1. MAXIMUM PERMISSIBLE EXPOSURE

FCC RULES

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m) Power density (mW/cm ²)		Averaging time (minutes)
(A) Lim	its for Occupational	/Controlled Exposu	res	
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842/f 61.4	1.63 4 <i>.89/</i> f 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 6 8
(B) Limits	for General Populati	on/Uncontrolled Exp	posure	
0.3–1.34 1.34–30	614 824 <i>1</i> f	1.63 2.19/f	*(100) *(180/f²)	30 30

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

TABLE 1-LIN	VITS FOR MAXIMU	M PERMISSIBLE	EXPOSURE (N	IPE)—Continued
-------------	-----------------	---------------	-------------	----------------

Frequency range (MHz)	Electric field Magnetic field strength strength (V/m) (A/m)		Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500 1500–100,000	27.5	0.073	0.2 f/1500 1.0	30 30 30

f = frequency in MHz
* = Plane-wave equivalent power density NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occu-pational/controlled limits apply provided he or she is made aware of the potential for exposure. NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be ex-posed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

CALCULATIONS

Given

and

 $E = \sqrt{(30 * P * G)} / d$

S = E ^ 2 / 3770

where

E = Field Strength in Volts/meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power Density in milliwatts/square centimeter

Combining equations, rearranging the terms to express the distance as a function of the remaining variables, changing to units of Power to mW and Distance to cm, and substituting the logarithmic form of power and gain yields:

 $d = 0.282 * 10 ^ ((P + G) / 20) / \sqrt{S}$

where

d = MPE distance in cm P = Power in dBm G = Antenna Gain in dBi S = Power Density Limit in mW/cm^2

Rearranging terms to calculate the power density at a specific distance yields

 $S = 0.0795 * 10 \wedge ((P + G) / 10) / (d^2)$

The power density in units of mW/cm² is converted to units of W/m² by multiplying by a factor of 10.

<u>RESULTS</u>

Antenna Type	Band	MPE	Output	Antenna	Power	Limit
		Distance	Power	Gain	Density	
		(cm)	(dBm)	(dBi)	(mW/cm^2)	(mW/cm^2)
Omni External	5.4 GHz	100.0	23.95	5.00	0.01	1.00
Omni External	5.4 GHz	100.0	20.00	10.00	0.01	1.00
Sector External	5.4 GHz	100.0	18.00	12.00	0.01	1.00
Sector External	5.4 GHz	100.0	13.00	17.00	0.01	1.00
Panel External	5.4 GHz	100.0	23.00	7.00	0.01	1.00
Panel External	5.4 GHz	100.0	1.80	28.20	0.01	1.00
Parabolic External	5.4 GHz	100.0	1.90	28.10	0.01	1.00
Parabolic External	5.4 GHz	100.0	-3.40	33.40	0.01	1.00