

RADIO TEST REPORT

Test Report No. 14839031H-B-R2

Customer	DENSO CORPORATION	
Description of EUT	Cockpit Control Unit	
Model Number of EUT	DNNS137	
FCC ID	HYQDNNS137	
Test Regulation	FCC Part 15 Subpart C	
Test Result	Complied	
Issue Date	June 24, 2024	
Remarks	Bluetooth (BR / EDR) parts	

Representative Test Engineer	Approved By
J.Okung	Ryata Yamanaka
Junya Okuno Engineer	Ryota Yamanaka Engineer ACCREDITED
	CERTIFICATE 5107.02
☐ The testing in which "Non-accreditation" is displayed	is outside the accreditation scopes in UL Japan, Inc.
There is no testing item of "Non-accreditation".	

Report Cover Page - Form-ULID-003532 (DCS:13-EM-F0429) Issue# 23.0

Test Report No. 14839031H-B-R2 Page 2 of 55

ANNOUNCEMENT

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested. (Laboratory was not involved in sampling.)
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers Radio technical requirements.
 It does not cover administrative issues such as Manual or non-Radio test related Requirements.
 (if applicable)
- The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- The information provided by the customer for this report is identified in SECTION 1.
- The laboratory is not responsible for information provided by the customer which can impact the validity of the results.
- For test report(s) referred in this report, the latest version (including any revisions) is always referred.

REVISION HISTORY

Original Test Report No.: 14839031H-B

This report is a revised version of 14839031H-B-R1. 14839031H-B-R1 is replaced with this report.

Revision	Test Report No.	Date	Page Revised Contents
- (Original)	14839031H-B	April 23, 2024	-
1	14839031H-B-R1	June 4, 2024	Correction of the following items in Radio
			Specification for Clause 2.2;
			- Antenna gain for WLAN
			- FM frequency for Broadcast
1	14839031H-B-R1	June 4, 2024	Correction of the FCC Part 15.203 Antenna
			requirement in Clause 3.2.
2	14839031H-B-R2	June 24, 2024	Correction of the RBDS frequency for Broadcast
			in Radio Specification for Clause 2.2

Test Report No. 14839031H-B-R2 Page 3 of 55

Reference: Abbreviations (Including words undescribed in this report)

A2LA	The American Association for Laboratory Accreditation	ICES	Interference-Causing Equipment Standard
AC	Alternating Current	IEC	International Electrotechnical Commission
AFH	Adaptive Frequency Hopping	IEEE	Institute of Electrical and Electronics Engineers
AM	Amplitude Modulation	IF	Intermediate Frequency
Amp, AMP	Amplifier	ILAC	International Laboratory Accreditation Conference
ANSI	American National Standards Institute	ISED	Innovation, Science and Economic Development Canada
Ant, ANT	Antenna	ISO	International Organization for Standardization
AP	Access Point	JAB	Japan Accreditation Board
ASK	Amplitude Shift Keying	LAN	Local Area Network
Atten., ATT	Attenuator	LIMS	Laboratory Information Management System
AV	Average	MCS	Modulation and Coding Scheme
BPSK	Binary Phase-Shift Keying	MRA	Mutual Recognition Arrangement
BR	Bluetooth Basic Rate	N/A	Not Applicable
BT	Bluetooth	NIST	National Institute of Standards and Technology
BT LE	Bluetooth Low Energy	NS	No signal detect.
BW	BandWidth	NSA	Normalized Site Attenuation
Cal Int	Calibration Interval	NVLAP	National Voluntary Laboratory Accreditation Program
CCK	Complementary Code Keying	OBW	Occupied Band Width
Ch., CH	Channel	OFDM	Orthogonal Frequency Division Multiplexing
CISPR	Comite International Special des Perturbations Radioelectriques	P/M	Power meter
CW	Continuous Wave	PCB	Printed Circuit Board
DBPSK	Differential BPSK	PER	Packet Error Rate
DC	Direct Current	PHY	Physical Layer
D-factor	Distance factor	PK	Peak
DFS	Dynamic Frequency Selection	PN	Pseudo random Noise
DQPSK	Differential QPSK	PRBS	Pseudo-Random Bit Sequence
DSSS	Direct Sequence Spread Spectrum	PSD	Power Spectral Density
EDR	Enhanced Data Rate	QAM	Quadrature Amplitude Modulation
EIRP, e.i.r.p.	Equivalent Isotropically Radiated Power	QP	Quasi-Peak
EMC	ElectroMagnetic Compatibility	QPSK	Quadri-Phase Shift Keying
EMI	ElectroMagnetic Interference	RBW	Resolution Band Width
EN	European Norm	RDS	Radio Data System
ERP, e.r.p.	Effective Radiated Power	RE	Radio Equipment
EU	European Union	RF	Radio Frequency
EUT	Equipment Under Test	RMS	Root Mean Square
Fac.	Factor	RSS	Radio Standards Specifications
FCC	Federal Communications Commission	Rx	Receiving
FHSS	Frequency Hopping Spread Spectrum	SA, S/A	Spectrum Analyzer
FM	Frequency Modulation	SG	Signal Generator
Freq.	Frequency	SVSWR	Site-Voltage Standing Wave Ratio
FSK	Frequency Shift Keying	TR	Test Receiver
GFSK	Gaussian Frequency-Shift Keying	Tx	Transmitting
GNSS	Global Navigation Satellite System	VBW	Video BandWidth
GPS	Global Positioning System	Vert.	Vertical

CONTENTS		PAGE
SECTION 1:	Customer Information	5
SECTION 2:	Equipment Under Test (EUT)	
SECTION 3:	Test Specification, Procedures & Results	
SECTION 4:	Operation of EUT during testing	
SECTION 5:	Radiated Spurious Emission	15
SECTION 6:	Antenna Terminal Conducted Tests	
APPENDIX 1:	Test data	19
20dB Ba	andwidth, 99%Occupied Bandwidth and Carrier Frequency Separation .	19
Number	of Hopping Frequency	23
Dwell tir	me	25
Maximu	m Peak Output Power	28
Average	e Output Power	29
Radiate	d Spurious Emission	31
	ted Spurious Emission	
Conduc	ted Emission Band Edge compliance	50
APPENDIX 2:	Test Instruments	52
APPENDIX 3:	Photographs of test setup	54
	d Spurious Emission	
Antenna Terminal Conducted Tests		

Test Report No. 14839031H-B-R2 Page 5 of 55

SECTION 1: Customer Information

Company Name	DENSO CORPORATION			
Address	1-1, Showa-cho, Kariya-shi, Aichi-ken, 448-8661, Japan			
Telephone Number	+81-566-26-5879			
Contact Person	Takehiro Abeta			

The information provided by the customer is as follows;

- Customer, Description of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer Information
- SECTION 2: Equipment Under Test (EUT) other than the Receipt Date and Test Date
- SECTION 4: Operation of EUT during testing

SECTION 2: Equipment Under Test (EUT)

2.1 Identification of EUT

Description	Cockpit Control Unit			
Model Number	DNNS137			
Serial Number	Refer to SECTION 4.2			
Condition	Production prototype			
	(Not for Sale: This sample is equivalent to mass-produced items.)			
Modification	No Modification by the test lab			
Receipt Date	March 14, 2024			
Test Date	March 18 to 31, 2024			

2.2 Product Description

General Specification

Rating	DC 13.2 V VDD DC 1.8 V, 3.3 V, 2.2 V
Operating temperature	5 deg. C to 35 deg. C

Radio Specification (1/2)

This report contains data provided by the customer which can impact the validity of results. UL Japan, Inc. is only responsible for the validity of results after the integration of the data provided by the customer. The data provided by the customer is marked "a)" in the table below.

WLAN (IEEE802.11b/11g/11n-20/n-40)

······································			
Equipment Type	Transceiver		
Frequency of Operation	20 MHz Band: 2412 MHz to 2462 MHz		
	40 MHz Band: 2432 MHz to 2452 MHz		
Type of Modulation	DSSS (CCK, DQPSK, DBPSK)		
	OFDM (64QAM, 16QAM, QPSK, BPSK, 256QAM		
Antenna Type	Inverted F Antenna		
Antenna Gain	Antenna 0: 0.71 dBi (Peak) (for Right)		
	Antenna 1:	2.19 dBi (Peak) (for Left)	

Test Report No. 14839031H-B-R2 Page 6 of 55

Radio Specification (2/2)

Bluetooth (BR / EDR)

Equipment Type	Transceiver
Frequency of Operation	2402 MHz to 2480 MHz
Type of Modulation	FHSS (GFSK, π/4 DQPSK, 8 DPSK)
Antenna Type	Inverted F Antenna
Antenna Gain ^{a)}	0.71 dBi (Peak) (for Right)

WLAN (IEEE802.11a/11n-20/11ac-20/11n-40/11ac-40/11ac-80)

Equipment Type	Transceiver	
Frequency of Operation	20 MHz Band	5180 MHz to 5240 MHz
		5745 MHz to 5825 MHz
	40 MHz Band	5190 MHz to 5230 MHz
		5755 MHz to 5795 MHz
	80 MHz Band	5210 MHz
		5775 MHz
Type of Modulation	OFDM (64QAM, 16QAM, QPSK, BPSK, 256QAM	
Antenna Type	Inverted F Antenna	
Antenna Gain	Antenna 0:	1.66 dBi (Peak) (for Right)
	Antenna 1:	4.04 dBi (Peak) (for Left)

GNSS

Equipment Type	Receiver
Frequency of Operation	GPS: 1575.42MHz
	GLONASS: 1598.0625 MHz to 1605.375 MHz
Type of Modulation	BPSK

Broadcast

Equipment Type	Receive	r
Frequency of Operation	AM:	522 kHz to 1710 kHz
	FM:	87.75 MHz to 107.9 MHz
	RBDS:	87.75 MHz to 107.9 MHz
	XM:	2333.465 MHz to 2344.045 MHz

Test Report No. 14839031H-B-R2 Page 7 of 55

SECTION 3: Test Specification, Procedures & Results

3.1 Test Specification

Test Specification	FCC Part 15 Subpart C
	The latest version on the first day of the testing period
Title	FCC 47 CFR Part 15 Radio Frequency Device Subpart C Intentional Radiators
	Section 15.207 Conducted limits
	Section 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz,
	and 5725-5850 MHz

^{*} Also the EUT complies with FCC Part 15 Subpart B.

3.2 Procedures and Results

Item	Test Procedure	Specification	Worst Margin	Results	Remarks
Conducted	FCC: ANSI C63.10-2013	FCC: Section 15.207	-	N/A	*1)
Emission	6. Standard test methods				'
	ISED: RSS-Gen 8.8	ISED: RSS-Gen 8.8	1		
Carrier	FCC: KDB 558074 D01 15.247	FCC: Section15.247(a)(1)	See data.	Complied	Conducted
Frequency	Meas Guidance v05r02			·	
Separation	ISED: -	ISED: RSS-247 5.1 (b)			
20dB	FCC: KDB 558074 D01 15.247	FCC: Section15.247(a)(1)	1	Complied	Conducted
Bandwidth	Meas Guidance v05r02			· ·	
	ISED: -	ISED: RSS-247 5.1 (a)	1		
Number of	FCC: KDB 558074 D01 15.247	FCC:		Complied	Conducted
Hopping	Meas Guidance v05r02	Section15.247(a)(1)(iii)		·	
Frequency	ISED: -	ISED: RSS-247 5.1 (d)			
Dwell time	FCC: KDB 558074 D01 15.247	FCC:		Complied	Conducted
	Meas Guidance v05r02	Section15.247(a)(1)(iii)		·	
	ISED: -	ISED: RSS-247 5.1 (d)	1		
Maximum	FCC: KDB 558074 D01 15.247	FCC: Section15.247(b)(1)		Complied	Conducted
Peak	Meas Guidance v05r02			·	
Output Power	ISED: RSS-Gen 6.12	ISED: RSS-247 5.4 (b)			
Spurious	FCC: KDB 558074 D01 15.247	FCC: Section15.247(d)	10.2 dB	Complied	Conducted/
Emission &	Meas Guidance v05r02		4108.3 MHz,	·	Radiated
Band Edge	ISED: RSS-Gen 6.13	ISED: RSS-247 5.5	Vertical, AV		(above 30 MHz)
Compliance		RSS-Gen 8.9			*2)
		RSS-Gen 8.10			

Note: UL Japan, Inc.'s EMI Work Procedures: Work Instructions-ULID-003591 and Work Instructions-ULID-003593.

* In case any questions arise about test procedure, ANSI C63.10: 2013 is also referred.

FCC Part 15.31 (e)

This EUT provides the stable voltage constantly to RF part regardless of input voltage.

Therefore, this EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the vehicle.

Therefore, the equipment complies with the antenna requirement of Section 15.203.

3.3 Addition to Standard

Item	Test Procedure	Specification	Worst Margin	Results	Remarks
99% Occupied	ISED: RSS-Gen 6.7	ISED: -	N/A	-	Conducted
Bandwidth					

Other than above, no addition, exclusion nor deviation has been made from the standard.

^{*1)} The test is not applicable since the EUT is not the device that is designed to be connected to the public utility (AC) power line. *2) Radiated test was selected over 30 MHz based on section 15.247(d).

Test Report No. 14839031H-B-R2 Page 8 of 55

3.4 Uncertainty

Measurement uncertainty is not taken into account when stating conformity with a specified requirement. Note: When margins obtained from test results are less than the measurement uncertainty, the test results may exceed the limit.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2.

Radiated emission

Measurement distance	Frequency range		Unit	Calculated Uncertainty (+/-)
3 m	9 kHz to 30 MHz		dB	3.3
10 m			dB	3.1
3 m	30 MHz to 200 MHz	Horizontal	dB	4.7
		Vertical	dB	4.7
	200 MHz to 1000 MHz	Horizontal	dB	4.8
		Vertical	dB	6.0
10 m	30 MHz to 200 MHz	Horizontal	dB	5.2
		Vertical	dB	5.1
	200 MHz to 1000 MHz	Horizontal	dB	5.2
		Vertical	dB	5.2
3 m	1 GHz to 6 GHz		dB	5.0
	6 GHz to 18 GHz	dB	5.2	
1 m	10 GHz to 18 GHz	dB	5.3	
	18 GHz to 26.5 GHz	dB	5.2	
	26.5 GHz to 40 GHz	dB	4.7	
0.5 m	26.5 GHz to 40 GHz		dB	4.8

Antenna Terminal Conducted

Item	Unit	Calculated Uncertainty (+/-)
Antenna terminated conducted emission / Power density / Burst power	dB	3.47
Adjacent channel power (ACP)	dB	2.28
Bandwidth (OBW)	%	0.96
Time readout (time span upto 100 msec)	%	0.11
Time readout (time span upto 1000 msec)	%	0.11
Time readout (time span upto 60 sec)	%	0.02
Power measurement (Power meter < 8 GHz)	dB	1.46
Power measurement (Call box < 6 GHz)	dB	1.69
Frequency readout (Frequency counter)	ppm	0.67
Frequency readout (Spectrum analyzer frequency readout function)	ppm	2.13
Temperature (constant temperature bath)	deg. C	0.69
Humidity (constant temperature bath)	%RH	2.98
Modulation characteristics	%	6.93
Frequency for mobile	ppm	0.08
Contention-based protocol	dB	2.26

Test Report No. 14839031H-B-R2 Page 9 of 55

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 Japan

Telephone: +81-596-24-8999

A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 884919

ISED Lab Company Number: 2973C / CAB identifier: JP0002

Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	Maximum measurement distance
No.1 semi-anechoic chamber	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.10 shielded room	3.8 x 2.8 x 2.8	3.8 x 2.8	-	-
No.11 measurement room	4.0 x 3.4 x 2.5	N/A	-	-
No.12 measurement room	2.6 x 3.4 x 2.5	N/A	-	-
Large Chamber	16.9 x 22.1 x 10.17	16.9 x 22.1	-	10 m
Small Chamber	5.3 x 6.69 x 3.59	5.3 x 6.69	-	-

3.6 Test Data, Test Instruments, and Test Set Up

Refer to APPENDIX.

Test Report No. 14839031H-B-R2 Page 10 of 55

SECTION 4: Operation of EUT during testing

4.1 Operating Mode(s)

Mode	Remarks*							
Bluetooth (BT)	BR / EDR, Payload: PRBS9							
*EUT has the power s	ettings by the software as follows;							
Power Setting:	BDR: 0 dBm							
	EDR: 0 dBm							
Software:	CCU TEST Program							
	Soc: Version: 20231214							
(Date: 2023.12.14, Storage location: EUT memory)								
VCPU: Version: 20230421								
	(Date: 2023.04.21, Storage location: EUT memory)							
*This setting of softwa	*This setting of software is the worst case.							
Any conditions under t	the normal use do not exceed the condition of setting.							
In addition, end users	cannot change the settings of the output power of the product.							

Details of Operating Mode(s)

Test Item	Mode	Hopping	Tested Frequency
Radiated Spurious Emission (Below 1 GHz)	Tx 3DH5 *1)	Off	2441 MHz
Radiated Spurious Emission (Above 1 GHz),	Tx DH5	Off	2402 MHz
Conducted Spurious Emission	Tx 3DH5		2441 MHz
			2480 MHz
20dB Bandwidth,	Tx DH5	On	2402 MHz
Carrier Frequency Separation	Tx 3DH5		2441 MHz
			2480 MHz
Number of Hopping Frequency	Tx DH5	On	=
	Tx 3DH5		
Dwell time	Tx DH1, DH3, DH5	On	-
	Tx 3DH1, 3DH3, 3DH5		
Maximum Peak Output Power	Tx DH5	Off	2402 MHz
	Tx 2DH5		2441 MHz
	Tx 3DH5		2480 MHz
Band Edge Compliance	Tx DH5	On	2402 MHz
(Conducted)	Tx 3DH5	Off	2480 MHz
99% Occupied Bandwidth	Tx DH5	On	2402 MHz
	Tx 3DH5	Off	2441 MHz
			2480 MHz

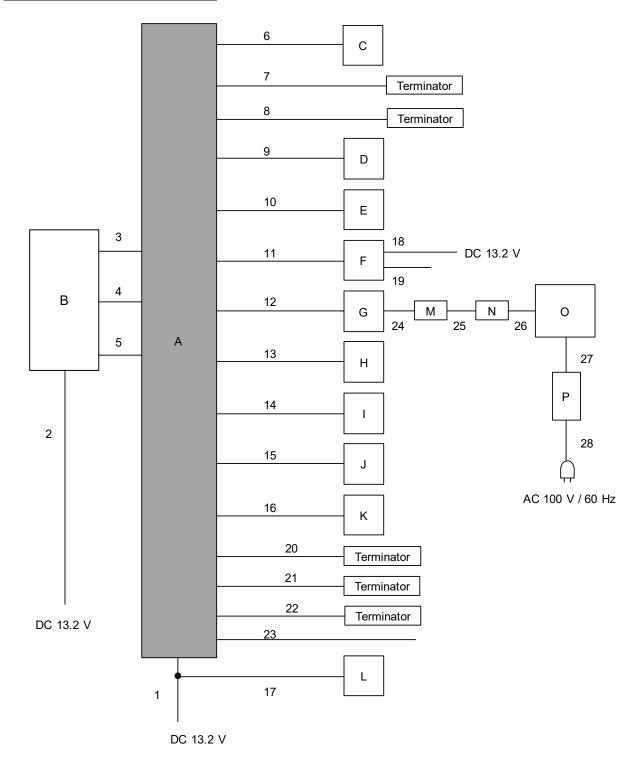
^{*}As a result of preliminary test, the formal test was performed with the above modes, which had the maximum payload length (except Dwell time test)

Simultaneous transmission

(Only simultaneously transmits BT and WLAN 5 GHz on a signal antenna.)

Test Item	Mode *1)
Radiated Spurious Emission	Tx DH5 2480 MHz + 11n-20 5180 MHz

^{*1)} The test was conducted on representative mode, the worst mode of GHz band at Spurious emission test and the worst power mode of at Antenna terminal conducted test for WLAN 5 GHz band.


^{*2}DH mode (2Mb/s EDR: pi/4DQPSK) was excluded for other tests than power measurement by using 3DH mode (3 Mb/s EDR: 8DPSK) as a representative.

^{*}It is considered that the non-tested packet type (e.g. inquiry) can be omitted as it is complied with above all the test items based on Bluetooth Core specification.

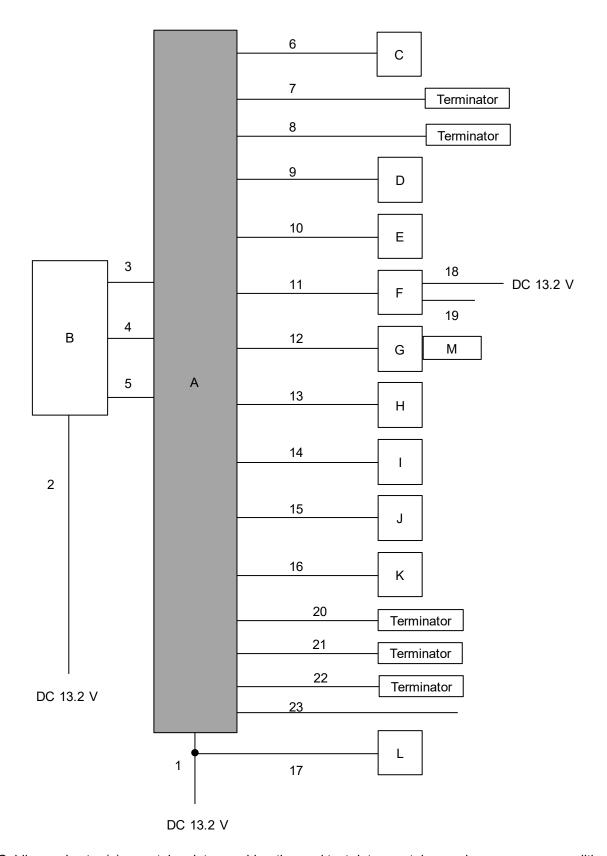
^{*1)} Spurious emissions for frequencies below 1 GHz were limited to the channel that had the highest power during the antenna terminal test, as preliminary testing indicated that changing the operating frequency had no significant impact on the emissions in those frequency bands.

4.2 Configuration and Peripherals

Antenna Terminal Conducted test

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Test Report No. 14839031H-B-R2 Page 12 of 55


Description of EUT and Support Equipment

No.	Item	Model number	Serial Number	Manufacturer	Remarks
Α	Cockpit Control Unit	DNNS137	46872600100000000	DENSO	EUT
			0000003	CORPORATION	
В	Display (CID)	137000-15890001	No.1	DENSO TEN	-
				CORPORATION	
С	GPS Antenna	86277AL000	29550172	SUBARU	-
				CORPORATION	
D	Camera Dummy	MAX96778COAXE	-	Maxim integrated	-
		VKIT			
E	Ether Dummy	EtherBoard	-	DENSO	-
				CORPORATION	
F	METER	5-157500-186	No.S44	DENSO	-
				CORPORATION	
G	USB BOX	TAP8006 cable	No.12	HOSHIDEN	-
Н	Speaker	AK-122	-	archill	-
I	Speaker	AK-122	-	archill	-
J	Speaker	AK-122	-	archill	-
K	Speaker	AK-122	-	archill	-
L	HEATER CONTROL	137000-15990005	No.1	DENSO TEN	-
	Panel			CORPORATION	
M	USB-LAN Adapter	LUA3-U2-ATX	26495621036190	BUFFALO INC.	-
N	USB-LAN Adapter	LUA3-U2-ATX	26495621036077	BUFFALO INC.	-
0	Laptop PC	X1 Carbon	R9-OH8OBW 15/9	LENOVO	-
Р	AC Adapter	ADXL45NCC2A	11S45N0299Z1ZS944	LENOVO	-
			B6KBR		

List of Cables Used

No.	Name	Length (m)	Shield	Remarks	
			Cable	Connector	
1	DC Cable	4.20	Unshielded	Unshielded	-
2	DC Cable	4.30	Unshielded	Unshielded	-
3	Antenna Cable	0.57	Shielded	Shielded	-
4	Antenna Cable	0.57	Shielded	Shielded	-
5	Display Signal Cable	0.57	Shielded	Shielded	-
6	GPS Antenna Cable	1.00	Shielded	Shielded	-
7	Radio Antenna Cable(AM/FM)	2.00	Shielded	Shielded	-
8	Radio Antenna Cable(XM)	2.00	Shielded	Shielded	-
9	Camera Cable	2.00	Shielded	Shielded	-
10	Ether Cable	2.00	Shielded	Shielded	-
11	METER Signal Cable	2.00	Unshielded	Unshielded	-
12	USB BOX Cable	2.00	Shielded	Shielded	-
13	Speaker Cable	6.30	Unshielded	Unshielded	-
14	Speaker Cable	6.30	Unshielded	Unshielded	-
15	Speaker Cable	6.30	Unshielded	Unshielded	-
16	Speaker Cable	6.30	Unshielded	Unshielded	-
17	DC Cable	4.60	Unshielded	Unshielded	-
18	DC Cable	4.60	Unshielded	Unshielded	-
19	Signal Cable	2.00	Unshielded	Unshielded	-
20	Signal Cable	2.00	Unshielded	Unshielded	-
21	Signal Cable	2.00	Unshielded	Unshielded	-
22	Signal Cable	2.00	Unshielded	Unshielded	-
23	Signal Cable	2.00	Unshielded	Unshielded	-
24	USB Cable	0.18	Shielded	Shielded	-
25	LAN Cable	2.00	Shielded	Shielded	-
26	USB Cable	0.18	Shielded	Shielded	-
27	DC Cable	1.70	Unshielded	Unshielded	-
28	AC Cable	1.00	Unshielded	Unshielded	-

Radiated Emission test

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Test Report No. 14839031H-B-R2 Page 14 of 55

Description of EUT and Support Equipment

No.	Item	Model number	Serial Number	Manufacturer	Remarks
Α	Cockpit Control Unit	DNNS137	46872600100000000	DENSO	EUT
			0000003	CORPORATION	
В	Display(CID)	137000-15890001	No.1	DENSO TEN	-
				CORPORATION	
С	GPS Antenna	86277AL000	29550172	SUBARU	-
				CORPORATION	
D	Camera Dummy	MAX96778COAXE	-	Maxim integrated	-
		VKIT			
E	Ether Dummy	EtherBoard	-	DENSO	-
				CORPORATION	
F	METER	5-157500-186	No.S44	DENSO	-
				CORPORATION	
G	USB BOX	TAP8006 cable	No.12	HOSHIDEN	-
Н	Speaker	AK-122	-	archill	-
I	Speaker	AK-122	-	archill	-
J	Speaker	AK-122	-	archill	-
K	Speaker	AK-122	-	archill	-
L	HEATER CONTROL	137000-15990005	No.1	DENSO TEN	-
	Panel			CORPORATION	
М	USB Memory	RUF3-K16GB	P10416	BUFFALO INC.	-

List of Cables Used

No.	Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	DC Cable	4.20	Unshielded	Unshielded	-
2	DC Cable	4.30	Unshielded	Unshielded	-
3	Antenna Cable	0.57	Shielded	Shielded	-
4	Antenna Cable	0.57	Shielded	Shielded	-
5	Display Signal Cable	0.57	Shielded	Shielded	-
6	GPS Antenna Cable	1.00	Shielded	Shielded	-
7	Radio Antenna Cable(AM/FM)	2.00	Shielded	Shielded	-
8	Radio Antenna Cable(XM)	2.00	Shielded	Shielded	-
9	Camera Cable	2.00	Shielded	Shielded	-
10	Ether Cable	2.00	Shielded	Shielded	-
11	METER Signal Cable	2.00	Unshielded	Unshielded	-
12	USB BOX Cable	2.00	Shielded	Shielded	-
13	Speaker Cable	6.30	Unshielded	Unshielded	-
14	Speaker Cable	6.30	Unshielded	Unshielded	-
15	Speaker Cable	6.30	Unshielded	Unshielded	-
16	Speaker Cable	6.30	Unshielded	Unshielded	-
17	DC Cable	4.60	Unshielded	Unshielded	-
18	DC Cable	4.60	Unshielded	Unshielded	-
19	Signal Cable	2.00	Unshielded	Unshielded	-
20	Signal Cable	2.00	Unshielded	Unshielded	-
21	Signal Cable	2.00	Unshielded	Unshielded	-
22	Signal Cable	2.00	Unshielded	Unshielded	-
23	Signal Cable	2.00	Unshielded	Unshielded	-

Test Report No. 14839031H-B-R2 Page 15 of 55

SECTION 5: Radiated Spurious Emission

Test Procedure

[For below 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 1.0 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane. Test antenna was aimed at the EUT for receiving the maximum signal and always kept within the illumination area of the 3 dB beamwidth of the antenna.

The height of the measuring antenna varied between 1 m and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

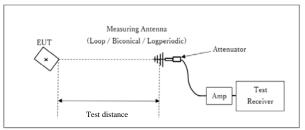
Test Antennas are used as below;

Frequency	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Biconical	Logperiodic	Horn

Test Report No. 14839031H-B-R2 Page 16 of 55

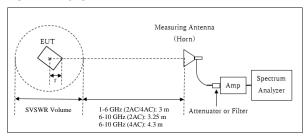
In any 100 kHz bandwidth outside the restricted band in which the spread spectrum intentional radiator is operating,

the radio frequency power that is produced by the intentional radiator confirmed 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on a radiated measurement.


20 dBc was applied to the frequency over the limit of FCC 15.209 / Table 4 of RSS-Gen 8.9 (ISED) and outside the restricted band of FCC15.205 / Table 6 of RSS-Gen 8.10 (ISED).

Frequency	Below 1 GHz	Above 1 GHz	20 dBc					
Instrument used	Test Receiver	Spectrum Analyze	Spectrum Analyzer					
Detector	QP	PK	AV	PK				
IF Bandwidth	BW 120 kHz	RBW: 1 MHz VBW: 3 MHz	RBW: 1 MHz VBW: 3 MHz Detector: Power Averaging (RMS) Trace: 100 traces Duty factor was added to the results.	RBW: 100 kHz VBW: 300 kHz				

Test Report No. 14839031H-B-R2 Page 17 of 55


Figure 2: Test Setup

Below 1 GHz

× : Center of turn table

1 GHz to 10 GHz

- r: Radius of an outer periphery of EUT
- ×: Center of turn table

Test Distance: 3 m

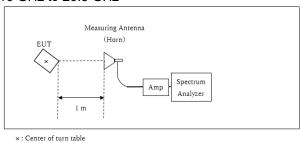
[1 GHz to 6 GHz] for 2AC

Distance Factor: $20 \times \log (3.55 \text{ m} / 3.0 \text{ m}) = 1.47 \text{ dB}$ * Test Distance: (3 + SVSWR Volume / 2) - r = 3.55 m\$\text{SVSWR Volume} : 1.5 m \$\text{r} = 0.2 m

[6 GHz to 10 GHz] for 2AC

Distance Factor: $20 \times \log (3.55 \text{ m} / 3.0 \text{ m}) = 1.47 \text{ dB}$ * Test Distance: (3.25 + SVSWR Volume /2) - r = 3.55 mSVSWR Volume : 1.0 mr = 0.2 m

[1 GHz to 6 GHz] for 4AC


Distance Factor: $20 \times log (3.80 \text{ m} / 3.0 \text{ m}) = 2.06 \text{ dB}$ * Test Distance: (3 + SVSWR Volume / 2) - r = 3.80 mSVSWR Volume : 2.0 mr = 0.2 m

[6 GHz to 10 GHz] for 4AC

Distance Factor: $20 \times \log (4.80 \text{ m} / 3.0 \text{ m}) = 4.09 \text{ dB}$ * Test Distance: (4.3 + SVSWR Volume / 2) - r = 4.80 mSVSWR Volume : 1.4 m r = 0.2 m

*SVSWR Volume has been calibrated based on CISPR 16-1-4.

10 GHz to 26.5 GHz

Distance Factor: $20 \times \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

*Test Distance: 1 m

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Measurement Range : 30 MHz to 26.5 GHz

Test Data : APPENDIX
Test Result : Pass

Test Report No. 14839031H-B-R2 Page 18 of 55

SECTION 6: Antenna Terminal Conducted Tests

Test Procedure

The tests were made with below setting connected to the antenna port.

Test	Span	RBW	VBW	Sweep time	Detector	Trace	Instrument Used
20dB Bandwidth	3 MHz	30 kHz	100 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99% Occupied Bandwidth *1)	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak	Max Hold	Spectrum Analyzer
Maximum Peak Output Power	-	-	-	Auto	Peak Average *2)	-	Power Meter (Sensor: 50MHz BW)
Carrier Frequency Separation	3 MHz	30 kHz	100 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
Number of Hopping Frequency	30 MHz	200 kHz	620 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
Dwell Time	Zero Span	100 kHz, 1 MHz	300 kHz, 3 MHz	As necessary capture the entire dwell time per hopping channel	Peak	Clear Write	Spectrum Analyzer
Conducted	9 kHz to 150 kHz	200 Hz	620 Hz	Auto	Peak	Max Hold	Spectrum Analyzer
Spurious	150 kHz to 30 MHz	10 kHz	30 kHz				
Emission *3) *4)	30 MHz to 25 GHz	100 kHz	300 kHz				
Conducted Spurious Emission Band Edge compliance	10 MHz	100 kHz	300 kHz	Auto	Peak	Max Hold	Spectrum Analyzer

^{*1)} Peak hold was applied as Worst-case measurement.

The test results and limit are rounded off to two decimals place, so some differences might be observed. The equipment and cables were not used for factor 0 dB of the data sheets.

Test Data : APPENDIX Test Result : Pass

^{*2)} Reference data

^{*3)} In the frequency range below 30MHz, RBW was narrowed to separate the noise contents. Then, wide-band noise near the limit was checked separately, however the noise was low enough as shown in the chart. (9 kHz - 150 kHz: RBW = 200 Hz, 150 kHz - 30 MHz: RBW = 9.1 kHz).

^{*4)} The limits in CFR 47, Part 15, Subpart C, paragraph 15.209(a), are identical to those in RSS-Gen section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377 Ohmes. For example, the measurement at frequency 9 kHz resulted in a level of 45.5 dBuV/m, which is equivalent to 45.5 – 51.5 = -6.0 dBuA/m, which has the same margin, 3 dB, to the corresponding RSS-Gen Table 6 limit as it has to 15.209(a) limit.

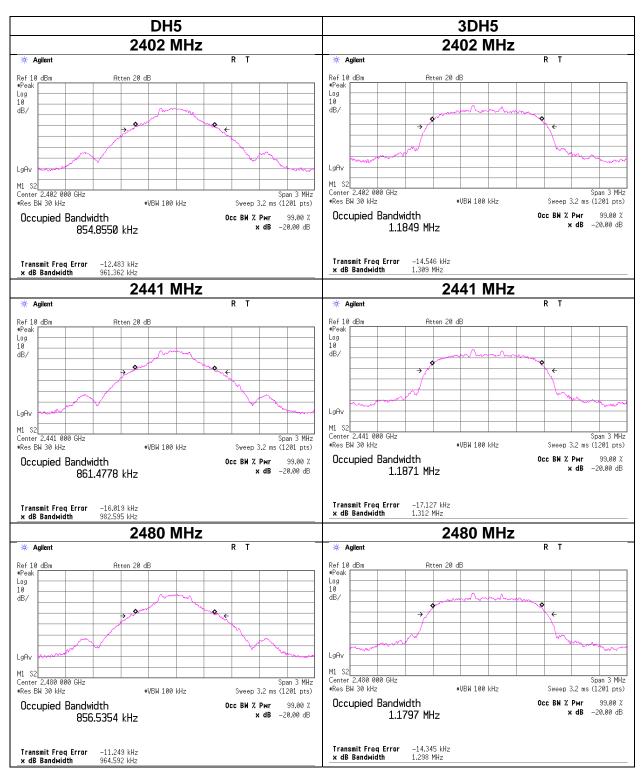
Test Report No. 14839031H-B-R2 Page 19 of 55

APPENDIX 1: Test data

20dB Bandwidth, 99%Occupied Bandwidth and Carrier Frequency Separation

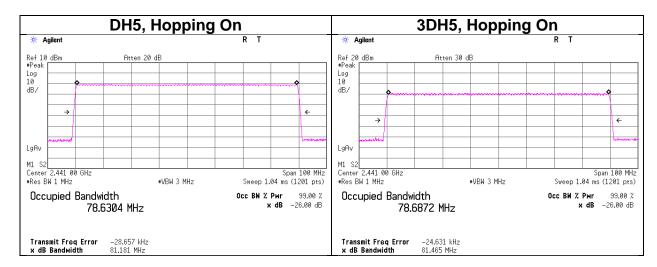
Test place Ise EMC Lab. No.4 Measurement Room

Date March 18, 2024
Temperature / Humidity 20 deg. C / 40 % RH
Engineer Junya Okuno

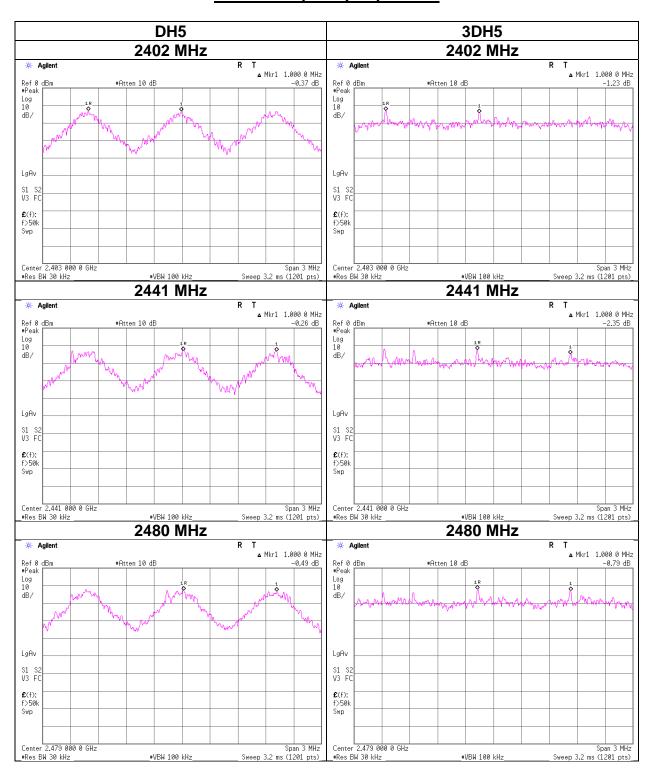

Mode Tx, Hopping Off, Tx, Hopping On

Mode	Freq.	20 dB Bandwidth	99 % Occupied	Carrier Frequency	Limit for Carrier
			Bandwidth	Separation	Frequency separation
	[MHz]	[MHz]	[kHz]	[MHz]	[MHz]
DH5	2402.0	0.961	854.855	1.000	>= 0.641
DH5	2441.0	0.983	861.478	1.000	>= 0.655
DH5	2480.0	0.965	856.535	1.000	>= 0.643
DH5	Hopping On	-	78.630	-	-
3DH5	2402.0	1.309	1184.900	1.000	>= 0.873
3DH5	2441.0	1.312	1187.100	1.000	>= 0.875
3DH5	2480.0	1.298	1179.700	1.000	>= 0.865
3DH5	Hopping On	-	76.687	-	-

Limit: Two-thirds of 20 dB Bandwidth or 25 kHz (whichever is greater).


No limit applies to 20 dB Bandwidth.

20dB Bandwidth and 99% Occupied Bandwidth



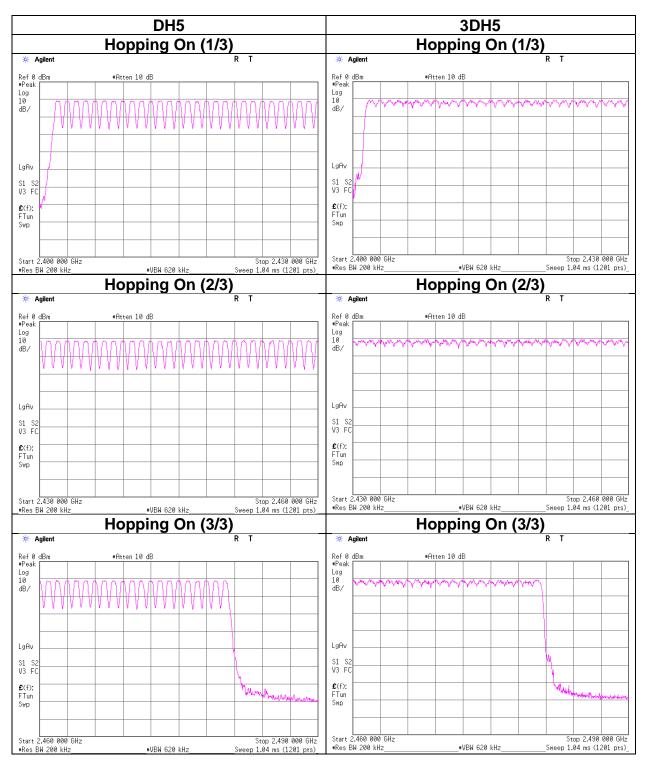
Test Report No. 14839031H-B-R2 Page 21 of 55

20dB Bandwidth and 99% Occupied Bandwidth

Carrier Frequency Separation

Test Report No. 14839031H-B-R2 Page 23 of 55

Number of Hopping Frequency


Test place Ise EMC Lab. No.4 Measurement Room

Date March 18, 2024
Temperature / Humidity 20 deg. C / 40 % RH
Engineer Junya Okuno
Mode Tx, Hopping On

Mode	Number of channel	Limit
	[channels]	[channels]
DH5	79	>= 15
3DH5	79	>= 15

Test was not performed at AFH mode whose number of hopping channel is 20 channels because this Bluetooth radio is in compliance of Bluetooth Specification.

Number of Hopping Frequency

Test Report No. 14839031H-B-R2 Page 25 of 55

Dwell time

Test place Ise EMC Lab. No.4 Measurement Room

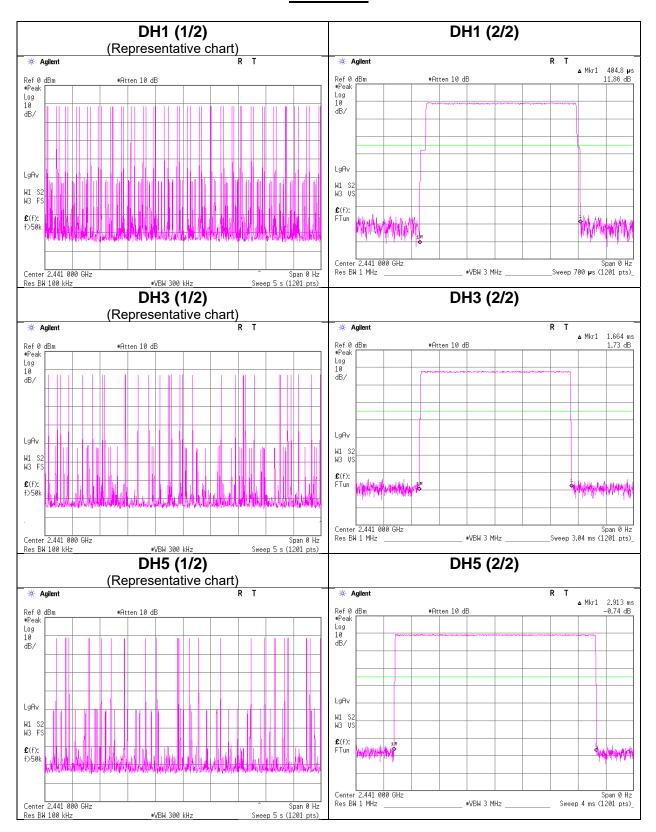
Date March 18, 2024
Temperature / Humidity 20 deg. C / 40 % RH
Engineer Junya Okuno
Mode Tx, Hopping On

Mode			nber of trai 1.6 (79 Ho	Length of transmission	Result	Limit			
			opping x 0	[ms]	[ms]	[ms]			
DH1	51.6 times /	5 s	Χ	31.6 s	=	327 times	0.405	132	400
DH3	26.8 times /	5 s	Х	31.6 s	=	170 times	1.664	283	400
DH5	21.6 times /	5 s	Х	31.6 s	=	137 times	2.913	399	400
3DH1	51.2 times /	5 s	Χ	31.6 s	=	324 times	0.411	133	400
3DH3	27.8 times /	5 s	Х	1.664	293	400			
3DH5	21.4 times /	5 s	Х	31.6 s	=	136 times	2.920	397	400

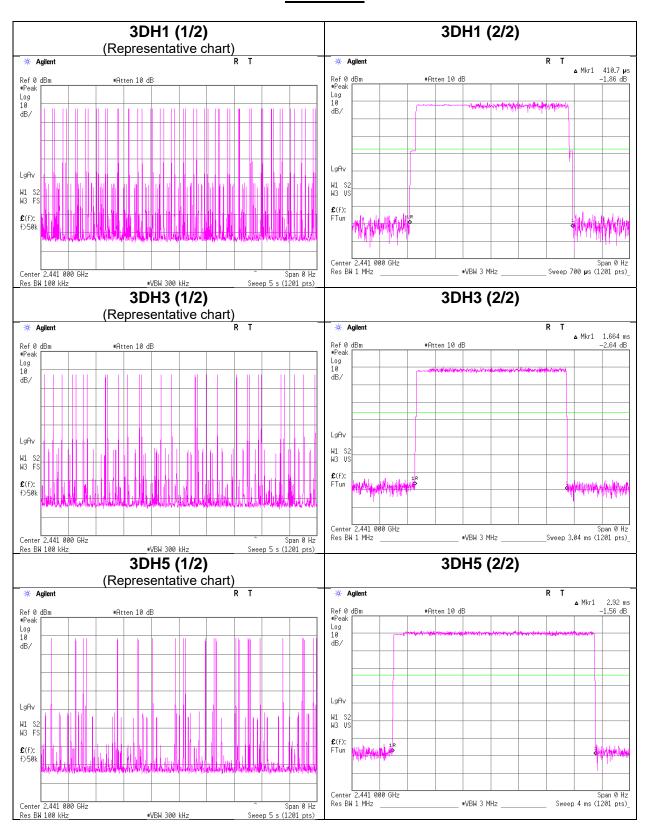
Sample Calculation

Result = Number of transmission x Length of transmission

*Average data of 5 tests.(except Inquiry)


Mode Sampling [times] Average													
Mode		Average											
	1	2	3	4	5	[times]							
DH1	52	51	51	52	52	51.6							
DH3	28	25	27	25	29	26.8							
DH5	23	22	22	20	21	21.6							
3DH1	50	50	51	53	52	51.2							
3DH3	27	29	25	29	29	27.8							
3DH5	21	23	20	22	21	21.4							

Sample Calculation


Average = Summation (Sampling 1 to 5) / 5

This device complies with the Bluetooth protocol for FHSS operation, employing a pseudo random channel selection and hopping rate to ensure that the occupancy time in N x 0.4 s, where N is the number of channels being used in the hopping sequence ($20 \le N \le 79$), is always less than 0.4 s regardless of packet size. This is confirmed in the test report for N = 79.

Dwell time

Dwell time

Test Report No. 14839031H-B-R2 Page 28 of 55

Maximum Peak Output Power

Test place Ise EMC Lab. No.4 Measurement Room

Date March 18, 2024
Temperature / Humidity 20 deg. C / 40 % RH
Engineer Junya Okuno
Mode Tx, Hopping Off

					Conducted Power					e.i.r.p. for RSS-247					
Mode	Freq.	Reading	Cable	Atten.	Res	sult	Lir	Limit		Antenna	Result		Limit		Margin
			Loss	Loss						Gain					
	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]
DH5	2402.0	-12.32	2.19	10.07	-0.06	0.99	20.96	125	21.02	0.71	0.65	1.16	36.02	4000	35.37
DH5	2441.0	-12.32	2.20	10.07	-0.05	0.99	20.96	125	21.01	0.71	0.66	1.16	36.02	4000	35.36
DH5	2480.0	-12.39	2.21	10.07	-0.11	0.97	20.96	125	21.07	0.71	0.60	1.15	36.02	4000	35.42
2DH5	2402.0	-10.58	2.19	10.07	1.68	1.47	20.96	125	19.28	0.71	2.39	1.73	36.02	4000	33.63
2DH5	2441.0	-10.54	2.20	10.07	1.73	1.49	20.96	125	19.23	0.71	2.44	1.75	36.02	4000	33.58
2DH5	2480.0	-10.62	2.21	10.07	1.66	1.47	20.96	125	19.30	0.71	2.37	1.73	36.02	4000	33.65
3DH5	2402.0	-10.00	2.19	10.07	2.26	1.68	20.96	125	18.70	0.71	2.97	1.98	36.02	4000	33.05
3DH5	2441.0	-9.96	2.20	10.07	2.31	1.70	20.96	125	18.65	0.71	3.02	2.00	36.02	4000	33.00
3DH5	2480.0	-10.05	2.21	10.07	2.23	1.67	20.96	125	18.73	0.71	2.94	1.97	36.02	4000	33.08

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

e.i.r.p. Result = Conducted Power Result + Antenna Gain

Test was not performed at AFH mode, because the decrease of number of channel (min: 20 ch) at AFH mode does not influence on the output power and bandwidth of the EUT.

As this device had AFH mode and frequency separation could not meet the requirement of over 20 dB BW without 2/3 relaxation, 125 mW power limit was applied to it.

Test Report No. 14839031H-B-R2 Page 29 of 55

Average Output Power (Reference data for RF Exposure)

Test place Ise EMC Lab. No.4 Measurement Room

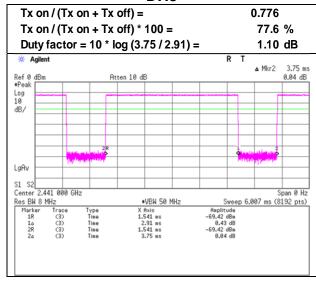
Date March 18, 2024
Temperature / Humidity 20 deg. C / 40 % RH
Engineer Junya Okuno
Mode Tx, Hopping Off

Mode	Freq.	Reading	Cable	Atten.	Result		Duty		sult
			Loss	Loss	(Time average)		factor	(Burst pow	er average)
	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]
DH5	2402.0	-14.37	2.19	10.07	-2.11	0.62	1.10	-1.01	0.79
DH5	2441.0	-14.37	2.20	10.07	-2.10	0.62	1.10	-1.00	0.79
DH5	2480.0	-14.46	2.21	10.07	-2.18	0.61	1.10	-1.08	0.78
2DH5	2402.0	-14.46	2.19	10.07	-2.20	0.60	1.10	-1.10	0.78
2DH5	2441.0	-14.45	2.20	10.07	-2.18	0.61	1.10	-1.08	0.78
2DH5	2480.0	-14.51	2.21	10.07	-2.23	0.60	1.10	-1.13	0.77
3DH5	2402.0	-14.43	2.19	10.07	-2.17	0.61	1.10	-1.07	0.78
3DH5	2441.0	-14.38	2.20	10.07	-2.11	0.62	1.10	-1.01	0.79
3DH5	2480.0	-14.47	2.21	10.07	-2.19	0.60	1.10	-1.09	0.78

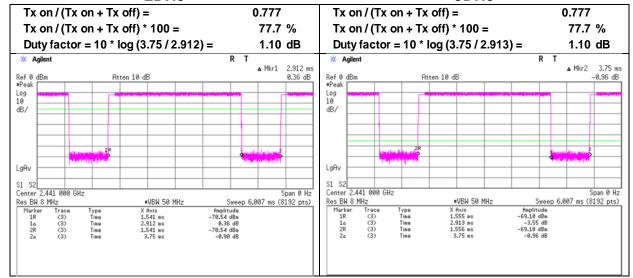
Sample Calculation:

Result (Time average) = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Los Result (Burst power average) = Time average + Duty factor

^{*}The equipment and cables were not used for factor 0 dB of the data sheets.


Test Report No. 14839031H-B-R2 Page 30 of 55

Burst Rate Confirmation


Test place Ise EMC Lab. No.4 Measurement Room Date March 18, 2024

Temperature / Humidity 20 deg. C / 40 % RH Engineer Junya Okuno Mode Tx, Hopping Off

DH₅

2DH5 3DH5

Test Report No. 14839031H-B-R2 Page 31 of 55

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.2 No.4

Date March 20, 2024 March 28, 2024 20 deg. C / 40 % RH 23 deg. C / 37 % RH Temperature / Humidity Junya Okuno Engineer Shousei Hamaguchi (1 GHz to 10 GHz) (10 GHz to 26.5 GHz)

Mode Tx, Hopping Off, DH5 2402 MHz

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP/PK)	(AV)	Factor			Factor	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2390.0	43.8	35.3	27.7	4.4	34.4	1.1	41.5	34.0	73.9	53.9	32.4	19.9	*1)
Hori.	4108.3	46.9	40.0	30.1	6.3	33.5	-	49.8	43.0	73.9	53.9	24.1	10.9	
Hori.	4804.0	42.0	33.7	31.6	6.5	33.6	-	46.5	38.2	73.9	53.9	27.4	15.7	Floor noise
Hori.	7206.0	43.5	34.7	35.6	7.6	33.4	-	53.3	44.4	73.9	53.9	20.7	9.5	Floor noise
Hori.	9608.0	43.0	34.4	35.7	8.5	34.0	-	53.1	44.6	73.9	53.9	20.8	9.3	Floor noise
Vert.	2390.0	44.8	35.2	27.7	4.4	34.4	1.1	42.4	33.9	73.9	53.9	31.5	20.0	*1)
Vert.	4108.3	47.7	40.6	30.1	6.3	33.5	-	50.7	43.6	73.9	53.9	23.2	10.3	
Vert.	4804.0	42.1	33.8	31.6	6.5	33.6	-	46.6	38.3	73.9	53.9	27.4	15.6	Floor noise
Vert.	7206.0	43.6	34.6	35.6	7.6	33.4	-	53.3	44.4	73.9	53.9	20.6	9.5	Floor noise
Vert.	9608.0	43.0	34.5	35.7	8.5	34.0	-	53.1	44.6	73.9	53.9	20.8	9.3	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)
Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

20dBc Data Sheet

Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
		(PK)	Factor						
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2402.0	98.0	27.6	4.4	34.4	95.6	-	-	Carrier
Hori.	2400.0	42.5	27.6	4.4	34.4	40.2	75.6	35.5	
Vert.	2402.0	94.4	27.6	4.4	34.4	92.0	-	-	Carrier
Vert.	2400.0	40.4	27.6	4.4	34.4	38.0	72.0	34.1	

 $Result = Reading + Ant Factor + Loss \ (Cable + Attenuator + Filter + Distance \ factor (above \ 1 \ GHz)) - Gain (Amprifier)$

Distance factor: 1 GHz - 6 GHz 20log (3.55 m / 3.0 m) = 1.47 dB 20log (3.55 m / 3.0 m) = 1.47 dB 6 GHz - 10 GHz

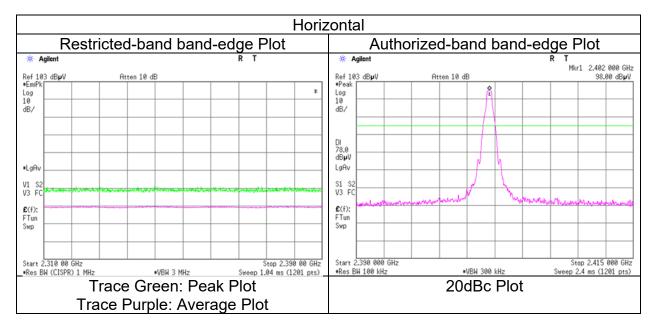
10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.54 dB

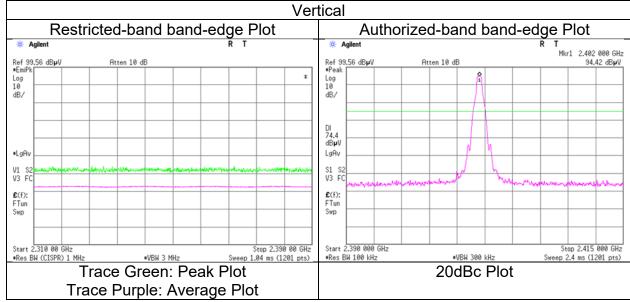
^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*}QP detector was used up to 1GHz.
*1) Not Out of Band emission(Leakage Power)

^{*}These results have sufficient margin without taking account Duty cycle correction factor.

Test Report No. 14839031H-B-R2 Page 32 of 55


Radiated Spurious Emission (Reference Plot for band-edge)


Test place Ise EMC Lab.

Semi Anechoic Chamber No.2

Date March 20, 2024
Temperature / Humidity 20 deg. C / 40 % RH
Engineer Junya Okuno
(1 GHz to 10 GHz)

Mode Tx, Hopping Off, DH5 2402 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge and authorized band edge were shown in tabular data.

Test Report No. 14839031H-B-R2 Page 33 of 55

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.2 No.4

Date March 20, 2024 March 28, 2024 20 deg. C / 40 % RH 23 deg. C / 37 % RH Temperature / Humidity Junya Okuno Shousei Hamaguchi Engineer (1 GHz to 10 GHz) (10 GHz to 26.5 GHz)

Mode Tx, Hopping Off, DH5 2441 MHz

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP/PK)	(AV)	Factor			Factor	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	4108.3	46.8	39.9	30.1	6.3	33.5	-	49.8	42.9	73.9	53.9	24.1	11.0	
Hori.	4882.0	42.1	33.6	31.6	6.5	33.6	-	46.7	38.2	73.9	53.9	27.2	15.7	Floor noise
Hori.	7323.0	42.2	33.9	35.6	7.7	33.5	-	52.0	43.7	73.9	53.9	21.9	10.2	Floor noise
Hori.	9764.0	42.5	34.1	36.0	8.6	34.1	-	53.0	44.6	73.9	53.9	20.9	9.3	Floor noise
Vert.	4108.3	47.7	40.5	30.1	6.3	33.5	-	50.7	43.5	73.9	53.9	23.2	10.4	
Vert.	4882.0	42.1	33.6	31.6	6.5	33.6	-	46.7	38.1	73.9	53.9	27.2	15.8	Floor noise
Vert.	7323.0	42.2	34.0	35.6	7.7	33.5	-	52.1	43.8	73.9	53.9	21.9	10.1	Floor noise
Vert.	9764.0	42.6	34.1	36.0	8.6	34.1	-	53.1	44.7	73.9	53.9	20.8	9.2	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)
Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor
*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

1 GHz - 6 GHz 20log (3.55 m / 3.0 m) = 1.47 dB

20log (3.55 m / 3.0 m) = 1.47 dB 6 GHz - 10 GHz 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.54 dB

^{*}QP detector was used up to 1GHz.

Test Report No. 14839031H-B-R2 Page 34 of 55

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.2 No.4

Date March 20, 2024 March 28, 2024 20 deg. C / 40 % RH 23 deg. C / 37 % RH Temperature / Humidity Junya Okuno Shousei Hamaguchi Engineer (1 GHz to 10 GHz) (10 GHz to 26.5 GHz)

Mode Tx, Hopping Off, DH5 2480 MHz

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP/PK)	(AV)	Factor			Factor	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2483.5	46.6	37.5	27.5	4.4	34.3	1.1	44.2	36.2	73.9	53.9	29.7	17.7	*1)
Hori.	4108.3	47.0	40.1	30.1	6.3	33.5	-	50.0	43.1	73.9	53.9	24.0	10.8	
Hori.	4960.0	42.2	33.8	31.7	6.5	33.6	-	46.9	38.5	73.9	53.9	27.0	15.4	Floor noise
Hori.	7440.0	43.1	34.5	35.5	7.8	33.5	-	52.9	44.3	73.9	53.9	21.1	9.6	Floor noise
Hori.	9920.0	42.9	34.1	36.2	8.6	34.1	-	53.6	44.8	73.9	53.9	20.3	9.1	Floor noise
Vert.	2483.5	44.8	35.9	27.5	4.4	34.3	1.1	42.4	34.5	73.9	53.9	31.5	19.4	*1)
Vert.	4108.3	47.8	40.7	30.1	6.3	33.5	-	50.8	43.7	73.9	53.9	23.1	10.2	
Vert.	4960.0	42.1	33.8	31.7	6.5	33.6	-	46.8	38.4	73.9	53.9	27.1	15.5	Floor noise
Vert.	7440.0	43.0	34.6	35.5	7.8	33.5	-	52.7	44.3	73.9	53.9	21.2	9.6	Floor noise
Vert.	9920.0	42.8	34.1	36.2	8.6	34.1	-	53.5	44.8	73.9	53.9	20.4	9.1	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

1 GHz - 6 GHz 20log (3.55 m / 3.0 m) = 1.47 dB Distance factor:

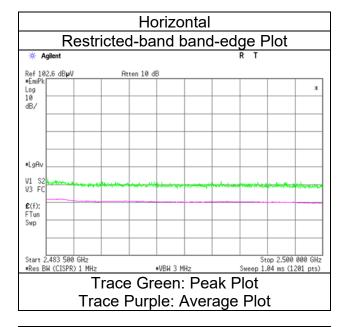
6 GHz - 10 GHz 20log (3.55 m / 3.0 m) = 1.47 dB 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.54 dB

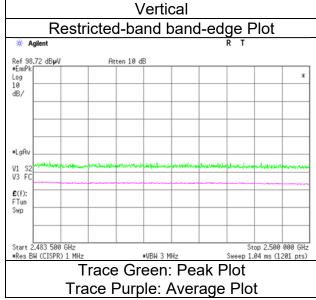
Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*}QP detector was used up to 1GHz.

^{*1)} Not Out of Band emission(Leakage Power)

Test Report No. 14839031H-B-R2 Page 35 of 55


Radiated Spurious Emission (Reference Plot for bandto edge)


Test place Semi Anechoic Chamber Date Temperature / Humidity

Engineer

Mode

Ise EMC Lab.
No.2
March 20, 2024
20 deg. C / 40 % RH
Junya Okuno
(1 GHz to 10 GHz)
Tx, Hopping Off, DH5 2480 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge was shown in tabular data.

Test Report No. 14839031H-B-R2 Page 36 of 55

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.2 No.4

Date March 20, 2024 March 28, 2024 20 deg. C / 40 % RH 23 deg. C / 37 % RH Temperature / Humidity Shousei Hamaguchi Junya Okuno Engineer (1 GHz to 10 GHz) (10 GHz to 26.5 GHz)

Mode Tx, Hopping Off, 3DH5 2402 MHz

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP/PK)	(AV)	Factor			Factor	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2390.0	44.2	35.4	27.7	4.4	34.4	1.1	41.8	34.2	73.9	53.9	32.1	19.8	*1)
Hori.	4108.3	46.9	40.1	30.1	6.3	33.5	-	49.9	43.1	73.9	53.9	24.0	10.8	
Hori.	4804.0	42.1	33.8	31.6	6.5	33.6	-	46.6	38.3	73.9	53.9	27.3	15.7	Floor noise
Hori.	7206.0	43.4	34.7	35.6	7.6	33.4	-	53.2	44.5	73.9	53.9	20.7	9.5	Floor noise
Hori.	9608.0	43.0	34.5	35.7	8.5	34.0	-	53.2	44.6	73.9	53.9	20.8	9.3	Floor noise
Vert.	2390.0	43.8	35.3	27.7	4.4	34.4	1.1	41.4	34.0	73.9	53.9	32.5	19.9	*1)
Vert.	4108.3	47.7	40.7	30.1	6.3	33.5	-	50.6	43.7	73.9	53.9	23.3	10.3	
Vert.	4804.0	42.0	33.7	31.6	6.5	33.6	-	46.5	38.2	73.9	53.9	27.4	15.7	Floor noise
Vert.	7206.0	43.7	34.6	35.6	7.6	33.4	-	53.4	44.4	73.9	53.9	20.5	9.5	Floor noise
Vert.	9608.0	43.0	34.5	35.7	8.5	34.0	-	53.1	44.6	73.9	53.9	20.8	9.3	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)
Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

20dBc Data Sheet

Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
		(PK)	Factor						
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2402.0	98.0	27.6	4.4	34.4	95.6	-	-	Carrier
Hori.	2400.0	43.3	27.6	4.4	34.4	40.9	75.6	34.7	
Vert.	2402.0	93.4	27.6	4.4	34.4	91.0	-	-	Carrier
Vert.	2400.0	41.0	27.6	4.4	34.4	38.6	71.0	32.4	

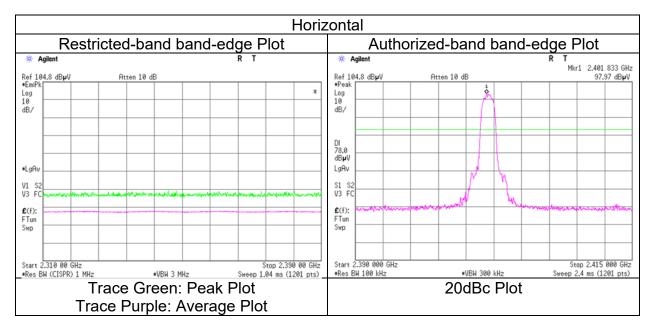
Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)

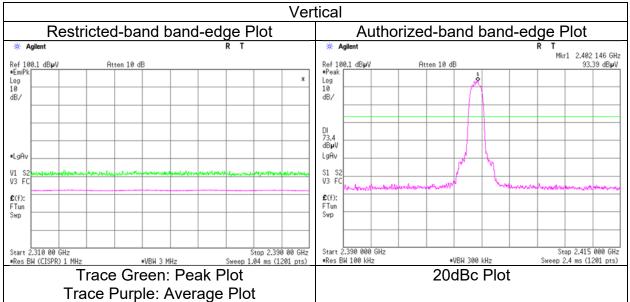
20log (3.55 m / 3.0 m) = 1.47 dB Distance factor: 1 GHz - 6 GHz 20log (3.55 m / 3.0 m) = 1.47 dB 6 GHz - 10 GHz

10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.54 dB

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*}QP detector was used up to 1GHz.
*1) Not Out of Band emission(Leakage Power)


Test Report No. 14839031H-B-R2 Page 37 of 55


Radiated Spurious Emission (Reference Plot for band-edge)

Test place Ise EMC Lab.

Semi Anechoic Chamber
Date
No.2
March 20, 2024
Temperature / Humidity
Engineer
Unya Okuno
(1 GHz to 10 GHz)

Mode Tx, Hopping Off, 3DH5 2402 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge was shown in tabular data.

Test Report No. 14839031H-B-R2 Page 38 of 55

Radiated Spurious Emission

Test place

Semi Anechoic Chamber

Date

Temperature / Humidity

Engineer

Ise EMC Lab.

No.2

March 20, 2024 20 deg. C / 40 % RH Junya Okuno

(1 GHz to 10 GHz)

No.4 March 28, 2024 23 deg. C / 37 % RH

23 deg. C / 37 % RH Shousei Hamaguchi (10 GHz to 26.5 GHz) No.4 March 31, 2024

20 deg. C / 46 % RH Shousei Hamaguchi (Below 1 GHz)

Mode Tx, Hopping Off, 3DH5 2441 MHz

Polarity	Frequency	Reading (QP / PK)	Reading	Ant. Factor	Loss	Gain	Duty	Result (QP / PK)	Result	Limit (QP / PK)	Limit	Margin	Margin	Remark
FI 1! A /47	D 41.1-3	` /	(AV)		rup:	r.ipi	Factor	, ,	(AV)	,	(AV)	(QP / PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	52.4	23.7	-	10.3	7.3	32.1	-	9.3	-	40.0	-	30.8	-	
Hori.	73.6	30.9	-	6.4	7.6	32.1	-	12.8	-	40.0	-	27.2	-	
Hori.	99.0	28.0	-	10.2	7.8	32.0	-	13.9	-	43.5	-	29.6	-	
Hori.	295.9	37.1	-	13.6	9.5	32.0	-	28.3	-	46.0	-	17.7	-	
Hori.	358.9	27.1	-	15.1	9.9	32.1	-	20.0	-	46.0	-	26.0	-	
Hori.	624.4	20.7	-	19.4	11.4	32.3	-	19.2	-	46.0	-	26.8	-	
Hori.	4108.3	46.6	39.8	30.1	6.3	33.5	-	49.6	42.8	73.9	53.9	24.3	11.1	
Hori.	4882.0	42.1	33.6	31.6	6.5	33.6	-	46.7	38.2	73.9	53.9	27.2	15.7	Floor noise
Hori.	7323.0	42.2	34.0	35.6	7.7	33.5	-	52.0	43.8	73.9	53.9	21.9	10.1	Floor noise
Hori.	9764.0	42.6	34.1	36.0	8.6	34.1	-	53.1	44.6	73.9	53.9	20.8	9.3	Floor noise
Vert.	52.4	34.8	-	10.3	7.3	32.1	-	20.4	-	40.0	-	19.7	-	
Vert.	73.6	33.9	-	6.4	7.6	32.1	-	15.8	-	40.0	-	24.2	-	
Vert.	99.0	32.8	-	10.2	7.8	32.0	-	18.7	-	43.5	-	24.8	-	
Vert.	295.9	29.0	-	13.6	9.5	32.0	-	20.2	-	46.0	-	25.8	-	
Vert.	358.9	26.7	-	15.1	9.9	32.1	-	19.6	-	46.0	-	26.4	-	
Vert.	624.4	20.5	-	19.4	11.4	32.3	-	19.0	-	46.0	-	27.0	-	
Vert.	4108.3	47.7	40.5	30.1	6.3	33.5	-	50.7	43.5	73.9	53.9	23.3	10.4	
Vert.	4882.0	42.2	33.7	31.6	6.5	33.6	-	46.8	38.2	73.9	53.9	27.2	15.7	Floor noise
Vert.	7323.0	42.3	34.0	35.6	7.7	33.5	-	52.1	43.8	73.9	53.9	21.8	10.1	Floor noise
Vert.	9764.0	42.5	34.1	36.0	8.6	34.1	-	53.1	44.6	73.9	53.9	20.8	9.3	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

Distance factor:

1 GHz - 6 GHz 20log (3.55 m / 3.0 m) = 1.47 dB 6 GHz - 10 GHz 20log (3.55 m / 3.0 m) = 1.47 dB

10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.54 dB

Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*}QP detector was used up to 1GHz.

Test Report No. 14839031H-B-R2 Page 39 of 55

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.2 No.4

Date March 20, 2024 March 28, 2024 Temperature / Humidity 20 deg. C / 40 % RH 23 deg. C / 37 % RH Junya Okuno Shousei Hamaguchi Engineer (1 GHz to 10 GHz) (10 GHz to 26.5 GHz)

Mode Tx, Hopping Off, 3DH5 2480 MHz

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP/PK)	(AV)	Factor			Factor	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2483.5	47.6	36.8	27.5	4.4	34.3	1.1	45.2	35.4	73.9	53.9	28.7	18.5	*1)
Hori.	4108.3	46.9	40.1	30.1	6.3	33.5	-	49.8	43.1	73.9	53.9	24.1	10.8	
Hori.	4960.0	42.2	33.7	31.7	6.5	33.6	-	46.8	38.3	73.9	53.9	27.1	15.6	Floor noise
Hori.	7440.0	43.1	34.6	35.5	7.8	33.5	-	52.8	44.3	73.9	53.9	21.1	9.6	Floor noise
Hori.	9920.0	42.9	34.1	36.2	8.6	34.1	-	53.6	44.8	73.9	53.9	20.3	9.1	Floor noise
Vert.	2483.5	45.7	35.7	27.5	4.4	34.3	1.1	43.3	34.4	73.9	53.9	30.6	19.6	*1)
Vert.	4108.3	47.8	40.6	30.1	6.3	33.5	-	50.8	43.6	73.9	53.9	23.1	10.3	
Vert.	4960.0	42.2	33.8	31.7	6.5	33.6	-	46.8	38.5	73.9	53.9	27.1	15.4	Floor noise
Vert.	7440.0	43.0	34.6	35.5	7.8	33.5	-	52.8	44.3	73.9	53.9	21.2	9.6	Floor noise
Vert.	9920.0	42.9	34.1	36.2	8.6	34.1	-	53.6	44.8	73.9	53.9	20.3	9.1	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

1 GHz - 6 GHz 20log (3.55 m / 3.0 m) = 1.47 dB Distance factor:

6 GHz - 10 GHz 20log (3.55 m / 3.0 m) = 1.47 dB 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.54 dB

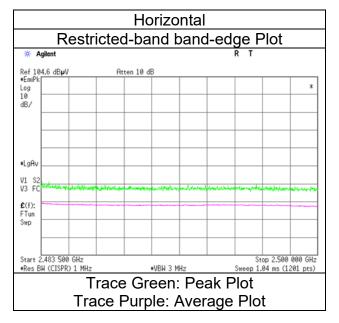
Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

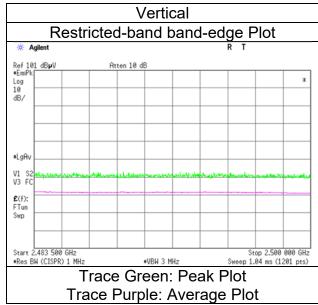
^{*}QP detector was used up to 1GHz.

^{*1)} Not Out of Band emission(Leakage Power)

Test Report No. 14839031H-B-R2 Page 40 of 55

Radiated Spurious Emission (Reference Plot for band-edge)


Test place Semi Anechoic Chamber Date


Temperature / Humidity Engineer

Mode

Ise EMC Lab. No.2 March 20, 2024 20 deg. C / 40 % RH Junya Okuno (1 GHz to 10 GHz)

Tx, Hopping Off, 3DH5 2480 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge was shown in tabular data.

Test Report No. 14839031H-B-R2 Page 41 of 55

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.4

Date March 29, 2024 22 deg. C / 41 % RH Temperature / Humidity Engineer Shousei Hamaguchi

Mode Tx, Hopping Off, DH5 2480 MHz + 11n-20 5180 MHz

Polarity	Frequency	Reading (QP / PK)	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		` ′	(AV)	Factor	r in	r in	Factor	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP / PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	48.9	22.2	-	11.6	7.3	32.1	-	9.0	-	40.0	-	31.0	-	
Hori.	73.7	30.7	-	6.4	7.6	32.1	-	12.6	-	40.0	-	27.4	-	
Hori.	99.0	28.0	-	10.2	7.8	32.0	-	13.9	-	43.5	-	29.6	-	
Hori.	295.7	37.0	-	13.6	9.5	32.0	-	28.2	-	46.0	-	17.8	-	
Hori.	358.9	27.2	-	15.1	9.9	32.1	-	20.1	-	46.0	-	25.9	-	
Hori.	600.0	30.3	-	19.3	11.3	32.2	-	28.6	-	46.0	-	17.4	-	
Hori.	2483.5	42.8	34.1	27.7	5.4	31.7	1.1	44.2	36.6	73.9	53.9	29.7	17.3	*1)
Hori.	4108.3	43.2	36.6	30.0	7.5	31.0	-	49.6	43.0	73.9	53.9	24.3	10.9	
Hori.	4960.0	39.2	31.7	31.6	7.7	30.8	-	47.7	40.2	73.9	53.9	26.2	13.7	Floor noise
Hori.	7440.0	40.2	33.3	35.5	11.1	32.2	-	54.7	47.8	73.9	53.9	19.2	6.1	Floor noise
Hori.	9920.0	41.2	31.2	36.2	12.2	32.5	-	57.2	47.3	73.9	53.9	16.7	6.7	Floor noise
Vert.	48.9	29.2	-	11.6	7.3	32.1	-	16.0	-	40.0	-	24.0	-	
Vert.	73.7	33.7	-	6.4	7.6	32.1	-	15.6	-	40.0	-	24.4	-	
Vert.	99.0	32.7	-	10.2	7.8	32.0	-	18.6	-	43.5	-	24.9	-	
Vert.	295.7	29.4	-	13.6	9.5	32.0	-	20.6	-	46.0	-	25.4	-	
Vert.	358.9	26.7	-	15.1	9.9	32.1	-	19.6	-	46.0	-	26.4	-	
Vert.	600.0	25.7	-	19.3	11.3	32.2	-	24.0	-	46.0	-	22.0	-	
Vert.	2483.5	42.3	34.2	27.7	5.4	31.7	1.1	43.7	36.7	73.9	53.9	30.2	17.2	*1)
Vert.	4108.3	44.1	36.9	30.0	7.5	31.0	-	50.5	43.4	73.9	53.9	23.4	10.5	
Vert.	4960.0	39.2	31.7	31.6	7.7	30.8	-	47.7	40.2	73.9	53.9	26.2	13.7	Floor noise
Vert.	7440.0	40.2	33.3	35.5	11.1	32.2	-	54.7	47.8	73.9	53.9	19.2	6.1	Floor noise
Vert.	9920.0	41.2	31.2	36.2	12.2	32.5	-	57.2	47.3	73.9	53.9	16.7	6.7	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

1 GHz-6 GHz $20\log (3.8 \text{ m} / 3.0 \text{ m}) = 2.06 \text{ dB}$ Distance factor:

20log (4.8 m / 3.0 m) = 4.09 dB 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.54 dB

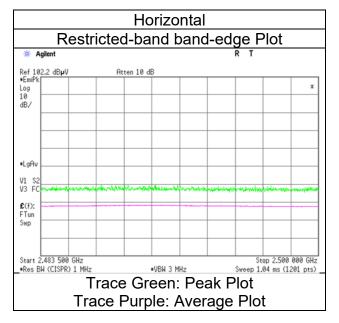
^{*}QP detector was used up to 1GHz.
*1) Not Out of Band emission(Leakage Power)

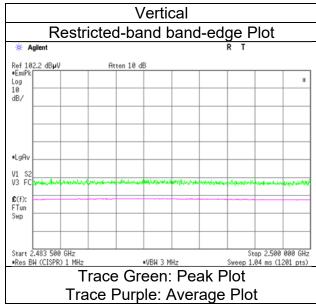
Test Report No. 14839031H-B-R2 Page 42 of 55

Radiated Spurious Emission (Reference Plot for band-edge)

Test place Semi Anechoic Chamber Date

Temperature / Humidity


Engineer


Mode

Ise EMC Lab. No.4 March 29, 2024

March 29, 2024 22 deg. C / 41 % RH Shousei Hamaguchi (Above 1 GHz)

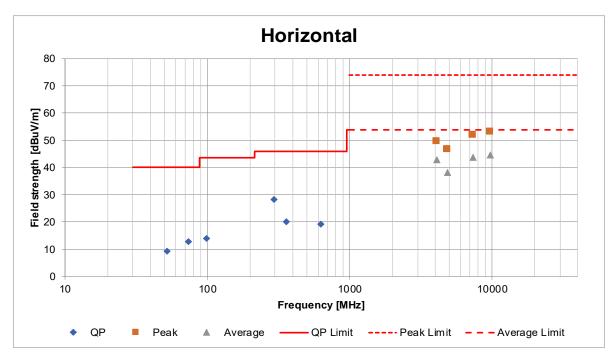
Tx, Hopping Off, DH5 2480 MHz + 11n-20 5180 MHz

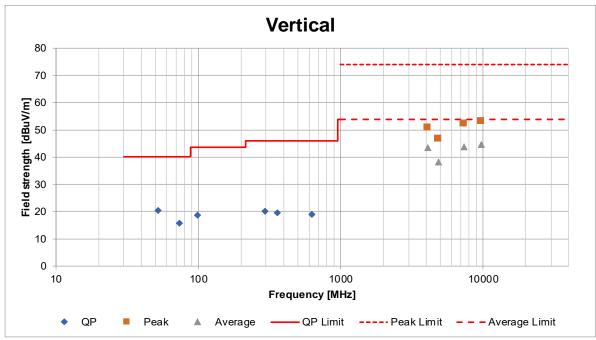
^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge was shown in tabular data.

Test Report No. 14839031H-B-R2 Page 43 of 55

Radiated Spurious Emission (Plot data, Worst case mode for Maximum Peak Output Power)

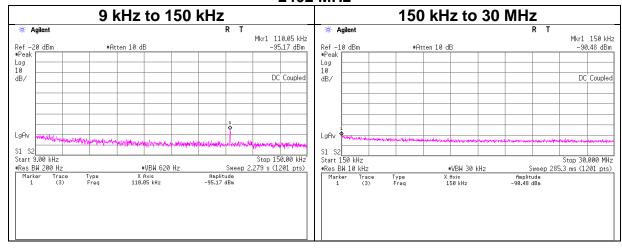

Test place Semi Anechoic Chamber Date Temperature / Humidity

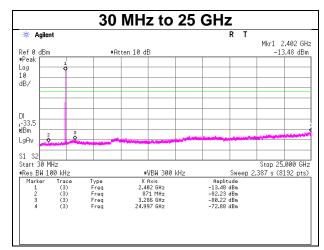

Engineer

Mode

Ise EMC Lab. No.2 March 20, 2024 20 deg. C / 40 % RH Junya Okuno (1 GHz to 10 GHz) Tx, Hopping Off, 3DH5 2441 MHz

No.4 March 28, 2024 23 deg. C / 37 % RH Shousei Hamaguchi (10 GHz to 26.5 GHz) No.4 March 31, 2024 20 deg. C / 46 % RH Shousei Hamaguchi (Below 1 GHz)

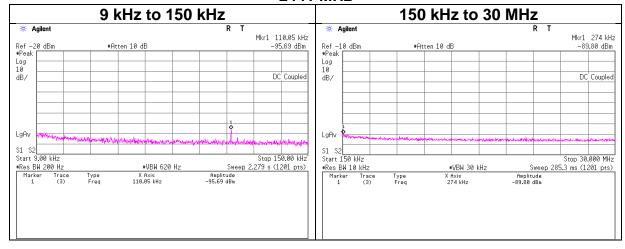

^{*}These plots data contain sufficient number to show the trend of characteristic features for EUT.

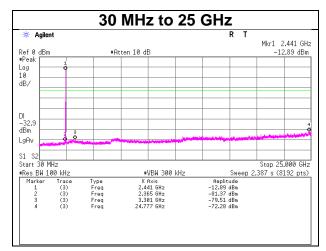

Test Report No. 14839031H-B-R2 Page 44 of 55

Conducted Spurious Emission

Test place Ise EMC Lab. No.4 Measurement Room

Date March 18, 2024
Temperature / Humidity 20 deg. C / 40 % RH
Engineer Junya Okuno
Mode Tx, Hopping Off, DH5

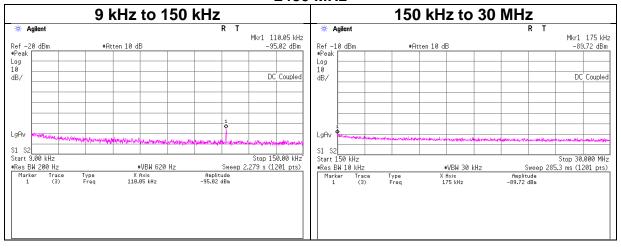


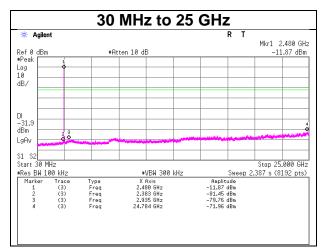

Test Report No. 14839031H-B-R2 Page 45 of 55

Conducted Spurious Emission

Test place Ise EMC Lab. No.4 Measurement Room

Date March 18, 2024
Temperature / Humidity 20 deg. C / 40 % RH
Engineer Junya Okuno
Mode Tx, Hopping Off, DH5

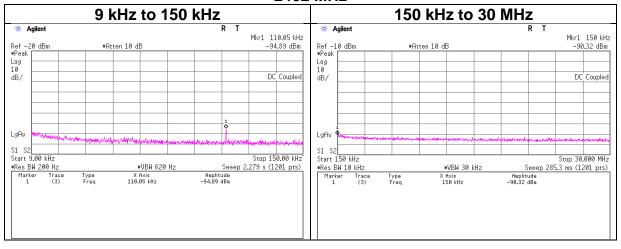


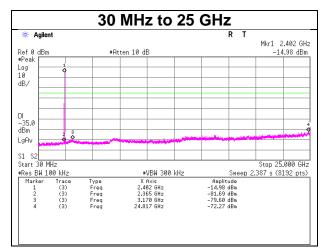

Test Report No. 14839031H-B-R2 Page 46 of 55

Conducted Spurious Emission

Test place Ise EMC Lab. No.4 Measurement Room

Date March 18, 2024
Temperature / Humidity
Engineer Junya Okuno
Mode Tx, Hopping Off, DH5

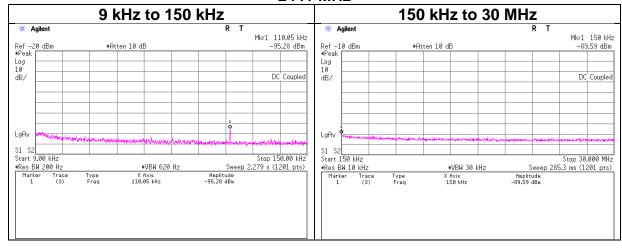

Test Report No. 14839031H-B-R2 Page 47 of 55

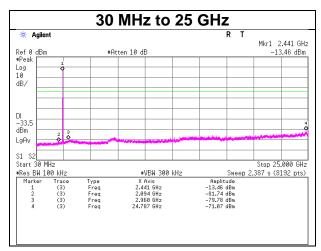

Conducted Spurious Emission

Test place Ise EMC Lab. No.4 Measurement Room

Date March 18, 2024
Temperature / Humidity 20 deg. C / 40 % RH
Engineer Junya Okuno

Mode Tx, Hopping Off, 3DH5

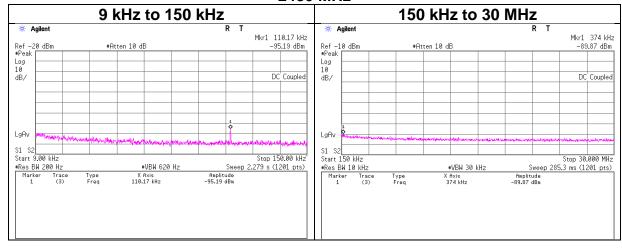

Test Report No. 14839031H-B-R2 Page 48 of 55

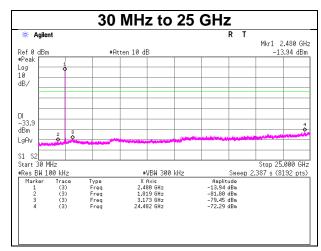

Conducted Spurious Emission

Test place Ise EMC Lab. No.4 Measurement Room

Date March 18, 2024
Temperature / Humidity 20 deg. C / 40 % RH
Engineer Junya Okuno

Mode Tx, Hopping Off, 3DH5

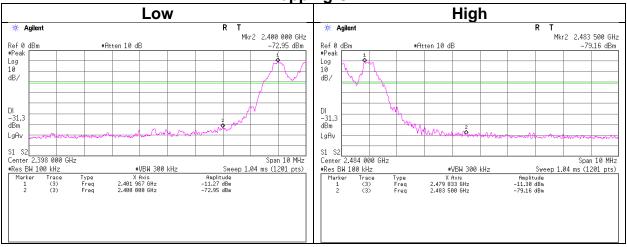

Test Report No. 14839031H-B-R2 Page 49 of 55


Conducted Spurious Emission

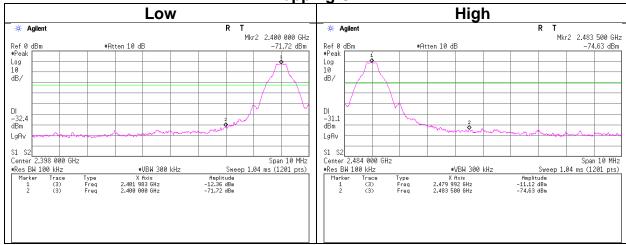
Test place Ise EMC Lab. No.4 Measurement Room

Date March 18, 2024
Temperature / Humidity 20 deg. C / 40 % RH
Engineer Junya Okuno

Mode Tx, Hopping Off, 3DH5


Test Report No. 14839031H-B-R2 Page 50 of 55

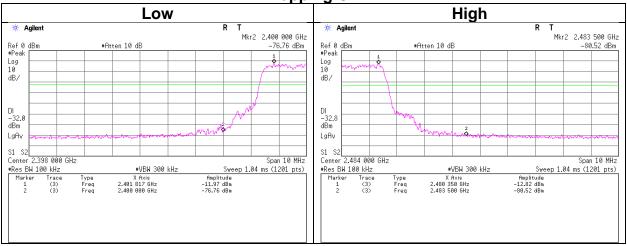
Conducted Emission Band Edge compliance


Test place Ise EMC Lab. No.4 Measurement Room

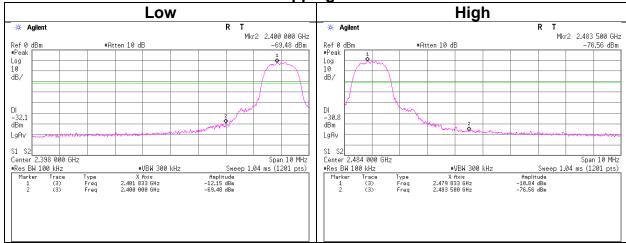
Date March 19, 2024
Temperature / Humidity 20 deg. C / 40 % RH
Engineer Junya Okuno
Mode Tx DH5

Hopping On

Hopping Off


Test Report No. 14839031H-B-R2 Page 51 of 55

Conducted Emission Band Edge compliance


Test place Ise EMC Lab. No.4 Measurement Room

Date March 19, 2024
Temperature / Humidity 20 deg. C / 40 % RH
Engineer Junya Okuno
Mode Tx 3DH5

Hopping On

Hopping Off

Test Report No. 14839031H-B-R2 Page 52 of 55

APPENDIX 2: Test Instruments

Test	equipme		Manufacture	Madal	Carial	Loot	Caller
Item	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
AT	141156	Attenuator(10dB)	Weinschel Corp	2	BL1173	11/17/2023	12
AT	141328	Microwave Cable 1G-40GHz	Suhner	SUCOFLEX102	28636/2	04/10/2023	12
AT	141334	Attenuator(10dB)	Suhner	6810.19.A	•	12/12/2023	12
ΑT	141420	Attenuator	Weinschel Associates	WA56-10	56100307	05/18/2023	12
AT	141809	Power Meter	Anritsu Corporation	ML2495A	825002	05/26/2023	12
AT	141830	Power sensor	Anritsu Corporation	MA2411B	738285	05/26/2023	12
AT	141900	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY46185823	06/16/2023	12
AT	195231	Microwave Cable	Huber+Suhner	SF102D/11PC24/ 11PC24/1000mm	537062/126E	02/13/2024	12
AT	244709	Thermo-Hygrometer	HIOKI E.E. CORPORATION	LR5001	231202103	01/25/2024	12
AT	141532	DIGITAL HITESTER	HIOKI E.E. CORPORATION	3805	051201197	01/31/2024	12
RE	141267	Logperiodic Antenna(200- 1000MHz)	Schwarzbeck Mess- Elektronik OHG	VUSLP9111B	9111B-192	09/21/2023	12
RE	141296	High Pass Filter 3.5-18.0GHz	UL Japan	HPF SELECTOR	002	09/01/2023	12
RE	141331	Attenuator(6dB)	TME	UFA-01	-	02/17/2024	12
RE	141397	Coaxial Cable	UL Japan	-	-	11/22/2023	12
RE	141425	Biconical Antenna	Schwarzbeck Mess- Elektronik OHG	VHA9103+BBA9106	VHA 91031302	08/10/2023	12
RE	141506	Horn Antenna 15-40GHz	Schwarzbeck Mess- Elektronik OHG	BBHA9170	BBHA9170307	08/09/2023	12
RE	141508	Horn Antenna 1-18GHz	Schwarzbeck Mess- Elektronik OHG	BBHA9120D	557	05/17/2023	12
RE	141512	Horn Antenna 1-18GHz	Schwarzbeck Mess- Elektronik OHG	BBHA9120D	254	10/17/2023	12
RE	141542	Digital Tester	Fluke Corporation	FLUKE 26-3	78030611	08/01/2023	12
RE	141545	DIGITAL HITESTER	HIOKI E.E. CORPORATION	3805	51201148	02/01/2024	12
RE	141579	Pre Amplifier	Keysight Technologies Inc	8449B	3008A02142	02/17/2024	12
RE	141581	MicroWave System Amplifier	Keysight Technologies Inc	83017A	00650	10/05/2023	12
RE	141583	Pre Amplifier	SONOMA INSTRUMENT	310	260833	04/04/2024	12
RE	141901	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY48250080	01/26/2024	12
RE	141951	EMI Test Receiver	Rohde & Schwarz	ESR26	101408	04/10/2023	12
RE	141978	Spectrum Analyzer	Keysight Technologies Inc	E4448A	MY46180899	03/06/2023	12
RE	142006	AC2_Semi Anechoic Chamber(SVSWR)	TDK	Semi Anechoic Chamber 3m	DA-06902	10/20/2023	12
RE	142011	AC4_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	12/13/2023	24
RE	142017	AC4_Semi Anechoic Chamber(SVSWR)	TDK	Semi Anechoic Chamber 3m	DA-10005	10/11/2023	12
RE	142228	Measure, Tape, Steel	KOMELON	KMC-36	-	-	-
RE	142230	Measure, Tape, Steel	KOMELON	KMC-36	-	-	-
RE	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
RE	234602	Microwave Cable	Huber+Suhner	SF126E/11PC35/ 11PC35/ 1000M,5000M	537063/126E / 537074/126E	03/08/2024	12
RE	238712	Double Ridge Horn Antenna	Schwarzbeck Mess- Elektronik OHG	BBHA 9120 C	687	08/10/2023	12
RE	238713	Double Ridge Horn Antenna	Schwarzbeck Mess- Elektronik OHG	BBHA 9120 C	688	08/10/2023	12
RE	240023	Microwave Cable	Huber+Suhner	SF126E/11PC35/ 11PC35/ 1000MM,5000MM	537060/126E / 537075/126E	09/08/2023	12
RE	244707	Thermo-Hygrometer	HIOKI E.E. CORPORATION	LR5001	231202102	01/25/2024	12
RE	244710	Thermo-Hygrometer	HIOKI E.E. CORPORATION	LR5001	231202104	01/25/2024	12

Test Report No. 14839031H-B-R2 Page 53 of 55

*Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item:

AT: Antenna Terminal Conducted test

RE: Radiated Emission