	Amp.	Ant. Pol.	Ant. Factor	Pre-Amp	Insert. Loss	F.	Net	Limit @3m	n
MHz	dB(µV)	P/A/Q	#	#	H/V	dB(1/m)	dB	dB	dB	$dB(\mu V/m)$	$dB(\mu V/m)$	dB
11536	32.0*	Ave.	14	10	V	41.2	39.7	1.5	-9.5	25.5	54.0	-28.5
11536	32.0*	Ave.	14	10	Н	41.9	39.7	1.5	-9.5	26.2	54.0	-27.8
23072	24.2*	Ave.	21	13	V	40.4	23.3	2.2	-9.5	34.0	54.0	-20.0
23072	24.2*	Ave.	21	13	Н	40.4	23.3	2.2	-9.5	34.0	54.0	-20.0

TX at 5810 MHz

Frequency	Reading	Detector	Ant.	Amp.	Ant. Pol.	Ant. Factor	Pre-Amp	Insert. Loss	D. C. F.	Net	Limit @3m	Margin
MHz	dB(µV)	P/A/Q	#	#	H/V	dB(1/m)	dB	dB	dB	dB(µV/m)	$dB(\mu V/m)$	dB
11620	32.5*	Ave.	14	10	V	41.2	39.7	1.5	-9.5	26.0	54.0	-28.0
11620	32.4*	Ave.	14	10	Н	41.9	39.7	1.5	-9.5	26.6	54.0	-27.4

Notes: a) D.C.F.:Distance Correction Factor

b) Insert. Loss (dB) = Cable A + Cable B + Cable C.

c) Net (dB) = Reading + Antenna Factor - Pre-amp + Insert. Loss

d) Negative signs (-) in Margin column signify levels below the limits.

e) All other emissions not reported are below the equipment noise floor which is at least 10 dB below the limits.

f) * Noise floor reading

Company:	PROXIM	FC	CID: H	HZB-S58-B60C Standard_		dard_	FCC § 15.247 (R.B.)				
EUT:	Base Station	S/N	#: N	Not labeled	Limi	ts_	2				
Project #:	3036052	Tes	t Date: Ja	nuary 30, 20	03 Test	3 Test Distance_		r			
Test Mode:	Tx	Eng	gineer: <mark>B</mark>	ruce G.	Duty	Relaxation	0 dB				
	Ant	enna Used		Р	re-Amp Use	-Amp Used		Cable	Used		
Number:	14	21	22	10	4	13	10	0	0		
Model:	EMCO 3115	3160-9	3160-10	AFT18855	None	ACO/400	NPS72-1	None	None		

TX at 5740 MHz

Antenna SEC-5V/H-60-18

Frequency	Reading	Detector	Ant.	Amp.	Ant. Pol.	Ant. Factor	Pre-Amp	Insert. Loss	D. C. F.	Net	Limit @3m	Margin
MHz	dB(µV)	P/A/Q	#	#	H/V	dB(1/m)	dB	dB	dB	$dB(\mu V/m)$	$dB(\mu V/m)$	dB
11480	34.3	Ave.	14	10	V	40.7	39.9	1.4	-9.5	27.0	54.0	-27.0
11480	34.4	Ave.	14	10	Н	40.7	39.9	1.4	-9.5	27.1	54.0	-26.9
22960	24.2*	Ave.	21	13	V	40.4	23.3	2.2	-9.5	34.0	54.0	-20.0
22960	24.2*	Ave.	21	13	Н	40.4	23.3	2.2	-9.5	34.0	54.0	-20.0

TX at 5768 MHz

Frequency	Reading	Detector	Ant.	Amp.	Ant. Pol.	Ant. Factor	Pre-Amp	Insert. Loss	D. C. F.	Net	Limit @3m	Margin
MHz	dB(µV)	P/A/Q	#	#	H/V	dB(1/m)	dB	dB	dB	$dB(\mu V/m)$	$dB(\mu V/m)$	dB
11536	34.5	Ave.	14	10	V	41.2	39.7	1.5	-9.5	28.0	54.0	-26.0
11536	35.5	Ave.	14	10	н	41.9	39.7	1.5	-9.5	29.7	54.0	-24.3
23072	24.2*	Ave.	21	13	V	40.4	23.3	2.2	-9.5	34.0	54.0	-20.0
23072	24.2*	Ave.	21	13	н	40.4	23.3	2.2	-9.5	34.0	54.0	-20.0

TX at 5810 MHz

Frequency	Reading	Detector	Ant.	Amp.	Ant. Pol.	Ant. Factor	Pre-Amp	Insert. Loss	D. C. F.	Net	Limit @3m	Margin
MHz	dB(µV)	P/A/Q	#	#	H/V	dB(1/m)	dB	dB	dB	$dB(\mu V/m)$	$dB(\mu V/m)$	dB
11620	35.5	Ave.	14	10	V	41.2	39.7	1.5	-9.5	29.0	54.0	-25.0
11620	35.4	Ave.	14	10	Н	41.9	39.7	1.5	-9.5	29.6	54.0	-24.4

Notes: a) D.C.F.:Distance Correction Factor

b) Insert. Loss (dB) = Cable A + Cable B + Cable C.

c) Net (dB) = Reading + Antenna Factor - Pre-amp + Insert. Loss

d) Negative signs (-) in Margin column signify levels below the limits.

e) All other emissions not reported are below the equipment noise floor which is at least 10 dB below the limits.

f) * Noise floor reading

Company:	PROXIM	FCC	ID: H	IZB-S58-B60	C Stan	dard_	FCC § 15.	FCC § 15.247 (R.B.)				
EUT:	Base Station	S/N #	#: N	lot labeled	Lim	its_	2					
Project #:	3036052	Test	Date: <mark>Ja</mark>	nuary 30, 20	ary 30, 2003 Test Distance_		1 meter					
Test Mode:	Тх	Engi	neer: <mark>B</mark> i	ruce G.	Duty	Duty Relaxation						
	Ant	enna Used		Р	re-Amp Use	d	Cable Used					
Number:	14	21	22	10	4	13	10	0	0			
Model:	EMCO 3115	3160-9	3160-10	AFT18855	None	ACO/400	NPS72-1	None	None			

Antenna 5830AN

TX at 5740 MHz

Frequency	Reading	Detector	Ant.	Amp.	Ant. Pol.	Ant. Factor	Pre-Amp	Insert. Loss	D. C. F.	Net	Limit @3m	Margin
MHz	$dB(\mu V)$	P/A/Q	#	#	H/V	dB(1/m)	dB	dB	dB	$dB(\mu V/m)$	$dB(\mu V/m)$	dB
11480	36.3	Ave.	14	10	V	40.7	39.9	1.4	-9.5	29.0	54.0	-25.0
11480	36.1	Ave.	14	10	Н	40.7	39.9	1.4	-9.5	28.8	54.0	-25.2
22960	24.2*	Ave.	21	13	V	40.4	23.3	2.2	-9.5	34.0	54.0	-20.0
22960	24.2*	Ave.	21	13	н	40.4	23.3	2.2	-9.5	34.0	54.0	-20.0

TX at 5768 MHz

Frequency	Reading	Detector	Ant.	Amp.	Ant. Pol.	Ant. Factor	Pre-Amp	Insert. Loss	D. C. F.	Net	Limit @3m	Margin
MHz	$dB(\mu V)$	P/A/Q	#	#	H/V	dB(1/m)	dB	dB	dB	$dB(\mu V/m)$	$dB(\mu V/m)$	dB
11536	36.0	Ave.	14	10	V	41.2	39.7	1.5	-9.5	29.5	54.0	-24.5
11536	36.5	Ave.	14	10	Н	41.9	39.7	1.5	-9.5	30.7	54.0	-23.3
23072	24.2*	Ave.	21	13	V	40.4	23.3	2.2	-9.5	34.0	54.0	-20.0
23072	24.2*	Ave.	21	13	н	40.4	23.3	2.2	-9.5	34.0	54.0	-20.0

TX at 5810 MHz

Frequency	Reading	Detector	Ant.	Amp.	Ant. Pol.	Ant. Factor	Pre-Amp	Insert. Loss	D. C. F.	Net	Limit @3m	Margin
MHz	$dB(\mu V)$	P/A/Q	#	#	H/V	dB(1/m)	dB	dB	dB	$dB(\mu V/m)$	$dB(\mu V/m)$	dB
11620	36.5	Ave.	14	10	V	41.2	39.7	1.5	-9.5	30.0	54.0	-24.0
11620	36.4	Ave.	14	10	Н	41.9	39.7	1.5	-9.5	30.6	54.0	-23.4

Notes: a) D.C.F.:Distance Correction Factor

b) Insert. Loss (dB) = Cable A + Cable B + Cable C.

c) Net (dB) = Reading + Antenna Factor - Pre-amp + Insert. Loss

d) Negative signs (-) in Margin column signify levels below the limits.

e) All other emissions not reported are below the equipment noise floor which is at least 10 dB below the limits.

f) * Noise floor reading

Proxim Corporation

FCC ID: HZB-S58-B60C

Company:	PROXIM	FC	CID: H	IZB-S58-B60	DC S	Standard_	FCC § 15	.247 (R.B.)
EUT:	Base Station	S/N	f#: N	Not labeled	L I	Limits_	2		
Project #:	3036052	Tes	t Date: Ja	anuary 30, 20	03 T	Fest Distance	1 meter	r	
Test Mode:	Tx	Eng	gineer: <mark>B</mark>	ruce G.		Duty Relaxation	u <mark>0</mark> dB		
	Ant	tenna Used	l	Р	re-Amp	Used		Cable	Used
Number:	14	21	22	10	4	13	10	0	0
Model:	EMCO 3115	3160-9	3160-10	-10 AFT18855		e ACO/400	NPS72-1	None	None

Antenna MT-483003/N

TX at 5740 MHz

Frequency	Reading	Detector	Ant.	Amp.	Ant. Pol.	Ant. Factor	Pre-Amp	Insert. Loss	D. C. F.	Net	Limit @3m	Margin
MHz	dB(µV)	P/A/Q	#	#	H/V	dB(1/m)	dB	dB	dB	$dB(\mu V/m)$	dB(µV/m)	dB
11480	36.8	Ave.	14	10	V	40.7	39.9	1.4	-9.5	29.5	54.0	-24.5
11480	36.6	Ave.	14	10	Н	40.7	39.9	1.4	-9.5	29.3	54.0	-24.7
22960	24.2*	Ave.	21	13	V	40.4	23.3	2.2	-9.5	34.0	54.0	-20.0
22960	24.2*	Ave.	21	13	Н	40.4	23.3	2.2	-9.5	34.0	54.0	-20.0

TX at 5768 MHz

Frequency	Reading	Detector	Ant.	Amp.	Ant. Pol.	Ant. Factor	Pre-Amp	Insert. Loss	D. C. F.	Net	Limit @3m	Margin
MHz	dB(µV)	P/A/Q	#	#	H/V	dB(1/m)	dB	dB	dB	$dB(\mu V/m)$	$dB(\mu V/m)$	dB
11536	36.5	Ave.	14	10	V	41.2	39.7	1.5	-9.5	30.0	54.0	-24.0
11536	36.5	Ave.	14	10	Н	41.9	39.7	1.5	-9.5	30.7	54.0	-23.3
23072	24.2*	Ave.	21	13	V	40.4	23.3	2.2	-9.5	34.0	54.0	-20.0
23072	24.2*	Ave.	21	13	Н	40.4	23.3	2.2	-9.5	34.0	54.0	-20.0

TX at 5810 MHz

Frequency	Reading	Detector	Ant.	Amp.	Ant. Pol.	Ant. Factor	Pre-Amp	Insert. Loss	D. C. F.	Net	Limit @3m	Margin
MHz	dB(µV)	P/A/Q	#	#	H/V	dB(1/m)	dB	dB	dB	$dB(\mu V/m)$	$dB(\mu V/m)$	dB
11620	37.0	Ave.	14	10	V	41.2	39.7	1.5	-9.5	30.5	54.0	-23.5
11620	36.9	Ave.	14	10	Н	41.9	39.7	1.5	-9.5	31.1	54.0	-22.9

Notes: a) D.C.F.:Distance Correction Factor

b) Insert. Loss (dB) = Cable A + Cable B + Cable C.

c) Net (dB) = Reading + Antenna Factor - Pre-amp + Insert. Loss

d) Negative signs (-) in Margin column signify levels below the limits.

e) All other emissions not reported are below the equipment noise floor which is at least 10 dB below the limits.

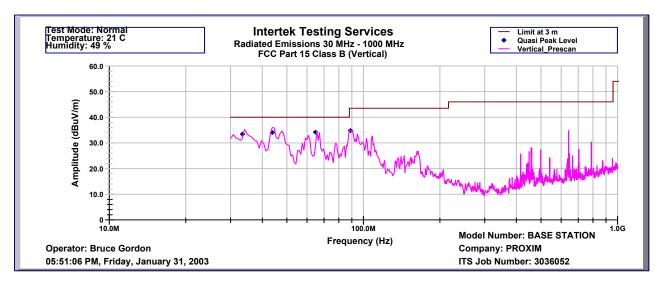
f) * Noise floor reading

FCC ID: HZB-S58-B60C

4.7 Radiated Emissions from Digital Section of Transceiver FCC Ref: 15.109

Procedure

Radiated emission measurements were performed from 30 MHz to 1000 MHz. Spectrum Analyzer Resolution Bandwidth is 100 kHz or greater. See also section 4.6.


<u>Result</u>

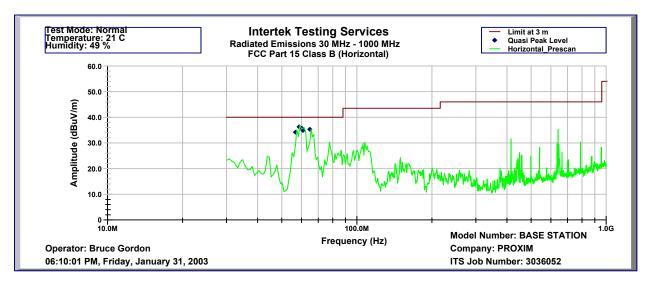
The data on the following pages list the significant emission frequencies, the limit and the margin of compliance.

The EUT passed by 3.8 dB.

FCC ID: HZB-S58-B60C

Radiated Emissions 30 MHz - 1000 MHz FCC Part 15 Class B (QP-Vertical)

Operator: Bruce Gordon ITS Job Number: 3036052 Fri Feb 14 16:30:06 2003 Model Number: BASE STATION


Company: PROXIM

Frequency	Quasi Pk FS	Limit@3	Margin	RA	AG	CF	AF	Ext. Atten
MHz	dB(uV/m)	dB(uV/m)	dB	dB(uV)	dB	dB	dB(1/m)	dB
33.44	33.4	40.0	-6.6	53.9	32.4	0.5	8.3	3
43.83	34.1	40.0	-5.9	53.9	32.4	0.6	8.9	3
64.77	34.2	40.0	-5.8	57.8	32.3	0.8	4.9	3
88.86	34.8	43.5	-8.7	55.3	32.3	0.9	7.9	3

Test Mode: Normal Temperature: 21 C Humidity: 49 %

Proxim Corporation

Intertek Testing Services Radiated Emissions 30 MHz - 1000 MHz FCC Part 15 Class B (QP-Horizontal) Operator: Bruce Gordon

ITS Job Number: 3036052

Model Number: BASE STATION

Company: PROXIM

Frequency	Quasi Pk FS	SLimit@3m1	Margin	RA	AG	CF	AF	Ext. Atten
MHz	dB(uV/m)	dB(uV/m)	dB	dB(uV)	dB	dB	dB(1/m)	dB
56.77 58.73 60.22 60.80	34.2 36.2 35.7 34.8	40 40 40 40	-5.8 -3.8 -4.3 -5.2	57.8 59.8 59.0 58.1	32.4 32.3 32.3 32.3	0.7 0.8 0.8 0.8	5.0 5.0 5.2 5.3	3 3 3 3
64.77	35.3	40 40	-3.2 -4.7	57.5	32.3	0.8	6.3	3

Test Mode: Normal Temperature: 21 C Humidity: 49 %

Proxim Corporation

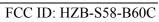
FCC ID: HZB-S58-B60C

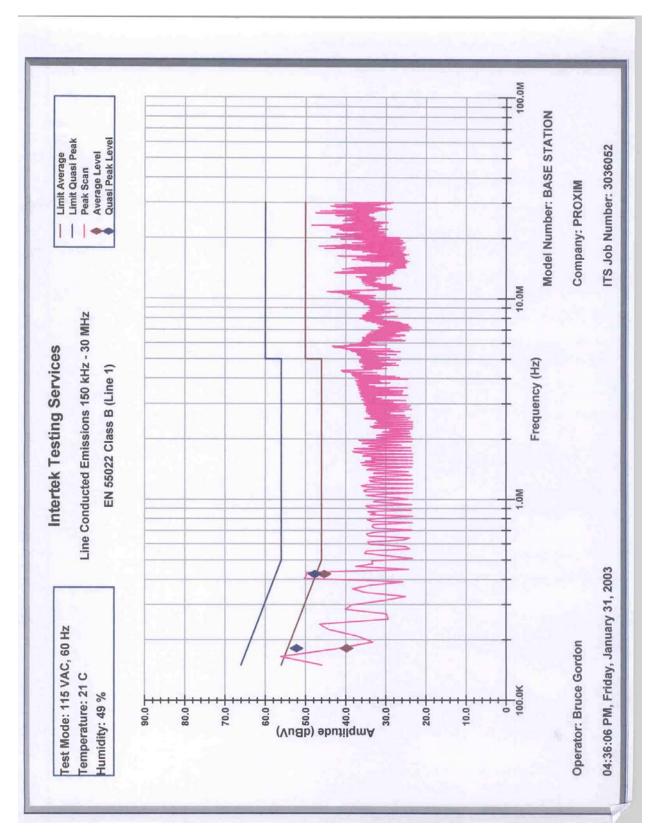
4.8 Radiated Emissions from Receiver Section of Transceiver (L.O. Radiation) FCC Ref: 15.109, 15.111

Not required - EUT operation above 960 MHz only.

1365 Adams Court Menlo Park, CA 94025

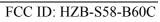
FCC ID: HZB-S58-B60C

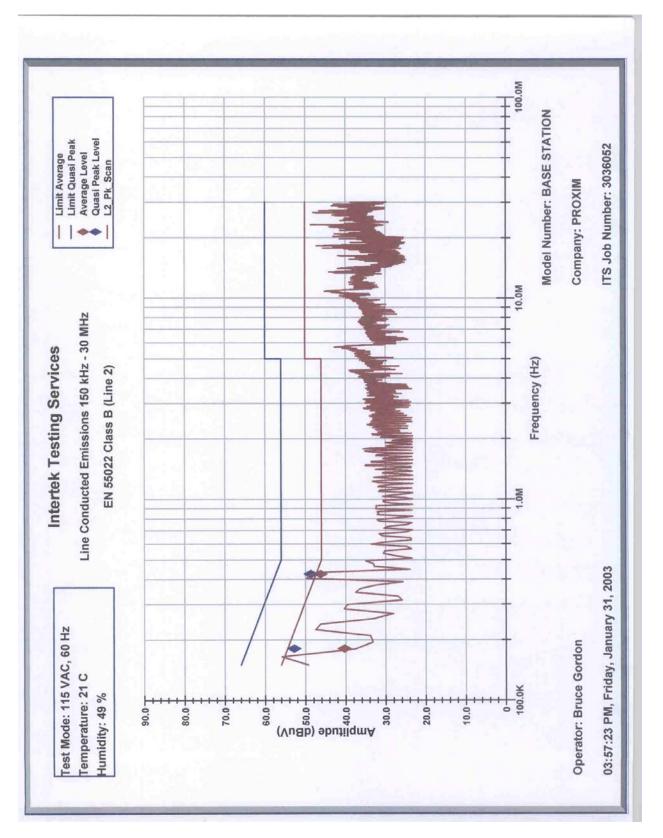

4.9 AC Line Conducted Emission FCC Rule 15.207:


AC line conducted emission test was performed according the ANSI C63.4 standard. The EUT was connected to AC Line through the LISNs.

For the test result, see attached plots. The EUT passed by 1.9 dB.

1365 Adams Court Menlo Park, CA 94025





ruce Gordon , Friday, January Pk Level Av L (dBuV) (dBu 56.1 39 46.5 50.3 45 44.6 44.6 44.8 44.8 44.8 44.8 43.3 43.3 45 45.2 45.2 45.2 45 45.2 45.2 45.3 45 45.2 45.2 45.3 45 45.2 45.2 45.3 45	31, 2003 evel 2P Level Av V) (dBuV) (d .8 52.3 .3 47.7	4 Av Limit ((dBuV) (dBuV) 55.6 55.1 55.1 53.4 48.8 48.8 48.1 50.0 50.0 50.0 50.0 50.0	5 QP Limit (dBuV) (65.6 65.1 65.1 63.4 58.1 58.1 58.1 60.0 60.0 60.0 60.0 60.0 60.0	Model Number: BASE STATION ITS Job Number: 3036052 Company: PROXIM
1 Pk Level (dBuV) 56.1 56.1 56.3 46.5 50.3 44.6 44.6 44.6 44.8 44.8 44.8 43.3 43.3 43.3 43.3 43.3		4 Av Limit (dBuV) 55.6 55.1 55.1 53.4 48.8 48.1 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50	5 QP Limit (dBuV) 65.6 65.1 63.4 58.8 58.1 63.4 60.0 60.0 60.0 60.0 60.0 60.0 60.0	
<pre>Pk Level (dBuV) 56.1 56.1 46.5 50.3 44.6 44.6 44.8 43.3 43.3 43.3 43.3 43.3 43.3 45.0 45.0 45.0</pre>		Av Limit (dBuV) 55.6 55.1 55.1 53.4 48.1 48.1 48.1 50.0 50.0 50.0 50.0 50.0 50.0 50.0	QP Limit (dBuV) 65.6 65.1 63.4 58.1 58.1 60.0 60.0 60.0 60.0 60.0 60.0 60.0	
(dBuV) (dBu 56.1 39 46.5 739 46.5 43.3 45 43.3 45 44.6 44.6 44.6 44.6 44.6 44.6 44.6 44.6	(dBuV) 52.	(dBuV) 55.6 55.1 53.4 48.1 48.1 48.1 50.0 50.0 50.0 50.0 50.0 50.0 50.0	(dBuV) 65.6 65.1 63.4 58.1 58.1 58.1 60.0 60.0 60.0 60.0 60.0 60.0	
56.1 39 46.5 39 46.5 46 50.3 45 44.6 44.6 44.6 44.6 44.6 44.6 44.6 44.6 43.3 45.2 44.6 43.3 43.3 43.3 43.3 43.3 43.3 43.3 43.3 43.3 43.3 45.0	.3 47.	55.6 55.1 53.4 48.8 48.1 48.1 50.0 50.0 50.0 50.0 50.0 50.0	65.6 65.1 65.1 63.4 58.8 58.8 58.1 60.0 60.0 60.0 60.0 60.0 60.0	
46.5 39 46.5 46.5 50.3 45.2 44.6 44.6 45.2 45.2 44.6 44.6 45.2 45.2 43.3 45.4 43.3 45.2 43.3 43.3 43.3 43.5 43.3 43.5 43.3 45.0	.3 47.	55.1 53.4 48.8 48.1 50.0 50.0 50.0 50.0 50.0 50.0 50.0	65.1 63.4 58.8 58.1 60.0 60.0 60.0 60.0 60.0 60.0	
46.5 50.3 43.3 44.6 44.6 44.6 44.6 44.6 44.6 44	3 47.	53.4 48.8 48.1 50.0 50.0 50.0 50.0 50.0 50.0	63.4 58.1 58.1 58.1 60.0 60.0 60.0 60.0 60.0 60.0	
50.3 45.2 44.6 44.6 45.2 44.6 46.6 44.6 43.3 43.3 43.5 43.3 43.5 43.3 43.5 43.3 43.3 45.0	. 47.	48.8 48.1 50.0 50.0 50.0 50.0 50.0 50.0	58.8 58.1 60.0 60.0 60.0 60.0 60.0 60.0	
45.2 44.6 44.6 45.2 44.6 44.6 44.6 44.6 43.3 43.3 43.5 43.5 43.3 43.3 43.3 43.3	3 47.	48.1 50.0 50.0 50.0 50.0 50.0	58.1 60.0 60.0 60.0 60.0 60.0 60.0	
		50.0 50.0 50.0 50.0	60.0 60.0 60.0 60.0 60.0 60.0	
N N N N		50.0 50.0 50.0 50.0	60.0 60.0 60.0 60.0 60.0	
N N N N		50.0 50.0 50.0	60.0 60.0 60.0	
N N N		50.0 50.0 50.0	60.0 60.0 60.0	
N N		50.0	60.0 60.0 60.0	
N		50.0	60.0	
N			60.0	
		50.0		
		50.0	60.0	
		50.0	60.0	
		50.0	60.0	
		50.0	60.0	
23.14942 MHz 48.4		50.0	60.0	
26.49262 MHz 46.7		50.0	60.0	
26.55232 MHz 46.2		50.0	60.0	
26.61202 MHz 47.5		50.0	60.0	
27.16425 MHz 46.2		50.0	60.0	
8.70152 MHz 43.8		50.0	60.0	
Test Mode: 115 VAC, 60 Hz				
C . a				
0/0				

1365 Adams Court Menlo Park, CA 94025

Proxim Corporation

FCC ID: HZB-S58-B60C

Intertek Ttesting Services Line Conducted Emissions 150 kHz - 30 MHz FN 55022 Class P (Tine 2)	anuarv 31, 2003	2 3 4 5	Pk Level Av Level QP Level Av Limit QP Limit	uV) ((dBuV) ((dBuV) ((dBuV)	55.6	40.3 52.8 55.1		48.8			50.0		47.1 50.0 60.0		50.0	50.0	50.0	50.0	44.9 50.0 60.0	50.0	50.0	46.1 50.0 60.0		5 50.0	43.9 50.0 60.0	1 50.0	VAC, 60 Hz	0			
	Operator: Bruce Gordon 04:20:53 PM, Fridav, J		Frequency	MHZ	164.925 KHz	181.13 KHz	224.625 KHz	403.725 KHz	425.13 KHz	10.79152 MHz	3.47803 MHz	17.71672 MHz	18.22418 MHz	18.28388 MHz	18.34358 MHz	22.4778 MHz	22.5972 MHz	22.8957 MHz	23.0748 MHz	23.14942 MHz	26.49262 MHz	26.55232 MHz	26.61202 MHz	1.1	27.35828 MHz	28.70152 MHz	Test Mode: 115	Temperature: 21	Humidity: 49		

Proxim Corporation

FCC ID: HZB-S58-B60C

5.0 List of test Equipment

Equipment	Manufacturer	Model/Type	Serial #	Cal Int	Cal Due
BI-Log Antenna	EMCO	3143	9509-1160	12	9/19/03
Horn Antenna	EMCO	3115	8812-3049	12	4/03/03
Horn Antenna	EMCO	3160-09	ITS51	#	#
Horn Antenna	EMCO	3160-10	ITS52	#	#
Pre-Amplifier	ITS	ITSPA-1	44156	12	4/16/03
Pre-amplifier	CTT	ACO/400	47526	12	10/5/03
Pre-Amplifier	Avantek	AFT-18855	8723H705	12	10/5/03
Power Meter	Hewlett Packard	8900D	3607U00673	12	1/02/04
Spectrum Analyzer	Hewlett Packard	8566B	2416A00317	12	4/06/03
w/85650 QP Adapter			2043A00251		
Spectrum Analyzer Display	Hewlett Packard	85662B	2403A06796	12	4/06/03
w/85650 QP Adapter					
RF Filter Section	Hewlett Packard	85460A	3448A00267	12	7/16/03
EMI Receiver	Hewlett Packard	8546A	3710A00373	12	7/16/03
Spectrum Analyzer w/8650	Hewlett Packard	8568B	1912A0053	12	11/20/03
QP Adapter (LC Room)			2521A01021		
Spectrum Analyzer	Hewlett Packard	8565E	-	12	3/30/03
LISN	FCC	FCC-LISN-50-50-M-H	2012	12	1/23/04
Pulse Limiter	Hewlett Packard	11947A	2820A00184	12	9/3/03

No Calibration Required

FCC ID: HZB-S58-B60C

6.0 **Document History**

Revision/ Job Number	Writer Initials	Date	Change
1.0 / 3036184	SS	February 5, 2002	Original document
	DC	April 20, 2002	Company Name

7.0 Appendix

See separate file

1365 Adams Court Menlo Park, CA 94025

FCC ID: HZB-S58-B60C