

# **RADIO TEST REPORT**

## Test Report No. 15474876H-B-R2

| Customer            | DENSO CORPORATION          |  |
|---------------------|----------------------------|--|
| Description of EUT  | Cockpit Control Unit       |  |
| Model Number of EUT | DNNS125                    |  |
| FCC ID              | HYQDNNS125                 |  |
| Test Regulation     | FCC Part 15 Subpart C      |  |
| Test Result         | Complied                   |  |
| Issue Date          | November 29, 2024          |  |
| Remarks             | Bluetooth (BR / EDR) parts |  |

| Representative Test Engineer                          | Approved By                                           |
|-------------------------------------------------------|-------------------------------------------------------|
| U Mosicya                                             | Ryata yamanaka                                        |
| Yuta Moriya<br>Engineer                               | Ryota Yamanaka<br>Engineer                            |
|                                                       | ACCREDITED                                            |
| _                                                     | CERTIFICATE 5107.02                                   |
| The testing in which "Non-accreditation" is displayed | is outside the accreditation scopes in UL Japan, Inc. |
| There is no testing item of "Non-accreditation".      |                                                       |

Report Cover Page - Form-ULID-003532 (DCS:13-EM-F0429) Issue# 23.0

Test Report No. 15474876H-B-R2 Page 2 of 54

## **ANNOUNCEMENT**

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested. (Laboratory was not involved in sampling.)
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers Radio technical requirements.
   It does not cover administrative issues such as Manual or non-Radio test related Requirements.
   (if applicable)
- The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- The information provided by the customer for this report is identified in SECTION 1.
- The laboratory is not responsible for information provided by the customer which can impact the validity of the results.
- For test report(s) referred in this report, the latest version (including any revisions) is always referred.

## **REVISION HISTORY**

Original Test Report No.: 15474876H-B

This report is a revised version of 15474876H-B-R1. 15474876H-B-R1 is replaced with this report.

| Revision   | Test Report No. | Date         | Page Revised Contents                        |
|------------|-----------------|--------------|----------------------------------------------|
| -          | 15474876H-B     | September 6, | -                                            |
| (Original) |                 | 2024         |                                              |
| 1          | 15474876H-B-R1  | October 25,  | P.6 and correspondence page                  |
|            |                 | 2024         | Correction of Antenna gain for 2.4 GHz band: |
|            |                 |              | WLAN: from 1.10 dBi to 1.78 dBi              |
|            |                 |              | Bluetooth: from1.10 dBi to 1.83 dBi          |
| 1          | 15474876H-B-R1  | October 25,  | P.10                                         |
|            |                 | 2024         | Correction of Power Setting value            |
| 1          | 15474876H-B-R1  | October 25,  | P.28                                         |
|            |                 | 2024         | Deletion of unnecessary symbol               |
| 1          | 15474876H-B-R1  | October 25,  | P.47                                         |
|            |                 | 2024         | Correction of test Mode from DH5 to 3DH5     |
| 2          | 15474876H-B-R2  | November 29, | P.10                                         |
|            |                 | 2024         | Deletion of table for Simultaneous           |
|            |                 |              | Transmission                                 |

Test Report No. 15474876H-B-R2 Page 3 of 54

## Reference: Abbreviations (Including words undescribed in this report)

| A2LA           | The American Association for Laboratory Accreditation           | ICES    | Interference-Causing Equipment Standard                |
|----------------|-----------------------------------------------------------------|---------|--------------------------------------------------------|
| AC             | Alternating Current                                             | IEC     | International Electrotechnical Commission              |
| AFH            | Adaptive Frequency Hopping                                      | IEEE    | Institute of Electrical and Electronics Engineers      |
| AM             | Amplitude Modulation                                            | IF      | Intermediate Frequency                                 |
| Amp, AMP       | Amplifier                                                       | ILAC    | International Laboratory Accreditation Conference      |
| ANSI           | American National Standards Institute                           | ISED    | Innovation, Science and Economic Development Canada    |
| Ant, ANT       | Antenna                                                         | ISO     | International Organization for Standardization         |
| AP             | Access Point                                                    | JAB     | Japan Accreditation Board                              |
| ASK            | Amplitude Shift Keying                                          | LAN     | Local Area Network                                     |
| Atten., ATT    | Attenuator                                                      | LIMS    | Laboratory Information Management System               |
| AV             | Average                                                         | MCS     | Modulation and Coding Scheme                           |
| BPSK           | Binary Phase-Shift Keying                                       | MRA     | Mutual Recognition Arrangement                         |
| BR             | Bluetooth Basic Rate                                            | N/A     | Not Applicable                                         |
| BT             | Bluetooth                                                       | NIST    | National Institute of Standards and Technology         |
| BT LE          | Bluetooth Low Energy                                            | NS      | No signal detect.                                      |
| BW             | BandWidth                                                       | NSA     | Normalized Site Attenuation                            |
| Cal Int        | Calibration Interval                                            | NVLAP   | National Voluntary Laboratory Accreditation<br>Program |
| CCK            | Complementary Code Keying                                       | OBW     | Occupied Band Width                                    |
| Ch., CH        | Channel                                                         | OFDM    | Orthogonal Frequency Division Multiplexing             |
| CISPR          | Comite International Special des Perturbations Radioelectriques | P/M     | Power meter                                            |
| CW             | Continuous Wave                                                 | PCB     | Printed Circuit Board                                  |
| DBPSK          | Differential BPSK                                               | PER     | Packet Error Rate                                      |
| DC             | Direct Current                                                  | PHY     | Physical Layer                                         |
| D-factor       | Distance factor                                                 | PK      | Peak                                                   |
| DFS            | Dynamic Frequency Selection                                     | PN      | Pseudo random Noise                                    |
| DQPSK          | Differential QPSK                                               | PRBS    | Pseudo-Random Bit Sequence                             |
| DSSS           | Direct Sequence Spread Spectrum                                 | PSD     | Power Spectral Density                                 |
| EDR            | Enhanced Data Rate                                              | QAM     | Quadrature Amplitude Modulation                        |
| EIRP, e.i.r.p. | Equivalent Isotropically Radiated Power                         | QP      | Quasi-Peak                                             |
| EMC            | ElectroMagnetic Compatibility                                   | QPSK    | Quadri-Phase Shift Keying                              |
| EMI            | ElectroMagnetic Interference                                    | RBW     | Resolution Band Width                                  |
| EN             | European Norm                                                   | RDS     | Radio Data System                                      |
| ERP, e.r.p.    | Effective Radiated Power                                        | RE      | Radio Equipment                                        |
| EU             | European Union                                                  | RF      | Radio Frequency                                        |
| EUT            | Equipment Under Test                                            | RMS     | Root Mean Square                                       |
| Fac.           | Factor                                                          | RSS     | Radio Standards Specifications                         |
| FCC            | Federal Communications Commission                               | Rx      | Receiving                                              |
| FHSS           | Frequency Hopping Spread Spectrum                               | SA, S/A | Spectrum Analyzer                                      |
| FM             | Frequency Modulation                                            | SG      | Signal Generator                                       |
| Freq.          | Frequency                                                       | SVSWR   | Site-Voltage Standing Wave Ratio                       |
| FSK            | Frequency Shift Keying                                          | TR      | Test Receiver                                          |
| GFSK           | Gaussian Frequency-Shift Keying                                 | Tx      | Transmitting                                           |
| GNSS           | Global Navigation Satellite System                              | VBW     | Video BandWidth                                        |
|                |                                                                 |         |                                                        |
| GPS            | Global Positioning System                                       | Vert.   | Vertical                                               |

| CONTENTS           |                                                                    | PAGE |
|--------------------|--------------------------------------------------------------------|------|
| SECTION 1:         | Customer Information                                               | 5    |
| <b>SECTION 2:</b>  | Equipment Under Test (EUT)                                         |      |
| <b>SECTION 3:</b>  | Test Specification, Procedures & Results                           |      |
| <b>SECTION 4:</b>  | Operation of EUT during testing                                    |      |
| <b>SECTION 5:</b>  | Radiated Spurious Emission                                         | 15   |
| <b>SECTION 6:</b>  | Antenna Terminal Conducted Tests                                   |      |
| <b>APPENDIX 1:</b> | Test data                                                          | 19   |
| 20dB Ba            | andwidth, 99%Occupied Bandwidth and Carrier Frequency Separation . | 19   |
|                    | of Hopping Frequency                                               |      |
| Dwell tin          | ne                                                                 | 25   |
| Maximu             | m Peak Output Power                                                | 28   |
| Average            | Output Power                                                       | 29   |
| Radiate            | d Spurious Emission                                                | 31   |
| Conduct            | ted Spurious Emission                                              | 44   |
| Conduct            | ted Emission Band Edge compliance                                  | 50   |
| <b>APPENDIX 2:</b> | Test Instruments                                                   | 52   |
| <b>APPENDIX 3:</b> | Photographs of test setup                                          | 53   |
| Radiate            | d Spurious Emission                                                | 53   |
| Antenna            | Terminal Conducted Tests                                           | 54   |

Test Report No. 15474876H-B-R2 Page 5 of 54

## **SECTION 1: Customer Information**

| Company Name     | DENSO CORPORATION                                    |
|------------------|------------------------------------------------------|
| Address          | 1-1 Showa-cho, Kariya-shi, Aichi ken, 448-8661 Japan |
| Telephone Number | +81-70-2236-5904                                     |
| Contact Person   | Naoto Makino                                         |

The information provided by the customer is as follows;

- Customer, Description of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer Information
- SECTION 2: Equipment Under Test (EUT) other than the Receipt Date and Test Date
- SECTION 4: Operation of EUT during testing

## **SECTION 2:** Equipment Under Test (EUT)

#### 2.1 Identification of EUT

| Description   | Cockpit Control Unit                                              |
|---------------|-------------------------------------------------------------------|
| Model Number  | DNNS125                                                           |
| Serial Number | Refer to SECTION 4.2                                              |
| Condition     | Production prototype                                              |
|               | (Not for Sale: This sample is equivalent to mass-produced items.) |
| Modification  | No Modification by the test lab                                   |
| Receipt Date  | May 31, 2024                                                      |
| Test Date     | June 17 to 23, 2024                                               |

#### 2.2 Product Description

## **General Specification**

| Rating                | DC 13.2 V               |
|-----------------------|-------------------------|
| Operating temperature | -30 deg. C to 65 deg. C |

Test Report No. 15474876H-B-R2 Page 6 of 54

#### **Radio Specification**

This report contains data provided by the customer which can impact the validity of results. UL Japan, Inc. is only responsible for the validity of results after the integration of the data provided by the customer. The data provided by the customer is marked "a)" in the table below.

WLAN (IEEE802.11b/11g/11n-20)

| ·· = · · · · · · · · · · · · · · · · · |                       |                      |
|----------------------------------------|-----------------------|----------------------|
| Equipment Type                         | Transceiver           |                      |
| Frequency of Operation                 | 2412 MHz to 2462 MHz  |                      |
| Type of Modulation                     | DSSS, OFDM            |                      |
| Antenna Gain <sup>a)</sup>             | Main Antenna: Chain 0 | Sub Antenna: Chain 1 |
|                                        | 1.78 dBi              | 1.78 dBi             |

Bluetooth (BR / EDR)

| Equipment Type             | Transceiver                    |
|----------------------------|--------------------------------|
| Frequency of Operation     | 2402 MHz to 2480 MHz           |
| Type of Modulation         | FHSS (GFSK, π/4 DQPSK, 8 DPSK) |
| Antenna Type               | External Antenna               |
| Antenna Gain <sup>a)</sup> | 1.83 dBi                       |

WLAN (IEEE802.11a/11n-20/11ac-20/11n-40/11ac-40/11ac-80)

| Equipment Type             | Transceiver      | •                  |                                 |
|----------------------------|------------------|--------------------|---------------------------------|
| Frequency of Operation     | 20 MHz Band      | 5180 MHz to 5240 I | MHz                             |
|                            |                  | 5745 MHz to 5825 I | MHz                             |
|                            | 40 MHz Band      | 5190 MHz to 5230 I | MHz                             |
|                            |                  | 5755 MHz to 5795 I | MHz                             |
|                            | 80 MHz Band      | 5210 MHz           |                                 |
|                            |                  | 5775 MHz           |                                 |
| Type of Modulation         | OFDM             |                    |                                 |
| Antenna Gain <sup>a)</sup> | Main Antenna: C  | Chain 0            | Sub Antenna: Chain 1            |
|                            | 0.30 dBi (5180 N | //Hz to 5240 MHz)  | 0.30 dBi (5180 MHz to 5240 MHz) |
|                            | 0.99 dBi (5745 N | //Hz to 5825 MHz)  | 0.99 dBi (5745 MHz to 5825 MHz) |

AM/FM (incl. RDS)

| Equipment Type         | Receiver            |
|------------------------|---------------------|
| Frequency of Operation | 522 kHz to 1710 kHz |
|                        | 87 MHz to 108 MHz   |

FM tuner specification Intermediate frequency: 220 kHz

Test Report No. 15474876H-B-R2 Page 7 of 54

## **SECTION 3: Test Specification, Procedures & Results**

#### 3.1 Test Specification

| Test Specification | FCC Part 15 Subpart C                                                     |
|--------------------|---------------------------------------------------------------------------|
|                    | The latest version on the first day of the testing period                 |
| Title              | FCC 47 CFR Part 15 Radio Frequency Device Subpart C Intentional Radiators |
|                    | Section 15.207 Conducted limits                                           |
|                    | Section 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz,   |
|                    | and 5725-5850 MHz                                                         |

#### 3.2 Procedures and Results

| Item         | Test Procedure             | Specification            | Worst Margin | Results  | Remarks        |
|--------------|----------------------------|--------------------------|--------------|----------|----------------|
| Conducted    | FCC: ANSI C63.10-2013      | FCC: Section 15.207      | -            | N/A      | *1)            |
| Emission     | Standard test methods      | J                        |              |          |                |
|              | ISED: RSS-Gen 8.8          | ISED: RSS-Gen 8.8        |              |          |                |
| Carrier      | FCC: KDB 558074 D01 15.247 | FCC: Section15.247(a)(1) | See data.    | Complied | Conducted      |
| Frequency    | Meas Guidance v05r02       |                          |              |          |                |
| Separation   | ISED: -                    | ISED: RSS-247 5.1 (b)    |              |          |                |
| 20dB         | FCC: KDB 558074 D01 15.247 | FCC: Section15.247(a)(1) |              | Complied | Conducted      |
| Bandwidth    | Meas Guidance v05r02       |                          |              |          |                |
|              | ISED: -                    | ISED: RSS-247 5.1 (a)    | 1            |          |                |
| Number of    | FCC: KDB 558074 D01 15.247 | FCC:                     |              | Complied | Conducted      |
| Hopping      | Meas Guidance v05r02       | Section15.247(a)(1)(iii) |              |          |                |
| Frequency    | ISED: -                    | ISED: RSS-247 5.1 (d)    |              |          |                |
| Dwell time   | FCC: KDB 558074 D01 15.247 | FCC:                     |              | Complied | Conducted      |
|              | Meas Guidance v05r02       | Section15.247(a)(1)(iii) |              |          |                |
|              | ISED: -                    | ISED: RSS-247 5.1 (d)    |              |          |                |
| Maximum      | FCC: KDB 558074 D01 15.247 | FCC: Section15.247(b)(1) |              | Complied | Conducted      |
| Peak         | Meas Guidance v05r02       |                          |              | ·        |                |
| Output Power | ISED: RSS-Gen 6.12         | ISED: RSS-247 5.4 (b)    |              |          |                |
| Spurious     | FCC: KDB 558074 D01 15.247 | FCC: Section15.247(d)    | 0.8 dB       | Complied | Conducted/     |
| Emission &   | Meas Guidance v05r02       | . ,                      | 3509.1 MHz,  |          | Radiated       |
| Band Edge    | ISED: RSS-Gen 6.13         | ISED: RSS-247 5.5        | AV, Vertical |          | (above 30 MHz) |
| Compliance   |                            | RSS-Gen 8.9              |              |          | *1)            |
|              |                            | RSS-Gen 8.10             |              |          |                |

Note: UL Japan, Inc.'s EMI Work Procedures: Work Instructions-ULID-003591 and Work Instructions-ULID-003593. \* In case any questions arise about test procedure, ANSI C63.10: 2013 is also referred.

#### FCC Part 15.31 (e)

This EUT provides stable voltage constantly to the wireless transmitter regardless of input voltage. Instead of a new battery, DC power supply was used for the test. Therefore, this EUT complies with the requirement.

#### FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the vehicle. Therefore, the equipment complies with the antenna requirement of Section 15.203.

#### 3.3 Addition to Standard

| Item         | Test Procedure    | Specification | Worst Margin | Results | Remarks   |
|--------------|-------------------|---------------|--------------|---------|-----------|
| 99% Occupied | ISED: RSS-Gen 6.7 | ISED: -       | N/A          | -       | Conducted |
| Bandwidth    |                   |               |              |         |           |

Other than above, no addition, exclusion nor deviation has been made from the standard.

<sup>\*1)</sup> The test is not applicable since the EUT is not the device that is designed to be connected to the public utility (AC) power line.
\*2) Radiated test was selected over 30 MHz based on section 15.247(d).

Test Report No. 15474876H-B-R2 Page 8 of 54

## 3.4 Uncertainty

Measurement uncertainty is not taken into account when stating conformity with a specified requirement. Note: When margins obtained from test results are less than the measurement uncertainty, the test results may exceed the limit.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2.

**Radiated emission** 

| Measurement distance | Frequency range     |                  | Unit | Calculated Uncertainty (+/-) |
|----------------------|---------------------|------------------|------|------------------------------|
| 3 m                  | 9 kHz to 30 MHz     |                  | dB   | 3.3                          |
| 10 m                 |                     |                  | dB   | 3.1                          |
| 3 m                  | 30 MHz to 200 MHz   | Horizontal       | dB   | 4.7                          |
|                      |                     | Vertical         | dB   | 4.7                          |
|                      | 200 MHz to 1000 MHz | Horizontal       | dB   | 4.8                          |
|                      |                     | Vertical         | dB   | 6.0                          |
| 10 m                 | 30 MHz to 200 MHz   | Horizontal       | dB   | 5.2                          |
|                      |                     | Vertical         | dB   | 5.1                          |
|                      | 200 MHz to 1000 MHz | Horizontal       | dB   | 5.2                          |
|                      |                     | Vertical         | dB   | 5.2                          |
| 3 m                  | 1 GHz to 6 GHz      |                  | dB   | 5.0                          |
|                      | 6 GHz to 18 GHz     |                  | dB   | 5.2                          |
| 1 m                  | 10 GHz to 18 GHz    | 10 GHz to 18 GHz |      | 5.3                          |
|                      | 18 GHz to 26.5 GHz  |                  | dB   | 5.2                          |
|                      | 26.5 GHz to 40 GHz  |                  | dB   | 4.7                          |
| 0.5 m                | 26.5 GHz to 40 GHz  |                  | dB   | 4.8                          |

**Antenna Terminal Conducted** 

| Item                                                                | Unit   | Calculated        |
|---------------------------------------------------------------------|--------|-------------------|
|                                                                     |        | Uncertainty (+/-) |
| Antenna terminated conducted emission / Power density / Burst power | dB     | 3.47              |
| Adjacent channel power (ACP)                                        | dB     | 2.28              |
| Bandwidth (OBW)                                                     | %      | 0.96              |
| Time readout (time span upto 100 msec)                              | %      | 0.11              |
| Time readout (time span upto 1000 msec)                             | %      | 0.11              |
| Time readout (time span upto 60 sec)                                | %      | 0.02              |
| Power measurement (Power meter < 8 GHz)                             | dB     | 1.46              |
| Power measurement (Call box < 6 GHz)                                | dB     | 1.69              |
| Frequency readout (Frequency counter)                               | ppm    | 0.67              |
| Frequency readout (Spectrum analyzer frequency readout function)    | ppm    | 2.13              |
| Temperature (constant temperature bath)                             | deg. C | 0.69              |
| Humidity (constant temperature bath)                                | %RH    | 2.98              |
| Modulation characteristics                                          | %      | 6.93              |
| Frequency for mobile                                                | ppm    | 0.08              |
| Contention-based protocol                                           | dB     | 2.26              |

Test Report No. 15474876H-B-R2 Page 9 of 54

#### 3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 Japan

Telephone: +81-596-24-8999

A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 884919

ISED Lab Company Number: 2973C / CAB identifier: JP0002

| Test site                  | Width x Depth x<br>Height (m) | Size of reference ground plane (m) / horizontal conducting plane | Other rooms            | Maximum measurement distance |
|----------------------------|-------------------------------|------------------------------------------------------------------|------------------------|------------------------------|
| No.1 semi-anechoic chamber | 19.2 x 11.2 x 7.7             | 7.0 x 6.0                                                        | No.1 Power source room | 10 m                         |
| No.2 semi-anechoic chamber | 7.5 x 5.8 x 5.2               | 4.0 x 4.0                                                        | -                      | 3 m                          |
| No.3 semi-anechoic chamber | 12.0 x 8.5 x 5.9              | 6.8 x 5.75                                                       | No.3 Preparation room  | 3 m                          |
| No.3 shielded room         | 4.0 x 6.0 x 2.7               | N/A                                                              | -                      | -                            |
| No.4 semi-anechoic chamber | 12.0 x 8.5 x 5.9              | 6.8 x 5.75                                                       | No.4 Preparation room  | 3 m                          |
| No.4 shielded room         | 4.0 x 6.0 x 2.7               | N/A                                                              | -                      | -                            |
| No.5 semi-anechoic chamber | 6.0 x 6.0 x 3.9               | 6.0 x 6.0                                                        | -                      | -                            |
| No.5 measurement room      | 6.4 x 6.4 x 3.0               | 6.4 x 6.4                                                        | -                      | -                            |
| No.6 shielded room         | 4.0 x 4.5 x 2.7               | 4.0 x 4.5                                                        | -                      | -                            |
| No.6 measurement room      | 4.75 x 5.4 x 3.0              | 4.75 x 4.15                                                      | -                      | -                            |
| No.7 shielded room         | 4.7 x 7.5 x 2.7               | 4.7 x 7.5                                                        | -                      | -                            |
| No.8 measurement room      | 3.1 x 5.0 x 2.7               | 3.1 x 5.0                                                        | -                      | -                            |
| No.9 measurement room      | 8.8 x 4.6 x 2.8               | 2.4 x 2.4                                                        | -                      | -                            |
| No.10 shielded room        | 3.8 x 2.8 x 2.8               | 3.8 x 2.8                                                        | -                      | -                            |
| No.11 measurement room     | 4.0 x 3.4 x 2.5               | N/A                                                              | -                      | -                            |
| No.12 measurement room     | 2.6 x 3.4 x 2.5               | N/A                                                              | -                      | -                            |
| Large Chamber              | 16.9 x 22.1 x 10.17           | 16.9 x 22.1                                                      | -                      | 10 m                         |
| Small Chamber              | 5.3 x 6.69 x 3.59             | 5.3 x 6.69                                                       | -                      | -                            |

#### 3.6 Test Data, Test Instruments, and Test Set Up

Refer to APPENDIX.

Test Report No. 15474876H-B-R2 Page 10 of 54

## **SECTION 4: Operation of EUT during testing**

#### 4.1 Operating Mode(s)

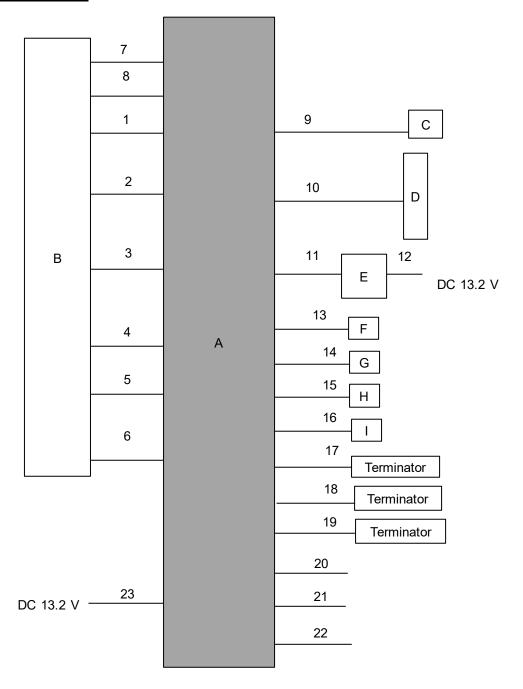
| Mode                    | Remarks*                                                |
|-------------------------|---------------------------------------------------------|
| Bluetooth (BT)          | BR / EDR, Payload: PRBS9                                |
| *EUT has the power s    | ettings by the software as follows;                     |
| Power Setting:          | BR : -1.7 dBm                                           |
|                         | EDR: -2.2 dBm                                           |
| Software:               | MSoC Version: F67WHM010-708                             |
|                         | (Date: November 12, 2020, Storage location: EUT memory) |
| *This setting of softwa | ire is the worst case.                                  |
| Any conditions under    | the normal use do not exceed the condition of setting.  |

In addition, end users cannot change the settings of the output power of the product.

Details of Operating Mode(s)

| Test Item                                 | Mode                | Hopping | Tested Frequency |
|-------------------------------------------|---------------------|---------|------------------|
| Radiated Spurious Emission (Below 1 GHz)  | Tx 3DH5 *1)         | Off     | 2480 MHz         |
| Radiated Spurious Emission (Above 1 GHz), | Tx DH5              | Off     | 2402 MHz         |
| Conducted Spurious Emission               | Tx 3DH5             |         | 2441 MHz         |
| ·                                         |                     |         | 2480 MHz         |
| Carrier Frequency Separation              | Tx DH5              | On      | 2402 MHz         |
| , , ,                                     | Tx 3DH5             |         | 2441 MHz         |
|                                           |                     |         | 2480 MHz         |
| 20dB Bandwidth                            | Tx DH5              | Off     | 2402 MHz         |
|                                           | Tx 3DH5             |         | 2441 MHz         |
|                                           |                     |         | 2480 MHz         |
| Number of Hopping Frequency               | Tx DH5              | On      | -                |
|                                           | Tx 3DH5             |         |                  |
| Dwell time                                | Tx DH1, DH3, DH5    | On      | -                |
|                                           | Tx 3DH1, 3DH3, 3DH5 |         |                  |
| Maximum Peak Output Power                 | Tx DH5              | Off     | 2402 MHz         |
| ·                                         | Tx 2DH5             |         | 2441 MHz         |
|                                           | Tx 3DH5             |         | 2480 MHz         |
| Band Edge Compliance                      | Tx DH5              | On      | 2402 MHz         |
| (Conducted)                               | Tx 3DH5             | Off     | 2480 MHz         |
| 99% Occupied Bandwidth                    | Tx DH5              | On      | 2402 MHz         |
| •                                         | Tx 3DH5             |         | 2441 MHz         |
|                                           |                     | Off     | 2480 MHz         |

<sup>\*</sup>As a result of preliminary test, the formal test was performed with the above modes, which had the maximum payload length (except Dwell time test)


<sup>\*2</sup>DH mode (2Mb/s EDR: pi/4DQPSK) was excluded for other tests than power measurement by using 3DH mode (3 Mb/s EDR: 8DPSK) as a representative.

<sup>\*</sup>It is considered that the non-tested packet type (e.g. inquiry) can be omitted as it is complied with above all the test items based on Bluetooth Core specification.

<sup>\*1)</sup> Conducted emissions and Spurious emissions for frequencies below 1 GHz were limited to the channel that had the highest power during the antenna terminal test, as preliminary testing indicated that changing the operating frequency had no significant impact on the emissions in those frequency bands.

## 4.2 Configuration and Peripherals

## For Radiated Emission



<sup>\*</sup> Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Test Report No. 15474876H-B-R2 Page 12 of 54


**Description of EUT and Support Equipment** 

| No. | Item          | Model number     | Serial Number     | Manufacturer | Remarks |
|-----|---------------|------------------|-------------------|--------------|---------|
| Α   | Cockpit       | DNNS125          | 04687264005002430 | DENSO        | EUT     |
|     | Control Unit  |                  | 0000000           | CORPORATION  |         |
| В   | Display (CID) | DNNS132-2        | 86412FN450        | DENSO        | -       |
|     |               |                  |                   | CORPORATION  |         |
| С   | Mic           | -                | =                 | Panasonic    | -       |
| D   | USB BOX       | 86257AN00A       | No.7              | SUBARU       | -       |
| Е   | Meter         | TN257550-6773    | 85002AN02A        | DENSO        | -       |
|     |               |                  |                   | CORPORATION  |         |
| F   | Speaker       | SPEAKER ASSY 4FD | =                 | FOSTER       | -       |
| G   | Speaker       | SPEAKER ASSY 4FD | =                 | FOSTER       | -       |
| Н   | Speaker       | SPEAKER ASSY 4RD | =                 | FOSTER       | -       |
| I   | Speaker       | SPEAKER ASSY 4RD | =                 | FOSTER       | -       |

#### **List of Cables Used**

| No. | Name          | ame Length (m) |            | Shield     |   |
|-----|---------------|----------------|------------|------------|---|
|     |               |                | Cable      | Connector  |   |
| 1   | DC Cable      | 0.2            | Unshielded | Unshielded | - |
| 2   | Signal Cable  | 0.2            | Unshielded | Unshielded | - |
| 3   | GND Cable     | 0.2            | Unshielded | Unshielded | - |
| 4   | GND Cable     | 0.2            | Unshielded | Unshielded | - |
| 5   | GND Cable     | 0.2            | Unshielded | Unshielded | - |
| 6   | GND Cable     | 0.2            | Unshielded | Unshielded | - |
| 7   | RF Cable      | 0.1            | Shielded   | Shielded   | - |
| 8   | RF Cable      | 0.1            | Shielded   | Shielded   | - |
| 9   | Mic Cable     | 1.0            | Unshielded | Unshielded | - |
| 10  | Signal Cable  | 0.5            | Unshielded | Unshielded | - |
| 11  | Signal Cable  | 1.0            | Unshielded | Unshielded | - |
| 12  | DC Cable      | 2.5            | Unshielded | Unshielded | - |
| 13  | Speaker Cable | 2.0            | Unshielded | Unshielded | - |
| 14  | Speaker Cable | 2.0            | Unshielded | Unshielded | - |
| 15  | Speaker Cable | 2.0            | Unshielded | Unshielded | - |
| 16  | Speaker Cable | 2.0            | Unshielded | Unshielded | - |
| 17  | Antenna Cable | 1.5            | Shielded   | Shielded   | - |
| 18  | Antenna Cable | 1.5            | Shielded   | Shielded   | - |
| 19  | Antenna Cable | 1.0            | Shielded   | Shielded   | - |
| 20  | Signal Cable  | 1.0            | Unshielded | Unshielded | = |
| 21  | Signal Cable  | 1.0            | Unshielded | Unshielded | - |
| 22  | Signal Cable  | 1.0            | Unshielded | Unshielded | - |
| 23  | DC Cable      | 2.5            | Unshielded | Unshielded | - |

## For Antenna Terminal Conducted test



<sup>\*</sup> Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Test Report No. 15474876H-B-R2 Page 14 of 54

**Description of EUT and Support Equipment** 

| No. | Item            | Model number     | Serial Number       | Manufacturer | Remarks |
|-----|-----------------|------------------|---------------------|--------------|---------|
| Α   | Cockpit Control | DNNS125          | 0468726400500243301 | DENSO        | EUT     |
|     | Unit            |                  | 00091               | CORPORATION  |         |
| В   | Display (CID)   | DNNS132-2        | 86412FN450          | DENSO        | -       |
|     |                 |                  |                     | CORPORATION  |         |
| С   | Mic             | -                | -                   | Panasonic    | -       |
| D   | USB BOX         | 86257AN00A       | No.7                | SUBARU       | -       |
| E   | USB-LAN Adapter | LUA3-U2-ATX      | 26495680506450      | BUFFALO INC. | -       |
| F   | USB-LAN Adapter | LUA3-U2-ATX      | 26495680506351      | BUFFALO INC. | -       |
| G   | Laptop PC       | PR63PBAA337AD7X  | 6F053983H           | TOSHIBA      | -       |
| Н   | AC Adapter      | PA51770-1ACA     | G71C000GZ120        | TOSHIBA      | -       |
| I   | Meter           | TN257550-6773    | 85002AN02A          | DENSO        | -       |
|     |                 |                  |                     | CORPORATION  |         |
| J   | Speaker         | SPEAKER ASSY 4FD | -                   | FOSTER       | -       |
| K   | Speaker         | SPEAKER ASSY 4FD | -                   | FOSTER       | -       |
| L   | Speaker         | SPEAKER ASSY 4RD | -                   | FOSTER       | -       |
| M   | Speaker         | SPEAKER ASSY 4RD | -                   | FOSTER       | -       |

## **List of Cables Used**

| No. | Name          | Length (m) | Shield     |            | Remarks |
|-----|---------------|------------|------------|------------|---------|
|     |               |            | Cable      | Connector  |         |
| 1   | DC Cable      | 0.2        | Unshielded | Unshielded | =       |
| 2   | Signal Cable  | 0.2        | Unshielded | Unshielded | =       |
| 3   | GND Cable     | 0.2        | Unshielded | Unshielded | -       |
| 4   | GND Cable     | 0.2        | Unshielded | Unshielded | -       |
| 5   | GND Cable     | 0.2        | Unshielded | Unshielded | -       |
| 6   | GND Cable     | 0.2        | Unshielded | Unshielded | -       |
| 7   | RF Cable      | 0.1        | Shielded   | Shielded   | -       |
| 8   | RF Cable      | 0.1        | Shielded   | Shielded   | -       |
| 9   | Mic Cable     | 1.0        | Unshielded | Unshielded | -       |
| 10  | Signal Cable  | 0.5        | Unshielded | Unshielded | -       |
| 11  | USB Cable     | 0.2        | Shielded   | Shielded   | -       |
| 12  | LAN Cable     | 1.5        | Unshielded | Unshielded | -       |
| 13  | USB Cable     | 0.2        | Shielded   | Shielded   | -       |
| 14  | DC Cable      | 1.3        | Unshielded | Unshielded | -       |
| 15  | AC Cable      | 0.8        | Unshielded | Unshielded | -       |
| 16  | Signal Cable  | 1.0        | Unshielded | Unshielded | -       |
| 17  | DC Cable      | 2.5        | Unshielded | Unshielded | -       |
| 18  | Speaker Cable | 2.0        | Unshielded | Unshielded | -       |
| 19  | Speaker Cable | 2.0        | Unshielded | Unshielded | -       |
| 20  | Speaker Cable | 2.0        | Unshielded | Unshielded | -       |
| 21  | Speaker Cable | 2.0        | Unshielded | Unshielded | -       |
| 22  | Antenna Cable | 1.5        | Shielded   | Shielded   | -       |
| 23  | Antenna Cable | 1.5        | Shielded   | Shielded   | -       |
| 24  | Antenna Cable | 1.0        | Shielded   | Shielded   | -       |
| 25  | Signal Cable  | 1.0        | Unshielded | Unshielded | -       |
| 26  | Signal Cable  | 1.0        | Unshielded | Unshielded | -       |
| 27  | Signal Cable  | 1.0        | Unshielded | Unshielded | -       |
| 28  | DC Cable      | 2.5        | Unshielded | Unshielded | -       |

Test Report No. 15474876H-B-R2 Page 15 of 54

## **SECTION 5: Radiated Spurious Emission**

#### **Test Procedure**

#### [For below 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 1.0 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

#### [For above 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane. Test antenna was aimed at the EUT for receiving the maximum signal and always kept within the illumination area of the 3 dB beamwidth of the antenna.

The height of the measuring antenna varied between 1 m and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

The test was made with the detector (RBW/VBW) in the following table.

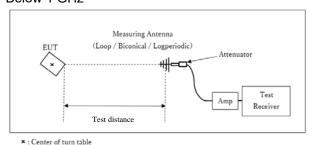
When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

#### Test Antennas are used as below:

| Frequency    | 30 MHz to 200 MHz | 200 MHz to 1 GHz | Above 1 GHz |
|--------------|-------------------|------------------|-------------|
| Antenna Type | Biconical         | Logperiodic      | Horn        |

Test Report No. 15474876H-B-R2 Page 16 of 54

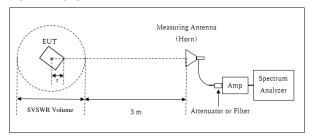
In any 100 kHz bandwidth outside the restricted band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator confirmed 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on a radiated measurement.


20 dBc was applied to the frequency over the limit of FCC 15.209 / Table 4 of RSS-Gen 8.9 (ISED) and outside the restricted band of FCC15.205 / Table 6 of RSS-Gen 8.10 (ISED).

| Frequency       | Below 1 GHz   | Above 1 GHz      |                       | 20 dBc            |  |  |
|-----------------|---------------|------------------|-----------------------|-------------------|--|--|
| Instrument used | Test Receiver | Spectrum Analyze | r                     | Spectrum Analyzer |  |  |
| Detector        | QP            | PK               | PK                    |                   |  |  |
| IF Bandwidth    | BW 120 kHz    | RBW: 1 MHz       | RBW: 1 MHz            | RBW: 100 kHz      |  |  |
|                 |               | VBW: 3 MHz       | VBW: 3 MHz            | VBW: 300 kHz      |  |  |
|                 |               |                  |                       |                   |  |  |
|                 |               |                  | Power Averaging       |                   |  |  |
|                 |               |                  | (RMS)                 |                   |  |  |
|                 |               |                  | Trace: 100 traces     |                   |  |  |
|                 |               |                  | Duty factor was added |                   |  |  |
|                 |               |                  | to the results.       |                   |  |  |

Test Report No. 15474876H-B-R2 Page 17 of 54

#### Figure 1: Test Setup


#### Below 1 GHz



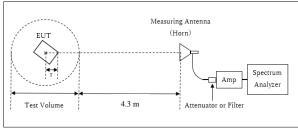
Test Distance: 3 m

. Center of turn table

#### 1 GHz to 6 GHz



- $\boldsymbol{r}$  : Radius of an outer periphery of EUT
- ×: Center of turn table


Distance Factor: 20 x log (3.8 m / 3.0 m) = 2.06 dB \* Test Distance: (3 + SVSWR Volume /2) - r = 3.8 m

SVSWR Volume : 2.0 m

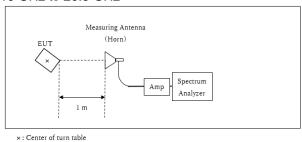
(SVSWR Volume has been calibrated based on

CISPR 16-1-4.) r = 0.2 m

#### 6 GHz to 10 GHz



- r : Radius of an outer periphery of EUT
- ×: Center of turn table


## Distance Factor: 20 x log (4.8 m / 3.0 m) = 4.09 dB \* Test Distance: (4.3 + SVSWR Volume /2) - r = 4.8 m

SVSWR Volume: 1.4 m

(SVSWR Volume has been calibrated based on

CISPR 16-1-4.) r = 0.2 m

#### 10 GHz to 26.5 GHz



Distance Factor:  $20 \times \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$ 

\*Test Distance: 1 m

The test was made on EUT at the normal use position.

Test results are rounded off and limit are rounded down, so some differences might be observed.

Measurement Range : 30 MHz to 26.5 GHz

Test Data : APPENDIX

Test Result : Pass

Test Report No. 15474876H-B-R2 Page 18 of 54

## **SECTION 6: Antenna Terminal Conducted Tests**

#### **Test Procedure**

The tests were made with below setting connected to the antenna port.

| Test                                                         | Span                                    | RBW                | VBW                | Sweep time                                                     | Detector             | Trace       | Instrument<br>Used                   |
|--------------------------------------------------------------|-----------------------------------------|--------------------|--------------------|----------------------------------------------------------------|----------------------|-------------|--------------------------------------|
| 20dB Bandwidth                                               | 3 MHz                                   | 30 kHz             | 100 kHz            | Auto                                                           | Peak                 | Max Hold    | Spectrum Analyzer                    |
| 99% Occupied<br>Bandwidth *1)                                | Enough width to display emission skirts | 1 to 5 %<br>of OBW | Three times of RBW | Auto                                                           | Peak                 | Max Hold    | Spectrum Analyzer                    |
| Maximum Peak<br>Output Power                                 | -                                       | -                  | -                  | Auto                                                           | Peak/<br>Average *2) | -           | Power Meter<br>(Sensor:<br>50MHz BW) |
| Carrier<br>Frequency<br>Separation                           | 3 MHz                                   | 30 kHz             | 100 kHz            | Auto                                                           | Peak                 | Max Hold    | Spectrum Analyzer                    |
| Number of<br>Hopping<br>Frequency                            | 30 MHz                                  | 100 kHz            | 300 kHz            | Auto                                                           | Peak                 | Max Hold    | Spectrum Analyzer                    |
| Dwell Time                                                   | Zero Span                               | 100 kHz,<br>1 MHz  | 300 kHz,<br>3 MHz  | As necessary capture the entire dwell time per hopping channel | Peak                 | Clear Write | Spectrum Analyzer                    |
| Conducted                                                    | 9 kHz to 150 kHz                        | 200 Hz             | 620 Hz             | Auto                                                           | Peak                 | Max Hold    | Spectrum Analyzer                    |
| Spurious                                                     | 150 kHz to 30 MHz                       | 10 kHz             | 30 kHz             |                                                                |                      |             |                                      |
| Emission *3) *4)                                             | 30 MHz to 25 GHz                        | 100 kHz            | 300 kHz            | 1                                                              |                      |             |                                      |
| Conducted<br>Spurious<br>Emission Band<br>Edge<br>compliance | 10 MHz                                  | 100 kHz            | 300 kHz            | Auto                                                           | Peak                 | Max Hold    | Spectrum Analyzer                    |

<sup>\*1)</sup> Peak hold was applied as Worst-case measurement.

Then, wide-band noise near the limit was checked separately, however the noise was low enough as shown in the chart. (9 kHz - 150 kHz: RBW = 200 Hz, 150 kHz - 30 MHz: RBW = 10 kHz).

Test results are rounded off and limit are rounded down, so some differences might be observed. The equipment and cables were not used for factor 0 dB of the data sheets.

Test Data : APPENDIX
Test Result : Pass

<sup>\*2)</sup> Reference data

<sup>\*3)</sup> In the frequency range below 30MHz, RBW was narrowed to separate the noise contents.

<sup>\*4)</sup> The limits in CFR 47, Part 15, Subpart C, paragraph 15.209(a), are identical to those in RSS-Gen section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377 Ohmes. For example, the measurement at frequency 9 kHz resulted in a level of 45.5 dBuV/m, which is equivalent to 45.5 – 51.5 = -6.0 dBuA/m, which has the same margin, 3 dB, to the corresponding RSS-Gen Table 6 limit as it has to 15.209(a) limit.

Test Report No. 15474876H-B-R2 Page 19 of 54

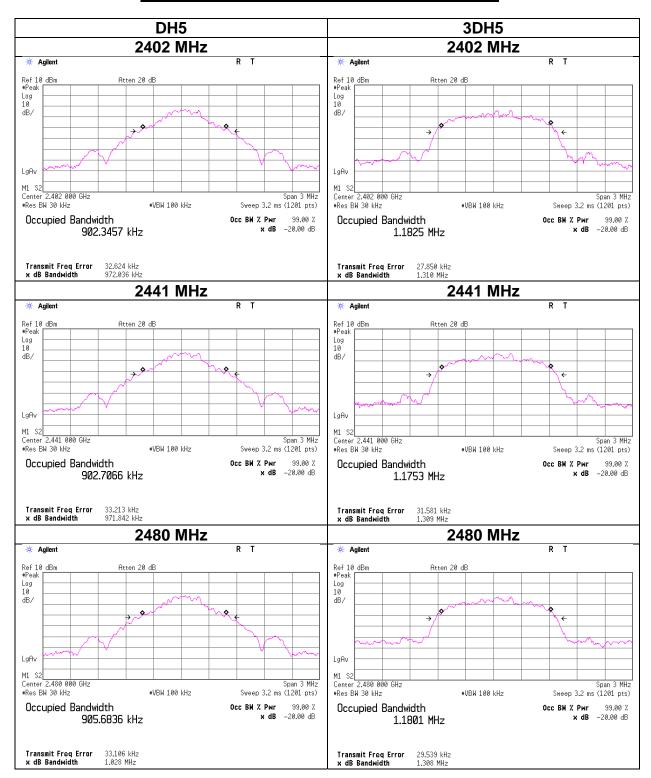
## **APPENDIX 1: Test data**

## 20dB Bandwidth, 99%Occupied Bandwidth and Carrier Frequency Separation

Test place Ise EMC Lab. No.3 Preparation room

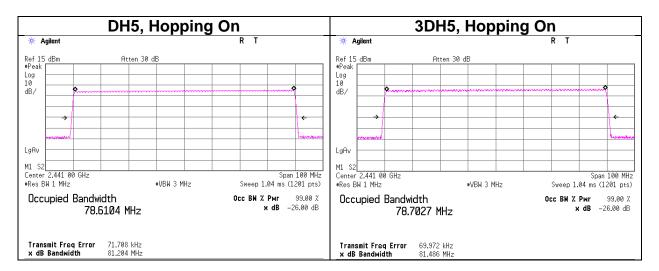
Date June 17, 2024 Temperature / Humidity 23 deg. C / 54 % RH

Engineer Yuta Moriya

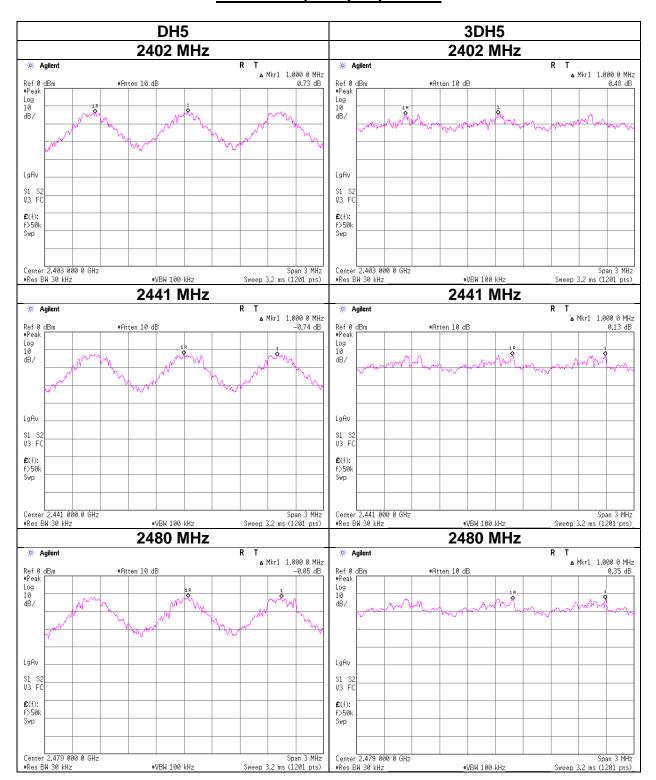

Mode Tx, Hopping Off, Tx, Hopping On

| Mode | Freq.      | 20 dB Bandwidth | 99 % Occupied | Carrier Frequency | Limit for Carrier    |
|------|------------|-----------------|---------------|-------------------|----------------------|
|      |            |                 | Bandwidth     | Separation        | Frequency separation |
|      | [MHz]      | [MHz]           | [kHz]         | [MHz]             | [MHz]                |
| DH5  | 2402.0     | 0.972           | 902.346       | 1.000             | >= 0.648             |
| DH5  | 2441.0     | 0.972           | 902.707       | 1.000             | >= 0.648             |
| DH5  | 2480.0     | 1.028           | 905.684       | 1.000             | >= 0.685             |
| DH5  | Hopping On | -               | 78610.400     | =                 | -                    |
| 3DH5 | 2402.0     | 1.310           | 1182.500      | 1.000             | >= 0.873             |
| 3DH5 | 2441.0     | 1.309           | 1175.300      | 1.000             | >= 0.873             |
| 3DH5 | 2480.0     | 1.308           | 1180.100      | 1.000             | >= 0.872             |
| 3DH5 | Hopping On | -               | 78702.700     | -                 | -                    |

Limit: Two-thirds of 20 dB Bandwidth or 25 kHz (whichever is greater).


No limit applies to 20 dB Bandwidth.

## 20dB Bandwidth and 99% Occupied Bandwidth




Test Report No. 15474876H-B-R2 Page 21 of 54

## 20dB Bandwidth and 99% Occupied Bandwidth

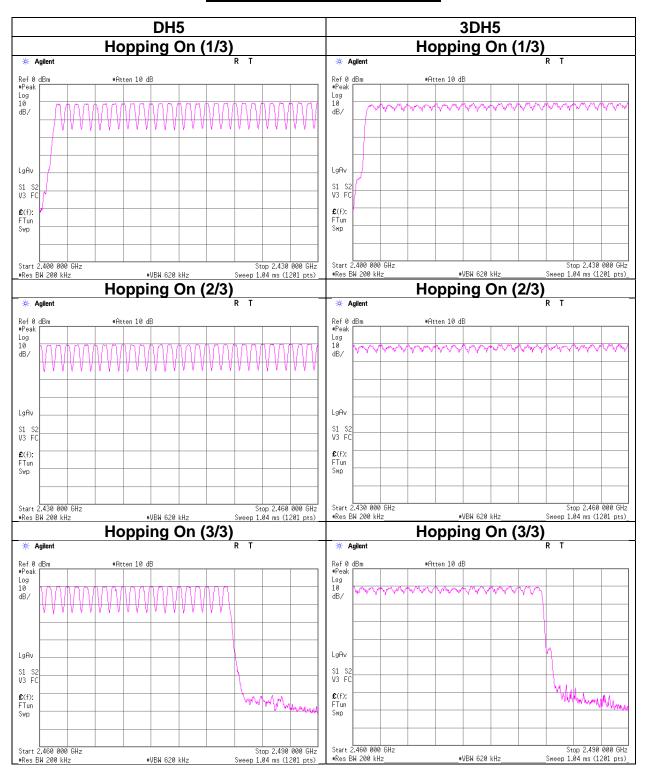


## **Carrier Frequency Separation**



Test Report No. 15474876H-B-R2 Page 23 of 54

## **Number of Hopping Frequency**


Test place Ise EMC Lab. No.3 Preparation room

Date June 17, 2024
Temperature / Humidity 23 deg. C / 54 % RH
Engineer Yuta Moriya
Mode Tx, Hopping On

| Mode | Number of channel | Limit      |
|------|-------------------|------------|
|      | [channels]        | [channels] |
| DH5  | 79                | >= 15      |
| 3DH5 | 79                | >= 15      |

Test was not performed at AFH mode whose number of hopping channel is 20 channels because this Bluetooth radio is in compliance of Bluetooth Specification.

## **Number of Hopping Frequency**



Test Report No. 15474876H-B-R2 Page 25 of 54

## **Dwell time**

Test place Ise EMC Lab. No.3 Preparation room

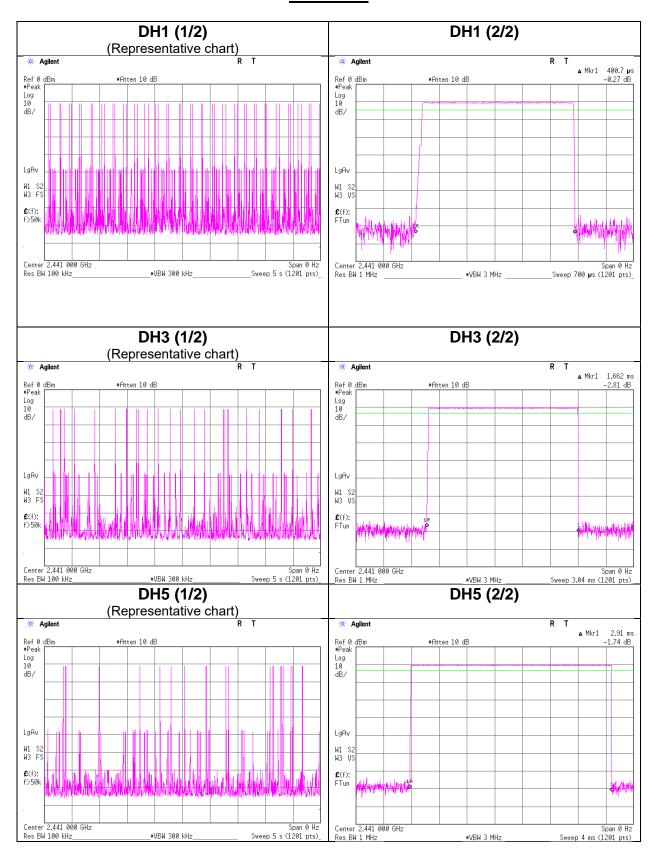
Date June 17, 2024
Temperature / Humidity 23 deg. C / 54 % RH
Engineer Yuta Moriya
Mode Tx, Hopping On

| Mode |              |         |            | nsmission<br>pping x 0.4 | 1)    |           | Length of transmission | Result | Limit |
|------|--------------|---------|------------|--------------------------|-------|-----------|------------------------|--------|-------|
|      | / 12.8       | 3 (32 H | opping x ( | 0.4) secon               | d per | iod       | [ms]                   | [ms]   | [ms]  |
| DH1  | 50.4 times / | 5 s     | Χ          | 0.401                    | 128   | 400       |                        |        |       |
| DH3  | 25.4 times / | 5 s     | Х          | 31.6 s                   | =     | 161 times | 1.662                  | 268    | 400   |
| DH5  | 17.4 times / | 5 s     | Х          | 31.6 s                   | =     | 110 times | 2.910                  | 320    | 400   |
| 3DH1 | 51.0 times / | 5 s     | Χ          | 31.6 s                   | =     | 323 times | 0.407                  | 131    | 400   |
| 3DH3 | 25.6 times / | 5 s     | Х          | 31.6 s                   | =     | 162 times | 1.662                  | 269    | 400   |
| 3DH5 | 16.0 times / | 5 s     | Х          | 31.6 s                   | =     | 102 times | 2.917                  | 298    | 400   |

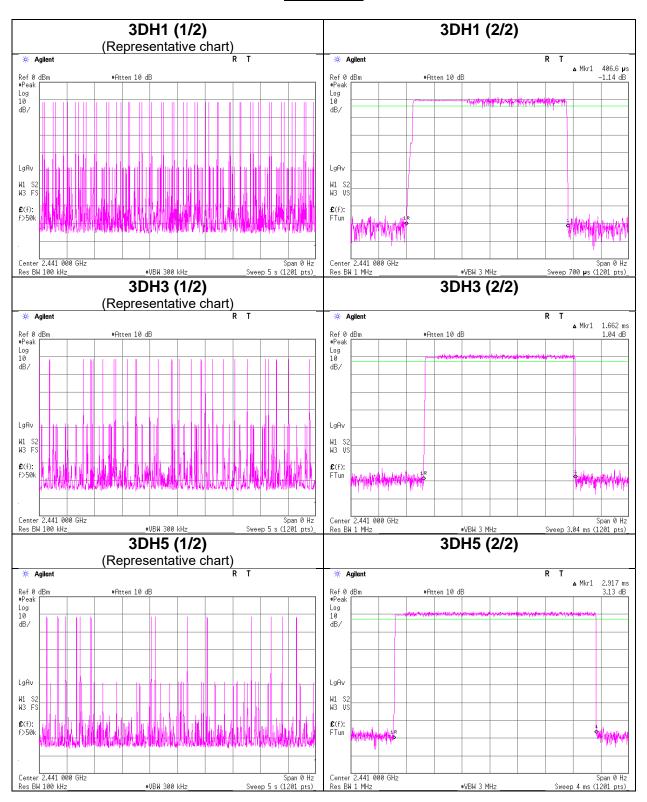
Sample Calculation

Result = Number of transmission x Length of transmission

\*Average data of 5 tests.(except Inquiry)


| Mode |     | 9  | Sampling [times] |    |    | Average |
|------|-----|----|------------------|----|----|---------|
|      | 1 2 |    | 3                | 4  | 5  | [times] |
| DH1  | 51  | 50 | 50               | 51 | 50 | 50.4    |
| DH3  | 22  | 28 | 27               | 25 | 25 | 25.4    |
| DH5  | 17  | 19 | 16               | 17 | 18 | 17.4    |
| 3DH1 | 51  | 51 | 51               | 51 | 51 | 51      |
| 3DH3 | 26  | 30 | 24               | 22 | 26 | 25.6    |
| 3DH5 | 14  | 17 | 11               | 21 | 17 | 16      |

Sample Calculation


Average = Summation (Sampling 1 to 5) / 5

This device complies with the Bluetooth protocol for FHSS operation, employing a pseudo random channel selection and hopping rate to ensure that the occupancy time in N x 0.4 s, where N is the number of channels being used in the hopping sequence ( $20 \le N \le 79$ ), is always less than 0.4 s regardless of packet size. This is confirmed in the test report for N = 79.

## **Dwell time**



## **Dwell time**



Test Report No. 15474876H-B-R2 Page 28 of 54

## **Maximum Peak Output Power**

Test place Ise EMC Lab. No.3 Preparation room

Date June 17, 2024
Temperature / Humidity 23 deg. C / 54 % RH
Engineer Yuta Moriya
Mode Tx, Hopping Off

|      |        |         |       |        |       | Cond   | ducted P | ower  |       |         | e.i    | .r.p. for l | RSS-247 | ,    |        |
|------|--------|---------|-------|--------|-------|--------|----------|-------|-------|---------|--------|-------------|---------|------|--------|
| Mode | Freq.  | Reading | Cable | Atten. | Re    | Result |          | Limit |       | Antenna | Result |             | Limit   |      | Margin |
|      |        |         | Loss  | Loss   |       |        |          |       |       | Gain    |        |             |         |      |        |
|      | [MHz]  | [dBm]   | [dB]  | [dB]   | [dBm] | [mW]   | [dBm]    | [mW]  | [dB]  | [dBi]   | [dBm]  | [mW]        | [dBm]   | [mW] | [dB]   |
| DH5  | 2402.0 | -10.64  | 3.16  | 6.13   | -1.35 | 0.73   | 20.96    | 125   | 22.31 | 1.83    | 0.48   | 1.12        | 36.02   | 4000 | 35.54  |
| DH5  | 2441.0 | -9.99   | 3.17  | 6.13   | -0.69 | 0.85   | 20.96    | 125   | 21.65 | 1.83    | 1.14   | 1.30        | 36.02   | 4000 | 34.88  |
| DH5  | 2480.0 | -9.54   | 3.18  | 6.13   | -0.23 | 0.95   | 20.96    | 125   | 21.19 | 1.83    | 1.60   | 1.44        | 36.02   | 4000 | 34.42  |
| 2DH5 | 2402.0 | -9.01   | 3.16  | 6.13   | 0.28  | 1.07   | 20.96    | 125   | 20.68 | 1.83    | 2.11   | 1.62        | 36.02   | 4000 | 33.91  |
| 2DH5 | 2441.0 | -8.33   | 3.17  | 6.13   | 0.97  | 1.25   | 20.96    | 125   | 19.99 | 1.83    | 2.80   | 1.90        | 36.02   | 4000 | 33.22  |
| 2DH5 | 2480.0 | -8.05   | 3.18  | 6.13   | 1.26  | 1.34   | 20.96    | 125   | 19.70 | 1.83    | 3.09   | 2.04        | 36.02   | 4000 | 32.93  |
| 3DH5 | 2402.0 | -8.90   | 3.16  | 6.13   | 0.39  | 1.09   | 20.96    | 125   | 20.57 | 1.83    | 2.22   | 1.67        | 36.02   | 4000 | 33.80  |
| 3DH5 | 2441.0 | -8.31   | 3.17  | 6.13   | 0.99  | 1.26   | 20.96    | 125   | 19.97 | 1.83    | 2.82   | 1.91        | 36.02   | 4000 | 33.20  |
| 3DH5 | 2480.0 | -8.01   | 3.18  | 6.13   | 1.30  | 1.35   | 20.96    | 125   | 19.66 | 1.83    | 3.13   | 2.05        | 36.02   | 4000 | 32.89  |

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss e.i.r.p. Result = Conducted Power Result + Antenna Gain

Test was not performed at AFH mode, because the decrease of number of channel (min: 20 ch) at AFH mode does not influence on the output power and bandwidth of the EUT.

As this device had AFH mode and frequency separation could not meet the requirement of over 20 dB BW without 2/3 relaxation, 125 mW power limit was applied to it.

Test Report No. 15474876H-B-R2 Page 29 of 54

## <u>Average Output Power</u> (Reference data for RF Exposure)

Test place Ise EMC Lab.

No.3 Preparation room No.8 Measurement room

Date June 17, 2024
Temperature / Humidity 23 deg. C / 54 % RH
Engineer Yuta Moriya

RH 20 deg. C / 55 % RH Junya Okuno

June 18, 2024

Mode Tx, Hopping Off

| Mode | Freq.  | Reading | Cable | Atten. | Re             | sult | Duty   | Res        | sult        |
|------|--------|---------|-------|--------|----------------|------|--------|------------|-------------|
|      |        |         | Loss  | Loss   | (Time average) |      | factor | (Burst pow | er average) |
|      | [MHz]  | [dBm]   | [dB]  | [dB]   | [dBm]          | [mW] | [dB]   | [dBm]      | [mW]        |
| DH5  | 2402.0 | -12.27  | 3.16  | 6.13   | -2.98          | 0.50 | 1.11   | -1.87      | 0.65        |
| DH5  | 2441.0 | -11.49  | 3.17  | 6.13   | -2.19          | 0.60 | 1.11   | -1.08      | 0.78        |
| DH5  | 2480.0 | -10.98  | 3.18  | 6.13   | -1.67 0.68     |      | 1.11   | -0.56      | 0.88        |
| 2DH5 | 2402.0 | -12.74  | 3.16  | 6.13   | -3.45          | 0.45 | 1.11   | -2.34      | 0.58        |
| 2DH5 | 2441.0 | -12.38  | 3.17  | 6.13   | -3.08          | 0.49 | 1.11   | -1.97      | 0.63        |
| 2DH5 | 2480.0 | -11.62  | 3.18  | 6.13   | -2.31          | 0.59 | 1.11   | -1.20      | 0.76        |
| 3DH5 | 2402.0 | -12.71  | 3.16  | 6.13   | -3.42          | 0.45 | 1.10   | -2.32      | 0.59        |
| 3DH5 | 2441.0 | -12.35  | 3.17  | 6.13   | -3.05          | 0.50 | 1.10   | -1.95      | 0.64        |
| 3DH5 | 2480.0 | -11.59  | 3.18  | 6.13   | -2.28          | 0.59 | 1.10   | -1.18      | 0.76        |

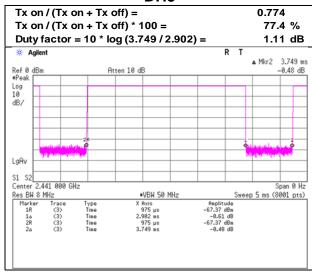
#### Sample Calculation:

Result (Time average) = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss Result (Burst power average) = Time average + Duty factor

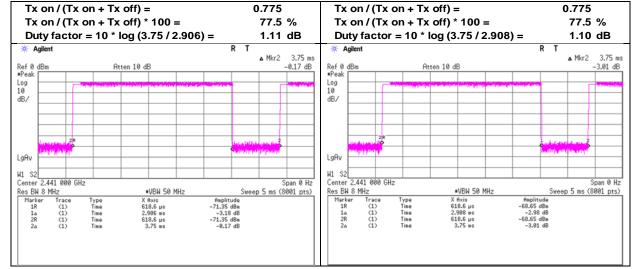
<sup>\*</sup>The equipment and cables were not used for factor 0 dB of the data sheets.

Test Report No. 15474876H-B-R2 Page 30 of 54

## **Burst Rate Confirmation**


Test place Ise EMC Lab.

No.3 Preparation room No.8 M


Date June 17, 2024 Temperature / Humidity 23 deg. C / 54 % RH

Engineer Yuta Moriya Mode Tx, Hopping Off No.8 Measurement room June 18, 2024 20 deg. C / 55 % RH Junya Okuno

#### DH<sub>5</sub>



2DH5 3DH5



Test Report No. 15474876H-B-R2 Page 31 of 54

## **Radiated Spurious Emission**

Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3

Date June 19, 2024 June 18, 2024 23 deg. C / 59 % RH 23 deg. C / 56 % RH Temperature / Humidity Engineer Hiroki Numata Hiroki Numata

(1 GHz to 10 GHz) (Above 10 GHz)

Mode Tx, Hopping Off, DH5 2402 MHz

| Polarity    | Frequency |         | Reading | Ant.   | Loss | Gain | Duty   | Result   | Result   | Limit    | Limit    | Margin  | Margin | Remark      |
|-------------|-----------|---------|---------|--------|------|------|--------|----------|----------|----------|----------|---------|--------|-------------|
|             |           | (QP/PK) | (AV)    | Factor |      |      | Factor | (QP/PK)  | (AV)     | (QP/PK)  | (AV)     | (QP/PK) | (AV)   |             |
| [Hori/Vert] | [MHz]     | [dBuV]  | [dBuV]  | [dB/m] | [dB] | [dB] | [dB]   | [dBuV/m] | [dBuV/m] | [dBuV/m] | [dBuV/m] | [dB]    | [dB]   |             |
| Hori.       | 2390.0    | 41.0    | 33.3    | 27.5   | 5.1  | 32.2 | 1.1    | 41.3     | 34.7     | 73.9     | 53.9     | 32.6    | 19.2   | *1)         |
| Hori.       | 3509.1    | 49.7    | 47.6    | 28.8   | 7.1  | 31.7 | -      | 53.9     | 51.8     | 73.9     | 53.9     | 20.0    | 2.1    |             |
| Hori.       | 4804.0    | 41.1    | 32.6    | 31.4   | 7.2  | 31.2 | -      | 48.4     | 40.0     | 73.9     | 53.9     | 25.5    | 14.0   | Floor noise |
| Hori.       | 7206.0    | 40.0    | 32.1    | 35.6   | 10.3 | 32.0 | -      | 53.9     | 46.0     | 73.9     | 53.9     | 20.0    | 7.9    | Floor noise |
| Hori.       | 9608.0    | 41.2    | 32.2    | 35.6   | 10.9 | 32.6 | -      | 55.0     | 46.1     | 73.9     | 53.9     | 18.9    | 7.8    | Floor noise |
| Vert.       | 2390.0    | 42.8    | 33.1    | 27.5   | 5.1  | 32.2 | 1.1    | 43.1     | 34.6     | 73.9     | 53.9     | 30.8    | 19.3   | *1)         |
| Vert.       | 3509.1    | 52.1    | 48.7    | 28.8   | 7.1  | 31.7 | -      | 56.3     | 52.9     | 73.9     | 53.9     | 17.6    | 1.0    |             |
| Vert.       | 4804.0    | 41.0    | 32.0    | 31.4   | 7.2  | 31.2 | -      | 48.3     | 39.4     | 73.9     | 53.9     | 25.6    | 14.5   | Floor noise |
| Vert.       | 7206.0    | 39.5    | 32.2    | 35.6   | 10.3 | 32.0 | -      | 53.4     | 46.1     | 73.9     | 53.9     | 20.5    | 7.8    | Floor noise |
| Vert.       | 9608.0    | 41.2    | 32.5    | 35.6   | 10.9 | 32.6 | -      | 55.0     | 46.3     | 73.9     | 53.9     | 18.9    | 7.6    | Floor noise |

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

#### 20dBc Data Sheet

| Polarity    | Frequency | Reading | Ant    | Loss | Gain | Result   | Limit    | Margin | Remark  |
|-------------|-----------|---------|--------|------|------|----------|----------|--------|---------|
|             |           | (PK)    | Factor |      |      |          |          |        |         |
| [Hori/Vert] | [MHz]     | [dBuV]  | [dB/m] | [dB] | [dB] | [dBuV/m] | [dBuV/m] | [dB]   |         |
| Hori.       | 2402.0    | 91.0    | 27.5   | 5.1  | 32.2 | 91.4     | -        | -      | Carrier |
| Hori.       | 2400.0    | 35.7    | 27.5   | 5.1  | 32.2 | 36.1     | 71.4     | 35.3   |         |
| Vert.       | 2402.0    | 89.8    | 27.5   | 5.1  | 32.2 | 90.2     | -        | -      | Carrier |
| Vert.       | 2400.0    | 36.9    | 27.5   | 5.1  | 32.2 | 37.3     | 70.2     | 32.9   |         |

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)

Distance factor: 1 GHz - 6 GHz 20log (3.8 m / 3.0 m) = 2.06 dB 6 GHz - 10 GHz 20log (4.8 m / 3.0 m) = 4.09 dB

10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

Result (AV) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Galn(Amplifler)

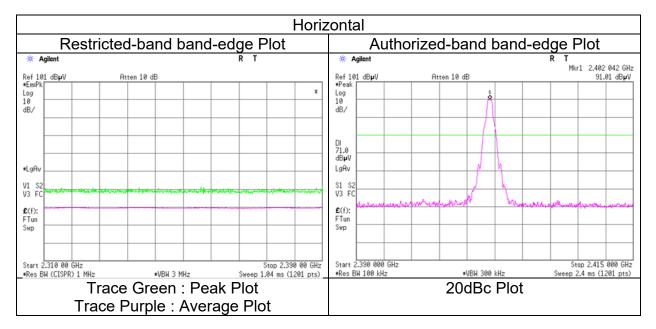
\*Chef Result (AV) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Galn(Amplifler) + Duty factor

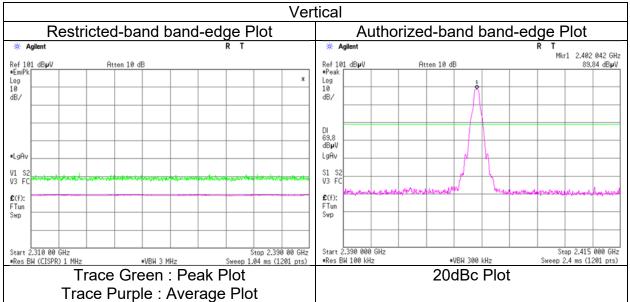
\*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

\*QP detector was used up to 1GHz.

\*1) Not Out of Band emission(Leakage Power)

Test Report No. 15474876H-B-R2 Page 32 of 54


# Radiated Spurious Emission (Reference Plot for band-edge)


Test place Ise EMC Lab. Semi Anechoic Chamber No.3

Semi Anechoic Chamber
Date
Temperature / Humidity
Engineer

No.3
June 19, 2024
23 deg. C / 59 % RH
Hiroki Numata
(1 GHz to 6 GHz)

Mode Tx, Hopping Off, DH5 2402 MHz





<sup>\*</sup> The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge and authorized band edge were shown in tabular data.

Test Report No. 15474876H-B-R2 Page 33 of 54

## **Radiated Spurious Emission**

Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3

Date June 19, 2024 June 18, 2024 23 deg. C / 59 % RH 23 deg. C / 56 % RH Temperature / Humidity Engineer Hiroki Numata Hiroki Numata

(1 GHz to 10 GHz) (Above 10 GHz)

Mode Tx, Hopping Off, DH5 2441 MHz

| Polarity                                                                                             | Frequency    | Reading      | Reading       | Ant.         | Loss          | Gain         | Duty        | Result        | Result         | Limit     | Limit    | Margin  | Margin | Remark      |
|------------------------------------------------------------------------------------------------------|--------------|--------------|---------------|--------------|---------------|--------------|-------------|---------------|----------------|-----------|----------|---------|--------|-------------|
|                                                                                                      |              | (QP/PK)      | (AV)          | Factor       |               |              | Factor      | (QP/PK)       | (AV)           | (QP/PK)   | (AV)     | (QP/PK) | (AV)   |             |
| [Hori/Vert]                                                                                          | [MHz]        | [dBuV]       | [dBuV]        | [dB/m]       | [dB]          | [dB]         | [dB]        | [dBuV/m]      | [dBuV/m]       | [dBuV/m]  | [dBuV/m] | [dB]    | [dB]   |             |
| Hori.                                                                                                | 3509.1       | 49.8         | 47.6          | 28.8         | 7.1           | 31.7         | -           | 54.0          | 51.8           | 73.9      | 53.9     | 19.9    | 2.1    |             |
| Hori.                                                                                                | 4882.0       | 40.5         | 32.4          | 31.4         | 7.2           | 31.2         | -           | 47.9          | 39.9           | 73.9      | 53.9     | 26.0    | 14.0   | Floor noise |
| Hori.                                                                                                | 7323.0       | 39.8         | 32.2          | 35.6         | 10.4          | 32.1         | -           | 53.7          | 46.0           | 73.9      | 53.9     | 20.2    | 7.9    | Floor noise |
| Hori.                                                                                                | 9764.0       | 41.5         | 32.4          | 35.9         | 11.0          | 32.7         | -           | 55.7          | 46.6           | 73.9      | 53.9     | 18.2    | 7.3    | Floor noise |
| Vert.                                                                                                | 3509.1       | 52.1         | 48.8          | 28.8         | 7.1           | 31.7         | -           | 56.3          | 53.0           | 73.9      | 53.9     | 17.6    | 0.9    |             |
| Vert.                                                                                                | 4882.0       | 40.1         | 32.5          | 31.4         | 7.2           | 31.2         | -           | 47.6          | 39.9           | 73.9      | 53.9     | 26.3    | 14.0   | Floor noise |
| Vert.                                                                                                | 7323.0       | 39.6         | 32.2          | 35.6         | 10.4          | 32.1         | -           | 53.5          | 46.1           | 73.9      | 53.9     | 20.5    | 7.8    | Floor noise |
| Vert.                                                                                                | 9764.0       | 40.8         | 32.5          | 35.9         | 11.0          | 32.7         | -           | 54.9          | 46.6           | 73.9      | 53.9     | 19.0    | 7.3    | Floor noise |
| Result (QP                                                                                           | / PK) = Read | ing + Ant Fa | ctor + Loss ( | (Cable+Atter | nuator+Filter | +Distance f  | actor(above | 1 GHz)) - Ga  | in(Amplifier   | )         |          |         |        |             |
| Result (AV)                                                                                          | = Reading +  | Ant Factor + | Loss (Cable   | e+Attenuator | +Filter+Dist  | ance factor( | above 1 GH: | z)) - Gain(Am | iplifier) + Du | ty factor |          |         |        |             |
| *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB). |              |              |               |              |               |              |             |               |                |           |          |         |        |             |
| *QP detector was used up to 1GHz.                                                                    |              |              |               |              |               |              |             |               |                |           |          |         |        |             |

Distance factor: 1 GHz - 6 GHz 20log (3.8 m / 3.0 m) = 2.06 dB

20log (4.8 m / 3.0 m) = 4.09 dB 6 GHz - 10 GHz 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

Test Report No. 15474876H-B-R2 Page 34 of 54

## **Radiated Spurious Emission**

Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3

Date June 19, 2024 June 18, 2024 Temperature / Humidity 23 deg. C / 59 % RH 23 deg. C / 56 % RH Engineer Hiroki Numata Hiroki Numata

(1 GHz to 10 GHz) (Above 10 GHz)

Mode Tx, Hopping Off, DH5 2480 MHz

| Polarity    | Frequency | Reading | Reading | Ant.   | Loss | Gain | Duty   | Result   | Result   | Limit    | Limit    | Margin  | Margin | Remark      |
|-------------|-----------|---------|---------|--------|------|------|--------|----------|----------|----------|----------|---------|--------|-------------|
|             |           | (QP/PK) | (AV)    | Factor |      |      | Factor | (QP/PK)  | (AV)     | (QP/PK)  | (AV)     | (QP/PK) | (AV)   |             |
| [Hori/Vert] | [MHz]     | [dBuV]  | [dBuV]  | [dB/m] | [dB] | [dB] | [dB]   | [dBuV/m] | [dBuV/m] | [dBuV/m] | [dBuV/m] | [dB]    | [dB]   |             |
| Hori.       | 2483.5    | 42.5    | 33.5    | 27.4   | 5.1  | 32.2 | 1.1    | 42.8     | 34.9     | 73.9     | 53.9     | 31.1    | 19.0   | *1)         |
| Hori.       | 3509.1    | 49.8    | 47.6    | 28.8   | 7.1  | 31.7 | -      | 54.0     | 51.8     | 73.9     | 53.9     | 19.9    | 2.1    |             |
| Hori.       | 4960.0    | 40.4    | 32.7    | 31.6   | 7.2  | 31.1 | -      | 48.0     | 40.3     | 73.9     | 53.9     | 25.9    | 13.6   | Floor noise |
| Hori.       | 7440.0    | 39.9    | 32.4    | 35.5   | 10.4 | 32.1 | -      | 53.6     | 46.1     | 73.9     | 53.9     | 20.3    | 7.8    | Floor noise |
| Hori.       | 9920.0    | 41.4    | 32.5    | 36.1   | 11.0 | 32.8 | -      | 55.8     | 46.9     | 73.9     | 53.9     | 18.2    | 7.1    | Floor noise |
| Vert.       | 2483.5    | 41.3    | 33.3    | 27.4   | 5.1  | 32.2 | 1.1    | 41.6     | 34.7     | 73.9     | 53.9     | 32.3    | 19.2   | *1)         |
| Vert.       | 3509.1    | 52.1    | 48.7    | 28.8   | 7.1  | 31.7 | -      | 56.3     | 52.9     | 73.9     | 53.9     | 17.6    | 1.0    |             |
| Vert.       | 4960.0    | 41.3    | 32.4    | 31.6   | 7.2  | 31.1 | -      | 48.9     | 40.1     | 73.9     | 53.9     | 25.0    | 13.9   | Floor noise |
| Vert.       | 7440.0    | 39.6    | 32.3    | 35.5   | 10.4 | 32.1 | -      | 53.3     | 46.0     | 73.9     | 53.9     | 20.6    | 7.9    | Floor noise |
| Vert.       | 9920.0    | 40.8    | 32.5    | 36.1   | 11.0 | 32.8 | -      | 55.1     | 46.8     | 73.9     | 53.9     | 18.8    | 7.1    | Floor noise |

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor \*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

\*QP detector was used up to 1GHz.

Distance factor: 1 GHz - 6 GHz 20log (3.8 m / 3.0 m) = 2.06 dB

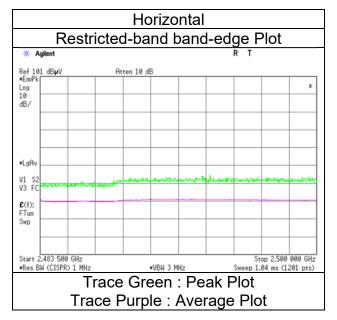
6 GHz - 10 GHz 20log (4.8 m / 3.0 m) = 4.09 dB 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

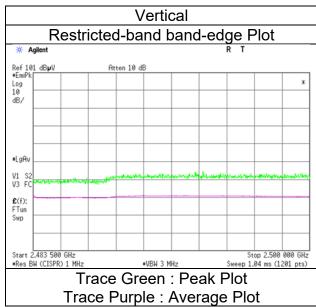
<sup>\*1)</sup> Not Out of Band emission(Leakage Power)

Test Report No. 15474876H-B-R2 Page 35 of 54

## **Radiated Spurious Emission** (Reference Plot for bandto edge)

Test place Semi Anechoic Chamber Date


Temperature / Humidity


Engineer

Mode

Ise EMC Lab. No.3 June 19, 2024 23 deg. C / 59 % RH Hiroki Numata (1 GHz to 6 GHz)

Tx, Hopping Off, DH5 2480 MHz





<sup>\*</sup> The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge was shown in tabular data.

Test Report No. 15474876H-B-R2 Page 36 of 54

## **Radiated Spurious Emission**

Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3

Date June 19, 2024 June 18, 2024 23 deg. C / 59 % RH 23 deg. C / 56 % RH Temperature / Humidity Engineer Hiroki Numata Hiroki Numata

(1 GHz to 10 GHz) (Above 10 GHz)

Mode Tx, Hopping Off, 3DH5 2402 MHz

| Polarity    | Frequency | Reading | Reading | Ant.   | Loss | Gain | Duty   | Result   | Result   | Limit    | Limit    | Margin  | Margin | Remark      |
|-------------|-----------|---------|---------|--------|------|------|--------|----------|----------|----------|----------|---------|--------|-------------|
|             |           | (QP/PK) | (AV)    | Factor |      |      | Factor | (QP/PK)  | (AV)     | (QP/PK)  | (AV)     | (QP/PK) | (AV)   |             |
| [Hori/Vert] | [MHz]     | [dBuV]  | [dBuV]  | [dB/m] | [dB] | [dB] | [dB]   | [dBuV/m] | [dBuV/m] | [dBuV/m] | [dBuV/m] | [dB]    | [dB]   |             |
| Hori.       | 2390.0    | 42.7    | 31.6    | 27.5   | 5.1  | 32.2 | 1.1    | 43.0     | 33.1     | 73.9     | 53.9     | 30.9    | 20.8   | *1)         |
| Hori.       | 3509.1    | 49.7    | 46.5    | 28.8   | 7.1  | 31.7 | -      | 53.9     | 50.7     | 73.9     | 53.9     | 20.0    | 3.2    |             |
| Hori.       | 4804.0    | 41.0    | 32.7    | 31.4   | 7.2  | 31.2 | -      | 48.4     | 40.1     | 73.9     | 53.9     | 25.5    | 13.8   | Floor noise |
| Hori.       | 7206.0    | 39.9    | 32.2    | 35.6   | 10.3 | 32.0 | -      | 53.8     | 46.1     | 73.9     | 53.9     | 20.1    | 7.8    | Floor noise |
| Hori.       | 9608.0    | 41.0    | 32.2    | 35.6   | 10.9 | 32.6 | -      | 54.8     | 46.1     | 73.9     | 53.9     | 19.1    | 7.9    | Floor noise |
| Vert.       | 2390.0    | 43.0    | 33.6    | 27.5   | 5.1  | 32.2 | 1.1    | 43.3     | 35.1     | 73.9     | 53.9     | 30.6    | 18.8   | *1)         |
| Vert.       | 3509.1    | 52.2    | 48.8    | 28.8   | 7.1  | 31.7 | -      | 56.4     | 53.0     | 73.9     | 53.9     | 17.5    | 0.9    |             |
| Vert.       | 4804.0    | 40.1    | 32.3    | 31.4   | 7.2  | 31.2 | -      | 47.5     | 39.7     | 73.9     | 53.9     | 26.4    | 14.2   | Floor noise |
| Vert.       | 7206.0    | 32.2    | 32.3    | 35.6   | 10.3 | 32.0 | -      | 46.1     | 46.2     | 73.9     | 53.9     | 27.8    | 7.7    | Floor noise |
| Vert.       | 9608.0    | 41.6    | 32.6    | 35.6   | 10.9 | 32.6 | -      | 55.4     | 46.4     | 73.9     | 53.9     | 18.5    | 7.5    | Floor noise |

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

Result (AV) = Reading + Alt Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Dutyfactor \*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB). \*QP detector was used up to 1GHz. \*1) Not Out of Band emission(Leakage Power)

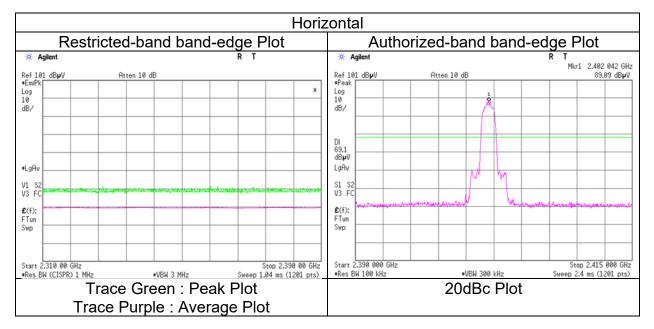
#### 20dBc Data Sheet

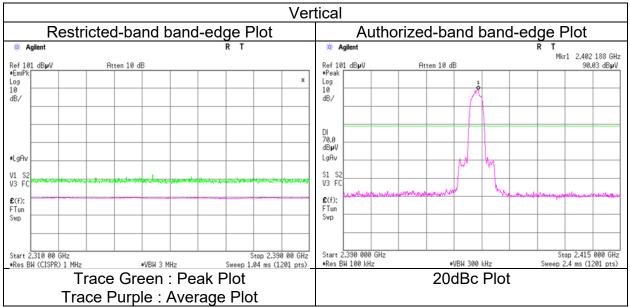
| Polarity    | Frequency | Reading | Ant    | Loss | Gain | Result   | Limit    | Margin | Remark  |
|-------------|-----------|---------|--------|------|------|----------|----------|--------|---------|
|             |           | (PK)    | Factor |      |      |          |          |        |         |
| [Hori/Vert] | [MHz]     | [dBuV]  | [dB/m] | [dB] | [dB] | [dBuV/m] | [dBuV/m] | [dB]   |         |
| Hori.       | 2402.0    | 89.1    | 27.5   | 5.1  | 32.2 | 89.4     | -        | -      | Carrier |
| Hori.       | 2400.0    | 36.5    | 27.5   | 5.1  | 32.2 | 36.8     | 69.4     | 32.6   |         |
| Vert.       | 2402.0    | 90.0    | 27.5   | 5.1  | 32.2 | 90.4     | -        | -      | Carrier |
| Vert.       | 2400.0    | 36.3    | 27.5   | 5.1  | 32.2 | 36.6     | 70.4     | 33.8   |         |

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)

Distance factor: 1 GHz - 6 GHz 20log (3.8 m / 3.0 m) = 2.06 dB

6 GHz - 10 GHz 20log (4.8 m / 3.0 m) = 4.09 dB 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB


Test Report No. 15474876H-B-R2 Page 37 of 54


## Radiated Spurious Emission (Reference Plot for band-edge)

Test place Ise EMC Lab. Semi Anechoic Chamber No.3

Date
Temperature / Humidity
Engineer
June 19, 2024
23 deg. C / 59 % RH
Hiroki Numata
(1 GHz to 6 GHz)

Mode Tx, Hopping Off, 3DH5 2402 MHz





<sup>\*</sup> The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge and authorized band edge were shown in tabular data.

Test Report No. 15474876H-B-R2 Page 38 of 54

## **Radiated Spurious Emission**

Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3

Date June 19, 2024 June 18, 2024 Temperature / Humidity 23 deg. C / 59 % RH 23 deg. C / 56 % RH Engineer Hiroki Numata Hiroki Numata

(1 GHz to 10 GHz) (Above 10 GHz)

Mode Tx, Hopping Off, 3DH5 2441 MHz

| Polarity    | Frequency | Reading | Reading | Ant.   | Loss | Gain | Duty   | Result   | Result   | Limit    | Limit    | Margin  | Margin | Remark      |
|-------------|-----------|---------|---------|--------|------|------|--------|----------|----------|----------|----------|---------|--------|-------------|
|             |           | (QP/PK) | (AV)    | Factor |      |      | Factor | (QP/PK)  | (AV)     | (QP/PK)  | (AV)     | (QP/PK) | (AV)   |             |
| [Hori/Vert] | [MHz]     | [dBuV]  | [dBuV]  | [dB/m] | [dB] | [dB] | [dB]   | [dBuV/m] | [dBuV/m] | [dBuV/m] | [dBuV/m] | [dB]    | [dB]   |             |
| Hori.       | 3509.1    | 49.8    | 47.7    | 28.8   | 7.1  | 31.7 | -      | 54.0     | 51.9     | 73.9     | 53.9     | 19.9    | 2.1    |             |
| Hori.       | 4882.0    | 40.5    | 32.2    | 31.4   | 7.2  | 31.2 | -      | 48.0     | 39.7     | 73.9     | 53.9     | 25.9    | 14.2   | Floor noise |
| Hori.       | 7323.0    | 39.6    | 32.3    | 35.6   | 10.4 | 32.1 | -      | 53.5     | 46.2     | 73.9     | 53.9     | 20.4    | 7.7    | Floor noise |
| Hori.       | 9764.0    | 42.1    | 32.6    | 35.9   | 11.0 | 32.7 | -      | 56.2     | 46.7     | 73.9     | 53.9     | 17.7    | 7.2    | Floor noise |
| Vert.       | 3509.1    | 52.2    | 48.7    | 28.8   | 7.1  | 31.7 | -      | 56.4     | 52.9     | 73.9     | 53.9     | 17.5    | 1.0    |             |
| Vert.       | 4882.0    | 40.1    | 32.2    | 31.4   | 7.2  | 31.2 | -      | 47.6     | 39.7     | 73.9     | 53.9     | 26.3    | 14.2   | Floor noise |
| Vert.       | 7323.0    | 40.0    | 32.4    | 35.6   | 10.4 | 32.1 | -      | 53.8     | 46.3     | 73.9     | 53.9     | 20.1    | 7.6    | Floor noise |
| Vert.       | 9764.0    | 41.0    | 32.7    | 35.9   | 11.0 | 32.7 | -      | 55.2     | 46.9     | 73.9     | 53.9     | 18.7    | 7.0    | Floor noise |

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

Result (AV) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

\*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

\*QP detector was used up to 1GHz.

20log (3.8 m / 3.0 m) = 2.06 dB Distance factor: 1 GHz - 6 GHz

20log (4.8 m / 3.0 m) = 4.09 dB 6 GHz - 10 GHz 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

Test Report No. 15474876H-B-R2 Page 39 of 54

## **Radiated Spurious Emission**

Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

No.3 No.3 Date June 19, 2024 June 18, 2024 June 18, 2024 23 deg. C / 59 % RH 23 deg. C / 56 % RH 23 deg. C / 56 % RH Temperature / Humidity Hiroki Numata Engineer Hiroki Numata Hiroki Numata

(1 GHz to 10 GHz) (Above 10 GHz) (Below 1 GHz)

Mode Tx, Hopping Off, 3DH5 2480 MHz

| Polarity    | Frequency | Reading | Reading | Ant.   | Loss | Gain | Duty   | Result   | Result   | Limit    | Limit    | Margin  | Margin | Remark      |
|-------------|-----------|---------|---------|--------|------|------|--------|----------|----------|----------|----------|---------|--------|-------------|
|             |           | (QP/PK) | (AV)    | Factor |      |      | Factor | (QP/PK)  | (AV)     | (QP/PK)  | (AV)     | (QP/PK) | (AV)   |             |
| [Hori/Vert] | [MHz]     | [dBuV]  | [dBuV]  | [dB/m] | [dB] | [dB] | [dB]   | [dBuV/m] | [dBuV/m] | [dBuV/m] | [dBuV/m] | [dB]    | [dB]   |             |
| Hori.       | 46.3      | 46.2    | -       | 12.5   | 7.2  | 32.2 | -      | 33.7     | -        | 40.0     | -        | 6.3     | -      |             |
| Hori.       | 55.9      | 43.2    | -       | 9.3    | 7.3  | 32.2 | -      | 27.6     | -        | 40.0     | -        | 12.4    | -      |             |
| Hori.       | 67.0      | 39.6    | -       | 6.7    | 7.5  | 32.2 | -      | 21.6     | -        | 40.0     | -        | 18.5    | -      |             |
| Hori.       | 225.1     | 39.4    | -       | 11.3   | 9.1  | 32.0 | -      | 27.7     | -        | 46.0     | -        | 18.3    | -      |             |
| Hori.       | 247.6     | 33.1    | -       | 11.6   | 9.2  | 32.0 | -      | 21.9     | -        | 46.0     | -        | 24.1    | -      |             |
| Hori.       | 365.0     | 34.9    | -       | 15.1   | 10.1 | 32.0 | -      | 28.0     | -        | 46.0     | -        | 18.0    | -      |             |
| Hori.       | 2483.5    | 45.2    | 34.1    | 27.4   | 5.1  | 32.2 | 1.1    | 45.5     | 35.5     | 73.9     | 53.9     | 28.4    | 18.4   | *1)         |
| Hori.       | 3509.1    | 49.8    | 47.7    | 28.8   | 7.1  | 31.7 | -      | 54.0     | 51.9     | 73.9     | 53.9     | 19.9    | 2.0    |             |
| Hori.       | 4960.0    | 40.5    | 32.4    | 31.6   | 7.2  | 31.1 | -      | 48.1     | 40.0     | 73.9     | 53.9     | 25.8    | 13.9   | Floor noise |
| Hori.       | 7440.0    | 39.8    | 32.3    | 35.5   | 10.4 | 32.1 | -      | 53.5     | 46.0     | 73.9     | 53.9     | 20.4    | 7.9    | Floor noise |
| Hori.       | 9920.0    | 42.3    | 32.5    | 36.1   | 11.0 | 32.8 | -      | 56.6     | 46.9     | 73.9     | 53.9     | 17.3    | 7.1    | Floor noise |
| Vert.       | 38.3      | 44.7    | -       | 15.4   | 7.1  | 32.2 | -      | 35.0     | -        | 40.0     | -        | 5.0     | -      |             |
| Vert.       | 47.9      | 47.7    | -       | 11.9   | 7.2  | 32.2 | -      | 34.7     | -        | 40.0     | -        | 5.3     | -      |             |
| Vert.       | 55.4      | 51.1    | -       | 9.4    | 7.3  | 32.2 | -      | 35.6     | -        | 40.0     | -        | 4.4     | -      |             |
| Vert.       | 259.0     | 36.6    | -       | 12.1   | 9.3  | 32.0 | -      | 26.0     | -        | 46.0     | -        | 20.0    | -      |             |
| Vert.       | 368.0     | 28.9    | -       | 15.0   | 10.1 | 32.0 | -      | 22.0     | -        | 46.0     | -        | 24.0    | -      |             |
| Vert.       | 458.1     | 27.5    | -       | 16.8   | 10.7 | 32.0 | -      | 22.9     | -        | 46.0     | -        | 23.1    | -      |             |
| Vert.       | 2483.5    | 40.9    | 33.6    | 27.4   | 5.1  | 32.2 | 1.1    | 41.2     | 35.0     | 73.9     | 53.9     | 32.7    | 18.9   | *1)         |
| Vert.       | 3509.1    | 52.1    | 48.9    | 28.8   | 7.1  | 31.7 | -      | 56.3     | 53.1     | 73.9     | 53.9     | 17.6    | 0.8    |             |
| Vert.       | 4960.0    | 41.3    | 32.7    | 31.6   | 7.2  | 31.1 | -      | 48.9     | 40.3     | 73.9     | 53.9     |         |        | Floor noise |
| Vert.       | 7440.0    | 39.5    | 32.2    | 35.5   | 10.4 | 32.1 | -      | 53.2     | 45.9     | 73.9     | 53.9     | 20.7    | 8.0    | Floor noise |
| Vert.       | 9920.0    | 41.7    | 32.3    | 36.1   | 11.0 | 32.8 | -      | 56.1     | 46.7     | 73.9     | 53.9     | 17.8    | 7.3    | Floor noise |

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

\*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

\*QP detector was used up to 1 GHz.

1 GHz - 6 GHz 20log (3.8 m / 3.0 m) = 2.06 dB Distance factor:

6 GHz - 10 GHz 20log (4.8 m / 3.0 m) = 4.09 dB 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

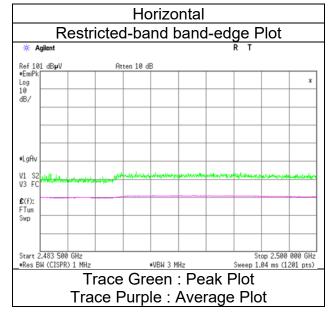
<sup>\*1)</sup> Not Out of Band emission(Leakage Power)

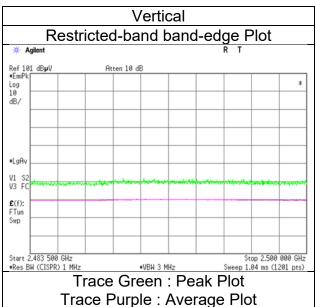
Test Report No. 15474876H-B-R2 Page 40 of 54

## **Radiated Spurious Emission** (Reference Plot for band-edge)

Test place Semi Anechoic Chamber

Date


Temperature / Humidity Engineer


Mode

Ise EMC Lab. No.3

June 19, 2024 23 deg. C / 59 % RH Hiroki Numata (1 GHz to 6 GHz)

Tx, Hopping Off, 3DH5 2480 MHz





<sup>\*</sup> The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge was shown in tabular data.

Test Report No. 15474876H-B-R2 Page 41 of 54

## **Radiated Spurious Emission**

Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3

Date June 23, 2024 June 23, 2024 Temperature / Humidity 23 deg. C / 60 % RH 22 deg. C / 59 % RH Junya Okuno Engineer Hiroki Numata

(Above 1 GHz) (Below 1 GHz)

Mode Tx, Hopping Off, 3DH5 2480 MHz + 11ac-20 5220 MHz

| Polarity    | Frequency | Reading | Reading | Ant.   | Loss | Gain | Duty   | Result   | Result   | Limit    | Limit    | Margin  | Margin | Remark      |
|-------------|-----------|---------|---------|--------|------|------|--------|----------|----------|----------|----------|---------|--------|-------------|
|             |           | (QP/PK) | (AV)    | Factor |      |      | Factor | (QP/PK)  | (AV)     | (QP/PK)  | (AV)     | (QP/PK) | (AV)   |             |
| [Hori/Vert] | [MHz]     | [dBuV]  | [dBuV]  | [dB/m] | [dB] | [dB] | [dB]   | [dBuV/m] | [dBuV/m] | [dBuV/m] | [dBuV/m] | [dB]    | [dB]   |             |
| Hori.       | 47.4      | 30.6    | -       | 12.1   | 7.2  | 32.2 | -      | 17.7     | -        | 40.0     | -        | 22.3    | -      |             |
| Hori.       | 148.6     | 34.6    | -       | 14.8   | 8.4  | 32.1 | -      | 25.7     | -        | 43.5     | -        | 17.8    | -      |             |
| Hori.       | 168.7     | 27.3    | -       | 15.8   | 8.6  | 32.1 | -      | 19.6     | -        | 43.5     | -        | 23.9    | -      |             |
| Hori.       | 221.2     | 40.5    | -       | 11.3   | 9.0  | 32.0 | -      | 28.7     | -        | 46.0     | -        | 17.3    | -      |             |
| Hori.       | 310.6     | 32.4    | -       | 13.7   | 9.7  | 32.0 | -      | 23.8     | -        | 46.0     | -        | 22.2    | -      |             |
| Hori.       | 449.8     | 28.0    | -       | 16.5   | 10.6 | 32.0 | -      | 23.1     | -        | 46.0     | -        | 22.9    | -      |             |
| Hori.       | 2483.5    | 44.0    | 33.9    | 27.4   | 5.1  | 32.2 | 1.1    | 44.3     | 35.3     | 73.9     | 53.9     | 29.6    | 18.6   | *1)         |
| Hori.       | 3509.1    | 49.5    | 47.3    | 28.8   | 7.1  | 31.7 | -      | 53.7     | 51.5     | 73.9     | 53.9     | 20.3    | 2.4    |             |
| Hori.       | 4960.0    | 41.0    | 32.6    | 31.6   | 7.2  | 31.1 | -      | 48.6     | 40.2     | 73.9     | 53.9     | 25.3    | 13.7   | Floor noise |
| Hori.       | 7440.0    | 40.0    | 32.6    | 35.5   | 10.4 | 32.1 | -      | 53.7     | 46.3     | 73.9     | 53.9     | 20.2    | 7.7    | Floor noise |
| Hori.       | 9920.0    | 42.1    | 32.6    | 36.1   | 11.0 | 32.8 | -      | 56.5     | 46.9     | 73.9     | 53.9     | 17.5    | 7.0    | Floor noise |
| Vert.       | 44.2      | 37.4    | -       | 13.3   | 7.1  | 32.2 | -      | 25.6     | -        | 40.0     | -        | 14.4    | -      |             |
| Vert.       | 56.7      | 44.6    | -       | 9.0    | 7.3  | 32.2 | -      | 28.7     | -        | 40.0     | -        | 11.3    | -      |             |
| Vert.       | 148.6     | 35.2    | -       | 14.8   | 8.4  | 32.1 | -      | 26.3     | -        | 43.5     | -        | 17.2    | -      |             |
| Vert.       | 221.2     | 38.2    | -       | 11.3   | 9.0  | 32.0 | -      | 26.4     | -        | 46.0     | -        | 19.6    | -      |             |
| Vert.       | 371.8     | 29.2    | -       | 15.0   | 10.1 | 32.0 | -      | 22.3     | -        | 46.0     | -        | 23.7    | -      |             |
| Vert.       | 504.3     | 26.1    | -       | 17.8   | 10.9 | 32.0 | -      | 22.8     | -        | 46.0     | -        | 23.2    | -      |             |
| Vert.       | 2483.5    | 42.5    | 33.4    | 27.4   | 5.1  | 32.2 | 1.1    | 42.8     | 34.8     | 73.9     | 53.9     | 31.1    | 19.1   | *1)         |
| Vert.       | 3509.1    | 51.9    | 48.9    | 28.8   | 7.1  | 31.7 | -      | 56.1     | 53.1     | 73.9     | 53.9     |         | 8.0    |             |
| Vert.       | 4960.0    | 41.1    | 32.6    | 31.6   | 7.2  | 31.1 | -      | 48.7     | 40.2     | 73.9     | 53.9     |         |        | Floor noise |
| Vert.       | 7440.0    | 40.0    | 32.5    | 35.5   | 10.4 | 32.1 | -      | 53.7     | 46.2     | 73.9     | 53.9     |         |        | Floor noise |
| Vert.       | 9920.0    | 42.0    | 32.5    | 36.1   | 11.0 | 32.8 | -      | 56.3     | 46.9     | 73.9     | 53.9     | 17.6    | 7.1    | Floor noise |

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

Distance factor: 1 GHz - 6 GHz 20log (3.8 m / 3.0 m) = 2.06 dB

6 GHz - 10 GHz 20log (4.8 m / 3.0 m) = 4.09 dB 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

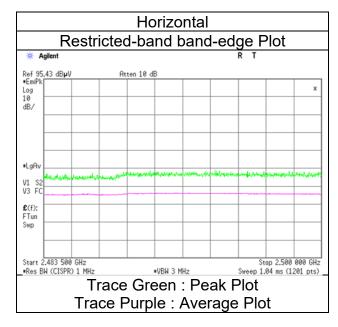
Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor \*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

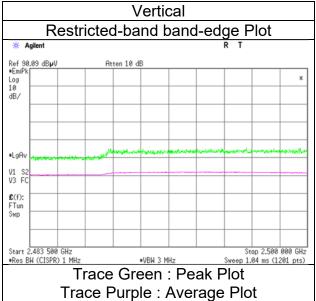
<sup>\*</sup>QP detector was used up to 1GHz.
\*1) Not Out of Band emission(Leakage Power)

Test Report No. 15474876H-B-R2 Page 42 of 54

# Radiated Spurious Emission (Reference Plot for band-edge)

Test place Semi Anechoic Chamber Date


Temperature / Humidity


Engineer

Mode

Ise EMC Lab. No.3 June 23, 2024 23 deg. C / 60 % RH Junya Okuno

(1 GHz to 6 GHz) Tx, Hopping Off, 3DH5 2480 MHz + 11ac-20 5220 MHz





<sup>\*</sup> The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

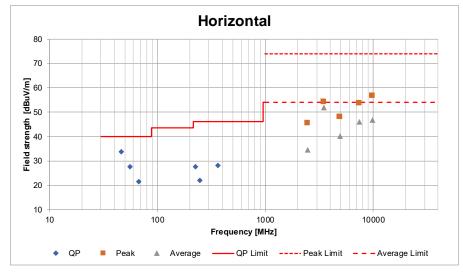
Final result of restricted band edge was shown in tabular data.

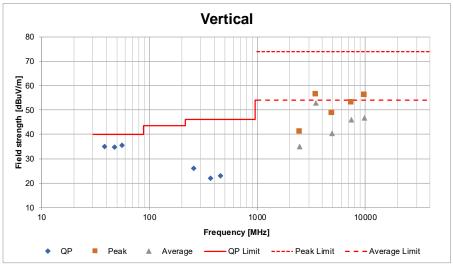
Test Report No. 15474876H-B-R2 Page 43 of 54

## **Radiated Spurious Emission** (Plot data, Worst case mode for Maximum Peak Output Power)

Test place Semi Anechoic Chamber Date Temperature / Humidity

Engineer


Mode


Ise EMC Lab. No.3 June 19, 2024 23 deg. C / 59 % RH Hiroki Numata

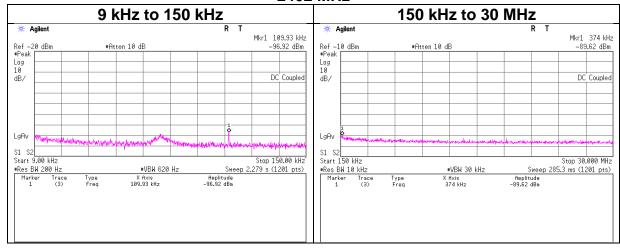
(1 GHz to 10 GHz)

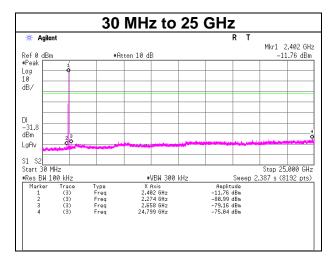
No.3 June 18, 2024 23 deg. C / 56 % RH Hiroki Numata (Above 10 GHz) Tx, Hopping Off, 3DH5 2480 MHz

No.3 June 18, 2024 23 deg. C / 56 % RH Hiroki Numata (Below 1 GHz)






<sup>\*</sup>These plots data contain sufficient number to show the trend of characteristic features for EUT.


Test Report No. 15474876H-B-R2 Page 44 of 54

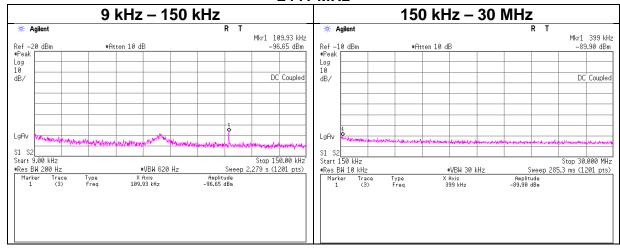
## **Conducted Spurious Emission**

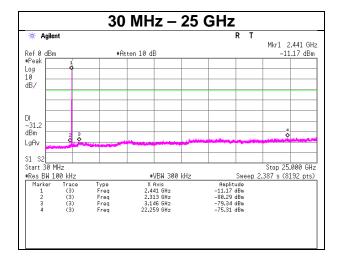
Test place Ise EMC Lab. No.3 Preparation room
Date June 17, 2024 June 17, 2024
Temperature / Humidity 23 deg. C / 54 % RH
Engineer Yuta Moriya Yuta Moriya

Mode Tx, Hopping Off, DH5






Test Report No. 15474876H-B-R2 Page 45 of 54


## **Conducted Spurious Emission**

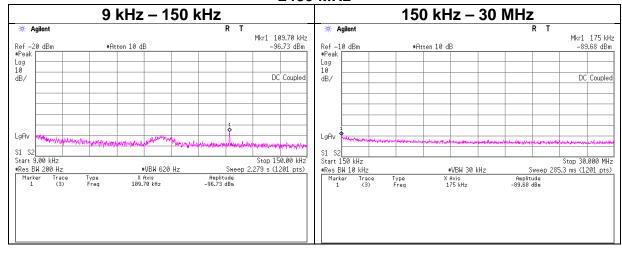
Test place Ise EMC Lab. No.3 Preparation room

Date June 17, 2024
Temperature / Humidity 23 deg. C / 54 % RH
Engineer Yuta Moriya

Mode Tx, Hopping Off, DH5






Test Report No. 15474876H-B-R2 Page 46 of 54

## **Conducted Spurious Emission**

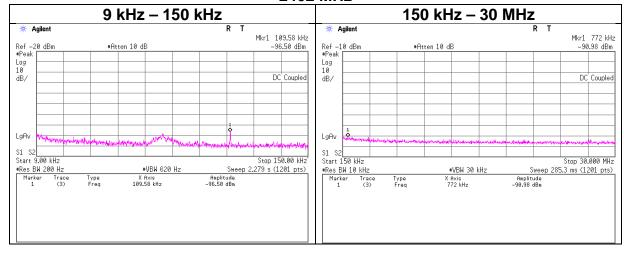
Test place Ise EMC Lab. No.3 Preparation room

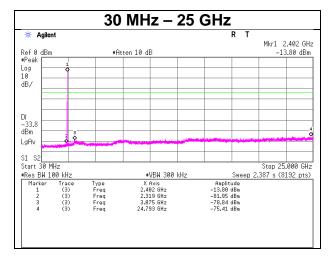
Date June 17, 2024
Temperature / Humidity 23 deg. C / 54 % RH
Engineer Yuta Moriya

Mode Tx, Hopping Off, DH5






Test Report No. 15474876H-B-R2 Page 47 of 54


## **Conducted Spurious Emission**

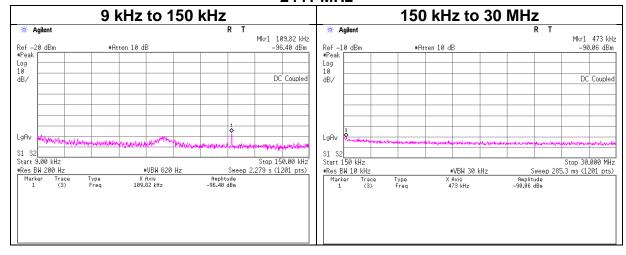
Test place Ise EMC Lab. No.3 Preparation room

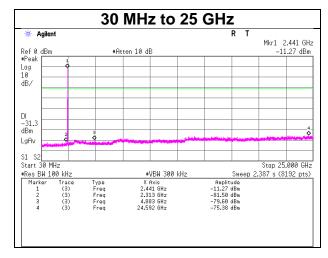
Date June 17, 2024
Temperature / Humidity 23 deg. C / 54 % RH
Engineer Yuta Moriya

Mode Tx, Hopping Off, 3DH5






Test Report No. 15474876H-B-R2 Page 48 of 54


## **Conducted Spurious Emission**

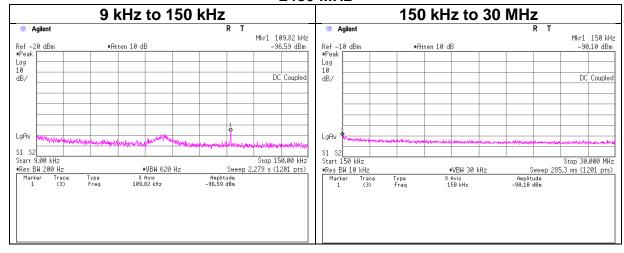
Test place Ise EMC Lab. No.3 Preparation room

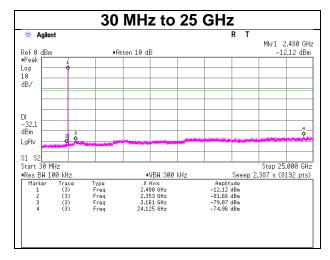
Date June 17, 2024 Temperature / Humidity 23 deg. C / 54 % RH Engineer Yuta Moriya

Mode Tx, Hopping Off, 3DH5






Test Report No. 15474876H-B-R2 Page 49 of 54


## **Conducted Spurious Emission**

Test place Ise EMC Lab. No.3 Preparation room

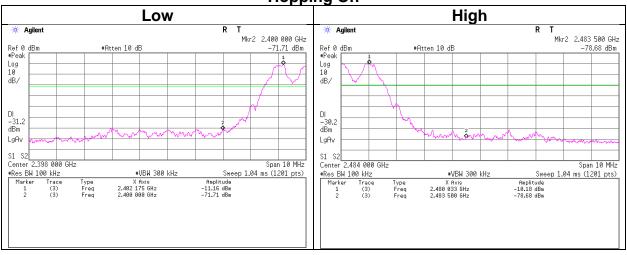
Date June 17, 2024
Temperature / Humidity 23 deg. C / 54 % RH
Engineer Yuta Moriya

Mode Tx, Hopping Off, 3DH5

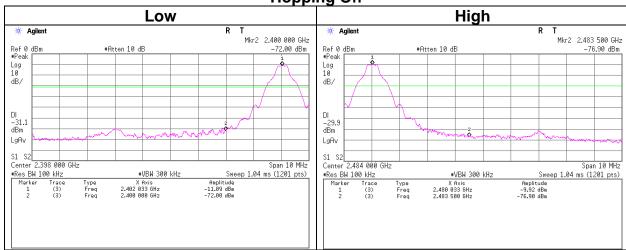




Test Report No. 15474876H-B-R2 Page 50 of 54


## **Conducted Emission Band Edge compliance**

Test place Ise EMC Lab. No.3 Preparation room


Date June 17, 2024 Temperature / Humidity 23 deg. C / 54 % RH Engineer Yuta Moriya

Engineer Yuta Moriy Mode Tx DH5

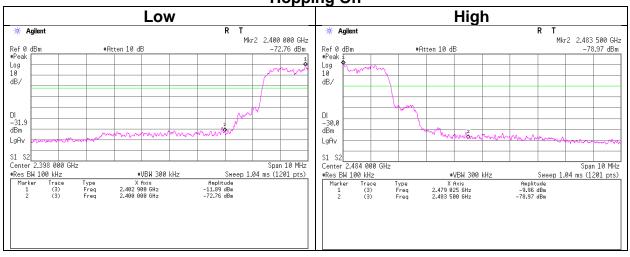
**Hopping On** 



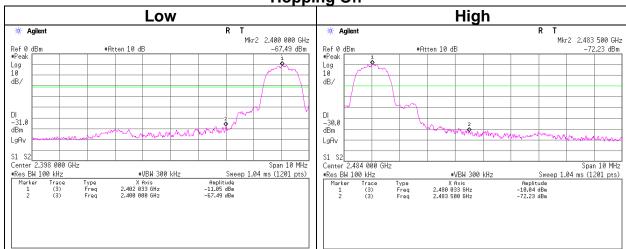
**Hopping Off** 



Test Report No. 15474876H-B-R2 Page 51 of 54


## **Conducted Emission Band Edge compliance**

Test place Ise EMC Lab. No.3 Preparation room


Date June 17, 2024 Temperature / Humidity 23 deg. C / 54 % RH Engineer Yuta Moriya

Engineer Yuta Moriya Mode Tx 3DH5

**Hopping On** 



**Hopping Off** 



Test Report No. 15474876H-B-R2 Page 52 of 54

### **APPENDIX 2: Test Instruments**

**Test Equipment** 

| Test | LIMS ID | Description                          | Manufacturer                        | Model                                             | Serial                     | Last Calibration |     |
|------|---------|--------------------------------------|-------------------------------------|---------------------------------------------------|----------------------------|------------------|-----|
| Item |         |                                      |                                     |                                                   |                            | Date             | Int |
| AT   | 141156  |                                      | Weinschel Corp                      | 2                                                 | BL1173                     | 11/17/2023       | 12  |
| AT   | 141172  | Attenuator(6dB)<br>(above1GHz)       | HIROSE ELECTRIC CO.,LTD.            | AT-106                                            | -                          | 12/11/2023       | 12  |
| AT   | 141279  | Microwave Cable                      | Junkosha                            | MMX221-<br>00500DMSDMS                            | 1502S303                   | 03/04/2024       | 12  |
| AT   | 141327  | Coaxial Cable                        | UL Japan                            | -                                                 | -                          | 02/09/2024       | 12  |
| AT   | 141328  | Microwave Cable<br>1G-40GHz          | Suhner                              | SUCOFLEX102                                       | 28636/2                    | 04/01/2024       | 12  |
| AT   | 141557  | DIGIITAL HITESTER                    | HIOKI E.E. CORPORATION              | 3805                                              | 070900530                  | 01/31/2024       | 12  |
| ΑT   | 141809  | Power Meter                          | Anritsu Corporation                 | ML2495A                                           | 825002                     | 05/22/2024       | 12  |
| AT   | 141810  | Power Meter                          | Anritsu Corporation                 | ML2495A                                           | 824014                     | 12/12/2023       | 12  |
| AT   |         | Power sensor                         | Anritsu Corporation                 | MA2411B                                           | 738285                     | 05/22/2024       | 12  |
| AT   | 141832  | Power sensor                         | Anritsu Corporation                 | MA2411B                                           | 738174                     | 12/12/2023       | 12  |
| AT   | 141901  | Spectrum Analyzer                    | Keysight Technologies Inc           | E4440A                                            | MY48250080                 | 01/26/2024       | 12  |
| AT   |         | Spectrum Analyzer                    | Keysight Technologies Inc           | E4440A                                            | MY46186390                 | 01/26/2024       | 12  |
| AT   |         | Thermo-Hygrometer                    | HIOKI E.E. CORPORATION              | LR5001                                            | 231202103                  | 01/25/2024       | 12  |
| AT   |         | Thermo-Hygrometer                    | HIOKI E.E. CORPORATION              |                                                   | 231202105                  | 01/25/2024       | 12  |
| RE   |         | High Pass Filter<br>3.5-18.0GHz      | UL Japan                            | HPF SELECTOR                                      | 001                        | 09/04/2023       | 12  |
| RE   | 141266  | Logperiodic Antenna<br>(200-1000MHz) | Schwarzbeck Mess-<br>Elektronik OHG | VUSLP9111B                                        | 9111B-191                  | 08/10/2023       | 12  |
| RE   | 141323  | Coaxial cable                        | UL Japan                            | -                                                 | -                          | 09/10/2023       | 12  |
| RE   | 141424  | Biconical Antenna                    | Schwarzbeck Mess-<br>Elektronik OHG | VHA9103<br>+BBA9106                               | 1915                       | 03/15/2024       | 12  |
| RE   | 141507  | Horn Antenna<br>1-18GHz              | Schwarzbeck Mess-<br>Elektronik OHG | BBHA9120D                                         | 258                        | 11/20/2023       | 12  |
| RE   | 141513  | Horn Antenna<br>15-40GHz             | Schwarzbeck Mess-<br>Elektronik OHG | BBHA9170                                          | BBHA9170306                | 07/19/2023       | 12  |
| RE   | 141532  | DIGITAL HITESTER                     | HIOKI E.E. CORPORATION              | 3805                                              | 051201197                  | 01/31/2024       | 12  |
| RE   |         | MicroWave System<br>Amplifier        | Keysight Technologies Inc           | 83017A                                            | MY39500779                 | 03/08/2024       | 12  |
| RE   | 141582  |                                      | SONOMA INSTRUMENT                   | 310                                               | 260834                     | 02/17/2024       | 12  |
| RE   |         | Spectrum Analyzer                    | Keysight Technologies Inc           | E4448A                                            | MY46180655                 | 05/09/2024       | 12  |
| RE   | 142008  | AC3_Semi Anechoic<br>Chamber(NSA)    | TDK                                 | Semi Anechoic<br>Chamber 3m                       | DA-10005                   | 12/11/2023       | 24  |
| RE   | 142013  | AC3_Semi Anechoic<br>Chamber(SVSWR)  | TDK                                 | Semi Anechoic<br>Chamber 3m                       | DA-10005                   | 04/12/2023       | 24  |
| RE   | 142183  | Measure                              | KOMELON                             | KMC-36                                            | -                          | 10/20/2023       | 12  |
| RE   |         | Attenuator                           | Pasternack Enterprises              | PE7390-6                                          | D/C 1504                   | 06/06/2024       | 12  |
| RE   |         | Test Receiver                        | Rohde & Schwarz                     | ESCI                                              | 100608                     | 10/18/2023       | 12  |
| RE   |         | EMI measurement program              | TSJ (Techno Science Japan)          |                                                   | -                          | -                | -   |
| RE   | 244709  | Thermo-Hygrometer                    | HIOKI E.E. CORPORATION              | LR5001                                            | 231202103                  | 01/25/2024       | 12  |
| RE   | 245787  |                                      | Schwarzbeck Mess-<br>Elektronik OHG | BBHA 9120 C                                       | 689                        | 03/06/2024       | 12  |
| RE   | 246001  | Microwave Cable                      | Huber+Suhner                        | SF103/11PC35/<br>11PC35/1000mm /<br>SF126E/5000mm | 800673(1m) /<br>610204(5m) | 03/06/2024       | 12  |

<sup>\*</sup>Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

#### Test item:

**AT: Antenna Terminal Conducted test** 

**RE: Radiated Emission**