

Test report No. Page Issued date FCC ID

: 13826578S-A-R2 : 1 of 34 : September 22, 2021 : HYQWAN00

RADIO TEST REPORT

Test Report No.: 13826578S-A-R2

Applicant : DENSO CORPORATION

Type of EUT : UWB Reader

Model Number of EUT: WAN00

FCC ID : HYQWAN00

Test regulation : FCC Part 15 Subpart F: 2021

Test Result : Complied (Refer to Section 3)

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the limits of the above regulation.
- 4. The test results in this test report are traceable to the national or international standards.
- 5. This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers Radio technical requirements.
 It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- 7. The all test items in this test report are conducted by UL Japan, Inc. Shonan EMC Lab.
- 8. The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- 9. The information provided from the customer for this report is identified in SECTION 1.
- 10. This report is a revised version of 13826578S-A-R1. 13826578S-A-R1 is replaced with this report.

Representative test engineer:

Approved by:

May 19 to June 24, 2021

Kenichi Adachi
Engineer

Toyokazu Imamura
Leader

CERTIFICATE 1266.03

	The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in UL Japan, Inc.
X	There is no testing item of "Non-accreditation".

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 13826578S-A-R2
Page : 2 of 34
Issued date : September 22, 2021
FCC ID : HYQWAN00

REVISION HISTORY

Original Test Report No.: 13826578S-A

Revision	Test report No.	Date	Page revised	Contents
- (Original)	13826578S-A	July 29, 2021	-	-
1	13826578S-A-R1	September 3, 2021	p.5	Correction of title: From "Section 15.517 indoor UWB systems" To "Section 15.519 hand held UWB systems"
			p.11	Correction of value: (for carrier's emission) RBW 3 MHz -> 50 MHz VBW 3 MHz -> 80 MHz
			p.11	Correction of Test Distance: From "0.5 m *1) (960 MHz - 10.6 GHz)" To "3.0 m (960 MHz - 1 GHz) 0.5 m *1) (1 GHz - 10.6 GHz)"
			p.11	Additional comment: "*4) For section 10.3.2 of ANSI C63.10: 2013. This measurement was performed at less than 3 m due to the small radiation emission of EUT. In addition, this measurement was performed by the substitution measurement. Since there are frequencies that are the distance of the near field condition with respect to the measurement distance, we have verified the measurement results in the near field condition and the far field condition and confirmed that there was no difference in the test results."
			p.26, p.27	Correction of calculation formula: From "= (fH - fL) /2" To "= (fH + fL) /2"
2	13826578S-A-R2	September 22, 2021	p.11	Deleted comment *1), *2), *3) Added comment mark *4)
			p.13, p.14	Changed 10 dBc bandwidth value to 99 % occupied bandwidth value.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. Page **Issued date**

: 3 of 34 : September 22, 2021 : HYQWAN00 FCC ID

: 13826578S-A-R2

CONTENTS PAGE SECTION 1: SECTION 2: SECTION 3: SECTION 4: Operation of E.U.T. during testing......9 Radiated Spurious Emission10 **SECTION 5:** UWB bandwidth and 99 % occupied bandwidth.....11 **SECTION 7:** Antenna terminal conducted tests _________12 **SECTION 8: SECTION 9:** Transmitter timeout _______12 **APPENDIX 1:** Bandwidth (Regulation: FCC 15.503(d), FCC 15.519 (b))......26

Test instruments 30

APPENDIX 2: APPENDIX 3:

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 13826578S-A-R2 Page : 4 of 34

Issued date : September 22, 2021 FCC ID : HYQWAN00

SECTION 1: Customer information

Company Name : DENSO CORPORATION

Address : 1-1 Showa-cho, Kariya-shi, Aichi ken, 448-8661 Japan

Telephone Number : +81-566-87-6722 (Ext.551-45860)

Facsimile Number : +81-566-25-4546 Contact Person : Tatsuya Nakagawa

The information provided from the customer is as follows;

- Applicant, Type of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer information
- SECTION 2: Equipment under test (EUT) other than the Receipt Date
- SECTION 4: Operation of EUT during testing

SECTION 2: Equipment under test (E.U.T.)

2.1 Identification of E.U.T.

Type of Equipment : UWB Reader Model No. : WAN00

Serial No. : Refer to Section 4, Clause 4.2
Rating : DC 12 V typical (DC 9 V to 16 V)

Receipt Date of Sample : May 14, 2021 Country of Mass-production : USA, China, Japan Condition of EUT : Engineering prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification of EUT : No Modification by the test lab

2.2 Product Description

Model: WAN00 (referred to as the EUT in this report) is a UWB Reader.

General Specification

Clock frequency(ies) in the system : 55.2 MHz (RF part), 40 MHz (CAN control part)

Radio Specification

Equipment type : Transceiver

Frequency of operation : 6489.6 MHz (6240.0 - 6739.2 MHz)(ch 5), 7987.2 MHz (7737.6 - 8236.8 MHz)(ch 9)

7707.2 WITE (7

Type of modulation : BPM-BPSK

Antenna type : Monopole antenna (Printed pattern)

Antenna connector type : None

Antenna gain : +5.0 dBi (for 6489.6 MHz), +4.9 dBi (for 7987.2 MHz)

Operating temperature -40 deg.C to +105 deg.C

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

^{*} The laboratory is exempted from liability of any test results affected from the above information in SECTION 2 and 4.

Test report No. : 13826578S-A-R2 Page : 5 of 34

Issued date : September 22, 2021 FCC ID : HYQWAN00

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification : FCC Part 15 Subpart F

FCC Part 15 final revised on May 3, 2021 and effective July 2, 2021

* The revision does not affect the test result conducted before its effective date.

Title : FCC 47CFR Part15 Radio Frequency Device

Section 15.207 Conducted limits Subpart F Ultra-Wideband Operation

Section 15.519 Technical requirements for hand held UWB systems.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 13826578S-A-R2 Page : 6 of 34

Issued date : September 22, 2021 FCC ID : HYQWAN00

3.2 Procedures and results

< Requirements for indoor UWB systems >

Item	Test Procedure		cification	Worst margin	Results	Remarks
	FCC: ANSI C63.10:2013	FCC:	Section 15.207,			
0 1 (1) ;	6 Standard test methods		Section 15.505(a)		NT/A	\$1 \
Conducted emission		L	Section 15.521(j)	-	N/A	*1)
	IC: RSS-Gen 8.8	IC:	RSS-220 5.2.1(b)			
	FCC: Section 15.503(a)	FCC:	Section 15.503(d),			
	ANSI C63.10: 2013		Section 15.519(b)			
	6 Standard test methods,					
UWB Bandwidth	10 Procedures for				Complied	Radiated
U W D Danuwium	measuring ultra-wideband			-	a)	Kadiated
	devices					
	IC: RSS-220 Annex 2	IC:	RSS-220 2,			
			RSS-220 5.1			
	FCC: Section 15.521(d)	FCC:	Section 15.209,			
	ANSI C63.10: 2013		Section 15.505,			Radiated
	6 Standard test methods,		Section 15.519(c)(d),	0.03 dB		(above 30 MHz)
Radiated emission	10 Procedures for		Section 521(c)	6536.698 MHz	Complied#	/ Conducted
Radiated emission	measuring ultra-wideband			AV, Horizontal (Transmitting	b)	(below 30 MHz)
	devices			CH5)		*2)
	IC: RSS-Gen 6.5	IC:	RSS-220 5.3.1(c)(d)(e)	CHS)		*2)
	RSS-220 Annex 4					
	FCC: Section 15.521(e)(g)	FCC:	Section 15.519 (e)			
	ANSI C63.10: 2013			14.92 dB		
Peak level of the	6 Standard test methods,			6552.431 MHz	Complied	
Emission	10 Procedures for			PK, Horizontal	c)	Radiated
EIIIISSIOII	measuring ultra-wideband			(Transmitting	()	
	devices			CH5)		
	IC: RSS-220 Annex 4	IC:	RSS-220 5.3.1(g)			
	FCC: Section 15.519(a)(1)	FCC:	Section 15.519 (a)(1)			
	ANSI C63.10: 2013					
	6 Standard test methods,				C1:1	
Transmitter timeout	10 Procedures for			-	Complied	Conducted
	measuring ultra-wideband				d)	
	devices	<u> </u>				
	IC: RSS-220 Annex 4	IC:	RSS-220 5.3.1(b)			

Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.

Symbols:

Complied The data of this test item has enough margin, more than the measurement uncertainty.

Complied# The data of this test item meets the limits unless the measurement uncertainty is taken into consideration.

FCC Part 15.31 (e)

This EUT provides stable voltage constantly to RF Module regardless of input voltage. Therefore, this EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

^{*1)} This test not applicable since the EUT does not have AC Mains.

^{*2)} Radiated test was selected over 30 MHz based on section 15.519 (c). a) Refer to APPENDIX 1 (data of UWB Bandwidth)

b) Refer to APPENDIX 1 (data of Radiated emission)

c) Refer to APPENDIX 1 (data of Peak level of the Emission)

d) Refer to APPENDIX 1 (data of Transmitter timeout)

^{*} In case any questions arise about test procedure, ANSI C63.10: 2013 is also referred.

Test report No. : 13826578S-A-R2 Page : 7 of 34

Issued date : September 22, 2021 FCC ID : HYQWAN00

3.3 Addition to standard

Item	Test Procedure	Specification	Worst margin	Results	Remarks	
99 % Occupied	ISED: RSS-Gen 6.7	ISED: -	N/A	-	Conducted	
Bandwidth				a)		
a) Refer to APPENDIX 1 (data of UWB Bandwidth, 99 % Occupied Bandwidth)						

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

There is no applicable rule of uncertainty in this applied standard. Therefore, the results are derived depending on whether or not laboratory uncertainty is applied.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2.

Shonan EMC Lab.

Item	Frequency range	Uncertainty (+/-)			
		No. 1 SAC / SR	No. 2 SAC / SR	No. 3 SAC / SR	No. 4,5,6,8 SR
Conducted emission (AC Mains) LISN	150 kHz-30 MHz	2.6 dB	2.6 dB	2.56dB	2.9 dB
Radiated emission	9 kHz-30 MHz	3.0 dB	2.7 dB	2.7 dB	-
(Measurement distance: 3 m)	30 MHz-200 MHz	4.6 dB	4.6 dB	4.6 dB	-
	200 MHz-1 GHz	6.0 dB	6.0 dB	6.0 dB	-
	1 GHz-6 GHz	4.8 dB	4.8 dB	4.8 dB	-
	6 GHz-18 GHz	5.4 dB	5.4 dB	5.4 dB	-
	18 GHz-40 GHz	5.3 dB	5.3 dB	5.3 dB	-
Radiated emission	1 GHz-18 GHz	5.7 dB	5.7 dB	5.7 dB	-
(Measurement distance: 1 m)	18 GHz-40 GHz	5.6 dB	5.6 dB	5.6 dB	-

SAC=Semi-Anechoic Chamber

SR= Shielded Room is applied besides radiated emission

Antenna terminal test	Uncertainty (+/-)
Power Measurement above 1 GHz (Average Detector)_SPM-06	1.4 dB
Power Measurement above 1 GHz (Peak Detector)_SPM-06	1.6 dB
Power Measurement above 1 GHz (Average Detector)_SPM-07	0.89 dB
Power Measurement above 1 GHz (Peak Detector)_SPM-07	1.2 dB
Power Measurement above 1 GHz (Average Detector)_SPM-13	0.91 dB
Power Measurement above 1 GHz (Peak Detector)_SPM-13	1.2 dB
Spurious emission (Conducted) below 1GHz	0.87 dB
Spurious emission (Conducted) 1 GHz-3 GHz	0.96 dB
Spurious emission (Conducted) 3 GHz-18 GHz	3.0 dB
Spurious emission (Conducted) 18 GHz-26.5 GHz	2.6 dB
Spurious emission (Conducted) 26.5 GHz-40 GHz	2.2 dB
Bandwidth Measurement	0.012 %
Duty cycle and Time Measurement	0.27 %
Temperature_SCH-01	0.95 deg.C.
Humidity_SCH-01	0.83 %
Temperature_SCH-02	2.0 deg.C.
Humidity_SCH-02	6.6 %
Voltage	0.86 %

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 13826578S-A-R2 Page : 8 of 34

Issued date : September 22, 2021 FCC ID : HYQWAN00

3.5 Test Location

UL Japan, Inc. Shonan EMC Lab.

1-22-3, Megumigaoka, Hiratsuka-shi, Kanagawa-ken 259-1220 JAPAN

Telephone: +81 463 50 6400, Facsimile: +81 463 50 6401

A2LA Certificate Number: 1266.03

(FCC test firm registration number: 626366, ISED lab company number: 2973D / CAB identifier: JP0001)

Test site	IC Registration Number	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	M aximum measurement distance
No.1 Semi-anechoic chamber	2973D-1	20.6 x 11.3 x 7.65	20.6 x 11.3	10 m
No.2 Semi-anechoic chamber	2973D-2	20.6 x 11.3 x 7.65	20.6 x 11.3	10 m
No.3 Semi-anechoic chamber	2973D-3	12.7 x 7.7 x 5.35	12.7 x 7.7	5 m
No.4 Semi-anechoic chamber	-	8.1 x 5.1 x 3.55	8.1 x 5.1	-
No.1 Shielded room	-	6.8 x 4.1 x 2.7	6.8 x 4.1	-
No.2 Shielded room	-	6.8 x 4.1 x 2.7	6.8 x 4.1	-
No.3 Shielded room	-	6.3 x 4.7 x 2.7	6.3 x 4.7	_
No.4 Shielded room	-	4.4 x 4.7 x 2.7	4.4 x 4.7	-
No.5 Shielded room	-	7.8 x 6.4 x 2.7	7.8 x 6.4	-
No.6 Shielded room	-	7.8 x 6.4 x 2.7	7.8 x 6.4	-
No.8 Shielded room	-	3.45 x 5.5 x 2.4	3.45 x 5.5	-
No.1 Measurement room	-	2.55 x 4.1 x 2.5	-	-

3.6 Test data, Test instruments, and Test set up

Refer to APPENDIX.

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 13826578S-A-R2 Page : 9 of 34

Issued date : September 22, 2021 FCC ID : HYQWAN00

SECTION 4: Operation of E.U.T. during testing

4.1 Operating Mode(s)

The EUT exercise program used during testing was designed to exercise the various system components in a manner


similar to typical use.

Test Item	Mode
Other than Transmitter	Transmitting CH 5 (6489.6 MHz),
timeout test	Transmitting CH 9 (7987.2 MHz)
Transmitter timeout test	Normal transmitting CH 5 (6489.6 MHz),
	Normal transmitting CH 9 (7987.2 MHz)
-	Software (Firmware): UWB software for certification
	Ver: 1.2
	(Date: 2021.2.13, Storage location: EUT memory)
	Power setting: Fixed (CH5: +1 dBm, CH 9: 0 dBm)
	*This setting of software is the worst case.
	Any conditions under the normal use do not exceed the condition of setting.
	In addition, end users cannot change the settings of the output power of the product.

Justification:

The system was configured in typical fashion (as customer would normally use it) for testing.

4.2 Configuration and peripherals

AC 100 V / 50 Hz

Description of EUT and support equipment

	rescription of Be I and support equipment							
No.	Item	Model number	Serial number	Manufacturer	Remarks			
	UWB Reader	WAN00	28 *1)	DENSO				
A			16 *2)		EUT			
			24 *3)					
В	CAN Logger	GL1000	028069-000444	vector	-			
C	Power Supply (DC)	PAN35-10A	DE001677	KIKUSUI	-			

^{*1)} Used for Radiated emission tests

List of cables used

No.	Cable	Length (m)	Shield-Cable	Shield-Connector	Remarks
1	DC & Signal	3.3 + 2.5	Unshielded	Unshielded	-
2	DC & Signal	0.5	Unshielded	Unshielded	-
3	DC	0.55	Unshielded	Unshielded	-
4	AC	2.0	Unshielded	Unshielded	-

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

^{*}Test data was taken under worse case conditions.

^{*2)} Used for Antenna terminal conducted tests

^{*3)} Used for Transmitter timeout test

Test report No. : 13826578S-A-R2
Page : 10 of 34
Issued date : September 22, 2021
FCC ID : HYQWAN00

SECTION 5: Radiated Spurious Emission

Test Procedure

[For below 960 MHz]

EUT was placed on a platform of nominal size, 0.5 m by 0.5 m, raised 0.8 m above the conducting ground plane. The table is made of expanded polystyrol and expanded polypropylene and the table top is covered with polycarbonate. That has very low permittivity.

[For above 960 MHz]

EUT was placed on a platform of nominal size, 0.15 m by 0.05 m, raised 1.5 m above the conducting ground plane. The table is made of expanded polystyrol and expanded polypropylene and the table top is covered with polycarbonate. That has very low permittivity.

(UWB emissions and other emissions)

1) The height of the measuring antenna varied between 1 and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

(UWB emissions only)

2) Exchanged the EUT to the Substitution Antenna, the measurement was set for the same height 1.5m as the EUT. The frequency below 1GHz of the Substitution Antenna was used the Half wave dipole Antenna, which was tuned the measured frequency in 1).

The frequency above 1GHz of the Substitution Antenna was used Horn Antenna.

The Substitution Antenna was connected to the Signal Generator, and the polarized electromagnetic radiation of the Substitution Antenna was matched with the one of the measuring Antenna, which was set with the Signal Generator to the measured frequency in 1). Then, we set with the Output power (CW) of the Signal Generator where the measuring electromagnetic field strength is equal to the measured value in 1) by means of varying the measuring antenna height between 1 to 4m to obtain maximum receiving level.

Its Output power of Signal Generator was recorded.

3) Effective radiated power was calculated by subtracting the cable loss and the attenuator loss connected between the Signal Generator and the Substitution Antenna from the Output power of the Signal Generator recorded in 2).

For the usage of the antenna (horn Antenna) except for the half wave dipole antenna (2.15dBi) for the substitution antenna, the equivalent isotropic radiated power was calculated by compensating not the finite difference in the antenna gain of the half wave dipole antenna, and substitution antenna.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 13826578S-A-R2
Page : 11 of 34
Issued date : September 22, 2021
FCC ID : HYQWAN00

Test Antennas are used as below;

Frequency	Below 30 MHz	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Loop	Biconical	Logperiodic	Horn

Frequency	Below 960 MHz	Above 960 MHz	
Instrument used	Test Receiver	Spectrum Analyzer	
Detector	Quasi-Peak (QP)	Peak (PK)	RMS (AV)
IF Bandwidth	BW 120 kHz	(for UWB spurious emission): RBW: 1 MHz VBW: 3 MHz (for carrier's emission): RBW: 50 MHz VBW: 80 MHz	(for UWB spurious emission): RBW: 1 MHz VBW: 3 MHz (for Peak level of the emission) RBW: 1 kHz VBW: 3 kHz
Test Distance	3 m	3.0 m (960 MHz – 1 GHz) 0.5 m *1) (1 GHz – 10.6 GHz), 0.3 m *1) (10.6 GHz – 17 GHz), 0.1 m *1) (above 17 GHz)	

^{*1)} For section 10.3.2 of ANSI C63.10: 2013. This measurement was performed at less than 3 m due to the small radiation emission of EUT. In addition, this measurement was performed by the substitution measurement. Since there are frequencies that are the distance of the near field condition with respect to the measurement distance, we

have verified the measurement results in the near field condition and the far field condition and confirmed that there was no difference in the test results.

- The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

Polarity				Fre	quency [GH	[z]			
	Below	0.030-0.96	0.96-1	1-4.8	4.8-10.6	10.6-17	17-18	18-26.5	26.5-40
	0.030								
Hor.	X	Y	X	X	X	Y	X	Y	Z
Ver.	X	Y	X	Z	Z	Z	X	X	Y

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Measurement range : 9 kHz - 40 GHz
Test data : APPENDIX
Test result : Pass

SECTION 7: UWB bandwidth and 99 % occupied bandwidth

Test Procedure

The tests were made with below setting by a radiated electric field in semi-anechoic chamber.

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument used
UWB Bandwidth, 99 % Occupied Bandwidth	1 GHz	1 MHz	3 MHz	Auto	Peak	Max Hold	Spectrum Analyzer

Test data : APPENDIX

Test result : Pass

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 13826578S-A-R2
Page : 12 of 34
Issued date : September 22, 2021
FCC ID : HYQWAN00

SECTION 8: Antenna terminal conducted tests

Test Procedure

The tests were made with below setting connected to the antenna port.

Test	Span	RBW	VBW	Sweep time	Detector	Trace	Instrument used
Conducted Spurious	9 kHz to 150 kHz	200 Hz	620 Hz	Auto	Peak	Max Hold	Spectrum Analyzer
Emission *1)	150 kHz to 30 MHz	10 kHz	30 kHz				
*1) In the frequency r	ange below 30MHz, RBW	was narrowed	to separate the	e noise contents.			

Then, wide-band noise near the limit was checked separately, however the noise was not detected as shown in the chart.

The test results and limit are rounded off to two decimals place, so some differences might be observed.

Test data : APPENDIX

Test result : Pass

SECTION 9: Transmitter timeout

Test Procedure

The test was made with spectrum analyzer.

Test data : APPENDIX

Test result : Pass

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

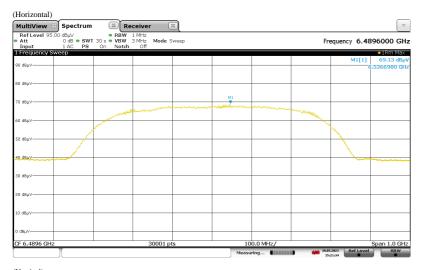
Test report No. : 13826578S-A-R2
Page : 13 of 34
Issued date : September 22, 2021
FCC ID : HYQWAN00

APPENDIX 1: Test data

Data of Radiation Test (Regulation: FCC 15.519 (c))

Test place Shonan EMC Lab. No.3 Semi Anechoic Chamber

Report No. 13826578S-A-R2
Date May 19, 2021
Temperature / Humidity 24 deg. C / 53 % RH
Engineer Kenichi Adachi
Mode Transmitting CH 5


(UWB emission, RBW 1 MHz)

(*SA: Spectrum analyzer, SG: Signal generator, Ant.: substitution antenna)

			SA	SG	Tx	Tx		EIRP	EIRP	Margin	Remarks	Height	Angle
Band	Pol.	Frequency	Reading	level	Ant.Gain	Loss	-	Result	Limit				
		[MHz]	[dBuV/MHz]	[dBm]	[dBi]	[dB]		[dBm/MHz]	[dBm/MHz]	[dB]		[cm]	[deg.]
3.1 GHz - 10.6 GHz	Hor.	6536.698	69.13	-47.78	10.25	3.80	-	-41.33	-41.30	0.03	carrier	143	109
3.1 GHz - 10.6 GHz	Ver.	6470.801	69.01	-47.90	10.25	3.80	-	-41.45	-41.30	0.15	carrier	148	285

Sample Calculation:

EIRP Result [dBm/MHz] = SG level [dBm] + Tx Ant.Gain [dBi] - Tx Loss [dB]

^{*} For RF Exposure evaluation

Maximum RMS power measured: -41.33 dBm/MHz (refer to upper table value) = $10 \, ^{\circ}$ ($-41.33 \, [\text{dBm/MHz}] / 10$) = $0.000073621 \, \text{mW/MHz}$ The bandwidth of this equipment was $580.378 \, \text{MHz}$ (99 % occupied bandwidth, refer to the data of bandwidth sheet) Total RMS output power was $0.042728 \, \text{mW} = 0.000073621 \, \text{mW/MHz} \times 580.378 \, \text{MHz}$

UL Japan, Inc. Shonan EMC Lab.

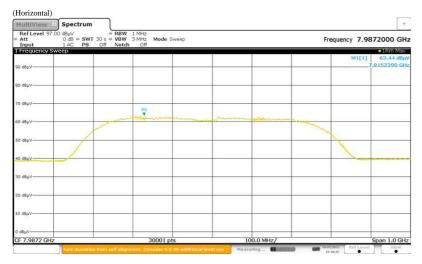
1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

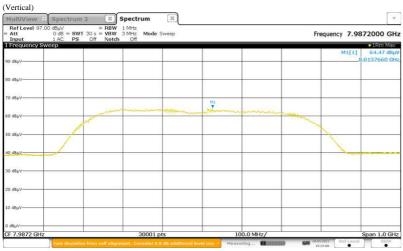
Test report No. : 13826578S-A-R2
Page : 14 of 34
Issued date : September 22, 2021
FCC ID : HYQWAN00

Data of Radiation Test (Regulation: FCC 15.519 (c))

Test place Shonan EMC Lab. No.3 Semi Anechoic Chamber

Report No. 13826578S-A-R2
Date May 20, 2021
Temperature / Humidity 25 deg. C / 59 % RH
Engineer Hiromasa Sato
Mode Transmitting CH 9


(UWB emission, RBW 1 MHz)


(*SA: Spectrum analyzer, SG: Signal generator, Ant.: substitution antenna)

			SA	SG	Tx	Tx		EIRP	EIRP	Margin	Remarks	Height	Angle
Band	Pol.	Frequency	Reading	level	Ant.Gain	Loss	-	Result	Limit				
		[MHz]	[dBuV/MHz]	[dBm]	[dBi]	[dB]		[dBm/MHz]	[dBm/MHz]	[dB]		[cm]	[deg.]
3.1 GHz - 10.6 GHz	Hor.	7815.239	63.44	-42.39	10.81	11.09	-	-42.67	-41.30	1.37	carrier	158	105
3.1 GHz - 10.6 GHz	Ver.	8013.766	64.47	-41.78	10.75	11.11	-	-42.14	-41.30	0.84	carrier	151	295

Sample Calculation:

EIRP Result [dBm/MHz] = SG level [dBm] + Tx Ant.Gain [dBi] - Tx Loss [dB]

* For RF Exposure evaluation

Maximum RMS power measured: -42.14 dBm/MHz (refer to upper table value) = 10 ° (-42.14 [dBm/MHz]/ 10) = 0.000061094 mW/MHz The bandwidth of this equipment was 606.892 MHz (99 ° occupied bandwidth, refer to the data of bandwidth sheet) Total RMS output power was $0.037077 \text{ mW} = 0.000061094 \text{ mW/MHz} \times 606.892 \text{ MHz}$

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 13826578S-A-R2
Page : 15 of 34
Issued date : September 22, 2021
FCC ID : HYQWAN00

Data of Radiation Test (Regulation: FCC 15.519 (c))

Test place Shonan EMC Lab. No.3 Semi Anechoic Chamber

Report No. 13826578S-A-R2

Date May 27, 2021 May 19, 2021 May 24, 2021 May 25, 2021 Temperature / Humidity 23 deg. C / 50 % RH 24 deg. C / 53 % RH 23 deg. C / 53 % RH 23 deg. C / 51 % RH Engineer Toshinori Yamada Kenichi Adachi Yosuke Matsuzawa Yosuke Matsuzawa (30 MHz - 1000 MHz) (1 GHz - 10.6 GHz)(10.6 GHz - 18 GHz)(18 GHz - 26.5 GHz)

Mode Transmitting CH 5

(UWB emission, For RBW less than 960 MHz was set according to FCC 15.209, Above 960 MHz was set to 1 MHz) $30\ MHz-18\ GHz$

8 (Gŀ	<u>1Z</u>												
	No.	Freq.	Reading (AV)	SG Level	TX Ant.Gain	TX Loss	EIR Result	P Limit	Margin	Pola.	Height	Angle		Comment
	110.	[MHz]	[dBuV]	[dBm]	[dBi]	[dB]	[dBm]	[dBm]	[dB]	1 010.	[cm]	[deg]	Ant.Type	- Common
İ	1	12979.200								Hori.	149		Hom	
	2	12979.200									160			
- 1			l	l	l		l	1	l		I	l	l	1

Calculation:Result[dBm]=SG level[dBm]+Tx Ant Gain[dBi]-Tx Loss (Cable+ATT)[dB] Tx Antenna: Horn(1G-40G) / Rx-Antenna: Horn(1G-40G)

18 GHz - 26.5 GHz

		112												
No	, T	Freq.	Reading (AV)	SG Level	TX Ant.Gain	TX Loss	EIR Result	P Limit	Margin	Pola.	Height	Angle	TX	Comment
	-	[MHz]	[dBuV]	[dBm]	[dBi]	[dB]	[dBm]	[dBm]	[dB]		[cm]	[deg]	Ant.Type	
	1	19468.801	32.15	-82.66	9.41	18.30	-91.55	-61.30	30.2	Hori.	150	0	Hom	RMS, Naise floor
	2	25958.400	45.75	-59.83	10.81	21.15	-70.17	-61.30	8.8	Hori.	154	40	Hom	RMS
	3	19468.801	32.13	-82.46	9.41	18.30	-91.35	-61.30	30.0	Vert.	150	0	Hom	RMS, Naise floor
	4	25958.400	48.65	-57.51	10.81	21.15	-67.85	-61.30	6.5	Vert.	150	301	Hom	RMS

 $\label{lem:calculation:Result[dBm]=SG level[dBm]+Tx Ant Gain[dBi]-Tx Loss (Cable+ATT)[dB] Tx Antenna: Horn(1G-40G) / Rx-Antenna: Horn(1G-40G)$

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 13826578S-A-R2
Page : 16 of 34
Issued date : September 22, 2021
FCC ID : HYQWAN00

Data of Radiation Test (Regulation: FCC 15.519 (c))

Test place Shonan EMC Lab. No.3 Semi Anechoic Chamber

Report No. 13826578S-A-R2
Date May 27, 2021
Temperature / Humidity 23 deg. C / 50 % RH
Engineer Toshinori Yamada
(26.5 GHz – 40 GHz)

Mode Transmitting CH 5

 $\frac{(\text{UWB emission, RBW 1 MHz})}{26.5 \; GHz} - 40 \; GHz$

	F	Reading	SG Level	TX	TX	EIR	Р	Manada		I la talaa	A1-		
No.		(AV)		Ant.Gain	Loss	Result	Limit	Margin	Pola.	Height	Angle	TX Ant.Type	Comment
	[MHz]	[dBuV]	[dBm]	[dBi]	[dB]	[dBm]	[dBm]	[dB]		[cm]	[deg]	/читурс	
1	32448.000	50.28	-73.25	11.79	24.42	-85.88	-61.30	24.5	Hori.	157	192	Hom	RMS
2	38937.602	58.57	-61.32		27.13	-73.38	-61.30	12.0	Hori.	157	221	Hom	RMS
3	32448.000	50.08	-73.86		24.42	-86.49	-61.30	25.1	Vert.	154	68	Hom	RMS
4	38937.602	57.48	-63.56	15.07	27.13	-75.62	-61.30	14.3	Vert.	153	70	Hom	RMS

 $\label{lem:calculation:Result[dBm]=SG level[dBm]+Tx Ant Gain[dBi]-Tx Loss (Cable+ATT)[dB] Tx Antenna: Horn(1G-40G) / Rx-Antenna: Horn(1G-40G) / Rx-Antenna$

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 13826578S-A-R2
Page : 17 of 34
Issued date : September 22, 2021
FCC ID : HYQWAN00

Data of Radiation Test (Regulation: FCC 15.519 (c))

Test place Shonan EMC Lab. No.3 Semi Anechoic Chamber

Report No. 13826578S-A-R2

Date May 27, 2021 May 20, 2021 May 24, 2021 May 25, 2021 Temperature / Humidity 23 deg. C / 50 % RH 25 deg. C / 59 % RH 23 deg. C / 53 % RH 23 deg. C / 51 % RH Engineer Toshinori Yamada Hiromasa Sato Yosuke Matsuzawa Yosuke Matsuzawa (30 MHz - 1000 MHz) (1 GHz - 10.6 GHz)(10.6 GHz - 18 GHz)(18 GHz - 26.5 GHz)

Mode Transmitting CH 9

(UWB emission, For RBW less than 960 MHz was set according to FCC 15.209, Above 960 MHz was set to 1 MHz) $30\ MHz-18\ GHz$

	-	Reading	001 1	TX	TX	EIR	Р	м :					
No.	Freq.	(AV)	SG Level	Ant.Gain	Loss	Result	Limit	Margin	Pola.	Height	Angle	TX Ant.Type	Comment
	[MHz]	[dBuV]	[dBm]	[dBi]	[dB]	[dBm]	[dBm]	[dB]		[cm]	[deg]		
1	15974.400	39.13			16.19	-64.84	-61.30	3.5	Hori.	153	42	Hom	
2	15974.400	38.68	-63.09	13.87	16.19	-65.41	-61.30	4.1	Vert.	170	66	Hom	

 $\label{lem:calculation:Result[dBm]=SG level[dBm]+Tx Ant Gain[dBi]-Tx Loss (Cable+ATT)[dB] Tx Antenna: Horn(1G-40G) / Rx-Antenna: Horn(1G-40G)$

18 GHz - 26.5 GHz

٠.,	, 0	п												
	No.	Freq.	Reading (AV)	SG Level	TX Ant.Gain	TX Loss	EIR Result	P Limit	Margin	Pola.	Height	Angle	TX	Comment
		[MHz]	[dBuV]	[dBm]	[dBi]	[dB]	[dBm]	[dBm]	[dB]		[cm]	[deg]	Ant.Type	
ſ	1	23961.600	34.82	-79.27	11.58	20.23	-87.92	-61.30	26.6	Hori.	155	357	Hom	RMS
	2	23961.600	34.76	-78.37	11.58	20.23	-87.02	-61.30	25.7	Vert.	150	311	Hom	RMS
ı														
	-													
_														· · · · · · · · · · · · · · · · · · ·

 $\label{lem:calculation:Result[dBm]=SG level[dBm]+Tx Ant Gain[dBi]-Tx Loss (Cable+ATT)[dB] Tx Antenna: Horn(1G-40G) / Rx-Antenna: Horn(1G-40G)$

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 13826578S-A-R2
Page : 18 of 34
Issued date : September 22, 2021
FCC ID : HYQWAN00

Data of Radiation Test (Regulation: FCC 15.519 (c))

Test place Shonan EMC Lab. No.3 Semi Anechoic Chamber

Transmitting CH 9

Report No. 13826578S-A-R2
Date May 27, 2021
Temperature / Humidity 23 deg. C / 50 % RH
Engineer Toshinori Yamada
(26.5 GHz – 40 GHz)

(UWB emission, RBW 1 MHz) $\underline{26.5~GHz} - 40~GHz$

Mode

	F	Reading	00 11	TX	TX	EIR	Р	Manada		I la talas	A I		
No.	Freq.	(AV)	SG Level	Ant.Gain	Loss	Result	Limit	Margin	Pola.	Height	Angle	TX Ant.Type	Comment
Ш	[MHz]	[dBuV]	[dBm]	[dBi]	[dB]	[dBm]	[dBm]	[dB]		[cm]	[deg]	Alli.Type	
1	31948.801	67.02	-51.58	12.00	23.74	-63.32	-61.30	2.0	Hori.	152	98	Hom	RMS
2	39936.000	52.58	-61.80	13.83	27.15	-75.12	-61.30	13.8	Hori.	157	226	Hom	RMS
3	31948.801	67.95	-50.30	12.00	23.74	-62.04	-61.30	0.7	Vert.	153	71	Hom	RMS
4	39936.000	49.80	-72.03	13.83	27.15	-85.35	-61.30	24.0	Vert.	153	114	Hom	RMS
										i i			
										i i			

 $\label{lem:calculation:Result[dBm]=SG level[dBm]+Tx Ant Gain[dBi]-Tx Loss (Cable+ATT)[dB] Tx Antenna: Horn(1G-40G) / Rx-Antenna: Horn(1G-40G) / Rx-Antenna$

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 13826578S-A-R2
Page : 19 of 34
Issued date : September 22, 2021
FCC ID : HYQWAN00

Data of Radiation Test (Regulation: FCC 15.521 (c))

Test place Shonan EMC Lab. No.3 Semi Anechoic Chamber

Report No. 13826578S-A-R2
Date April 28, 2021
Temperature / Humidity 23 deg. C / 52 % RH
Engineer Shunsaku Yumi
Mode Transmitting CH 5

(Other emission) (* There were no detect other emissions in the range that below 30 MHz and above 960 MHz)

Limit: FCC15.209 3 m, below 1 GHz:QP, above 1 GHz:AV/PK

Engineer : Shunsaku Yumi

<< QP DATA >>

$\stackrel{\sim}{}$	QP DATA	Reading				Result	Limit	Margin					
No.	Freq.	(QP)	Ant.Fac	Loss	Gain	(QP)	(QP)	(QP)	Pola	Height	Angle	Ant. Type	Comment
	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]		[dB]	[H/V]	[cm]	[deg]	Type	
1	95.989	44.30	9.42	7.43	32.13	29.02	43.50	14.4	Hori.	188	37	BC	
2		38.60	14.22	8.68	31.96	29.54	46.00	16.4	Hori.	144	152	LP	
3	1	39.80	14.97	8.77	31.93		46.00		Hori.	140	151	LP	
4	405.082	36.40	16.03	9.08	31.94	29.57	46.00	16.4	Hori.	151	4	LP	
5	441.518	33.10	16.41	9.26	31.93	26.84	46.00	19.1	Hori.	100	357	LP	
6		30.10	16.38	6.57	32.18	20.87	40.00	19.1	Vert.	100	166	BC	
7	95.989	52.40	9.42	7.43	32.13	37.12	43.50	6.3	Vert.	100	85	BC	
8	1	39.30	15.06	7.84	32.09	30.11	43.50	13.3	Vert.	100	125	BC	
9	179.981	36.90	15.98	7.82	32.07	28.63	43.50	14.8	Vert.	100	160	BC	
\Box	<u> </u>												

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 13826578S-A-R2
Page : 20 of 34
Issued date : September 22, 2021
FCC ID : HYQWAN00

Data of Radiation Test (Regulation: FCC 15.521 (c))

Test place Shonan EMC Lab. No.3 Semi Anechoic Chamber

Report No. 13826578S-A-R2
Date April 28, 2021
Temperature / Humidity 23 deg. C / 52 % RH
Engineer Shunsaku Yumi
Mode Transmitting CH 9

(Other emission) (* There were no detect other emissions in the range that below 30 MHz and above 960 MHz.)

Limit: FCC15.209 3 m, below 1 GHz:QP, above 1 GHz:AV/PK

Engineer : Shunsaku Yumi

<< OP DATA >>

<<	QP DATA	>>											
No	Freq.	Reading (QP)	Ant.Fac	Loss	Gain	Result (QP)	Limit (QP)	Margin (QP)	Pola	Height	Angle	Ant.	Comment
INO	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[H/V]	[cm]	[deg]	Type	Commen
		44.10	9.42	7.43	32.13	28.82			Hori.	182	50	BC	
	332.289	40.70	14.75	8.74	31.94	32.25	46.00	13.7	Hori.	122	148	LP	
	338.741	39.10	14.97	8.77	31.93	30.91	46.00	15.0	Hori.	146	151	LP	
	405.223	36.40	16.03	9.09	31.94	29.58	46.00	16.4	Hori.	152	6	LP	
	441.645	33.10	16.41	9.26	31.93	26.84	46.00	19.1	Hori.	100	354	LP	
	40.724	31.40	14.66	6.66	32.17	20.55	40.00	19.4	Vert.	100	167	BC	
	95.987	52.10	9.42	7.43	32.13	36.82	43.50	6.6	Vert.	100	81	BC	
	155.982	39.30	15.06	7.84	32.09	30.11	43.50	13.3	Vert.	100	123	BC	
	179.978	36.40	15.98	7.82	32.07	28.13	43.50	15.3	Vert.	100	159	BC	
	-												
	-												
	-												
	-												
	1												
	1												

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 13826578S-A-R2
Page : 21 of 34
Issued date : September 22, 2021
FCC ID : HYQWAN00

Data of Radiation Test (Regulation: FCC 15.519 (d))

Test place Shonan EMC Lab. No.3 Semi Anechoic Chamber

Report No. 13826578S-A-R2
Date May 19, 2021
Temperature / Humidity 24 deg. C / 53 % RH
Engineer Kenichi Adachi
Mode Transmitting CH 5

(GPS bands emission)

	F	Reading	00.11	TX	TX	EIR	Р	Manada		I la tala	A I		
No.	Freq.	(AV)	SG Level	Ant.Gain	Loss	Result	Limit	Margin	Pola.	Height	Angle	TX Ant.Type	Comment
	[MHz]	[dBuV]	[dBm]	[dBi]	[dB]	[dBm]	[dBm]	[dB]		[cm]	[deg]	Ailli.Type	
1	1202.000	15.44	-110.00	6.37	4.17	-107.80	-85.30	22.5	Hori.	150	0	Horn	(RBW 1 kHz), noise floor level
2	1584.500	15.24	-110.00	9.03	4.82	-105.79	-85.30	20.4	Hori.	150	0	Horn	(RBW 1 kHz), noise floor level
3	1202.000	15.32	-110.00	6.37	4.17	-107.80	-85.30	22.5	Vert.	150	0	Horn	(RBW 1 kHz), noise floor level
4	1584.500	15.12	-110.00	9.03	4.82	-105.79	-85.30	20.4	Vert.	150	0	Horn	(RBW 1 kHz), noise floor level
						İ							
						1	l						
										1			
										i i			
										i i			
						1							
							ļ						
						1							

 $\label{lem:calculation:Result[dBm]=SG level[dBm]+Tx Ant Gain[dBi]-Tx Loss (Cable)[dB] $$Tx Antenna: Horn(1G-40G) / Rx-Antenna:

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 13826578S-A-R2
Page : 22 of 34
Issued date : September 22, 2021
FCC ID : HYQWAN00

Data of Radiation Test (Regulation: FCC 15.519 (d))

Test place Shonan EMC Lab. No.3 Semi Anechoic Chamber

Report No. 13826578S-A-R2
Date May 20, 2021
Temperature / Humidity 25 deg. C / 59 % RH
Engineer Hiromasa Sato
Mode Transmitting CH 9

(GPS bands emission)

	-	Reading	001	TX	TX	EIR	Р	Margin		11.11			
No.	Freq.	(AV)	SG Level	Ant.Gain	Loss	Result	Limit	Margin	Pola.	Height	Angle	TX Ant.Type	Comment
	[MHz]	[dBuV]	[dBm]	[dBi]	[dB]	[dBm]	[dBm]	[dB]		[cm]	[deg]	Alli.Type	
1	1202.000	15.53	-1 10.00	6.37	4.17	-107.80	-85.30	22.5	Hori.	150	0	Horn	(RBW 1 kHz),noise floor level
2	1584.500	15.97	-1 10.00	9.03	4.82	-105.79	-85.30	20.4	Hori.	150	0	Horn	(RBW 1 kHz),noise floor level
3	1202.000	15.84	-1 10.00	6.37	4.17	-107.80	-85.30	22.5	Vert.	150	0	Horn	(RBW 1 kHz),noise floor level
4	1584.500	15.41	-110.00	9.03	4.82	-105.79	-85.30	20.4	Vert.	150	0	Horn	(RBW 1 kHz),noise floor level
										İ			
										i			

 $\label{lem:calculation:Result[dBm]=SG level[dBm]+Tx Ant Gain[dBi]-Tx Loss (Cable)[dB] Ant. Type=BC: Biconical Antenna LP: Logperiodic Antenna **SH*: Horn Antenna **SH*: Horn Antenna **SH*:$

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 13826578S-A-R2
Page : 23 of 34
Issued date : September 22, 2021
FCC ID : HYQWAN00

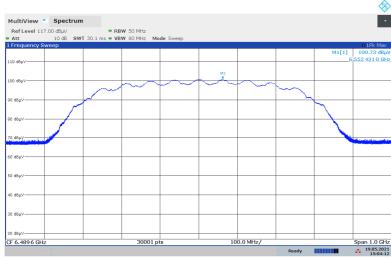
Data of Radiation Test (Regulation: FCC 15.519 (e))

Test place Shonan EMC Lab. No.3 Semi Anechoic Chamber

Report No. 13826578S-A-R2
Date May 19, 2021
Temperature / Humidity 24 deg. C / 53 % RH
Engineer Kenichi Adachi
Mode Transmitting CH 5

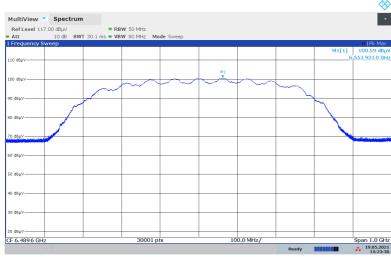
(Peak level of the emission)

 $(*SA: Spectrum\ analyzer,\ SG: Signal\ generator,\ Ant.:\ substitution\ antenna)$


			SA	SG	Tx	Tx	RBW	EIRP	EIRP	Margin	Remarks	Height	Angle
Band	Pol.	Frequency	Reading	level	Ant.Gain	Loss	converted	Result	Limit				
		[MHz]	[dBuV/50 MHz]	[dBm]	[dBi]	[dB]	factor [dB]	[dBm/50 MHz]	[dBm/50 MHz]	[dB]		[cm]	[deg.]
3.1 GHz - 10.6 GHz	Hor.	6552.431	100.73	-16.22	11.10	10.09	0.29	-14.92	0.00	14.92	carrier	143	109
3.1 GHz - 10.6 GHz	Ver.	6551.931	100.59	-16.30	11.10	10.09	0.29	-15.00	0.00	15.00	carrier	148	285

Sample Calculation:

EIRP Result [dBm/MHz] = SG level [dBm] + Tx Ant.Gain [dBi] - Tx Loss [dB] + RBW converted factor [dB]


RBW converted factor [dB] = $20 \text{ x} \log \left(\ 50 \ / \ (3 \ dB \ \text{measured bandwidth} = 48.3384 \ [\text{MHz}] \ \right)$

(Horizontal)

15:04:12 19.05.2021

(Vertical)

15:23:31 19.05.2021

Maximum peak power measured: -14.92 dBm/50 MHz (refer to upper table value) = $10 \land (-14.92 \text{ [dBm/50 MHz]}/ 10) = 0.032211 \text{ mW/50 MHz}$ The bandwidth of this equipment was 548.948 MHz (-10 dBc bandwidth, refer to the data of bandwidth sheet) Total peak output power was $0.35364 \text{ mW} = 0.032211 \text{ [mW/50 MHz]} \times 548.948 \text{ [MHz]} / 50 \text{ [MHz]}$

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

^{*} For RSP-100 Annex B

Test report No. : 13826578S-A-R2
Page : 24 of 34
Issued date : September 22, 2021
FCC ID : HYQWAN00

Data of Radiation Test (Regulation: FCC 15.519 (e))

Test place Shonan EMC Lab. No.3 Semi Anechoic Chamber

Report No. 13826578S-A-R2
Date May 20, 2021
Temperature / Humidity 25 deg. C / 59 % RH
Engineer Hiromasa Sato
Mode Transmitting CH 9

(Peak level of the emission)

 $(*SA: Spectrum\ analyzer,\ SG: Signal\ generator,\ Ant.:\ substitution\ antenna)$

			SA	SG	Tx	Tx	RBW	EIRP	EIRP	Margin	Remarks	Height	Angle
Band	Pol.	Frequency	Reading	level	Ant.Gain	Loss	converted	Result	Limit				
		[MHz]	[dBuV/50 MHz]	[dBm]	[dBi]	[dB]	factor [dB]	[dBm/50 MHz]	[dBm/50 MHz]	[dB]		[cm]	[deg.]
3.1 GHz - 10.6 GHz	Hor.	7800.840	95.90	-17.73	10.81	11.09	0.29	-17.72	0.00	17.72	carrier	158	105
3.1 GHz - 10.6 GHz	Ver.	7860.671	97.07	-15.90	10.75	11.11	0.29	-15.97	0.00	15.97	carrier	151	295

Sample Calculation:

EIRP Result [dBm/MHz] = SG level [dBm] + Tx Ant.Gain [dBi] - Tx Loss [dB] + RBW converted factor [dB]

RBW converted factor [dB] = $20 \text{ x} \log \left(\ 50 \ / \ (3 \ dB \ \text{measured bandwidth} = 48.3384 \ [\text{MHz}] \ \right)$

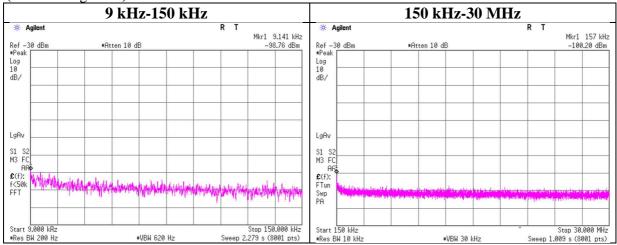
15:40:56 20.05.2021

^{*} For RSP-100 Annex B

Maximum peak power measured: -15.97 dBm/50 MHz (refer to upper table value) = $10 ^ (-15.97 [dBm/50 MHz]/10) = 0.025293 mW/50 MHz$ The bandwidth of this equipment was 600.559 MHz (-10 dBc bandwidth, refer to the data of bandwidth sheet) Total peak output power was $0.30380 mW = 0.025293 [mW/50 MHz] \times 600.559 [MHz] / 50 [MHz]$

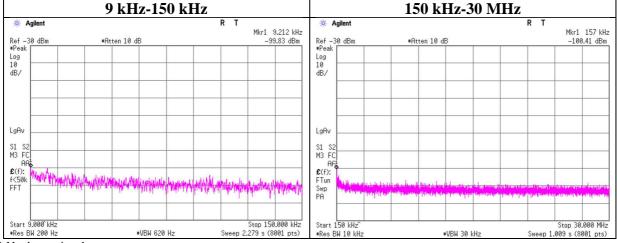
UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN


Test report No. : 13826578S-A-R2
Page : 25 of 34
Issued date : September 22, 2021
FCC ID : HYQWAN00

(Reference) Data of Antenna terminal conducted Test

Test place Shonan EMC Lab. No.5 Shielded Room


Report No. 13826578S-A-R2
Date June 2, 2021
Temperature / Humidity 25 deg. C / 68 % RH
Engineer Kenichi Adachi
Mode Transmitting

(Transmitting CH 5)

^{**} No detect signal.

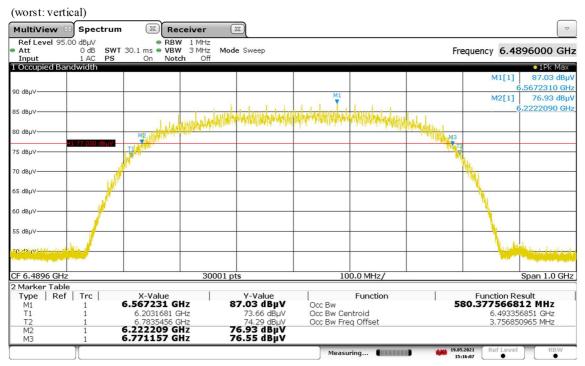
(Transmitting CH 9)

^{**} No detect signal.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 13826578S-A-R2
Page : 26 of 34
Issued date : September 22, 2021
FCC ID : HYQWAN00

Bandwidth (Regulation: FCC 15.503(d), FCC 15.519 (b))


Test place Shonan EMC Lab. No.3 Semi Anechoic Chamber

Report No. 13826578S-A-R2
Date May 19, 2021
Temperature / Humidity 24 deg. C / 53 % RH
Engineer Kenichi Adachi
Mode Transmitting CH 5

10 dB Bandwidth: 548.948 MHz (Limit: ≥ 500 MHz)

99 % Occupied Bandwidth: 580.378 MHz

Center Frequency 6496.683 MHz = (fH + fL)/2

 Start Frequency:
 5989.600 MHz
 fL:
 6222.209 MHz

 Stop Frequency:
 6989.600 MHz
 fH:
 6771.157 MHz

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 13826578S-A-R2
Page : 27 of 34
Issued date : September 22, 2021
FCC ID : HYQWAN00

Bandwidth (Regulation: FCC 15.503(d), FCC 15.519 (b))

Test place Shonan EMC Lab. No.3 Semi Anechoic Chamber

Report No. 13826578S-A-R2
Date May 20, 2021
Temperature / Humidity 25 deg. C / 59 % RH
Engineer Hiromasa Sato
Mode Transmitting CH 9

10 dB Bandwidth: 600.559 MHz (Limit: ≥ 500 MHz)

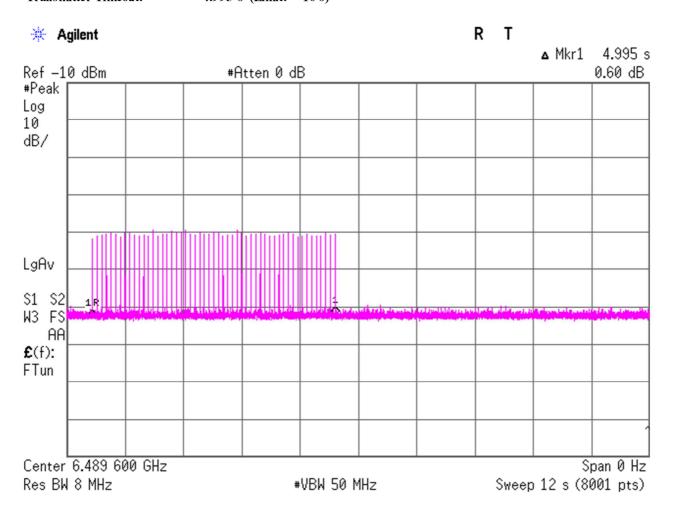
99 % Occupied Bandwidth: 606.892 MHz

Center Frequency 7983.990 MHz = (fH + fL)/2

 Start Frequency:
 7487.200 MHz
 fL:
 7683.710 MHz

 Stop Frequency:
 8487.200 MHz
 fH:
 8284.269 MHz

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN


Test report No. : 13826578S-A-R2
Page : 28 of 34
Issued date : September 22, 2021
FCC ID : HYQWAN00

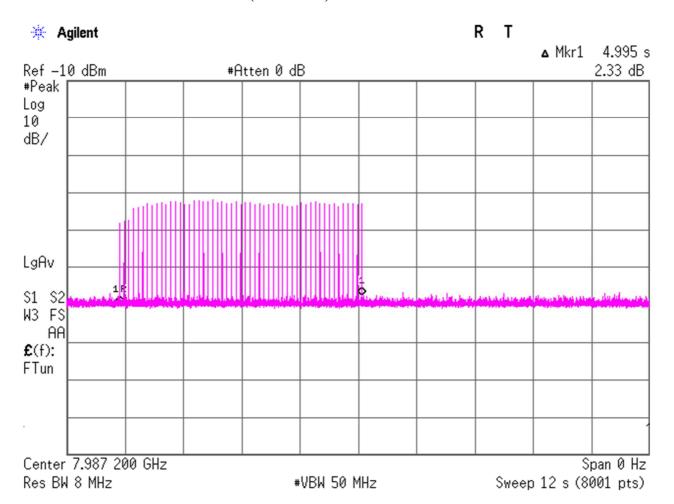
Data of Transmimtter timeout (Regulation: FCC 15.519 (a)(1))

Test place Shonan EMC Lab. No.5 Shielded Room

Report No. 13826578S-A-R2
Date June 24, 2021
Temperature / Humidity 24 deg. C / 54 % RH
Engineer Kenichi Adachi
Mode Transmitting CH5

Transmitter Timeout: 4.995 s (Limit: <10 s)

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN


Test report No. : 13826578S-A-R2
Page : 29 of 34
Issued date : September 22, 2021
FCC ID : HYQWAN00

Data of Transmimtter timeout (Regulation: FCC 15.519 (a)(1))

Test place Shonan EMC Lab. No.5 Shielded Room

Report No. 13826578S-A-R2
Date June 24, 2021
Temperature / Humidity 24 deg. C / 54 % RH
Engineer Kenichi Adachi
Mode Transmitting CH9

Transmitter Timeout: 4.995 s (Limit: <10 s)

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 13826578S-A-R2
Page : 30 of 34
Issued date : September 22, 2021
FCC ID : HYQWAN00

APPENDIX 2: Test instruments

Test Instruments (1/2)

Test In	struments	(1/2)	_	1	1		1	
Test Name	Local ID	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Calibration Interval (Month)
RE	COTS-SE MI-5	170932	EMI Software	TSJ (Techno Science Japan)	TEPTO-DV3(R E,CE,ME,PE)	-	-	-
RE	KAT10-S 2	144892	Attenuator	Keysight Technologies Inc	8490D 010	6036	2020/10/05	12
RE	KHA-02	144941	Horn Antenna	Schwarzbeck Mess-Elektronik OHG	BBHA9120D	230	2021/05/10	12
RE	KHA-08	144943	DRG Horn Antenna	A.H. Systems, Inc.	SAS-200/571	224	2021/05/10	12
RE	KJM-02	146432	Measure	TAJIMA	GL19-55	-	-	-
RE	KJM-09	145929	Measure	KOMELON	KMC-36	-	-	-
RE	SAEC-01(NSA)	145597	Semi-Anechoic Chamber	TDK	SAEC-01(NSA)	1	2021/04/30	12
RE	SAEC-03(NSA)	145565	Semi-Anechoic Chamber	TDK	SAEC-03(NSA)	3	2021/04/27	12
RE	SAF-01	145003	Pre Amplifier	SONOMA	310N	290211	2021/02/10	12
RE	SAF-03	145126	Pre Amplifier	SONOMA	310N	290213	2021/02/10	12
RE	SAF-06	145005	Pre Amplifier	Toyo Corporation	TPA0118-36	1440491	2021/02/08	12
RE	SAF-09	145008	Pre Amplifier	Toyo Corporation	HAP18-26W	18	2020/09/02	12
RE	SAF-10	145129	Pre Amplifier	Toyo Corporation	HAP26-40W	10	2021/03/01	12
RE	SAT6-13	167094	Attenuator	JFW	50HF-006N	-	2021/02/10	12
RE	SAT6-15	167096	Attenuator	JFW	50HF-006N	-	2021/02/10	12
RE	SBA-03	145023	Biconical Antenna	Schwarzbeck Mess-Elektronik OHG	BBA9106	91032666	2021/05/15	12
RE	SCC-A2/ A4/A6/A7 /A8/A13/ SRSE-01	144968	Coaxial Cable&RF Selector	Fujikura/Fujikur a/Suhner/Suhner/ Suhner/Suhner/T OYO	8D2W/12DSFA /141PE/141PE/1 41PE/141PE/NS 4906	-/0901-269(RF Selector)	2021/04/12	12
RE	SCC-C1/ C2/C3/C4 /C5/C10/S RSE-03	145171	Coaxial Cable&RF Selector	Fujikura/Fujikur a/Suhner/Suhner/ Suhner/Suhner/T OYO	8D2W/12DSFA /141PE/141PE/1 41PE/141PE/NS 4906	-/0901-271(RF Selector)	2021/04/12	12
RE	SCC-G15	145176	Coaxial Cable	Suhner	SUCOFLEX 102	32703/2	2021/03/01	12
RE	SCC-G20	145167	Coaxial Cable	Junkosha	J12J102518-00	APR-15-15-003	2021/04/01	12
RE	SCC-G42	151618	Coaxial Cable	Junkosha	J12J103275-00	FEB-28-17-017	2021/03/01	12
RE	SCC-G43	156380	Coaxial Cable	Huber+Suhner	SUCOFLEX_10 4_E	SN MY 13406/4E	2021/05/17	12
RE	SCC-G58	183047	Coaxial Cable	Huber+Suhner	SUCOFLEX 104	800287/4A	2021/05/17	12
RE	SCC-G70	200010	Coaxial Cable	Huber+Suhner	SUCOFLEX 104	575618/4	2020/07/07	12
RE	SCC-M1	194601	Coaxial Cable	Fjikura	5D-2W	-	2020/12/10	12
RE	SFL-26	206229	Bandpass Filter	MICRO-TRONI CS	BPC50411	086	2021/03/08	12
RE	SHA-03	145501	Horn Antenna	Schwarzbeck Mess-Elektronik OHG	BBHA9120D	9120D-739	2021/06/14	12
RE	SHA-05	145513	Horn Antenna	ETS-Lindgren	3160-09	00094867	2021/06/14	12
RE	SHA-06	145514	Horn Antenna	ETS-Lindgren	3160-10	00092383	2021/06/14	12
RE	SHA-07	145515	Horn Antenna	ETS-Lindgren (Cedar Park, Texas)	3116	108256	2021/05/10	12
RE	SHA-10	194685	Horn Antenna	Schwarzbeck Mess-Elektronik OHG	ввна 9120 С	711	2021/03/03	12

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 13826578S-A-R2
Page : 31 of 34
Issued date : September 22, 2021
FCC ID : HYQWAN00

Test Instruments (2/2)

Test Name	Local ID	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Calibration Interval (Month)
RE	SLA-07	145529	Logperiodic Antenna	Schwarzbeck Mess-Elektronik OHG	VUSLP9111B	196	2021/05/15	12
RE	SLP-02	145536	Loop Antenna	Rohde & Schwarz	HFH2-Z2	100218	2021/04/06	12
RE	SOS-20	191837	Humidity Indicator	CUSTOM. Inc	CTH-201	-	2020/09/28	12
RE	SOS-23	191840	Humidity Indicator	CUSTOM. Inc	CTH-201	-	2020/09/28	12
RE	SRENT-2	206472	Spectrum Analyzer	Rohde & Schwarz	FSW43	104056	2021/04/27	12
RE	SSG-02	146226	Signal Generator	Keysight Technologies Inc	E8257D-540	MY48051404	2021/02/01	12
RE	SSG-11	146256	Signal Generator	Keysight Technologies Inc	E8257D-550	MY53400714	2021/05/27	12
RE	STR-01	145790	Test Receiver	Rohde & Schwarz	ESU40	100093	2021/04/27	12
RE	STR-08	150463	Test Receiver	Rohde & Schwarz	ESW44	101581	2020/12/02	12
RE	STS-01	145792	Digital Hitester	HIOKI E.E. CORPORATIO N	3805-50	80997812	2020/10/19	12
RE	STS-03	146210	Digital Hitester	HIOKI E.E. CORPORATIO N	3805-50	80997823	2020/10/19	12

^{*}Hyphens for Last Calibration Date, Calibration Due Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

Test item: RE: Radiated Emission test

AT: Antenna Terminal Conducted test

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN