

DFS PORTION OF FCC CFR47 PART 15 SUBPART E

CERTIFICATION TEST REPORT FOR

ORICONP AP-700 ACCESS POINT

MODEL NUMBER: AP-AG-AT-01

FCC ID: HZB-AP700

REPORT NUMBER: 07U11098-1, REVISION B

ISSUE DATE: JUNE 25, 2007

Prepared for PROXIM WIRELESS 2115 O NEL DRIVE SAN JOSE, CA 95131, USA

Prepared by

COMPLIANCE CERTIFICATION SERVICES
47173 BENICIA STREET
FREMONT, CA 94538, U.S.A.

TEL: (510) 771-1000 FAX: (510) 661-0888

Revision History

	Issue		
Rev.	Date	Revisions	Revised By
	6/13/07	Initial Issue	M. Heckrotte
В	6/25/07	Corrected company address.	S. Radecki

DATE: JUNE 25, 2007

TABLE OF CONTENTS

1.	ATTES	TATION OF TEST RESULTS	4
2.	TEST N	METHODOLOGY	5
3.	FACIL	TTIES AND ACCREDITATION	5
4.	CALIB	RATION AND UNCERTAINTY	5
	4.1. ME	ASURING INSTRUMENT CALIBRATION	5
	4.2. ME	ASUREMENT UNCERTAINTY	5
5.	LIMITS	S AND RESULTS	6
	5.1. DY	NAMIC FREQUENCY SELECTION	6
	5.1.1.	LIMITS	6
	5.1.2.	TEST AND MEASUREMENT SYSTEM	
	5.1.3.	DESCRIPTION OF EUT	13
	5.1.4.	TEST CHANNEL AND METHOD	
	5.1.5.	PLOTS OF RADAR WAVEFORM, AND WLAN TRAFFIC	14
	5.1.6.	CHANNEL AVAILABILITY CHECK TIME	21
	5.1.7.	CHANNEL MOVE TIME AND CHANNEL CLOSING TRANSMISSION TIME	26
	5.1.8.	NON-OCCUPANCY PERIOD.	31
	5.1.9.	DETECTION BANDWIDTH	32
	5.1.10.	IN-SERVICE MONITORING	34
6	SETUP	PHOTOS	41

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: PROXIM WIRELESS

2115 O NEL DRIVE

SAN JOSE, CA 95131, USA

EUT DESCRIPTION: ORICONP AP-700 ACCESS POINT

MODEL: AP-AG-AT-01

SERIAL NUMBER: 07UT19560028

DATE TESTED: JUNE 4-7, 2007

APPLICABLE STANDARDS

STANDARD TEST RESULTS

FCC PART 15 SUBPART E (DFS REQUIREMENTS)

NO NON-COMPLIANCE NOTED

DATE: JUNE 25, 2007

FCC ID: HZB-AP700

Compliance Certification Services, Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved & Released For CCS By:

Tested By:

MICHAEL HECKROTTE

ENGINEERING MANAGER

MH

COMPLIANCE CERTIFICATION SERVICES

YOBI ZHOU EMC ENGINEER

COMPLIANCE CERTIFICATION SERVICES

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 15 and FCC 06-96 APPENDIX "COMPLIANCE MEASUREMENT PROCEDURES FOR UNLICENSED-NATIONAL INFORMATION INFRASTRUCTURE DEVCIES OPERATING IN THE 5250-5350 MHz AND 5470-5725 MHz BANDS INCORPORATING DYNAMIC FREQUENCY SELECTION".

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Radiated Emission, 30 to 200 MHz	+/- 3.3 dB
Radiated Emission, 200 to 1000 MHz	+4.5 / -2.9 dB
Radiated Emission, 1000 to 2000 MHz	+4.5 / -2.9 dB
Power Line Conducted Emission	+/- 2.9 dB

Uncertainty figures are valid to a confidence level of 95%.

DATE: JUNE 25, 2007

5. LIMITS AND RESULTS

5.1. DYNAMIC FREQUENCY SELECTION

5.1.1. LIMITS

§15.407 (h) and FCC 06-96 APPENDIX "COMPLIANCE MEASUREMENT PROCEDURES FOR UNLICENSED-NATIONAL INFORMATION INFRASTRUCTURE DEVCIES OPERATING IN THE 5250-5350 MHz AND 5470-5725 MHz BANDS INCORPORATING DYNAMIC FREQUENCY SELECTION".

Table 1: Applicability of DFS requirements prior to use of a channel

Requirement	Operational Mode					
	Master	Client (without radar detection)	Client (with radar detection)			
Non-Occupancy Period	Yes	Not required	Yes			
DFS Detection Threshold	Yes	Not required	Yes			
Channel Availability Check Time	Yes	Not required	Not required			
Uniform Spreading	Yes	Not required	Not required			

Table 2: Applicability of DFS requirements during normal operation

Requirement	Operational Mode					
	Master	Client	Client			
		(without DFS)	(with DFS)			
DFS Detection Threshold	Yes	Not required	Yes			
Channel Closing Transmission Time	Yes	Yes	Yes			
Channel Move Time	Yes	Yes	Yes			

DATE: JUNE 25, 2007

Maximum Transmit Power	Value
	(see note)
≥ 200 milliwatt	-64 dBm
< 200 milliwatt	-62 dBm

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Table 4: DFS Response requirement values

Parameter	Value
Non-occupancy period	30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds
Channel Closing Transmission Time	200 milliseconds +
	approx. 60 milliseconds
	over remaining 10 second
	period

The instant that the Channel Move Time and the Channel Closing Transmission Time begins is as follows:

- For the Short pulse radar Test Signals this instant is the end of the *Burst*.
- For the Frequency Hopping radar Test Signal, this instant is the end of the last radar burst generated.
- For the Long Pulse radar Test Signal this instant is the end of the 12 second period defining the radar transmission.

The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate channel changes (an aggregate of approximately 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

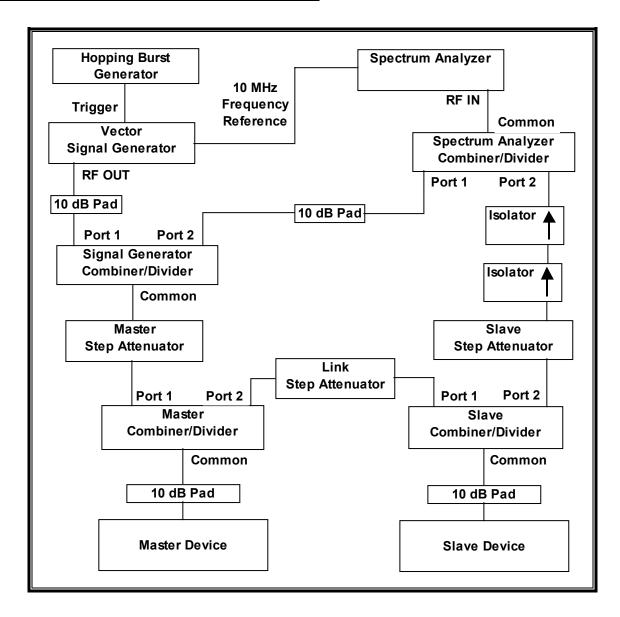
DATE: JUNE 25, 2007

Table 5 – Short Pulse Radar Test Waveforms

Tuble 5 Short Fulle Rudul Fest Waveloring								
Radar Type	Pulse Width	PRI	Pulses	Minimum	Minimum			
	(Microseconds)	(Microseconds)		Percentage of	Trials			
				Successful				
				Detection				
1	1	1428	18	60%	30			
2	1-5	150-230	23-29	60%	30			
3	6-10	200-500	16-18	60%	30			
4	11-20	200-500	12-16	60%	30			
Aggregate (Ra	Aggregate (Radar Types 1-4) 80% 120							

Table 6 - Long Pulse Radar Test Signal

Tuble of Bong Pulse Rusui Pese Signar								
Radar	Bursts	Pulses	Pulse	Chirp	PRI	Minimum	Minimum	
Waveform		per	Width	Width	(µsec)	Percentage of	Trials	
		Burst	(µsec)	(MHz)		Successful		
						Detection		
5	8-20	1-3	50-100	5-20	1000-	80%	30	
					2000			


Table 7 – Frequency Hopping Radar Test Signal

Radar	Pulse	PRI	Burst	Pulses	Hopping	Minimum	Minimum
Waveform	Width	(µsec)	Length	per	Rate	Percentage of	Trials
	(µsec)		(ms)	Нор	(kHz)	Successful Detection	
6	1	333	300	9	.333	70%	30

DATE: JUNE 25, 2007

5.1.2. TEST AND MEASUREMENT SYSTEM

CONDUCTED METHOD SYSTEM BLOCK DIAGRAM

DATE: JUNE 25, 2007

SYSTEM OVERVIEW

The short pulse and long pulse signal generating system utilizes the NTIA software. The Vector Signal Generator has been validated by the NTIA. The hopping signal generating system utilizes the CCS simulated hopping method and system, which has been validated by the DoD, FCC and NTIA. The software selects waveform parameters from within the bounds of the signal type on a random basis using uniform distribution.

The short pulse types 2, 3 and 4, and the long pulse type 5 parameters are randomized at run-time.

The hopping type 6 pulse parameters are fixed while the hopping sequence is based on the August 2005 NTIA Hopping Frequency List. The initial starting point randomized at run-time and each subsequent starting point is incremented by 475. Each frequency in the 100-length segment is compared to the boundaries of the EUT Detection Bandwidth and the software creates a hopping burst pattern in accordance with Section 7.4.1.3 Method #2 Simulated Frequency Hopping Radar Waveform Generating Subsystem of FCC 06-96 APPENDIX. The frequency of the signal generator is incremented in 1 MHz steps from F_L to F_H for each successive trial. This incremental sequence is repeated as required to generate a minimum of 30 total trials and to maintain a uniform frequency distribution over the entire Detection Bandwidth

The signal monitoring equipment consists of a spectrum analyzer set to display 8001 bins on the horizontal axis. The time-domain resolution is 2 msec / bin with a 16 second sweep time, meeting the 10 second short pulse reporting criteria. The aggregate ON time is calculated by multiplying the number of bins above a threshold during a particular observation period by the dwell time per bin, with the analyzer set to peak detection and max hold.

Should multiple RF ports be utilized for the Master and/or Slave devices (for example, for diversity or MIMO implementations), additional combiner/dividers are inserted between the Master Combiner/Divider and the pad connected to the Master Device (and/or between the Slave Combiner/Divider and the pad connected to the Slave Device). Additional pads are utilized such that there is one pad at each RF port on each EUT.

SYSTEM CALIBRATION

A 50 ohm load is connected in place of the spectrum analyzer, and the spectrum analyzer is connected in place of the master device and the signal generator is set to CW mode. The amplitude of the signal generator is adjusted to yield a level of -64 dBm as measured on the spectrum analyzer.

DATE: JUNE 25, 2007

Without changing any of the instrument settings, the spectrum analyer is reconnected to the Common port of the Spectrum Analyzer Combiner/Divider. Measure the amplitude and calculate the difference from – 64 dBm. Adjust the Reference Level Offset of the spectrum analyzer to this difference.

The spectrum analyzer displays the level of the signal generator as received at the antenna ports of the Master Device. The interference detection threshold may be varied from the calibrated value of –64 dBm and the spectrum analyzer will still indicate the level as received by the Master Device.

Set the signal generator to produce a radar waveform, trigger a burst manually and measure the level on the spectrum analyzer. Readjust the amplitude of the signal generator as required so that the peak level of the waveform is at a displayed level equal to the required or desired interference detection threshold. Separate signal generator amplitude settings are determined as required for each radar type.

ADJUSTMENT OF DISPLAYED TRAFFIC LEVEL

Establish a link between the Master and Slave, adjusting the Link Step Attenuator as needed to provide a suitable received level at the Master and Slave devices. Stream the video test file to generate WLAN traffic. Confirm that the WLAN traffic level, as displayed on the spectrum analyzer, is at lower amplitude than the radar detection threshold. For Master Device testing confirm that the displayed traffic does not include Slave Device traffic. For Slave Device testing confirm that the displayed traffic does not include Master Device traffic.

If a different setting of the Master Step Attenuator is required to meet the above conditions, perform a new System Calibration for the new Master Step Attenuator setting.

TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the DFS tests documented in this report:

TEST EQUIPMENT LIST								
Description	Manufacturer	Model	Serial Number	Cal Due				
Spectrum Analyzer 3 Hz ~ 44 GHz	Agilent / HP	E4446A	US42070220	7/29/2007				
Vector Signal Generator 250kHz-								
20GHz	Agilent / HP	E8267C	US43320336	11/2/2007				
	National							
High Speed Digital I/O Card	Instruments	PCI-6534	HA1612845	1/16/2008				

DATE: JUNE 25, 2007

CONDUCTED METHOD EUT TEST SETUP

SUPPORT EQUIPMENT

The following test and measurement equipment was utilized for the DFS tests documented in this report:

PERIPHERAL SUPPORT EQUIPMENT LIST									
Description	Description Manufacture		Model Serial Number						
	r								
AC Adapter	DELL	ADP-60NH B	MOW0552488919	DoC					
Laptop	DELL	Inspiron 1300	CN-0GD366-70166-62M-0908	QDS-BRCM1017					
AC Adapter	Targus	800-0111-001 A	032006 A	DoC					
Laptop	HP	Compaq nx6110	CNU533210L	DoC					
Slave Device	Askey	Prototype	Prorotype	N/A					

DATE: JUNE 25, 2007

5.1.3. DESCRIPTION OF EUT

DESCRIPTION OF EUT WITH RESPECT TO §15.407 (h) REQUIREMENTS

The EUT operates over the 5250 – 5350 and 5470-5725 MHz ranges.

The EUT is a Master Device.

The highest gain antenna assembly utilized with the EUT has a gain of 33.4 dBi. The lowest gain antenna assembly utilized with the EUT has a gain of 0 dBi.

The highest radiated power level is 30 dBm EIRP.

The rated output power of the Master unit is > 23 dBm (EIRP). Therefore the required interference threshold level is -64 dBm. After correction for antenna gain and procedural adjustments, the required conducted threshold at the antenna port is -64 + 0 + 1 = -63 dBm.

The calibrated conducted DFS Detection Threshold level is set to -64 dBm. The tested level is lower than the required level hence it provides margin to the limit.

The EUT incorporates a 50-ohm coaxial antenna port that is connected to the test system to perform conducted tests.

The Slave device associated with the EUT during these tests does not have radar detection capability.

WLAN traffic is generated by streaming the video file TestFile.mp2 "6 ½ Magic Hours" from the Master to the Slave in full motion video mode using the media player with the V2.61 Codec package.

TPC is required since the maximum EIRP is greater than 500 mW (27 dBm).

The EUT utilizes the 802.11a architecture with a 20 MHz nominal channel bandwidth.

The software installed in the access point is revision 3.6.0.

Test results show that the EUT requires 43.21 seconds to complete its initial power-up cycle.

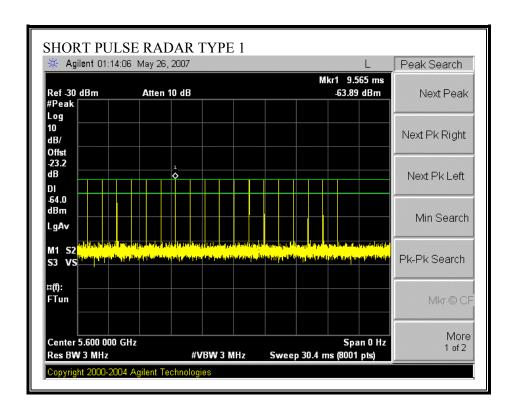
MANUFACTURER'S STATEMENT REGARDING UNIFORM CHANNEL SPREADING

This statement is in a separate document.

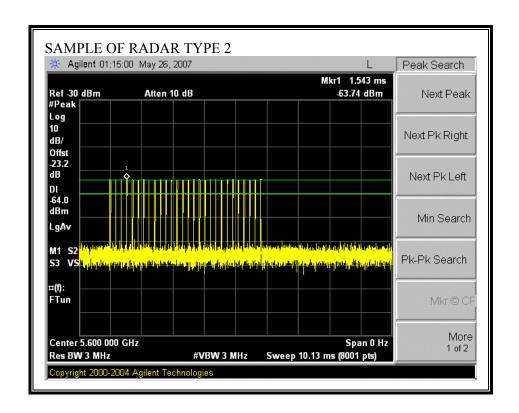
MANUFACTURER'S STATEMENT REGARDING TPC

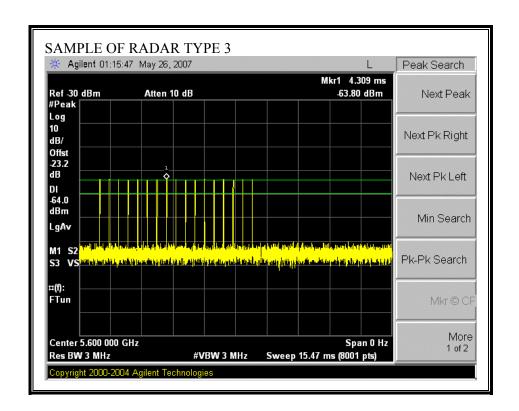
This statement is in a separate document.

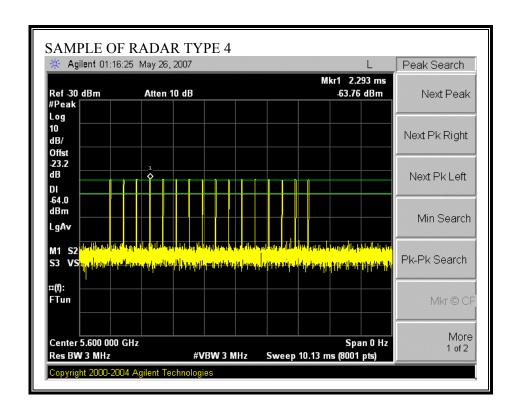
Page 13 of 13

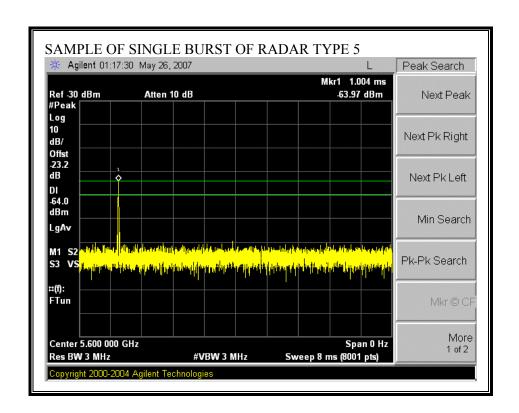

DATE: JUNE 25, 2007

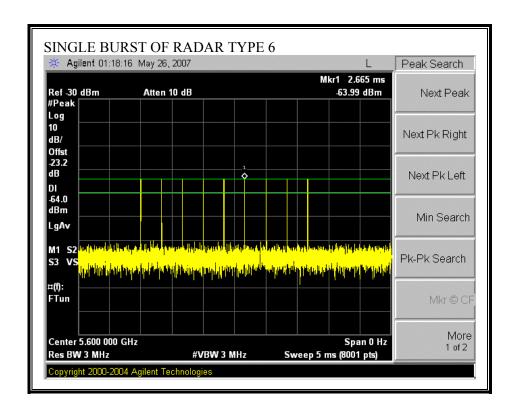
5.1.4. TEST CHANNEL AND METHOD

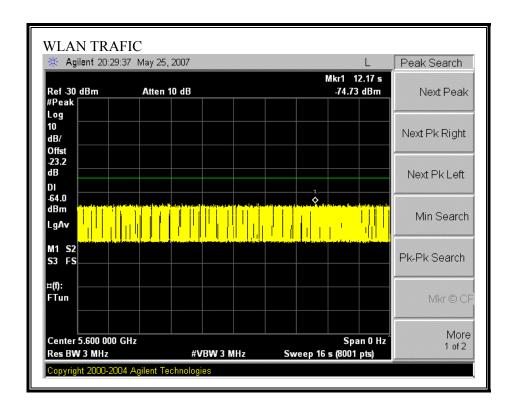

All tests were performed at a channel centre frequency of 5600 MHz. Measurements were performed using conducted test methods.


5.1.5. PLOTS OF RADAR WAVEFORM, AND WLAN TRAFFIC


PLOTS OF RADAR WAVEFORMS




DATE: JUNE 25, 2007



PLOT OF WLAN TRAFFIC FROM MASTER

DATE: JUNE 25, 2007

5.1.6. CHANNEL AVAILABILITY CHECK TIME

TEST PROCEDURE TO DETERMINE INITIAL POWER-UP CYCLE TIME

A link was established on channel, then the EUT was rebooted. The time from the cessation of traffic to the re-initialization of traffic was measured as the time required for the EUT to complete the total power-up cycle. The time to complete the initial power-up period is 60 seconds less than this total power-up time.

TEST PROCEDURE FOR TIMING OF RADAR BURST

With a link established on channel, the EUT was rebooted. A radar signal was triggered within 0 to 6 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

The Non-Occupancy list was cleared. With a link established on channel, the EUT was rebooted. A radar signal was triggered within 54 to 60 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

DATE: JUNE 25, 2007

CHANNEL AVAILABILITY CHECK TIME RESULTS

No non-compliance noted:

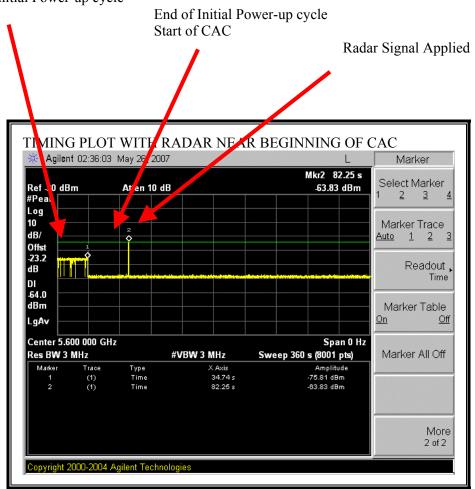
Time required for EUT to complete the initial power-up cycle
(sec)
43.21

If a radar signal is detected during the channel availability check then the PC controlling the EUT displays a message stating that radar was detected.

Timing of Radar Burst	Display on Control Computer	Spectrum Analyzer Display
No Radar Triggered	EUT marks Channel as active	Transmissions begin on channel after completion of the initial power-up cycle and the 60 second CAC
Within 0 to 6 second window	EUT indicates radar detected EUT does not display any radar parameter values	No transmissions on channel
Within 54 to 60 second window	EUT indicates radar detected EUT does not display any radar parameter values	No transmissions on channel

DATE: JUNE 25, 2007

TIMING PLOT WITHOUT RADAR DURING CAC

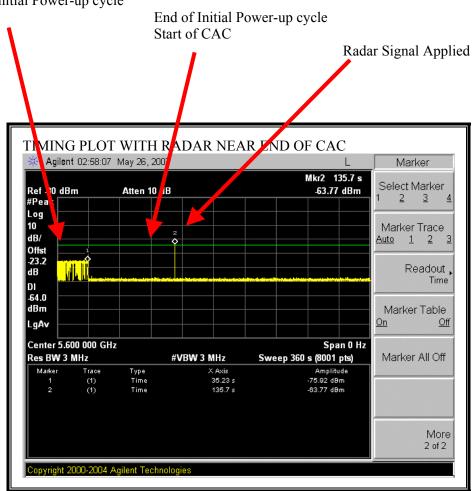

AP is rebooted Traffic ceases Start of Initial Power-up cycle End of Initial Power-up cycle Start of CAC End of CAC Traffic is Initiated MING PLOT WITHOU RADAR – NORMAL POWER-ON CYCLE Agilent 20:36:07 May 25, 2007 Marker Mkr3 61.32 s Select Marker 0 dBm Atten 10 dB -88.94 dBm Ref -2 <u>3</u> #Pea Log 10 Marker Trace dB/ <u>Auto 1 2</u> Offst -23.2 dB Readout, Time DI -64.0 dBm Marker Table <u>On</u> LgAv Off Center 5.600 000 GHz Span 0 Hz Res BW 3 MHz #VBW 3 MHz Marker All Off Sweep 180 s (8001 pts) Marker Type Time 18.09 s (1) (1) 121.3 s 61.32 s -78.36 dBm -88.94 dBm Time More 2 of 2

The initial power-up cycle requires (121.3 - 18.09 - 60) = 43.21 seconds.

DATE: JUNE 25, 2007

TIMING PLOT WITH RADAR NEAR BEGINNING OF CAC

AP is rebooted Traffic ceases Start of Initial Power-up cycle


The radar signal is applied (82.25 - 34.74) = 47.51 seconds after reboot, which is (47.51 - 43.21) = 4.3 seconds after the start of the CAC period.

No EUT transmissions were observed after the radar signal.

DATE: JUNE 25, 2007

TIMING PLOT WITH RADAR NEAR END OF CAC

AP is rebooted Traffic ceases Start of Initial Power-up cycle

The radar signal is applied (135.7 - 35.23) = 100.47 seconds after reboot, which is (100.47 - 43.21) = 57.26 seconds after the start of the CAC period.

No EUT transmissions were observed after the radar signal.

DATE: JUNE 25, 2007

5.1.7. CHANNEL MOVE TIME AND CHANNEL CLOSING TRANSMISSION TIME

DATE: JUNE 25, 2007

FCC ID: HZB-AP700

GENERAL REPORTING NOTES

The reference marker is set at the end of last radar pulse.

SHORT PULSE RADAR REPORTING NOTES

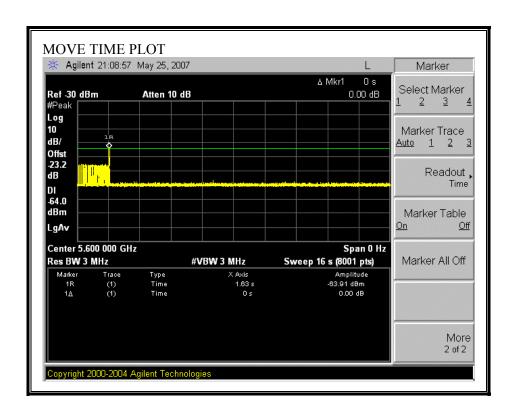
The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

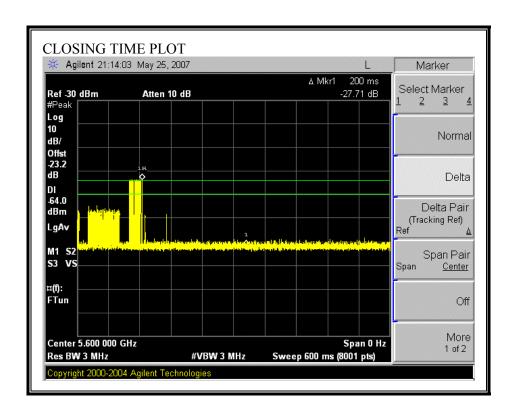
The observation period over which the aggregate time is calculated Begins at (Reference Marker + 200 msec) and Ends no earlier than (Reference Marker + 10 sec).

,


LONG PULSE RADAR REPORTING NOTES

The delta marker is set to 10 seconds after the end of the radar pulse.

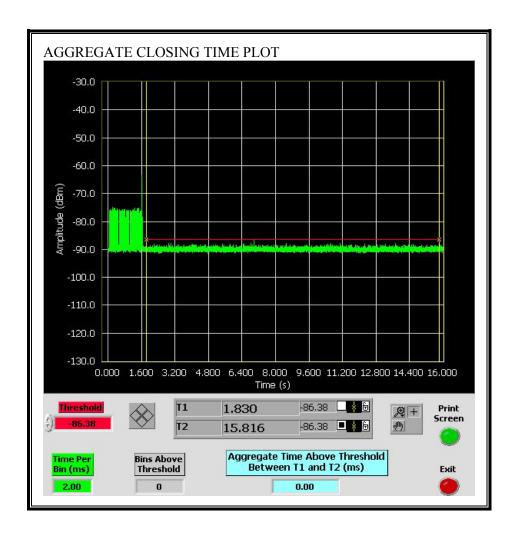
CHANNEL MOVE TIME RESULTS


No non-compliance noted:

Channel Move Time	Limit
(s)	(s)
0.000	10

DATE: JUNE 25, 2007

CHANNEL CLOSING TIME RESULTS

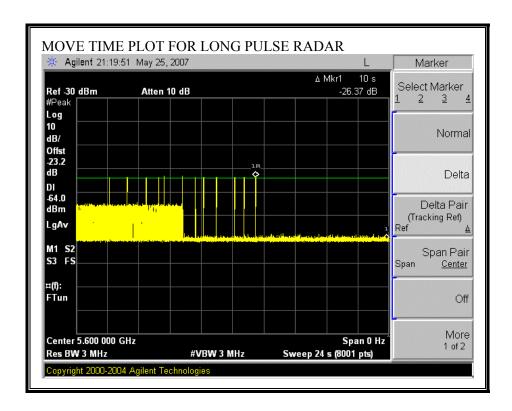


DATE: JUNE 25, 2007

No non-compliance noted:

Aggregate Transmission Time	Limit	Margin
(ms)	(ms)	(ms)
0.00	60	60.00

No transmissions are observed during the aggregate monitoring period.

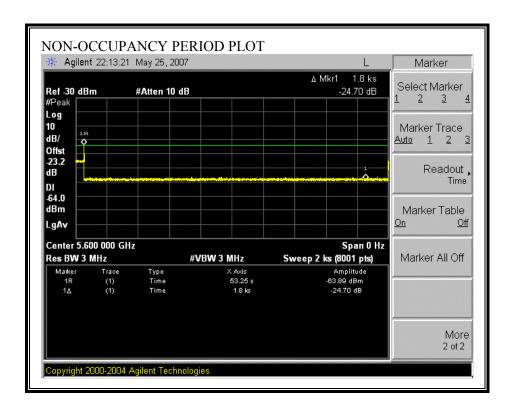


DATE: JUNE 25, 2007

LONG PULSE CHANNEL MOVE TIME RESULTS

No non-compliance noted:

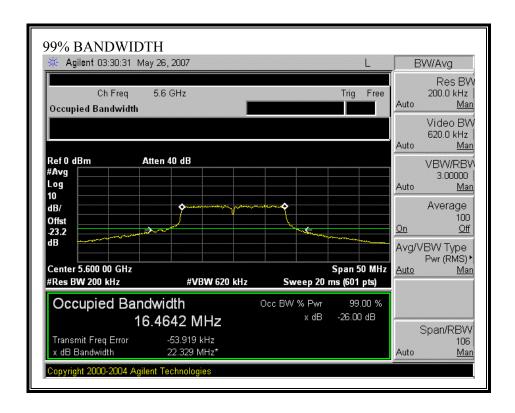
The traffic ceases prior to 10 seconds after the end of the radar waveform.



DATE: JUNE 25, 2007

5.1.8. NON-OCCUPANCY PERIOD

RESULTS


No non-compliance noted: No EUT transmissions were observed on the test channel during the 30 minute observation time.

DATE: JUNE 25, 2007

5.1.9. DETECTION BANDWIDTH

REFERENCE PLOT OF 99% POWER BANDWIDTH

RESULTS

No non-compliance noted:

FL	FH	Detection	99% Power	Ratio of	Minimum
		Bandwidth	Bandwidth	Detection BW to	Limit
				99% Power BW	
(MHz)	(MHz)	(MHz)	(MHz)	(%)	(%)
5590	5608	18	16.464	109.3	80

DATE: JUNE 25, 2007

DETECTION BANDWIDTH PROBABILITY

	width Test Results			
-CC Type 1 Wa	veform: 1 us Pulse V			Burst
Frequency	Number of Trials	Number Detected	Detection	Mark
(MHz)			(%)	
5589	10	8	80	
5590	10	10	100	FL
5591	10	10	100	
5592	10	9	90	
5593	10	10	100	
5594	10	10	100	
5595	10	10	100	
5596	10	10	100	
5597	10	10	100	
5598	10	10	100	
5599	10	10	100	
5600	10	10	100	
5601	10	10	100	
5602	10	10	100	
5603	10	10	100	
5604	10	10	100	
5605	10	10	100	
5606	10	10	100	
5607	10	10	100	
5608	10	10	100	FH
5609	20	15	75	

5.1.10. IN-SERVICE MONITORING

RESULTS

No non-compliance noted:

FCC Radar Test Summary						
Signal Type	Number of Trials	Detection	Limit	Pass/Fail		
		(%)	(%)			
FCC TYPE 1	30	96.67	60	Pass		
FCC TYPE 2	30	96.67	60	Pass		
FCC TYPE 3	30	93.33	60	Pass		
FCC TYPE 4	30	100.00	60	Pass		
Aggregate		96.67	80	Pass		
FCC TYPE 5	30	93.33	80	Pass		
FCC TYPE 6	38	92.11	70	Pass		

DATE: JUNE 25, 2007

TYPE 1 DETECTION PROBABILITY

nta Sheet for FCC Fixed Radar Type 1			
	28 us PRI, 18 Pulses per Burst		
Trial	Successful Detection		
	(Yes/No)		
1	Yes		
2	Yes		
3	Yes		
4	Yes		
5	Yes		
6	Yes		
7	Yes		
8	Yes		
9	Yes		
10	Yes		
11	Yes		
12	Yes		
13	Yes		
14	Yes		
15	Yes		
16	No		
17	Yes		
18	Yes		
19	Yes		
20	Yes		
21	Yes		
22	Yes		
23	Yes		
24	Yes		
25	Yes		
26	Yes		
27	Yes		
28	Yes		
29	Yes		
30	Yes		

TYPE 2 DETECTION PROBABILITY

Waveform	Pulse Width	PRI	ype 2 Pulses Per Burst	Successful Detection
	(us)	(us)		(Yes/No)
2001	2.8	212.00	28	Yes
2002	1.5	185.00	26	Yes
2003	2.4	156.00	25	Yes
2004	2.7	176.00	28	Yes
2005	1.4	159.00	23	Yes
2006	1.1	172.00	24	Yes
2007	1.9	230.00	25	Yes
2008	3.4	228.00	23	Yes
2009	2.7	206.00	26	Yes
2010	4.5	199.00	29	Yes
2011	1	166.00	29	Yes
2012	4.2	208.00	29	Yes
2013	1.1	163.00	27	Yes
2014	4.8	209.00	27	Yes
2015	3.1	197.00	25	Yes
2016	2.3	150.00	25	Yes
2017	1.5	226.00	28	Yes
2018	1.3	162.00	23	Yes
2019	2.6	198.00	29	Yes
2020	2.4	223.00	26	Yes
2021	3.7	159.00	27	Yes
2022	1.4	205.00	25	No
2023	4.3	163.00	23	Yes
2024	2.9	151.00	23	Yes
2025	2.7	153.00	29	Yes
2026	3.7	186.00	29	Yes
2027	4.4	214.00	29	Yes
2028	1.2	155.00	26	Yes
2029	4.8	166.00	23	Yes
2030	1.8	177.00	28	Yes

TYPE 3 DETECTION PROBABILITY

Waveform	or FCC Short Pu Pulse Width	PRI	Pulses Per Burst	Successful Detection
wavelorm	(us)	(us)	Puises Per Durst	(Yes/No)
3001	9.9	423.00	18	Yes
3002	7.2	420.00	16	Yes
3002	7.8	302.00	18	Yes
3004	8.2	347.00	18	Yes
3005	9.5	400.00	16	Yes
3006	8.8	256.00	17	Yes
3007	8.2	305.00	16	Yes
3008	9.1	254.00	17	Yes
3009	7.4	312.00	16	Yes
3010	6.1	265.00	18	Yes
3011	6.2	297.00	17	Yes
3012	6.9	489.00	16	Yes
3013	7.3	457.00	17	Yes
3014	8.5	400.00	17	Yes
3015	7.1	281.00	17	Yes
3016	8.9	434.00	18	Yes
3017	8.5	492.00	17	Yes
3018	5.4	362.00	17	Yes
3019	6.3	270.00	16	Yes
3020	9.4	314.00	16	No
3021	5.4	309.00	16	Yes
3022	9.9	344.00	16	Yes
3023	7.9	467.00	16	Yes
3024	6.2	348.00	17	Yes
3025	7.1	395.00	16	Yes
3026	5.5	374.00	17	No
3027	7.8	309.00	18	Yes
3028	9.9	301.00	17	Yes
3029	8.6	273	17	Yes
3030	7.7	298	18	Yes

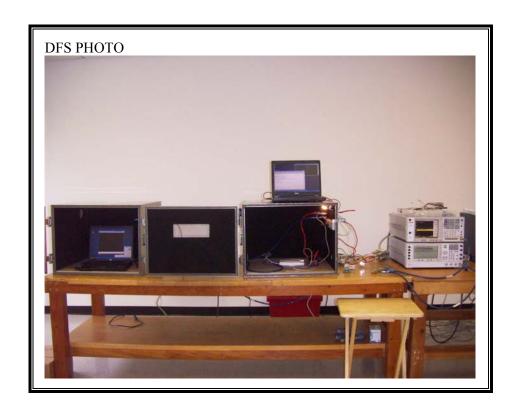
TYPE 4 DETECTION PROBABILITY

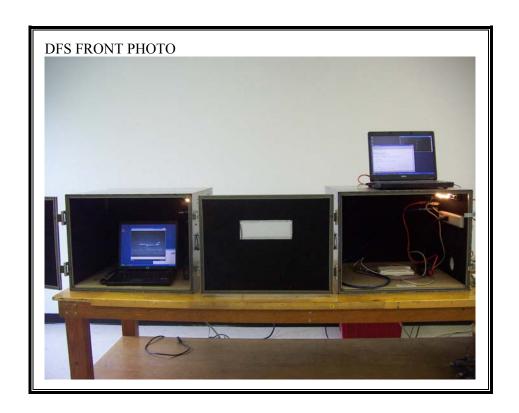
Waveform	or FCC Short Pu Pulse Width	PRI	Pulses Per Burst	Successful Detection
wavelollii	(us)	(us)	ruises rei buist	(Yes/No)
4001	10.6	397.00	16	Yes
4002	11.1	491.00	15	Yes
4003	14.8	488.00	14	Yes
4004	16.9	384.00	13	Yes
4005	15.1	323.00	14	Yes
4006	13.2	424.00	13	Yes
4007	18.5	410.00	13	Yes
4008	11	406.00	15	Yes
4009	10.1	288.00	12	Yes
4010	12.8	498.00	15	Yes
4011	17.5	487.00	14	Yes
4012	17.2	379.00	12	Yes
4013	13.1	439.00	12	Yes
4014	14.9	287.00	14	Yes
4015	12.3	368.00	12	Yes
4016	10.2	256.00	15	Yes
4017	12.2	252.00	12	Yes
4018	14.9	437.00	15	Yes
4019	17.5	460.00	16	Yes
4020	14.9	256.00	15	Yes
4021	15.1	346.00	12	Yes
4022	16.5	327.00	13	Yes
4023	18.5	380.00	15	Yes
4024	14.1	389.00	14	Yes
4025	19.1	317.00	12	Yes
4026	16.1	346.00	13	Yes
4027	14	391.00	13	Yes
4028	13.7	416.00	15	Yes
4029	10.8	350.00	16	Yes
4030	11.3	266.00	12	Yes

Data Sheet for FCC	Data Sheet for FCC Long Pulse Radar Type 5			
Trial	Successful Detection			
	(Yes/No)			
1	Yes			
2	Yes			
3	Yes			
4	Yes			
5	Yes			
6	Yes			
7	Yes			
8	Yes			
9	Yes			
10	Yes			
11	Yes			
12	Yes			
13	Yes			
14	Yes			
15	No			
16	Yes			
17	Yes			
18	Yes			
19	Yes			
20	No			
21	Yes			
22	Yes			
23	Yes			
24	Yes			
25	Yes			
26	Yes			
27	Yes			
28	Yes			
29	Yes			
30	Yes			

Note: The Type 5 randomized parameters are shown in a separate document.

DATE: JUNE 25, 2007


TYPE 6 DETECTION PROBABILITY


	et for FCC Hopping Rada se Width, 333 us PRI,		1 Burst per Hop)
NTIA August 2005 Hopping Sequence				
Trial	Starting Index	Signal Generator	Hops within	Successful
	Within Sequence (Base 1)	Frequency (MHz)	Detection BW	Detection (Yes/No)
2	785	5591	2	Yes
3	1260	5592	3	Yes
4	1735	5593	3	Yes
5	2210	5594	7	Yes
6	2685	5595	5	Yes
7	3160	5596	9	Yes
8	3635	5597	7	Yes
9	4110	5598	5	Yes
10	4585	5599	2	Yes
11	5060	5600	5	Yes
12	5535	5601	2	Yes
13	6485	5602	3	Yes
14	6960	5603	2	Yes
15	7435	5604	5	Yes
16	7910	5605	3	Yes
17	8385	5606	6	Yes
18	8860	5607	4	Yes
19	9335	5608	5	Yes
20	9810	5590	7	Yes
21	10285	5591	2	Yes
22	10760	5592	5	Yes
23	11235	5593	2	Yes
24	11710	5594	3	No
25	12185	5595	3	Yes
26	12660	5596	2	Yes
27	13135	5597	3	Yes
28	13610	5598	4	Yes
29	14085	5599	2	Yes
30	14560	5600	4	No
31	15035	5601	3	Yes
32	15510	5602	2	Yes
33	15985	5603	3	Yes
34	16460	5604	3	No
35	16935	5605	9	Yes
36	17410	5606	6	Yes
37	17885	5607	2	Yes

Page 40 of 40

6. SETUP PHOTOS

DFS MEASUREMENT SETUP

END OF REPORT