

EMI TEST REPORT

Test Report No. : 14071548Y

Applicant	:	DENSO CORPORATION
Type of EUT	:	Cockpit Control Unit
Model Number of EUT	:	DNNS124
FCC ID	:	HYQDNNS124
Test regulation	:	FCC Part 15 Subpart B: 2021
Test Result	:	Complied (Refer to SECTION 3)

1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.

- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the limits of the above regulation.
- 4. The test results in this test report are traceable to the national or international standards.
- 5. This test report must not be used by the customer to claim product certification, approval, or endorsement by any agency of the Federal Government.
- 6. This test report covers EMC technical requirements.
- It does not cover administrative issues such as Manual or non-EMC test related Requirements. (if applicable)
- 7. The all test items in this test report are conducted by UL Japan, Inc. Yokowa EMC Lab.
- 8. The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- 9. The information provided from the customer for this report is identified in SECTION 1.

Date of test: November 8 to 12, 2021 Representative test engineer: Seigo Kakehi Engineer Approved by: Masamichi Ishii Leader

The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in UL Japan, Inc.

There is no testing item of "Non-accreditation".

UL Japan, Inc. Yokowa EMC Lab. 108 Yokowa-cho, Ise-shi, Mie-ken, 516-1106 JAPAN

 Toto Tokowa-cho, ise-sni, whe-ken, 516-1106

 Telephone:
 +81 596 24 8750

 Facsimile:
 +81 596 39 0232

REVISION HISTORY

Original Test Report No.: 14071548Y

Revision	Test report No.	Date	Page revised	Contents
-	14071548Y	November 25,	-	-
(Original)		2021		

UL Japan, Inc. Yokowa EMC Lab. 108 Yokowa-cho, Ise-shi, Mie-ken, 516-1106 JAPAN Telephone: +81 596 24 8750 Facsimile: +81 596 39 0232

Reference: Abbreviations (Including words undescribed in this report)

AAN	Asymmetric Artificial Network	ISED	Innovation, Science and Economic Development Canada
AC	Alternating Current	ISN	Impedance Stabilization Network
AM	Amplitude Modulation	ISO	International Organization for Standardization
AMN	Artificial Mains Network	JAB	Japan Accreditation Board
Amp, AMP	Amplifier	LAN	Local Area Network
ANSI	American National Standards Institute	LCL	Longitudinal Conversion Loss
Ant, ANT	Antenna	LIMS	Laboratory Information Management System
AP	Access Point	LISN	Line Impedance Stabilization Network
ASK	Amplitude Shift Keying	MRA	Mutual Recognition Arrangement
Atten., ATT	Attenuator	N/A	Not Applicable
AV	Average	NIST	National Institute of Standards and Technology
BPSK	Binary Phase-Shift Keying	NS	No signal detect.
BR	Bluetooth Basic Rate	NSA	Normalized Site Attenuation
BT	Bluetooth	NVLAP	National Voluntary Laboratory Accreditation Program
BT LE	Bluetooth Low Energy	OBW	Occupied Band Width
BW	BandWidth	OFDM	Orthogonal Frequency Division Multiplexing
C.F	Correction Factor	PK	Peak
Cal Int	Calibration Interval	P_{LT}	long-term flicker severity
CAV	CISPR AV	POHC(A)	Partial Odd Harmonic Current
CCK	Complementary Code Keying	Pol., Pola.	Polarization
CDN	Coupling Decoupling Network	PR-ASK	Phase Reversal ASK
Ch., CH	Channel	P _{ST}	short-term flicker severity
CISPR	Comite International Special des Perturbations Radioelectriques	QAM	Quadrature Amplitude Modulation
Corr.	Correction	QP	Quasi-Peak
CPE	Customer premise equipment	QPSK	Quadri-Phase Shift Keying
CW	Continuous Wave	r.m.s., RMS	Root Mean Square
DBPSK	Differential BPSK	RBW	Resolution Band Width
DC	Direct Current	RE	Radio Equipment
DET	Detector	REV	Reverse
Dmax	maximum absolute voltage change during an observation period	RF	Radio Frequency
DQPSK	Differential QPSK	RFID	Radio Frequency Identifier
DSSS	Direct Sequence Spread Spectrum	RSS	Radio Standards Specifications
EDR	Enhanced Data Rate	Rx	Receiving
e.i.r.p., EIRP	Equivalent Isotropically Radiated Power	SINAD	Ratio of (Signal + Noise + Distortion) to (Noise + Distortion)
EM clamp	Electromagnetic clamp	S/N	Signal to Noise ratio
EMC	ElectroMagnetic Compatibility	SA, S/A	Spectrum Analyzer
EMI	ElectroMagnetic Interference	SG	Signal Generator
EMS	ElectroMagnetic Susceptibility	SVSWR	Site-Voltage Standing Wave Ratio
EN	European Norm	THC(A)	Total Harmonic Current
e.r.p., ERP	Effective Radiated Power	THD(%)	Total Harmonic Distortion
EU	European Union	TR	Test Receiver
EUT	Equipment Under Test	Tx	Transmitting
Fac.	Factor	VBW	Video BandWidth
FCC	Federal Communications Commission	VBW Vert.	Vitico Band With
FHSS	Frequency Hopping Spread Spectrum	WLAN	Wireless LAN
FM	Frequency Modulation	xDSL	
		ADDE	Generic term for all types of DSL technology
Freq. FSK	Frequency		(DSL: Digital Subscriber Line)
	Frequency Shift Keying Fundamental		
Fund	Forward		
FWD			
GFSK	Gaussian Frequency-Shift Keying		
GNSS	Global Navigation Satellite System		
GPS	Global Positioning System		
Hori.	Horizontal		
ICES	Interference-Causing Equipment Standard		
I/O	Input/Output		
IEC	International Electrotechnical Commission		
IEEE	Institute of Electrical and Electronics Engineers		
IF	Intermediate Frequency		
ILAC	International Laboratory Accreditation Conference		

UL Japan, Inc. Yokowa EMC Lab.

108 Yokowa-cho, Ise-shi, Mie-ken, 516-1106 JAPAN Telephone: +81 596 24 8750 Facsimile: +81 596 39 0232

Test report No.	: 14071548Y
Page	: 4 of 77
Issued date	: November 25, 2021
FCC ID	: HYODNNS124

CONTENTS

PAGE

SECTION 1: Customer information	5
SECTION 2: Equipment under test (EUT)	5
SECTION 3: Test specification, procedures and results	7
SECTION 4: Operation of EUT during testing	10
SECTION 5: Radiated emission	14
SECTION 6: Antenna Terminal	17
APPENDIX 1: Photographs of test setup	18
APPENDIX 2: Data of EMI test	20
APPENDIX 3: Test Instruments	74

SECTION 1: Customer information

Company Name	:	DENSO CORPORATION
Address	:	1-1 Showa-cho, Kariya-shi, Aichi ken, 448-8661 Japan
Telephone Number	:	+81-566-20-3304
Contact Person	:	Naoto Makino

The information provided from the customer is as follows:

- Applicant, Type of EUT, Model Number of EUT on the cover page and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer information
- SECTION 2: Equipment under test (EUT) other than the Receipt Date
- SECTION 4: Operation of EUT during testing
- * The laboratory is exempted from liability of any test results affected from the information in SECTION 2 and 4.

SECTION 2: Equipment under test (EUT)

2. 1Identification of EUT

Туре	:	Cockpit Control Unit
Model Number	:	DNNS124
Serial Number	:	Refer to Clause 4.2
Receipt Date	:	November 5, 2021
Condition	:	Production prototype
		(Not for Sale: This sample is equivalent to mass-produced items.)
Modification	:	No modification by the test lab.

Test report No.	: 14071548Y
Page	: 6 of 77
Issued date	: November 25, 2021
FCC ID	: HYQDNNS124

2.2 Product description

Model: DNNS124 (referred to as the EUT in this report) is a Cockpit Control Unit.

General Specification

Rating	:	DC 13.2 V
Clock frequency(ies)	:	2.0 GHz
in the sytem		

Radio Specification

	Bluetooth (BR/EDR)
Frequency	2402 MHz - 2480 MHz
of operation	
Channel spacing	1 MHz
Modulation	FHSS (GFSK, π/4-DQPSK, 8DPSK)
Antenna type	External Antenna
Antenna Gain	2.55 dBi (Max)

	IEEE802.11b	IEEE802.11g	IEEE802.11n (20 MHz band)	IEEE802.11n (40 MHz band)
Frequency	2412 MHz - 2462 MHz	2412 MHz - 2462 MHz	2412 MHz - 2462 MHz	5190 MHz - 5230 MHz
of operation			5180 MHz - 5240 MHz	5755 MHz - 5795 MHz
			5745 MHz - 5825 MHz	
Channel spacing	5 N	ЛНz	2.4 GHz band	5 GHz band
			5 MHz	40 MHz
			<u>5 GHz band</u>	
			20 MHz	
Modulation	DSSS:	OFDM:		
	DBPSK, DQPSK, CCK	BPSK, QPSK, 16QAM, 64QAM		
	IEEE802.11a	IEEE802.11ac	IEEE802.11ac	IEEE802.11ac
		(20 MHz band)	(40 MHz band)	(80 MHz band)
Frequency	5180 MHz - 5240 MHz	5180 MHz - 5240 MHz	5190 MHz - 5230 MHz	5210 MHz
of operation	5745 MHz - 5825 MHz	5745 MHz - 5825 MHz	5755 MHz - 5795 MHz	5775 MHz
Channel spacing	20 MHz		40 MHz	80 MHz
Modulation	OFDM			
	BPSK, QPSK, 16QAM, 64QAM, 256QAM (*256QAM is only for IEEE802.11ac 80 MHz band)			
Antenna type	External Antenna			
Antenna Gain	Main Antenna: Chain0 : 2.55 dBi (2.4 GHz), 0.02 dBi (5 GHz)			
	Sub Antenna: Chain1 : -2.10 dBi (2.4 GHz), -5.26 dBi (5 GHz)			

[AM/FM Radio]

	AM	FM (incl. RBDS)
Equipment type	Rece	iver
Frequency of operation	522 kHz to 1629 kHz	87 MHz to 108 MHz

FM tuner specification Intermediate frequency: 220 kHz

UL Japan, Inc. Yokowa EMC Lab.

108 Yokowa-cho, Ise-shi, Mie-ken, 516-1106 JAPAN Telephone: +81 596 24 8750 Facsimile: +81 596 39 0232

Test report No.	: 14071548Y
Page	: 7 of 77
Issued date	: November 25, 2021
FCC ID	: HYQDNNS124

SECTION 3: Test specification, procedures and results

3.1 Test Specification

Test Specification	:	FCC Part 15 Subpart B
		FCC Part 15 final revised on May 3, 2021 and effective July 2, 2021
Title	:	FCC 47CFR Part15 Radio Frequency Device
		Subpart B Unintentional Radiators

3.2 Procedures & results

Item	Test Procedure	Limits	Deviation	Worst margin	Result	Remarks
Conducted emission	ANSI C63.4: 2014 + C63.4a: 2017 7. AC power - line conducted emission measurements IEEE 187:2003	FCC 15.107 (a)	N/A	N/A	N/A	*1)
Radiated emission	ANSI C63.4: 2014 + C63.4a: 2017 8. Radiated emission measurements IEEE 187:2003	FCC 15.109 (a)	N/A	1.09 dB (3489.024 MHz, AV, Vert., FM Reception Analog (87 MHz), Sub, Local / 3448.974 MHz, AV, Vert., FM Reception Analog (108 MHz), Sub, Local / 3489.022 MHz, AV, Vert., FM Reception Analog (87 MHz), Sub, Other / 3448.974 MHz, AV, Vert., FM Reception Analog (108 MHz), Sub, Other)	Complied# a)	*2)
Antenna Terminal	ANSI C63.4: 2014 + C63.4a: 2017 12. Measurement of unintentional radiators other than ITE IEEE 187:2003	FCC 15.111 (a)		12.4 dB (3252.067 MHz, FM Reception (Main))	Complied b)	*2)

Note: UL Japan's EMI Work Procedures No. 13-EM-W0420

*1) The test is not applicable since the EUT is not the device that is designed to be connected to the public utility (AC) power line.

*2) Measurements were limited up to 30 GHz since the highest frequency of internal source of the EUT is 5825 MHz.

a)	Refer to APPENDIX 2 (data of Radiated disturbance)
,	

b) Refer to APPENDIX 2 (data of Antenna Terminal)

Symbols:

CompliedThe data of this test item has enough margin, more than the measurement uncertainty.

Complied#The data of this test item meets the limits unless the measurement uncertainty is taken into consideration.

3.3 Addition to standard

No addition, exclusion nor deviation has been made from the standard.

UL Japan, Inc. Yokowa EMC Lab. 108 Yokowa-cho, Ise-shi, Mie-ken, 516-1106 JAPAN Telephone: +81 596 24 8750 Facsimile: +81 596 39 0232

Test report No.	: 14071548Y
Page	: 8 of 77
Issued date	: November 25, 2021
FCC ID	: HYQDNNS124

3.4 Confirmation

UL Japan, Inc. hereby confirms that EUT, in the configuration tested, complies with the specifications FCC Part 15 Subpart B.

3.5 Uncertainty

There is no applicable rule of uncertainty in this applied standard. Therefore, the results are derived depending on whether or not laboratory uncertainty is applied.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2.

Radiated emission

			U	ncertainty (+,	/-)	Ucispr
		Site No.	No.1	No.2	No.3	(±)
3 m	9 kHz - 30 MHz		3.5 dB	3.5 dB	3.5 dB	Not Defined
	30 MHz - 200 MHz	(Horizontal)	4.6 dB	4.8 dB	4.8 dB	6.3 dB
		(Vertical)	4.7 dB	4.9 dB	4.9 dB	6.3 dB
	200 MHz - 1000 MHz	(Horizontal)	4.9 dB	5.1 dB	5.1 dB	6.3 dB
		(Vertical)	6.0 dB	6.2 dB	6.2 dB	6.3 dB
	1 GHz - 6 GHz			4.7 dB		5.2 dB
	6 GHz - 18 GHz			4.9 dB		5.5 dB
10 m	9 kHz - 30 MHz		3.4 dB	3.4 dB	3.4 dB	Not Defined
	30 MHz - 200 MHz	(Horizontal)	4.6 dB	4.8 dB	4.8 dB	6.3 dB
		(Vertical)	4.6 dB	4.8 dB	4.8 dB	6.3 dB
	200 MHz - 1000 MHz	(Horizontal)	4.7 dB	5.0 dB	5.0 dB	6.3 dB
		(Vertical)	4.8 dB	5.0 dB	5.0 dB	6.3 dB

Antenna Terminal Voltage

	Uncertainty (+/-)	Ucispr (±)
30 MHz - 1000 MHz	4.1 dB	Not Defined
1 GHz - 2.15 GHz	3.7 dB	Not Defined

Test report No.	: 14071548Y
Page	: 9 of 77
Issued date	: November 25, 2021
FCC ID	: HYQDNNS124

Other

3.6 Test Location

UL Japan, Inc. Yokowa EMC Lab. 108 Yokowa-cho, Ise-shi, Mie-ken, 516-1106 JAPAN Telephone : +81 596 24 8750 Facsimile : +81 596 39 0232 FCC Test Firm Registration Number: 788329 Width x Depth x Size of Height (m) reference group horizontal contents

	Height (m)	reference ground plane (m) /	rooms
		horizontal conducting plane	
No.1 open area test site	-	40 x 20	-
No.2 open area test site	-	20 x 18	-
No.3 open area test site	-	20 x 18	-
No.1 shielded room	5.5 x 6.4 x 2.7	5.5 x 6.4	-
No.2 shielded room	4.5 x 3.6 x 2.7	4.5 x 3.6	-
No.3 shielded room	3.6 x 7.2 x 2.4	3.6 x 7.2	-
No.4 shielded room	5.5 x 5.0 x 2.4	4.35 x 3.35	-
No.5 shielded room	5.5 x 4.3 x 2.5	5.54 x 3.0	-
No.6 shielded room	5.2 x 3.2 x 2.9	5.2 x 3.2	-
No.7 shielded room	9.3 x 3.4 x 2.7	9.3 x 3.4	-
No.1 EMS lab.	5.0 x 8.0 x 3.5	-	-
(Full-anechoic chamber)			
No.2 EMS lab.	4.0 x 7.0 x 3.5	-	-
(Full-anechoic chamber)			

3. 7Test result

Refer to APPENDIX 2.

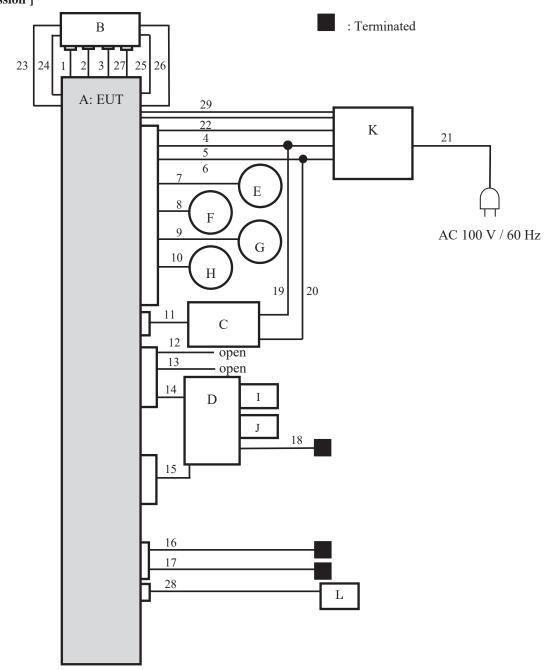
Test report No.	: 14071548Y
Page	: 10 of 77
Issued date	: November 25, 2021
FCC ID	: HYQDNNS124

SECTION 4: Operation of EUT during testing

4.1 Operating modes

The EUT exercise program used during testing was designed to exercise the various system components in a manner similar to typical use.

Test sequence is used:

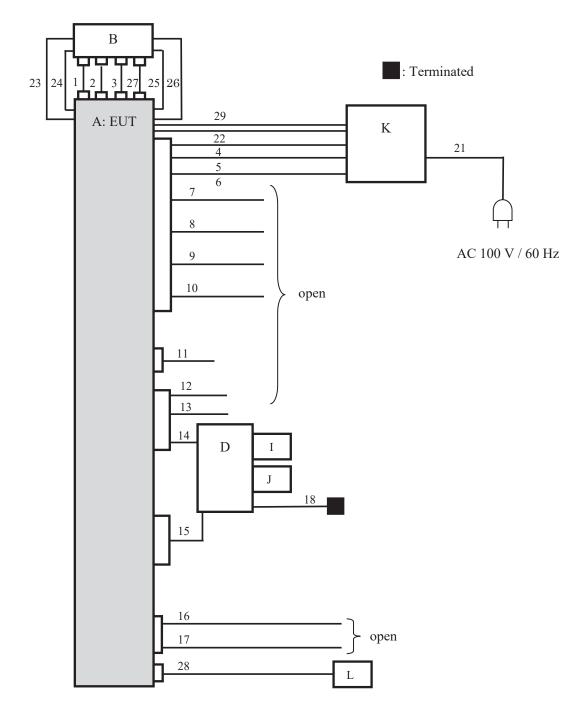

for Radiated emission	1. FM Reception Analog (87 MHz / 97.5 MHz / 108 MHz) (Main /Sub) Local / other
for Antenna Terminal	1. FM Reception Analog (Main / sub)

Software: MSoC:VerF67WHM010-708

Justification: The system was configured in typical fashion (as a customer would normally use it) for testing.

4.2 Configuration and peripherals

[RE: Radiated emission]



*Cabling and setup were taken into consideration and test data was taken under worse case conditions.

UL Japan, Inc. Yokowa EMC Lab. 108 Yokowa-cho, Ise-shi, Mie-ken, 516-1106 JAPAN Telephone: +81 596 24 8750 Facsimile: +81 596 39 0232

Test report No.	: 14071548Y
Page	: 12 of 77
Issued date	: November 25, 2021
FCC ID	: HYQDNNS124

[AT: Antenna power conduction]

*Cabling and setup were taken into consideration and test data was taken under worse case conditions.

UL Japan, Inc. Yokowa EMC Lab. 108 Yokowa-cho, Ise-shi, Mie-ken, 516-1106 JAPAN Telephone: +81 596 24 8750 Facsimile: +81 596 39 0232

Test report No.	: 14071548Y
Page	: 13 of 77
Issued date	: November 25, 2021
FCC ID	: HYQDNNS124

No.	Item	Model number	Serial number	Manufacturer	Remarks
А	Cockpit Control Unit	DNNS124	CP1.5-K3-TM3-ROW-Hi	DENSO CORPORATION	EUT
			gh-205		
В	Center Information	DNNS132	GZ1-SD-HM LHD-077	DENSO CORPORATION	-
	Display				
С	Meter	85002AN02A	-	DENSO CORPORATION	-
D	AUX-BOX	86257 AN00A	No.2	HOSIDEN	-
Е	Speaker L	7b307a	No.7	DENSO CORPORATION	-
F	Speaker R	7b307a	No.8	DENSO CORPORATION	-
G	Speaker Rear L	20FHI-SPRE-03	No.16	DENSO CORPORATION	-
Н	Speaker Rear R	20FHI-SPRE-03	No.22	DENSO CORPORATION	-
Ι	USB Memory	USM4GU B	14625B-1	SONY	-
J	USB Memory	USM4GU B	14625B-2	SONY	-
Κ	DC Power supply	PAN55-6	BK000161	KIKUSUI	-
L	GPS Antenna	86277AL150	03590040	SUBARU	-

Description of EUT and Support equipment

List of cables used

No.	Name	Length (m)	Shield	Shield		
			Cable	Connector		
1	CCU-CID-POW	0.2	Unshielded	Unshielded	-	
2	CCU-CID-LVDS	0.2	Unshielded	Unshielded	-	
3	CCU-CID-BT	0.2	Unshielded	Unshielded	-	
4	DC power (+B)	1.8	Unshielded	Unshielded	-	
5	DC power (+IG)	1.8	Unshielded	Unshielded	-	
6	DC power (GND)	1.8	Unshielded	Unshielded	-	
7	Speaker L	1.8	Unshielded	Unshielded	-	
8	Speaker R	1.8	Unshielded	Unshielded	-	
9	Speaker Rear L	1.8	Unshielded	Unshielded	-	
10	Speaker Rear R	1.8	Unshielded	Unshielded	-	
11	Meter	3.0	Unshielded	Unshielded	-	
12	USB (Blue)	1.5	Shielded	Shielded	-	
13	USB (Brown)	0.15	Shielded	Shielded	-	
14	USB (Green)	0.35	Shielded	Shielded	-	
15	Power Supply	1.0	Unshielded	Unshielded	-	
16	FM	2.0	Shielded	Shielded	-	
17	FM	2.0	Shielded	Shielded	-	
18	Mini Jack	2.0	Unshielded	Unshielded	-	
19	DC power (+IG)	1.2	Unshielded	Unshielded	-	
20	DC power (GND)	1.2	Unshielded	Unshielded	-	
21	AC	3.0	Unshielded	Unshielded	-	
22	GND	2.4	Unshielded	Unshielded	-	
23	GND	0.2	Unshielded	Unshielded	-	
24	GND	0.2	Unshielded	Unshielded	-	
25	GND	0.1	Unshielded	Unshielded	-	
26	GND	0.1	Unshielded	Unshielded	-	
27	CCU-CID-Wifi	0.2	Unshielded	Unshielded	-	
28	GPS	0.8	Shielded	Shielded	-	
29	GND	2.4	Unshielded	Unshielded	-	

UL Japan, Inc. Yokowa EMC Lab.

108 Yokowa-cho, Ise-shi, Mie-ken, 516-1106 JAPAN Telephone: +81 596 24 8750 Facsimile: +81 596 39 0232

Test report No.	: 14071548Y
Page	: 14 of 77
Issued date	: November 25, 2021
FCC ID	: HYQDNNS124

SECTION 5: Radiated emission

5.1 Operating environment

This test was carried out in open area test site.

Humidity : See data

5.2 Test configuration

EUT was placed on a table which was consisted by polystyrene foam, polypropylene foam and polycarbonate of nominal size, 1 m by 1.5 m, raised 0.8 m above the conducting ground plane.

The rear of EUT and its peripherals was aligned and flushed with rear of tabletop.

I/O cables that were connected to the peripherals were bundled in center. They were folded back and forth forming a bundle and were hanged 0.4 m height to the ground plane.

The measurements were performed for vertical or horizontal antenna polarization or both as necessary. The measurement antenna was varied in height above the conducting ground plane to obtain the maximum signal strength. Photographs of the set up are shown in APPENDIX 1.

5.3 Test conditions

Frequency range	:	30 MHz - 30000 MHz
Test distance	:	3 m
EUT position	:	Table top

5.4 Test procedure

<Below 1 GHz>

The Radiated Electric Field Strength intensity has been measured on open area test site with a ground plane at a distance of 3 m*.

* Measuring distance

The boundary of the EUT is defined by an imaginary circular periphery.

Pre check measurements were performed in a screened room with a search coil at 30 MHz-1000 MHz to distinguish disturbances of EUT from the ambient noise

Measurements were performed with a quasi-peak detector.

The measuring antenna height was varied between 1 m and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity.

The measurements were performed for vertical or horizontal antenna polarization or both as necessary.

<Above 1 GHz>

The Radiated Electric Field Strength intensity has been measured on open area test site with a ground plane. The distance is shown in APPENDIX 2.

Pre check measurements were performed in a screened room with a horn antenna at 1000 MHz - 30000 MHz to distinguish disturbances of EUT from the ambient noise.

Measurements were performed with a Peak detector and an average detector.

Test antenna was aimed at the EUT for receiving the maximum signal and always kept within the illumination area of the 3 dB beamwidth of the antenna.

EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity.

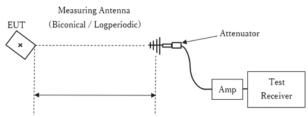
The measurements were performed for vertical or horizontal antenna polarization or both as necessary.

UL Japan, Inc. Yokowa EMC Lab.

108 Yokowa-cho, Ise-shi, Mie-ken, 516-1106 JAPAN Telephone: +81 596 24 8750 Facsimile: +81 596 39 0232

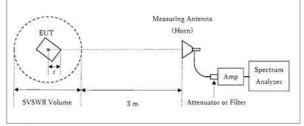
	Test report No.	: 14071548Y
	Page	: 15 of 77
	Issued date	: November 25, 2021
	FCC ID	: HYQDNNS124
The radiated emission measurements were made with the following	detector function.	

Frequency : Instrument us :	30 MHz - 1000 MHz Test Receiver	1000 MHz - 2650 Test Receiver	0 MHz *1)	26500 MHz - 30 Spectrum Analy	/
Detector Type :	QP	AV	PK	PK	AV
IF Band widtl :	120 kHz	1 MHz	1 MHz	RBW: 1 MHz	RBW: 1 MHz
				VBW: 3 MHz	VBW: 10 Hz


Test Distance: 3 m

*1) The measurement data was adjusted to a 3 m distance using the following Distance Factor. Distance factor: 20 log (Actual distance / 3 m)

Distance factor and actual distance are shown in APPENDIX 2


Figure 1: Test Setup

Below 1 GHz

× : Center of turn table

1 GHz - 30 GHz

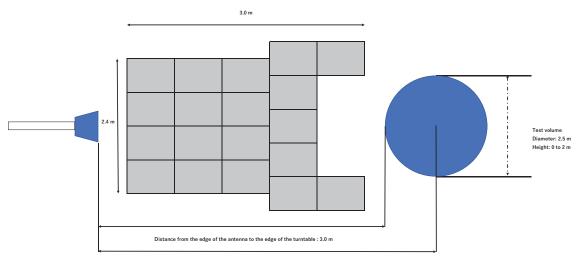
* Test Distance: (3 + SVSWR /2) - r = 3.45 m SVSWR: 2.5 m

Distance Factor: $20 \times \log (3.45 \text{ m}^*/3.0 \text{ m}) = 1.21 \text{ dB}$

(SVSWR has been calibrated based on CISPR 16-1-4.) $r = 0.80 \mbox{ m}$

r : Radius of an outer periphery of EUT

× : Center of turn table


5.5 Results

Summary of the test results: Pass

Test report No.	: 14071548Y
Page	: 16 of 77
Issued date	: November 25, 2021
FCC ID	: HYQDNNS124

Figure. Absorber arrangement

2Site

Distance from the edge of the antenna to the center of the turntable: $4.25\ m$

UL Japan, Inc. Yokowa EMC Lab. 108 Yokowa-cho, Ise-shi, Mie-ken, 516-1106 JAPAN Telephone: +81 596 24 8750 Facsimile: +81 596 39 0232

Test repo	ort No. : 14071548Y
Page	: 17 of 77
Issued da	ate : November 25, 2021
FCC ID	: HYQDNNS124

SECTION 6: Antenna Terminal

6.1 Operating environment

This test was carried out in shielded room.Temperature: See dataHumidity: See data

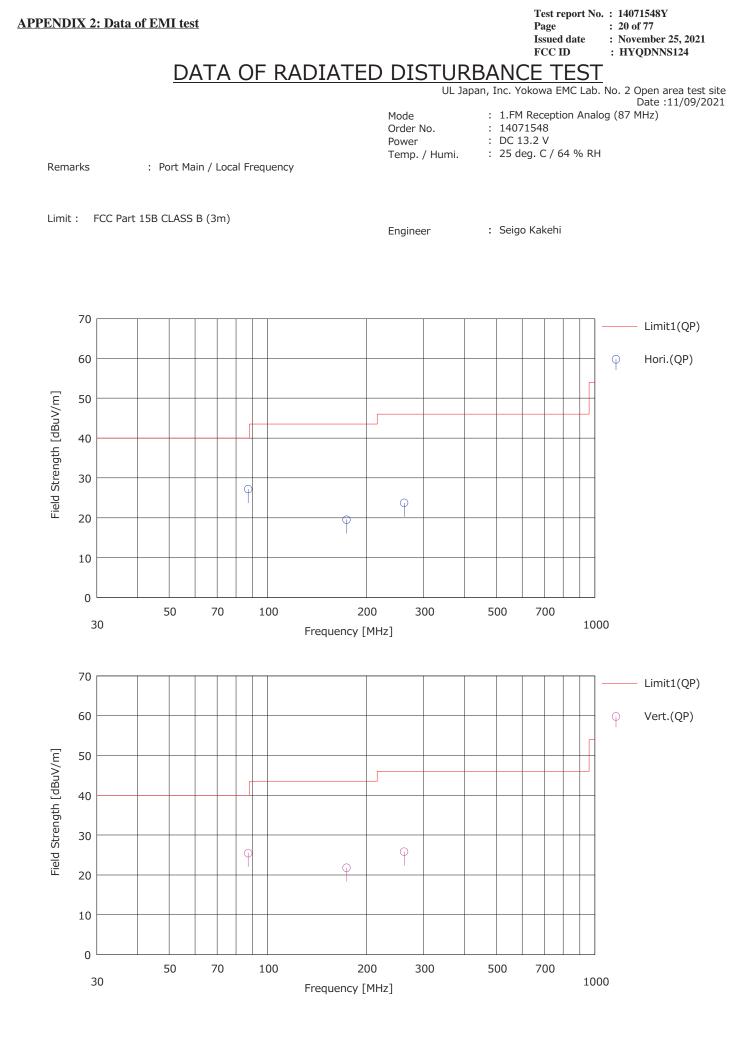
6.2 Test configuration

EUT was placed on a wooden table of nominal size, 1.0 m by 1.5 m, raised 0.8 m from the ground. Photographs of the set up are shown in APPENDIX 1.

6.3 Test conditions

Frequency range	:	30 MHz - 30000 MHz
Test distance	:	N/A
EUT position	:	Table top

6.4 Test procedure


The Antenna Terminal was measured with a spectrum analyzer connected to the antenna port.

The radiated emission measurements were made with the following detector function.				
Frequency	:	30 MHz - 1000 MHz	1000 MHz - 30000 MHz	
Instrument used	:	Spectrum Analyzer	Spectrum Analyzer	
Dotootor Tymo		DV	DV	

Detector Type : PK PK IF Band width : RBW: 100 kHz / VBW: 300 kHz RBW: 1 MHz / VBW: 3 MHz

6.5 Results

Summary of the test results: Pass

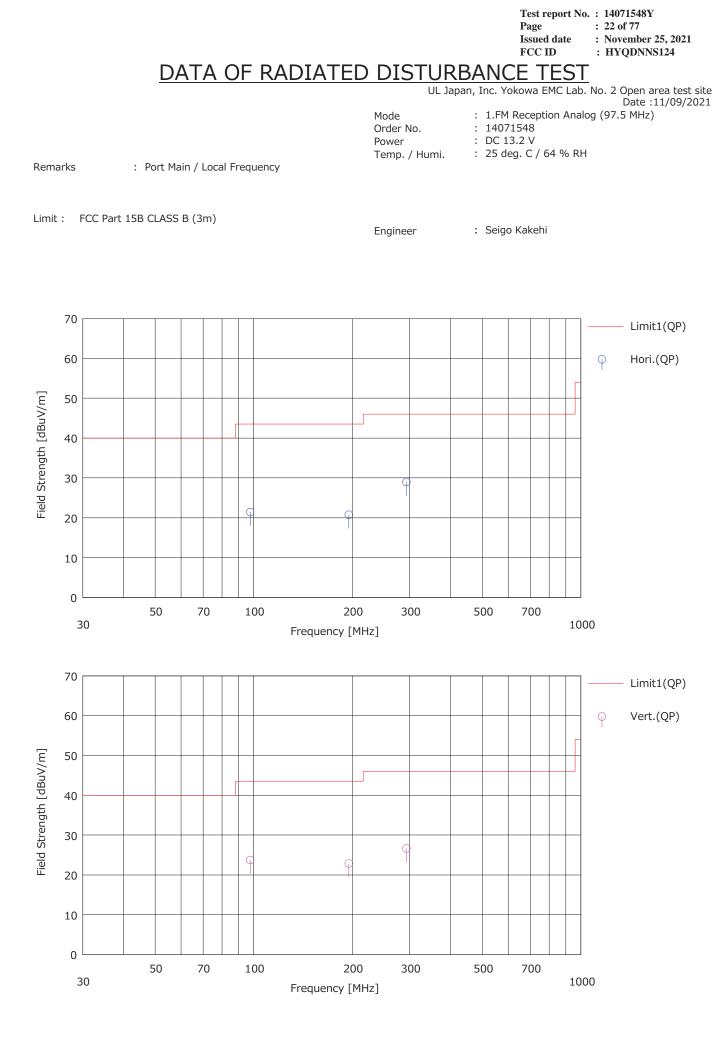
Test report No.: 14071548YPage: 21 of 77Issued date: November 25, 2021FCC ID: HYQDNNS124

DATA OF RADIATED DISTURBANCE TEST

UL Japan, Inc. Yokowa EMC Lab. No. 2 Open area test site Date :11/09/2021

Mode	:	1.F
Order No.	:	14(
Power	:	DC
Temp. / Humi.	:	25

1.FM Reception Analog (87 MHz)
14071548
DC 13.2 V
25 deg. C / 64 % RH


Remarks : Port Main / Local Frequency

Limit : FCC Part 15B CLASS B (3m)

Engineer

: Seigo Kakehi

	Freq.	Reading	Ant Fac	Loss	Gain	S.Fac	Result	Limit	Margin	Pola	Art	
No.		(QP)					(QP)	(QP)	(QP)		Ant. Type	Comment
1	[MHz] 87.226	[dBuV]	[dB/m]	[dB]	[dB] 29.19	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[H/V]	DA	
2		37.30 39.00	9.04 9.04	8.11 8.11	29.19	0.18 0.18	25.44 27.14	40.00		Vert. Hori.	BA BA	
3		26.50		9.23		0.24	19.47	43.50		Hori.	BA	
4		28.80		9.23		0.24	21.77	43.50		Vert.	BA	
5	1	35.00		7.36		0.00	25.80	46.00		Vert.	LA	
6		32.90		7.36		0.00	23.70	46.00		Hori.	LA	
	201.077	02.70	12.02	7.00	27.10	0.00	20.70	40.00	22.00	TIOT.	LA	
												•

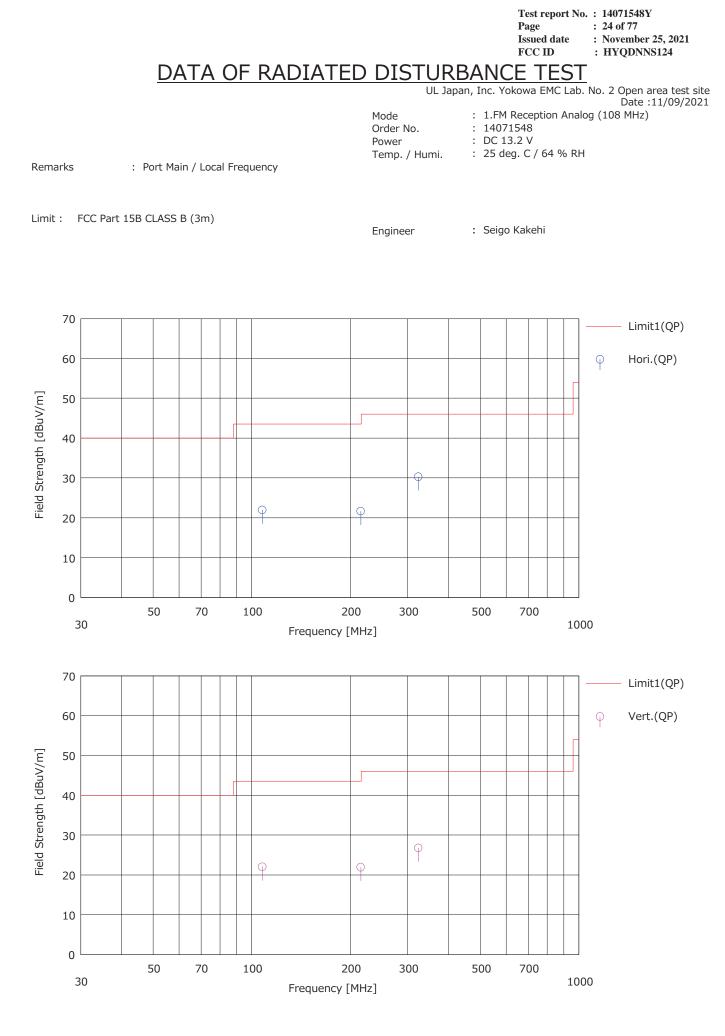
Test report No.: 14071548YPage: 23 of 77Issued date: November 25, 2021FCC ID: HYQDNNS124

DATA OF RADIATED DISTURBANCE TEST

UL Japan, Inc. Yokowa EMC Lab. No. 2 Open area test site Date :11/09/2021

Mode	:	1.FM
Order No.	:	1407
Power	:	DC 1
Temp. / Humi.	:	25 de

1.FM Reception Analog (97.5 MHz)
14071548
DC 13.2 V
25 deg. C / 64 % RH


Remarks : Port Main / Local Frequency

Limit : FCC Part 15B CLASS B (3m)

Engineer

: Seigo Kakehi

		Reading		1			Result	Limit	Margin			
No.	Freq.	(QP)	Ant.Fac	Loss	Gain	S.Fac	(QP)	(QP)	(QP)	Pola	Ant.	Comment
110.	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[H/V]	Туре	- Community
1		32.60	9.54	8.27	29.18	0.17	21.40	43.50	22.10	Hori.	BA	
2		34.90		8.27	29.18	0.17		43.50	19.80	Vert.	BA	
3		28.30	14.20	9.49	29.14	-0.03		43.50	20.68	Vert.	BA	
4		26.20	14.20	9.49	29.14	-0.03		43.50		Hori.	BA	
5	293.177	36.70	13.71	7.72	29.21	0.00		46.00	17.08	Hori.	LA	
6		34.40	13.71	7.72	29.21	0.00	26.62	46.00		Vert.	LA	

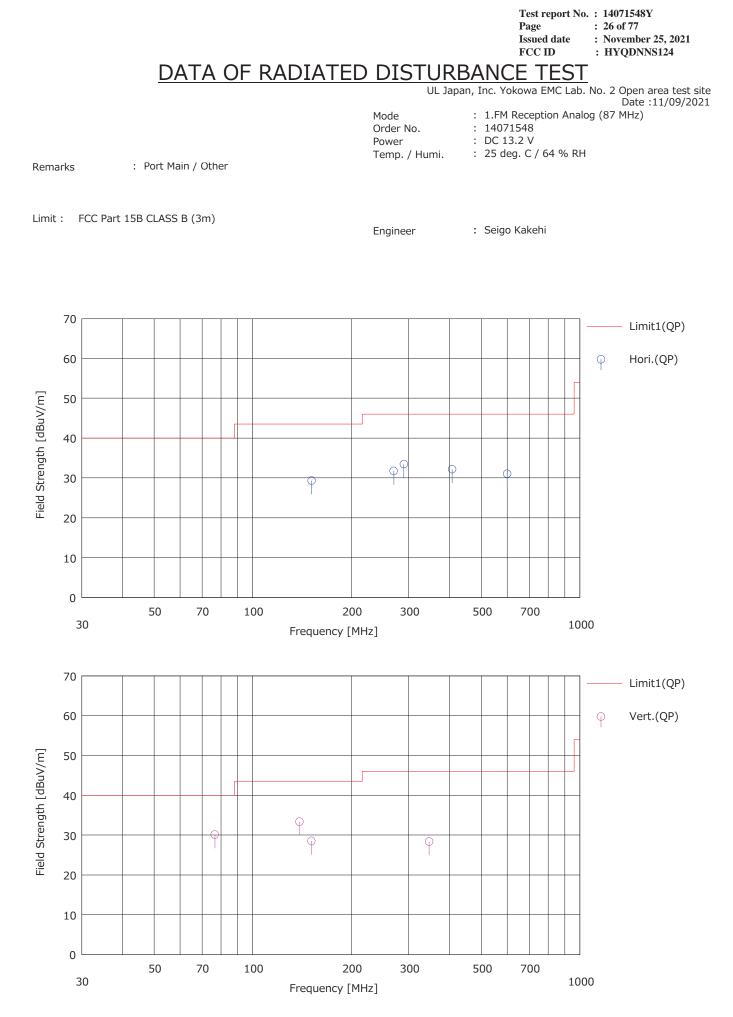
Test report No.: 14071548YPage: 25 of 77Issued date: November 25, 2021FCC ID: HYQDNNS124

DATA OF RADIATED DISTURBANCE TEST

UL Japan, Inc. Yokowa EMC Lab. No. 2 Open area test site Date :11/09/2021

Mode	:	1.FM I
Order No.	:	14071
Power	:	DC 13
Temp. / Humi.	:	25 deg

1.FM Reception Analog (108 MHz)
14071548
DC 13.2 V
25 deg. C / 64 % RH


Remarks : Port Main / Local Frequency

Limit : FCC Part 15B CLASS B (3m)

Engineer

: Seigo Kakehi

		Reading					Result	Limit	Margin			
No.	Freq.	(QP)	Ant Fac	Loss	Gain	S.Fac	(QP)	(QP)	(QP)	Pol a	Ant.	Comment
	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[H/V]	Туре	
1		32.60	10.14			0.07	22.03	43.50	21.47	Vert.	BA	
2	107.781	32.50	10.14			0.07	21.93	43.50	21.57	Hori.	BA	
3		32.60	11.35	6.82		0.00	21.62	43.50	21.88	Hori.	LA	
4	215.562	32.90				0.00		43.50		Vert.	LA	
5	323.344	33.40	14.61	7.99	29.24	0.00	26.76	46.00			LA	
6	323.344	36.90	14.61	7.99	29.24	0.00	30.26	46.00	15.74	Hori.	LA	

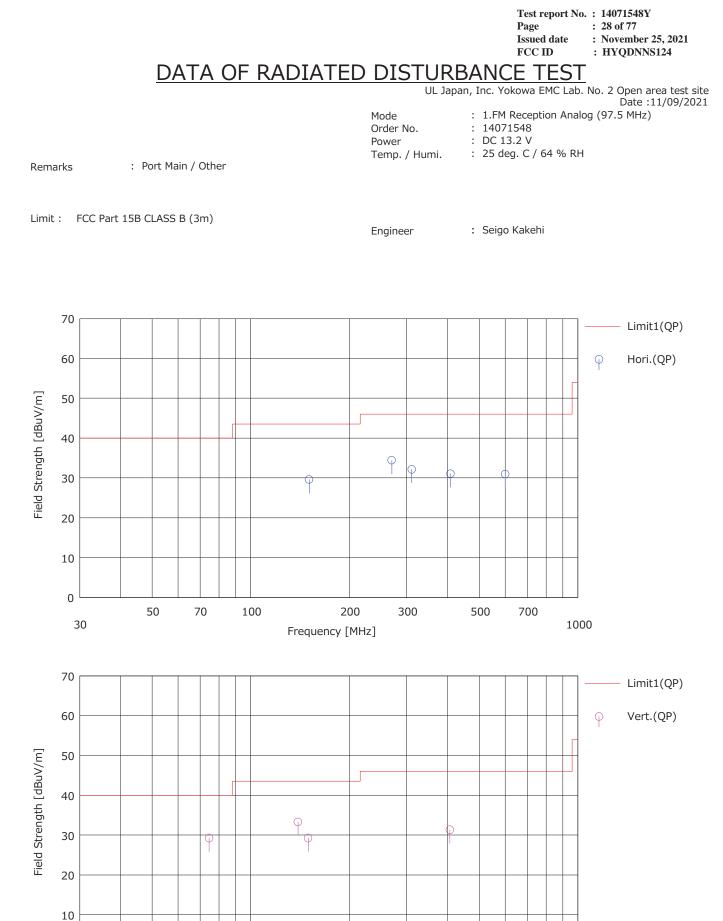
Test report No.: 14071548YPage: 27 of 77Issued date: November 25, 2021FCC ID: HYQDNNS124

DATA OF RADIATED DISTURBANCE TEST

UL Japan, Inc. Yokowa EMC Lab. No. 2 Open area test site Date :11/09/2021

Mo	ode	:	1.FN
Or	der No.	:	140
Po	wer	:	DC
Те	mp. / Humi.	:	25 c

1.FM Reception Analog (87 MHz)
14071548
DC 13.2 V
25 deg. C / 64 % RH


Remarks : Port Main / Other

Limit : FCC Part 15B CLASS B (3m)

Engineer

: Seigo Kakehi

		Reading					Result	Limit	Margin			
No.	Freq.	(QP)	Ant Fac	Loss	Gain	S.Fac	(QP)	(QP)	(QP)	Pol a	Ant.	Comment
140.	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[H/V]	Туре	Commun
1	76.643	42.50	8.91	7.94	29.21	-0.01	30.13	40.00	9.87	Vert.	BA	
2	139.144	42.10	11.67	8.79	29.16	-0.08	33.32	43.50	10.18	Vert.	BA	
3		36.60	12.02	8.95	29.16	0.09	28.50	43.50	15.00	Vert.	BA	
4	151.411	37.40	12.02	8.95	29.16	0.09	29.30	43.50	14.20	Hori.	BA	
5	270.014	40.20	13.25		29.19	0.00	31.71	46.00	14.29	Hori.	LA	
6		41.20	13.75	7.68	29.20	0.00	33.43	46.00	12.57	Hori.	LA	
7		34.10	15.33		29.27	0.00	28.34	46.00	17.66	Vert.	LA	
8		36.60	16.20		29.34	0.00	32.14	46.00	13.86	Hori.	LA	
9	599.840	31.20	19.37	9.97	29.52	0.00	31.02	46.00	14.98	Hori.	LA	

Frequency [MHz]

Test report No.: 14071548YPage: 29 of 77Issued date: November 25, 2021FCC ID: HYQDNNS124

DATA OF RADIATED DISTURBANCE TEST

UL Japan, Inc. Yokowa EMC Lab. No. 2 Open area test site Date :11/09/2021

 Mode
 : 1.FM

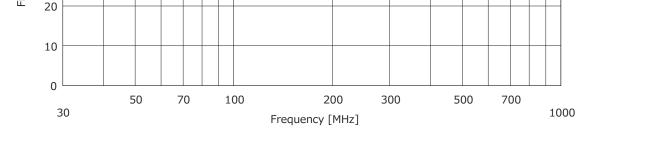
 Order No.
 : 14071

 Power
 : DC 13

 Temp. / Humi.
 : 25 de

: 1.FM Reception Analog (97.5 MHz)
: 14071548
: DC 13.2 V
: 25 deg. C / 64 % RH

Remarks : Port Main / Other


Limit : FCC Part 15B CLASS B (3m)

Engineer

: Seigo Kakehi

		DL					D II	1.1.1.1	M ·			1
	Freq.	Reading	Ant Fac	Loss	Gain	S.Fac	Result	Limit	Margin	Pola	Ant.	
No.		(QP)					(QP)	(QP)	(QP)		Type	Comment
	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[H/V]		
1	74.712	41.70	8.90	7.92	29.21	-0.06	29.25	40.00	10.75	Vert.	BA	
2	139.517	42.10	11.65	8.79	29.16	-0.07	33.31	43.50	10.19	Vert.	BA	
3	149.870	37.60	11.82	8.92	29.16	0.07	29.25	43.50	14.25	Vert.	BA	
4	150.960	37.70	12.03	8.94	29.16	0.08	29.59	43.50	13.91	Hori.	BA	
5	270.014	42.90	13.25	7.45	29.19	0.00	34.41	46.00		Hori.	LA	
6		39.40	14.05		29.22	0.00		46.00		Hori.	LA	
7		35.80	16.18		29.34	0.00	31.31	46.00		Vert.	LA	
8		35.50	16.21	8.68	29.34	0.00		46.00			LA	
9		31.10			29.52	0.00		46.00			LA	
9	099.840	31.10	19.37	9.97	29.02	0.00	30.92	40.00	15.08	Hori.	LA	
						1						
						1						

Test report No. : 14071548Y Page : 30 of 77 Issued date : November 25, 2021 FCC ID : HYQDNNS124 DATA OF RADIATED DISTURBANCE TEST UL Japan, Inc. Yokowa EMC Lab. No. 2 Open area test site Date :11/09/2021 : 1.FM Reception Analog (108 MHz) Mode Order No. : 14071548 : DC 13.2 V Power Temp. / Humi. : 25 deg. C / 64 % RH : Port Main / Other Remarks Limit : FCC Part 15B CLASS B (3m) : Seigo Kakehi Engineer 70 Limit1(QP) 60 φ Hori.(QP) Field Strength [dBuV/m] 50 40 oq 30 20 10 0 70 50 100 200 300 500 700 30 1000 Frequency [MHz] 70 Limit1(QP) 60 φ Vert.(QP) Field Strength [dBuV/m] 50 40 Q 30 q φ

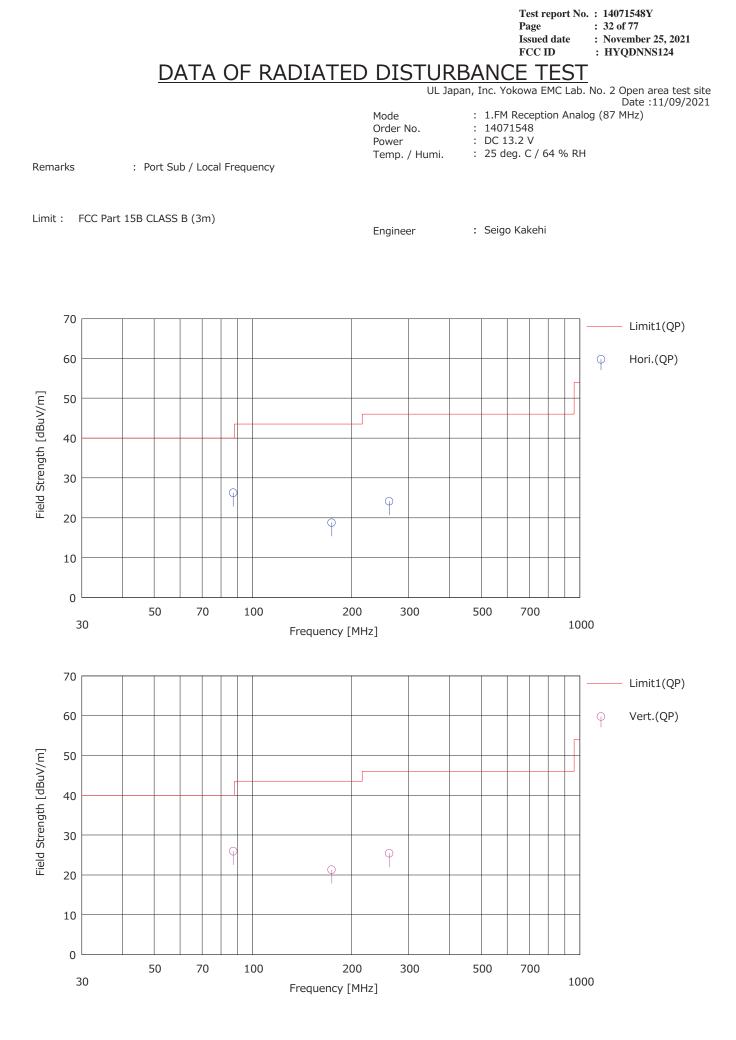
Test report No.: 14071548YPage: 31 of 77Issued date: November 25, 2021FCC ID: HYQDNNS124

DATA OF RADIATED DISTURBANCE TEST

UL Japan, Inc. Yokowa EMC Lab. No. 2 Open area test site Date :11/09/2021

Mode	:	1.FM Re
Order No.	:	140715
Power	:	DC 13.2
Temp. / Humi.	:	25 deg.

1.FM Reception Analog (108 MHz)
14071548
DC 13.2 V
25 deg. C / 64 % RH


Remarks : Port Main / Other

Limit : FCC Part 15B CLASS B (3m)

Engineer

: Seigo Kakehi

		Reading					Do oud t	Limit	Manain			1
No.	Freq.	(QP)	Ant Fac	Loss	Gain	S.Fac	Result (QP)	(QP)	Margin (QP)	Pola	Ant.	Commont
110.	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[H/ V]	Type	Comment
1	76.333	41.60	8.97	7.94	29.21	-0.02	29.28	40.00	10.72	Vert.	BA	
2	138.975	41.50	11.68		29.16	-0.02	32.72	43.50	10.72	Vert.	BA	
3	150.945	39.10	12.03		29.16	0.08	30.99	43.50	12.51	Hori.	BA	
4	151.313	36.70	12.00		29.16	0.09	28.60	43.50	14.90	Vert.	BA	
5		40.70	13.25		29.19	0.00	32.21	46.00	13.79	Hori.	LA	
6	290.343	41.70	13.74		29.20	0.00	33.93	46.00	12.07	Hori.	LA	
7	332.338	35.40	15.01	8.07	29.25	0.00	29.23	46.00	16.77	Vert.	LA	
8	407.163	36.70	16.20		29.34	0.00	32.24	46.00	13.76	Hori.	LA	
9	599.840	31.20	19.37		29.52	0.00	31.02	46.00	14.98		LA	
	077.040	01.20	17.07	/.//	27.02	0.00	01.02	40.00	14.70	TIOT.	L/1	

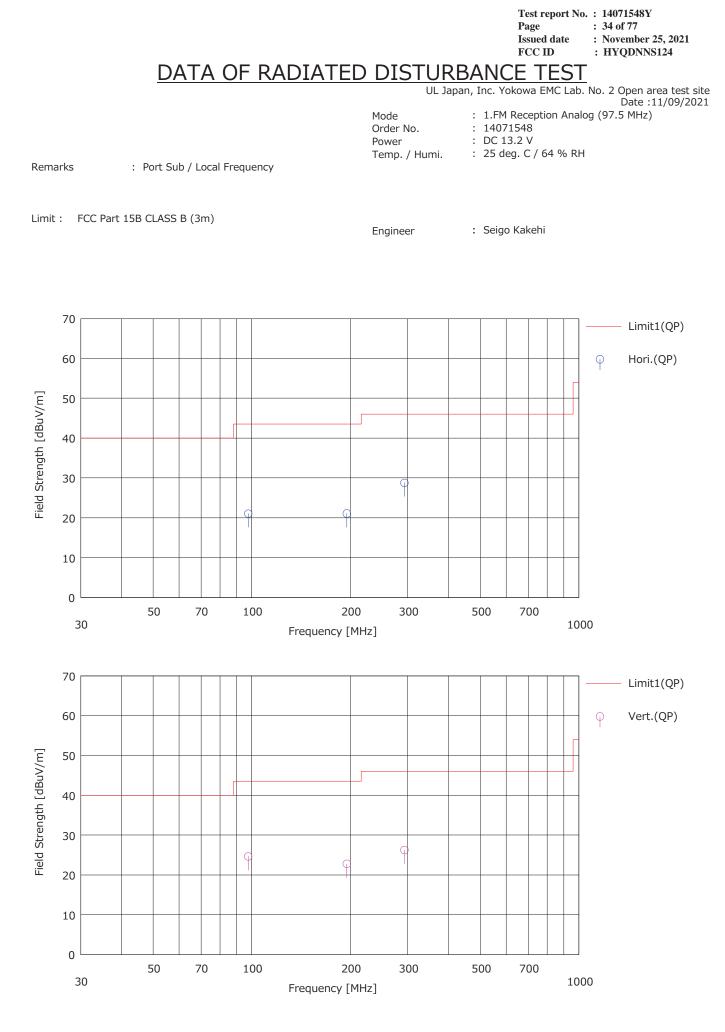
Test report No.: 14071548YPage: 33 of 77Issued date: November 25, 2021FCC ID: HYQDNNS124

DATA OF RADIATED DISTURBANCE TEST

UL Japan, Inc. Yokowa EMC Lab. No. 2 Open area test site Date :11/09/2021

Mode: 1.Order No.: 14Power: D0Temp. / Humi.: 25

: 1.FM Reception Analog (87 MHz)
: 14071548
: DC 13.2 V
: 25 deg. C / 64 % RH


Remarks : Port Sub / Local Frequency

Limit : FCC Part 15B CLASS B (3m)

Engineer

: Seigo Kakehi

	-	Reading				0.5	Result	Limit	Margin			
No.	Freq.	(QP)	Ant Fac	Loss	Gain	S.Fac	(QP)	(QP)	(QP)	Pola	Ant.	Comment
	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[H/V]	Type	
1	87.226	37.80	9.04		29.19	0.18	25.94	40.00	14.06	Vert.	BA	
2		38.10	9.04		29.19	0.18	26.24	40.00	13.76	Hori.	BA	
3		25.80	12.65		29.15	0.24	18.77	43.50	24.73	Hori.	BA	
4		28.30	12.65		29.15	0.24	21.27	43.50		Vert.	BA	
6		34.60 33.30	12.62 12.62			0.00 0.00			20.60 21.90	Vert.	LA LA	
0	201.077	33.30	12.02	7.30	29.10	0.00	24.10	40.00	21.90	Hori.	LA	

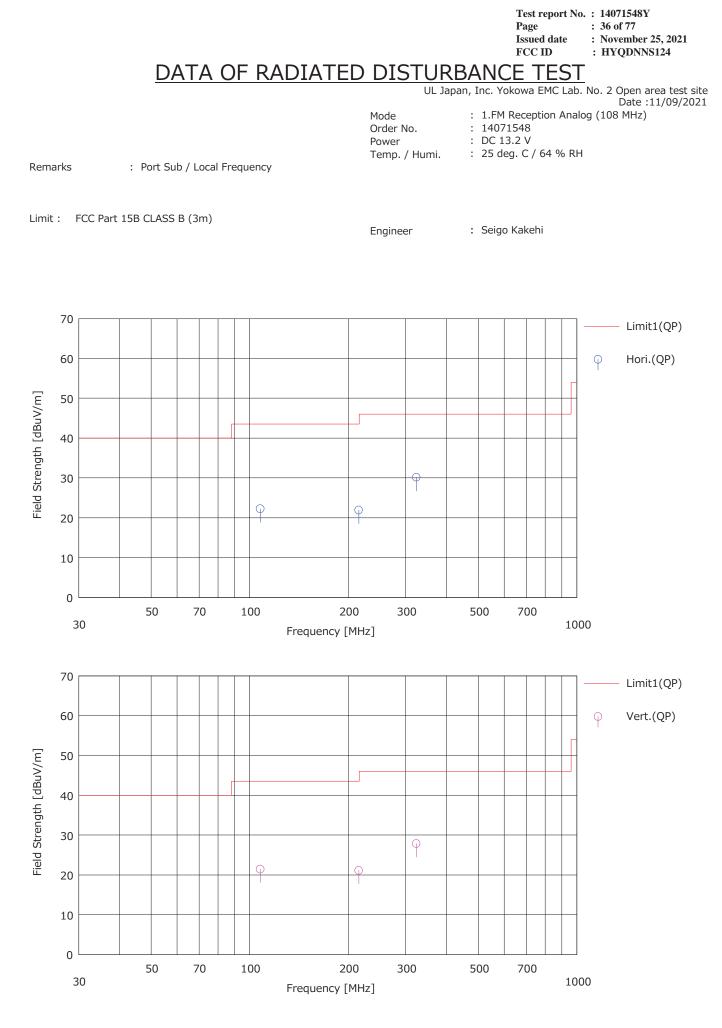
Test report No.: 14071548YPage: 35 of 77Issued date: November 25, 2021FCC ID: HYQDNNS124

DATA OF RADIATED DISTURBANCE TEST

UL Japan, Inc. Yokowa EMC Lab. No. 2 Open area test site Date :11/09/2021

Mode	:	1.F
Order No.	:	140
Power	:	DC
Temp. / Humi.	:	25

1.FM Reception Analog (97.5 MHz)
14071548
DC 13.2 V
25 deg. C / 64 % RH


Remarks : Port Sub / Local Frequency

Limit : FCC Part 15B CLASS B (3m)

Engineer

: Seigo Kakehi

		Reading					Result	Limit	Margin			
No.	Freq.	(QP)	Ant Fac	Loss	Gain	S.Fac	(QP)	(QP)	(QP)	Pola	Ant.	Comment
	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[H/V]	Туре	
1		32.20	9.54		29.18	0.17	21.00	43.50	22.50	Hori.	BA	
2		35.80		8.27	29.18	0.17		43.50	18.90	Vert.	BA	
3	195.451	28.20	14.20	9.49	29.14	-0.03	22.72	43.50	20.78	Vert.	BA	
4		26.50	14.20	9.49	29.14	-0.03	21.02	43.50	22.48	Hori.	BA	
5	293.177	36.50	13.71	7.72	29.21	0.00		46.00	17.28	Hori.	LA	
6		34.00	13.71		29.21	0.00		46.00			LA	
1												

Test report No.: 14071548YPage: 37 of 77Issued date: November 25, 2021FCC ID: HYQDNNS124

DATA OF RADIATED DISTURBANCE TEST

UL Japan, Inc. Yokowa EMC Lab. No. 2 Open area test site Date :11/09/2021

Mode	:	1.FN
Order No.	:	140
Power	:	DC :
Temp. / Humi.	:	25 c

1.FM Reception Analog (108 MHz)
14071548
DC 13.2 V
25 deg. C / 64 % RH

Remarks : Port Sub / Local Frequency

Limit : FCC Part 15B CLASS B (3m)

Engineer

: Seigo Kakehi

		Reading					Result	Limit	Margin			
No.	Freq.	(QP)	Ant Fac	Loss	Gain	S.Fac	(QP)	(QP)	(QP)	Pola	Ant.	Comment
	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[H/V]	Type	
1		32.00	10.14	8.40	29.18	0.07	21.43	43.50	22.07	Vert.	BA	
2	107.781	32.80	10.14	8.40	29.18	0.07	22.23	43.50	21.27	Hori.	BA	
3		32.90	11.35	6.82	29.15	0.00	21.92	43.50	21.58	Hori.	LA	
4	215.562	32.10	11.35	6.82	29.15	0.00		43.50	22.38	Vert.	LA	
5		34.50		7.99	29.24	0.00	27.86	46.00		Vert.	LA	
6	323.344	36.80	14.61	7.99	29.24	0.00	30.16	46.00	15.84	Hori.	LA	
						1						

Frequency [MHz]

Test report No.: 14071548YPage: 39 of 77Issued date: November 25, 2021FCC ID: HYQDNNS124

DATA OF RADIATED DISTURBANCE TEST

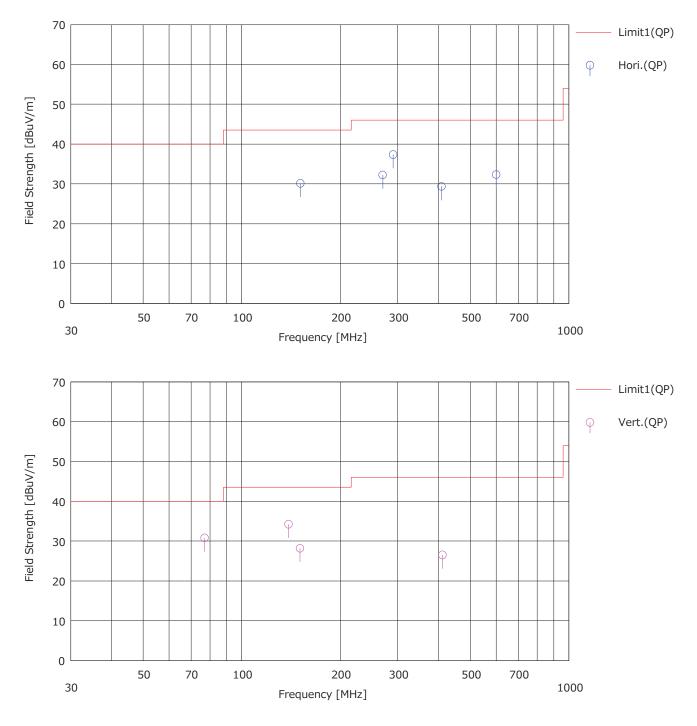
UL Japan, Inc. Yokowa EMC Lab. No. 2 Open area test site Date :11/09/2021

Mode: 1.FlOrder No.: 140Power: DCTemp. / Humi.: 25 d

: 1.FM Reception Analog (87 MHz)
: 14071548
: DC 13.2 V
: 25 deg. C / 64 % RH

Remarks : Port Sub / Other

Limit : FCC Part 15B CLASS B (3m)


Engineer

: Seigo Kakehi

<< QP DATA >>

							D 1.	1.1.15				1
	Freq.	Reading	Ant Fac	Loss	Gain	S.Fac	Result	Limit	Margin	Pol a.	Ant.	
No.		(QP)					(QP)	(QP)	(QP)		Type	Comment
	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[H/V]		
1	76.993	43.50	8.84	7.95	29.21	0.00	31.08	40.00	8.92	Vert.	BA	
2	139.205	42.70	11.67	8.79	29.16	-0.08	33.92	43.50	9.58	Vert.	BA	
3	151.346	35.40	12.02	8.95	29.16	0.09	27.30	43.50	16.20	Vert.	BA	
4		38.40	12.02		29.16	0.09	30.30	43.50			BA	
5		40.80	13.25		29.19	0.00	32.31	46.00	13.69		LA	
6		41.90	13.74			0.00	34.13	46.00	11.87	Hori.	LA	
7		37.00	15.28		29.27	0.00	31.24	46.00	14.76		LA	
8		34.20	16.21		29.35	0.00	29.74	46.00			LA	
9	599.840	32.60	19.37	9.97	29.52	0.00	32.42	46.00	13.58	Hori.	LA	

Test report No. : 14071548Y Page : 40 of 77 Issued date : November 25, 2021 FCC ID : HYQDNNS124 DATA OF RADIATED DISTURBANCE TEST UL Japan, Inc. Yokowa EMC Lab. No. 2 Open area test site Date :11/09/2021 : 1.FM Reception Analog (97.5 MHz) Mode Order No. : 14071548 : DC 13.2 V Power Temp. / Humi. : 25 deg. C / 64 % RH : Port Sub / Other Remarks Limit : FCC Part 15B CLASS B (3m) : Seigo Kakehi Engineer

Test report No.: 14071548YPage: 41 of 77Issued date: November 25, 2021FCC ID: HYQDNNS124

DATA OF RADIATED DISTURBANCE TEST

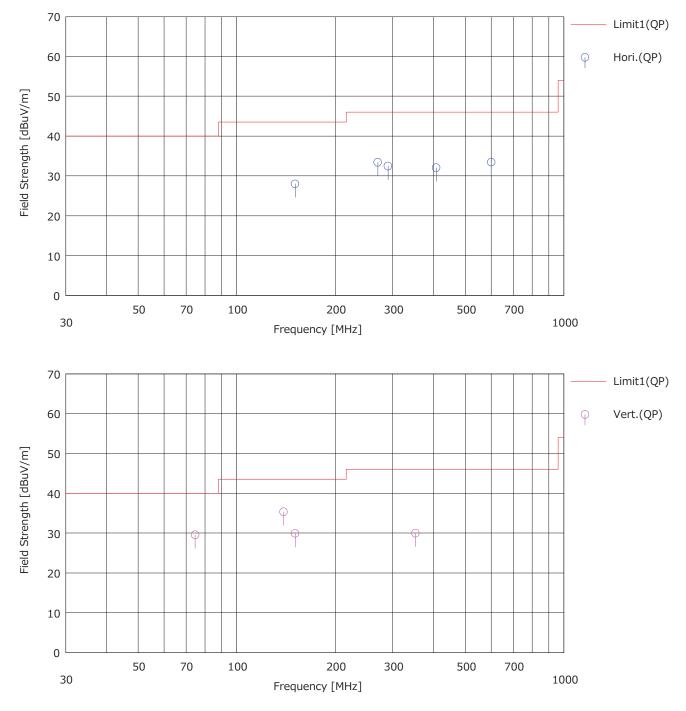
UL Japan, Inc. Yokowa EMC Lab. No. 2 Open area test site Date :11/09/2021

Mode	:	1.F
Order No.	:	14
Power	:	DC
Temp. / Humi.	:	25

1.FM Reception Analog (97.5 MHz)
14071548
DC 13.2 V
25 deg. C / 64 % RH

Remarks : Port Sub / Other

Limit : FCC Part 15B CLASS B (3m)


Engineer

: Seigo Kakehi

<< QP DATA >>

		D II					D 11	1.5.5	M ·			1
	Freq.	Reading	Ant Fac	Loss	Gain	S.Fac	Result	Limit	Margin	Pola	Ant.	
No.		(QP)	5 ID ()		(10)	C (D)	(QP)	(QP)	(QP)	511/2.0	Туре	Comment
	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[H/ V]		
1		43.20	8.84	7.95	29.21	0.00	30.78	40.00	9.22	Vert.	BA	
2		43.00	11.67	8.79	29.16	-0.08	34.22	43.50	9.28	Vert.	BA	
3		36.30	12.00	8.94	29.16	0.08	28.16	43.50	15.34	Vert.	BA	
4		38.20	12.02	8.95	29.16	0.09	30.10	43.50	13.40	Hori.	BA	
5		40.70	13.25	7.45	29.19	0.00	32.21	46.00	13.79	Hori.	LA	
6		45.10	13.74		29.20	0.00	37.33	46.00	8.67	Hori.	LA	
7		33.80	16.21	8.68	29.35	0.00	29.34	46.00	16.66	Hori.	LA	
8	411.379	30.90	16.25	8.71	29.35	0.00	26.51	46.00	19.49	Vert.	LA	
9	599.840	32.50	19.37	9.97	29.52	0.00	32.32	46.00	13.68	Hori.	LA	

Test report No. : 14071548Y Page : 42 of 77 Issued date : November 25, 2021 FCC ID : HYQDNNS124 DATA OF RADIATED DISTURBANCE TEST UL Japan, Inc. Yokowa EMC Lab. No. 2 Open area test site Date :11/09/2021 : 1.FM Reception Analog (108 MHz) Mode Order No. : 14071548 : DC 13.2 V Power Temp. / Humi. : 25 deg. C / 64 % RH : Port Sub / Other Remarks Limit : FCC Part 15B CLASS B (3m) : Seigo Kakehi Engineer

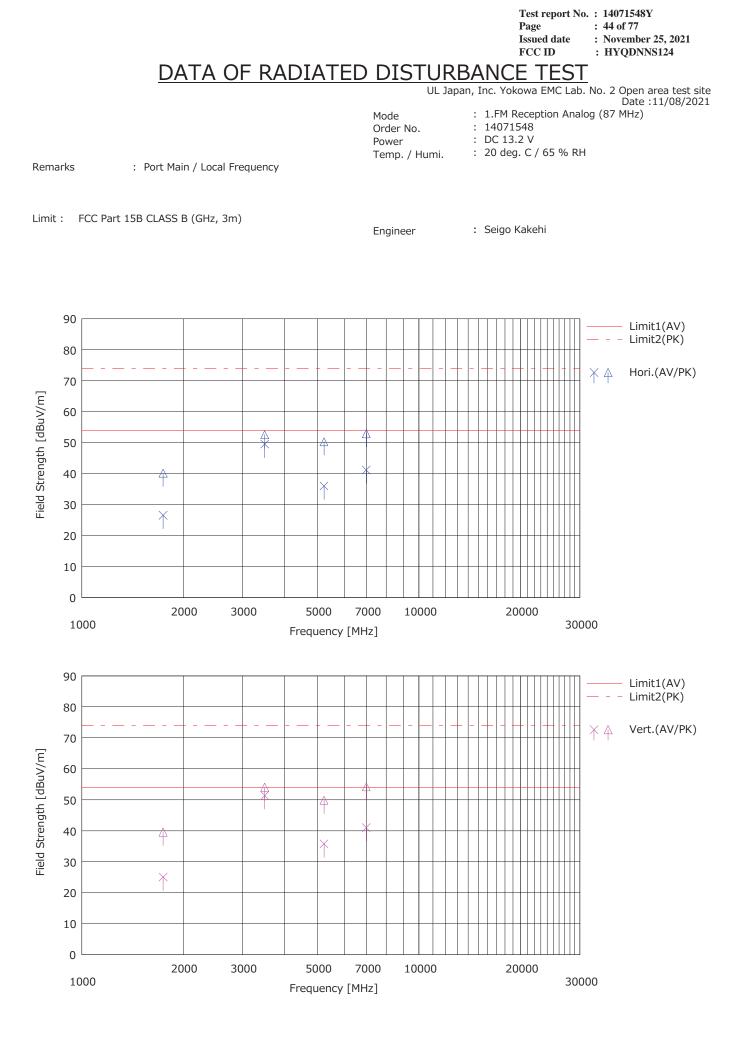
Test report No.: 14071548YPage: 43 of 77Issued date: November 25, 2021FCC ID: HYQDNNS124

DATA OF RADIATED DISTURBANCE TEST

UL Japan, Inc. Yokowa EMC Lab. No. 2 Open area test site Date :11/09/2021

:	1.FN
:	140
:	DC :
:	25 c
	:

1.FM Reception Analog (108 MHz)
14071548
DC 13.2 V
25 deg. C / 64 % RH


Remarks : Port Sub / Other

Limit : FCC Part 15B CLASS B (3m)

Engineer

<< QP	DATA	>>

	Freq.	Reading	Ant Fac	Loss	Gain	S.Fac	Result	Limit	Margin	Pola	Ant.	
No.	[MHz]	(QP) [dBuV]	[dB/m]	[dB]	[dB]	[dB]	⟨QP⟩ [dBuV/m]	⟨QP⟩ [dBuV/m]	(QP) [dB]	[H/ V]	Туре	Comment
1	74.722	42.00	8.90	7.92	29.21	-0.06	29.55	40.00	10.45	Vert.	BA	
2	139.167	44.10	11.67	8.79	29.16	80.0-	35.32	43.50	8.18	Vert.	BA	
3	150.945	36.10	12.03	8.94	29.16	0.08	27.99	43.50	15.51	Hori.	BA	
4	151.025	38.00	12.04	8.94	29.16	0.08	29.90	43.50	13.60	Vert.	BA	
5	270.014	41.90	13.25	7.45	29.19	0.00	33.41	46.00	12.59	Hori.	LA	
6	290.103	40.20	13.75	7.69	29.20	0.00	32.44	46.00	13.56	Hori.	LA	
7	352.221	35.70	15.28	8.23	29.28	0.00	29.93	46.00	16.07	Vert.	LA	
8		36.50	16.20	8.68	29.34	0.00	32.04	46.00	13.96	Hori.	LA	
9	599.840	33.60	19.37	9.97	29.52	0.00	33.42	46.00	12.58	Hori.	LA	

Test report No.: 14071548YPage: 45 of 77Issued date: November 25, 2021FCC ID: HYQDNNS124

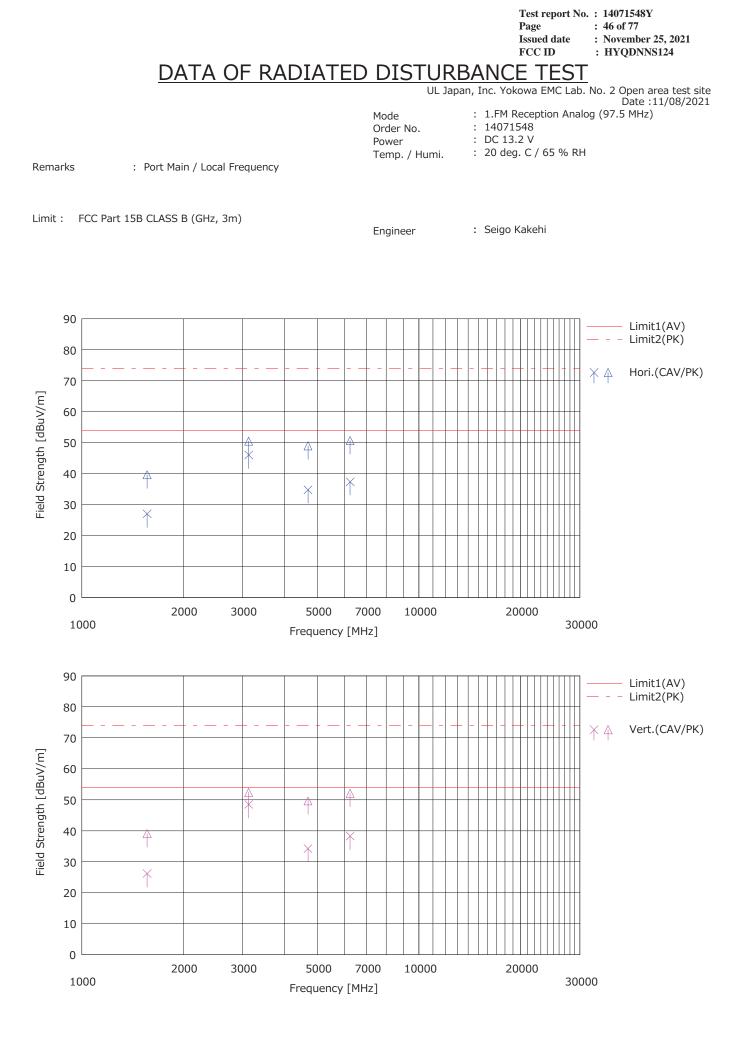
DATA OF RADIATED DISTURBANCE TEST

UL Japan, Inc. Yokowa EMC Lab. No. 2 Open area test site Date :11/08/2021

Mode	:	1.F
Order No.	:	140
Power	:	DC
Temp. / Humi.	:	20

1.FM Reception Analog (87 MHz) 14071548 DC 13.2 V 20 deg. C / 65 % RH

Remarks : Port Main / Local Frequency


Limit : FCC Part 15B CLASS B (GHz, 3m)

Engineer

: Seigo Kakehi

<< AV/PK DATA >>

			ding					Re	sult	Li	mit	Ma	rain			
No.	Freq.	(AV)	<pre></pre>	Ant.Fac	Loss	Gain	D.Fac	(AV)	(PK)	(AV)	(PK)	(AV)	(PK)	Pola.	Ant.	Comment
110.	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]		[dB]	[dB]	[H/V]	Type	Comman
1	1744.512									53.90					HA	
2		34.20	48.70	25.10	3.89	39.37	1.21	25.03 26.53	39.53		73.90	28.87	34.37	Vert.		
		35.70	49.30		3.89	39.37	1.21		40.13	53.90		27.37	33.77	Hori.	HA	
3		53.10	56.10		5.67	39.22	1.21	49.51	52.51	53.90			21.39	Hori.	HA	
4		54.90	57.60		5.67	39.22	1.21	51.31	54.01	53.90		2.59	19.89	Vert.	HA	
5		35.00	49.10		7.11	39.18	1.21	35.74	49.84	53.90	73.90		24.06		HA	
6		35.20	49.50		7.11	39.18	1.21	35.94	50.24	53.90			23.66	Hori.	HA	
7		35.30	47.00		8.27	39.43	1.21	41.17	52.87	53.90			21.03	Hori.	HA	
8	6978.048	35.10	48.30	35.82	8.27	39.43	1.21	40.97	54.17	53.90	73.90	12.93	19.73	Vert.	HA	
-																I I

Test report No.: 14071548YPage: 47 of 77Issued date: November 25, 2021FCC ID: HYQDNNS124

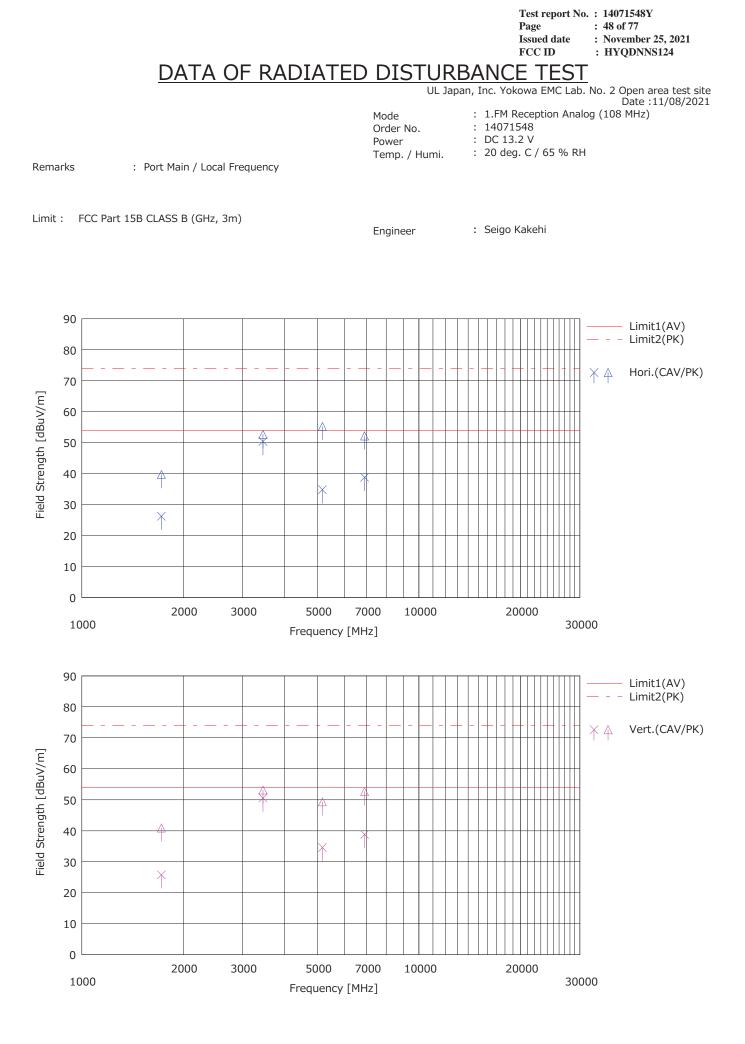
DATA OF RADIATED DISTURBANCE TEST

UL Japan, Inc. Yokowa EMC Lab. No. 2 Open area test site Date :11/08/2021

Mode	:	1.FN
Order No.	:	140
Power	:	DC
Temp. / Humi.	:	20 0

1.FM Reception Analog (97.5 MHz) 14071548 DC 13.2 V 20 deg. C / 65 % RH

Remarks : Port Main / Local Frequency


Limit : FCC Part 15B CLASS B (GHz, 3m)

Engineer

: Seigo Kakehi

<< CAV/PK DATA >>

		-	ding					Re	sult	Li	mit	Ма	rgin			
No.	Freq.	(CAV)	(PK)	Ant.Fac	Loss	Gain	D.Fac	(C AV)	(PK)	(AV)	(PK)	(AV)	(PK)	Pola.	Ant. Type	Comment
	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]		[dB]	[dB]	[H/V]		
1	1563.609	36.50	49.10	25.23	3.66	39.64	1.21	26.96	39.56	53.90	73.90	26.94	34.34	Hori.	HA	
2		35.70	48.60	25.23	3.66	39.64	1.21	26.16	39.06	53.90	73.90	27.74	34.84	Vert.	HA	
3		52.50	56.40	28.72	5.36	39.33	1.21	48.46	52.36	53.90	73.90	5.44	21.54	Vert.	HA	
4	3127.217	50.00	54.50	28.72	5.36	39.33	1.21 1.21	45.96	50.46	53.90 53.90	73.90	7.94	23.44	Hori.	HA	
6		35.10 34.60	49.30 50.00	30.89 30.89	6.67 6.67	39.13 39.13	1.21	34.74 34.24	48.94 49.64	53.90 53.90	73.90 73.90	19.16 19.66	24.96		HA HA	
7		34.00	48.90		7.87	39.13	1.21	34.24	49.04 52.03	53.90	73.90	19.00	24.26 21.87		HA	
8		34.20	40.90		7.87	39.29	1.21	37.33	50.63	53.90	73.90	16.57	23.27		HA	
	0204.404	04.20	+7.00	00.04	7.07	07.27	1.21	07.00	00.00	00.70	/0./0	10.07	20.27	11011.	103	
							1								A	
							1								A	

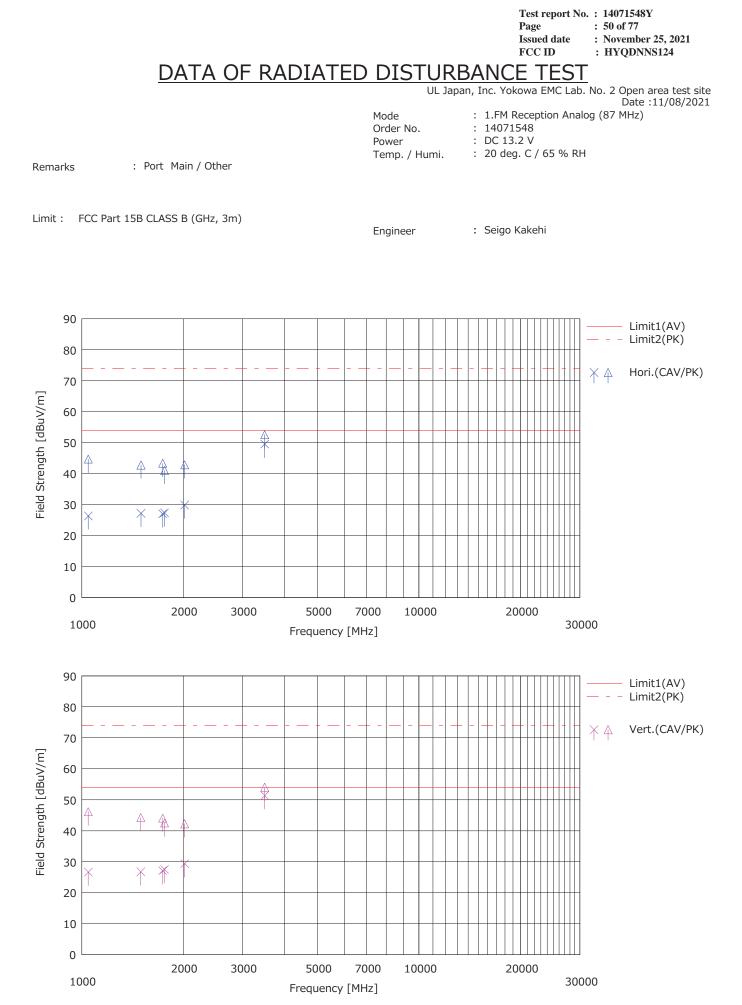
Test report No. : 14071548Y Page : 49 of 77 Issued date : November 25, 2021 : HYQDNNS124 FCC ID

DATA OF RADIATED DISTURBANCE TEST

UL Japan, Inc. Yokowa EMC Lab. No. 2 Open area test site Date :11/08/2021

Date : 1
: 1.FM Reception Analog (108 MHz)
: 14071548
: DC 13.2 V
: 20 deg. C / 65 % RH

Remarks : Port Main / Local Frequency


Limit : FCC Part 15B CLASS B (GHz, 3m)

Engineer

: Seigo Kakehi

<< CAV/PK DATA >>

				1				0			au ta	11	1-			i i
	Freq.		ding	Ant.Fac	Loss	Gain	D.Fac	Re			mit	(rgin	Pda.	Ant.	
No.		(CAV)	(PK)					(C AV)	(PK)	(AV)	(PK)	(AV)	(PK)		Type	Comment
	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	[H/V]		
1	1724.499	35.20	48.70	25.32	3.86	39.40	1.21	26.19	39.69	53.90	73.90	27.71	34.21	Hori.	HA	
2	1724.499	34.80	49.90	25.32	3.86	39.40	1.21	25.79	40.89	53.90	73.90	28.11	33.01	Vert.	HA	
3	3448.997	54.60	57.20	28.31	5.63	39.24	1.21	50.51	53.11	53.90	73.90	3.39	20.79	Vert.	HA	
4	3448.997	54.40	56.70	28.31	5.63	39.24	1.21	50.31	52.61	53.90	73.90	3.59	21.29	Hori.	HA	
5		33.80	54.20				1.21	34.77	55.17	53.90	73.90		18.73		HA	
6		33.60	48.30				1.21	34.57	49.27	53.90	73.90	19.33	24.63		HA	
7		33.40	47.30		8.23	39.41	1.21	38.74	52.64	53.90	73.90		24.00		HA	
8	6897.994	33.40	46.80	35.31	8.23	39.41	1.21	38.74	52.14	53.90	73.90	15.16	21.76	Hori.	HA	

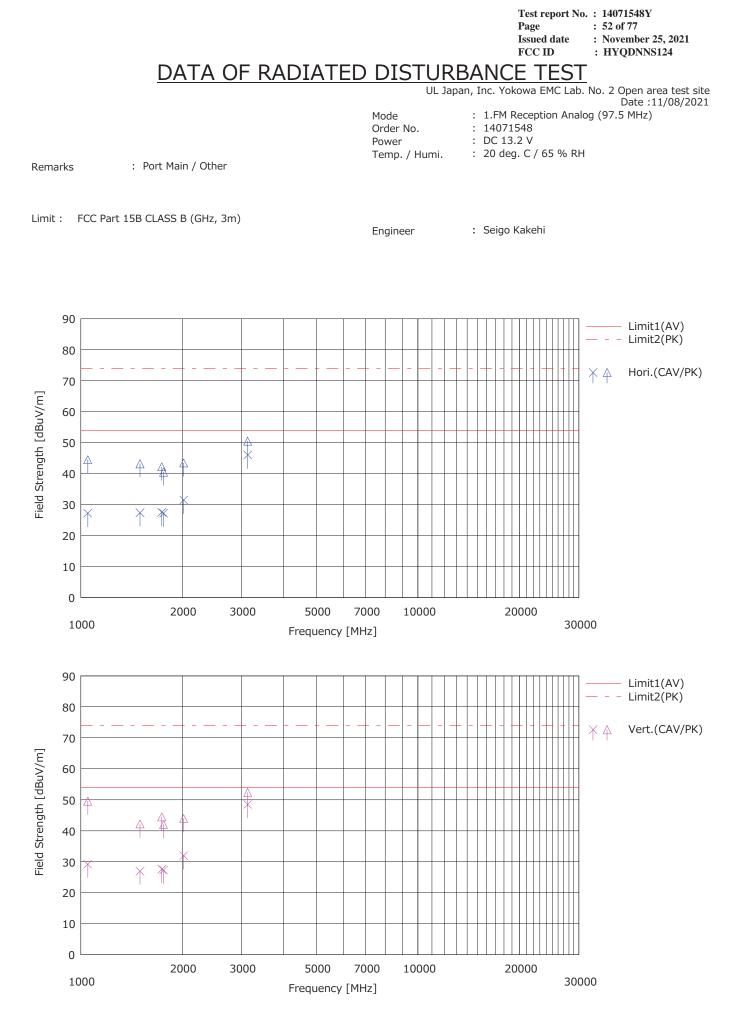
Test report No. : 14071548Y Page : 51 of 77 Issued date : November 25, 2021 FCC ID : HYQDNNS124

DATA OF RADIATED DISTURBANCE TEST

UL Japan, Inc. Yokowa EMC Lab. No. 2 Open area test site Date :11/08/2021

Mode		1.FM Receptio
Order No.		14071548
Power		DC 13.2 V
Temp. / Humi.		20 deg. C / 65

1.FM Reception Analog (87 MHz)
14071548
DC 13.2 V
20 deg. C / 65 % RH


Remarks : Port Main / Other

Limit : FCC Part 15B CLASS B (GHz, 3m)

Engineer

<<	CAV/PK	DATA >>	

	0, 11, 111 2		ding					Ro	sult	Lir	mit	Ma	rgin			
No.	Freq.	(CAV)	<pre>virig </pre>	Ant.Fac	Loss	Gain	D.Fac	(C AV)	<pre>sur </pre>	(AV)	(PK)	(AV)	(PK)	Pola.	Ant.	Comment
INO.	ENVL 3			5 ID (]	C 103	[ID]	[10]							51100	Type	Comment
	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	[H/V]		
1	1046.626	37.60	57.10	25.20	3.01	40.40	1.21	26.62	46.12	53.90	73.90	27.28	27.78		HA	
2	1046.626	37.30	55.60	25.20	3.01	40.40	1.21	26.32	44.62	53.90	73.90	27.58	29.28		HA	
3	1497.402	36.80	54.30	24.87	3.57	39.73	1.21	26.72	44.22	53.90	73.90	27.18	29.68	Vert.	HA	
4	1499.677	37.20	52.80	24.89	3.57	39.73	1.21	27.14	42.74	53.90	73.90	26.76	31.16	Hori.	HA	
5	1739.722	36.20	53.20	25.15	3.89	39.38	1.21	27.07	44.07	53.90	73.90	26.83	29.83	Vert.	НА	
6	1739.722	36.10	52.40	25.15		39.38	1.21	26.97	43.27	53.90	73.90	26.93	30.63		НА	
7	1762.996	36.60	51.60	25.09	3.91	39.34	1.21	27.47	42.47	53.90	73.90	26.43	31.43		HA	
8	1762.996	36.40	50.10	25.09	3.91	39.34	1.21	27.27	40.97	53.90	73.90	26.63	32.93		HA	
9		36.70	49.70			39.00		29.82		53.90	73.90					
	2020.691			26.68	4.23		1.21		42.82			24.08	31.08		HA	
10	2020.691	36.20	49.10	26.68	4.23	39.00	1.21	29.32		53.90		24.58	31.68		HA	
- 11	3489.024	53.10	56.10	28.75		39.22	1.21	49.51	52.51	53.90	73.90	4.39	21.39		HA	
12	3489.024	54.90	57.60	28.75	5.67	39.22	1.21	51.31	54.01	53.90	73.90	2.59	19.89	Vert.	HA	
								x								
								x.								
								r.								
								x								
															I	1

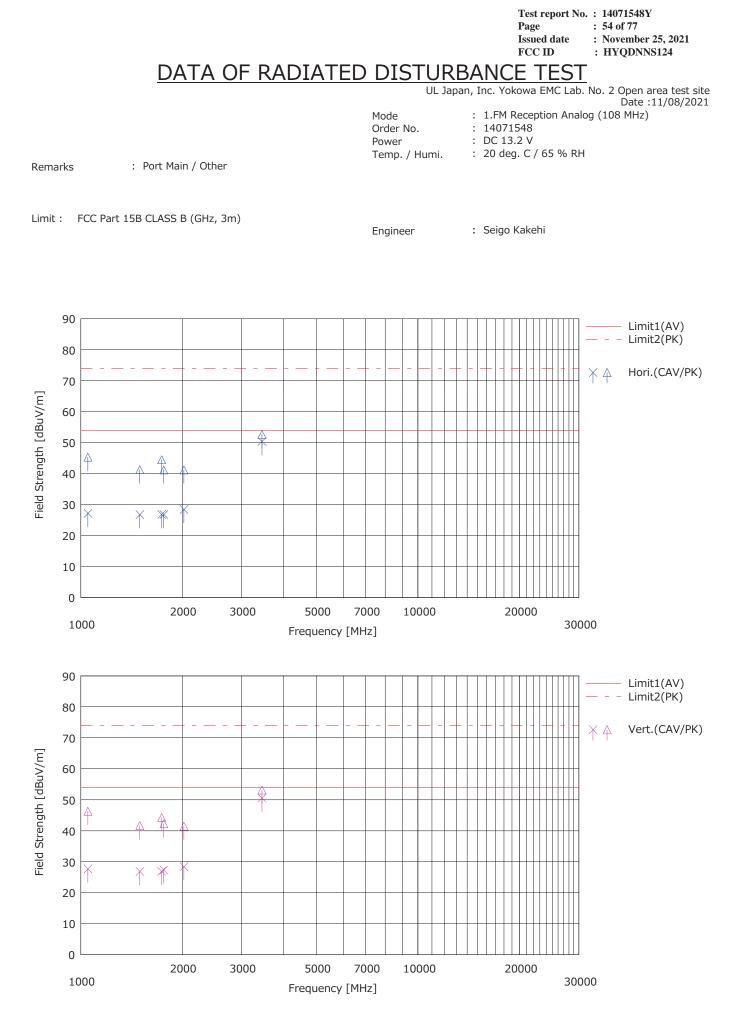
Test report No. : 14071548Y Page : 53 of 77 Issued date : November 25, 2021 FCC ID : HYQDNNS124

DATA OF RADIATED DISTURBANCE TEST

UL Japan, Inc. Yokowa EMC Lab. No. 2 Open area test site Date :11/08/2021

	Date :1
Mode	: 1.FM Reception Analog (97.5 MHz)
Order No.	: 14071548
Power	: DC 13.2 V
Temp. / Humi.	: 20 deg. C / 65 % RH

Remarks


: Port Main / Other

Limit : FCC Part 15B CLASS B (GHz, 3m)

Engineer

<< CAV/PK DATA >>

	- ,	Rea	dina					Re	sult	Lir	nit	Ма	rgin			1
No.	Freq.	(CAV)	(PK)	AntFac	Loss	Gain	D.Fac	(C AV)	(PK)	(AV)	(PK)	(AV)	(PK)	Pola.	Ant.	Comment
	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	[H/V]	Type	
1	1050.166	38.00	55.30	25.36	3.01	40.40	1.21	27.18	44.48	53.90	73.90	26.72	29.42	Hori.	HA	
2	1050.166	40.00	60.40	25.36	3.01	40.40	1.21	29.18	49.58	53.90	73.90	24.72	24.32	Vert.	HA	
3		37.00	52.20	24.89	3.57	39.73	1.21	26.94	42.14		73.90	26.96	31.76	Vert.	HA	
4	1499.685	37.40	53.20	24.89	3.57	39.73	1.21	27.34	43.14	53.90	73.90	26.56	30.76	Hori.	HA	
5		36.70	53.60	25.14	3.89	39.37	1.21	27.57	44.47	53.90	73.90	26.33	29.43	Vert.	HA	
6		36.60	51.30	25.14	3.89	39.37	1.21	27.47	42.17	53.90	73.90	26.43	31.73		HA	
7		36.40	51.10	25.09	3.91	39.34	1.21	27.27	41.97	53.90	73.90	26.63	31.93	Vert.	HA	
8		36.30	49.60	25.09	3.91	39.34	1.21	27.17	40.47	53.90	73.90	26.73	33.43	Hori.	HA	
9		38.30	50.30	26.68	4.23	39.00	1.21	31.42	43.42	53.90	73.90	22.48	30.48		HA	
10		38.80	50.80	26.68	4.23	39.00	1.21	31.92	43.92	53.90	73.90	21.98	29.98	Vert.	HA	
11	3127.217	52.50	56.40	28.72	5.36	39.33	1.21	48.46	52.36	53.90	73.90	5.44	21.54	Vert.	HA	
12	3127.217	50.00	54.50	28.72	5.36	39.33	1.21	45.96	50.46	53.90	73.90	7.94	23.44	Hori.	HA	
12	0127217	00.00	04.00	20.72	0.00	07.00	1.21	40.70	00.40	00.70	/0./0	7.74	20.77	11011.	103	
									x							
									r.							
									r.							
									x							
									τ.							
									r.							

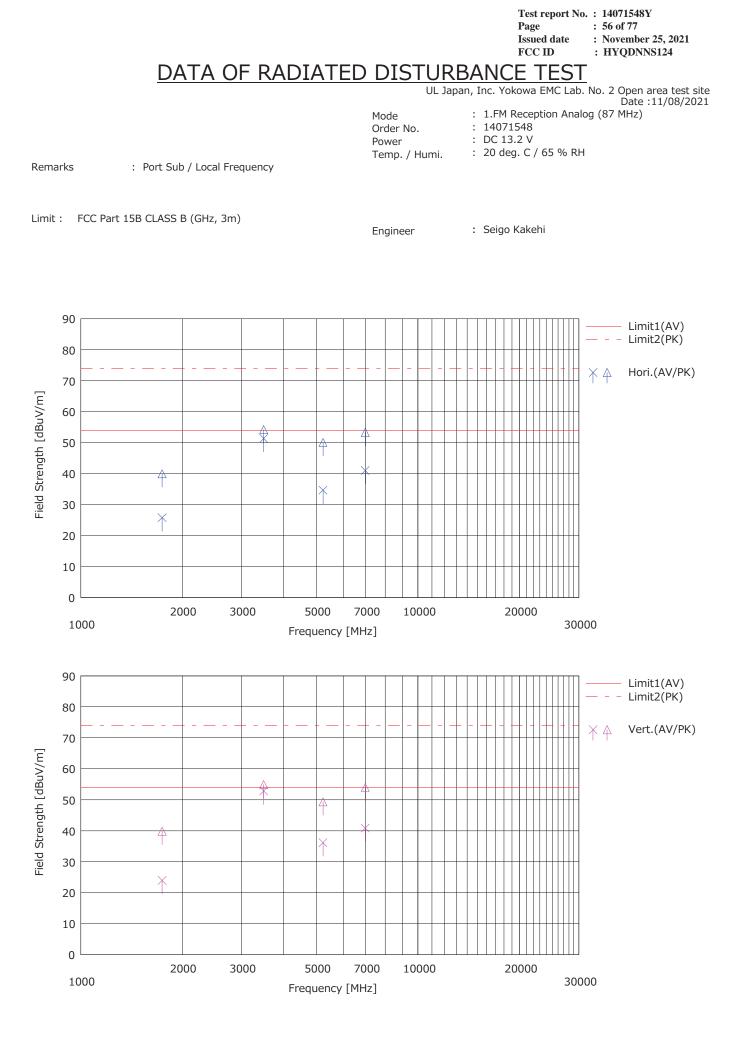
Test report No. : 14071548Y Page : 55 of 77 Issued date : November 25, 2021 FCC ID : HYQDNNS124

DATA OF RADIATED DISTURBANCE TEST

UL Japan, Inc. Yokowa EMC Lab. No. 2 Open area test site Date :11/08/2021

Mode	:	1.FM Recep
Order No.	:	14071548
Power	:	DC 13.2 V
Temp. / Humi.	:	20 deg. C /

1.FM Reception Analog (108 MHz) 14071548 DC 13.2 V 20 deg. C / 65 % RH


Remarks : Port Main / Other

Limit : FCC Part 15B CLASS B (GHz, 3m)

Engineer

<<	CAV/PK	DATA >>	

	0, 11, 1112		din a			1		Pa	v.l+	La	mit	Ma	nain			1
	Freq.		ding	Ant.Fac	Loss	Gain	D.Fac	Re		Li		Ma	-	Pola.	Ant.	
No.		(CAV)	(PK)					(CAV)	(PK)	(AV)	(PK)	(AV)	(PK)		Туре	Comment
	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	[H/V]		
1	1051.098	38.50	57.10	25.33	3.01	40.39	1.21	27.66	46.26	53.90	73.90	26.24	27.64	Vert.	HA	
2	1051.098	38.00	56.10	25.33	3.01	40.39	1.21	27.16	45.26	53.90	73.90	26.74	28.64	Hori.	HA	
3	1497.402	36.90	51.70	24.87	3.57	39.73	1.21	26.82	41.62	53.90	73.90	27.08	32.28	Vert.	НА	
4	1497.402	36.80	51.30	24.87	3.57	39.73	1.21	26.72	41.22	53.90	73.90	27.18	32.68	Hori.	НА	
5	1739.542	35.90	53.60	25.15	3.89	39.38	1.21	26.72	44.47	53.90		27.13	29.43	Hori.	HA	
6	1739.542	36.00	53.40	25.15		39.38	1.21	26.87	44.27	53.90		27.03	29.63	Vert.	HA	
7	1763.862	36.40	51.40	25.10	3.91	39.34	1.21	27.28	42.28	53.90	73.90	26.62	31.62	Vert.	HA	
8	1763.862	35.90	50.30	25.10	3.91	39.34	1.21	26.78	41.18	53.90	73.90	27.12	32.72	Hori.	HA	
9	2025.115	35.30	48.10	26.64	4.23	39.00	1.21	28.38	41.18	53.90	73.90	25.52	32.72	Hori.	HA	
10	2025.115	35.30	48.40	26.64	4.23	39.00	1.21	28.38	41.48	53.90	73.90	25.52	32.42	Vert.	HA	
11	3448.997	54.60	57.20	28.31	5.63	39.24	1.21	50.51	53.11	53.90	73.90	3.39	20.79	Vert.	HA	
12	3448.997	54.40	56.70	28.31	5.63	39.24	1.21	50.31	52.61	53.90	73.90	3.59	21.29		HA	
12	0440.777	04.40	00.70	20.01	0.00	07.24	1.21	00.01	02.01	00.70	70.70	0.07	21.27	TIOTI.		
																1

Test report No. : 14071548Y Page : 57 of 77 Issued date : November 25, 2021 FCC ID : HYQDNNS124

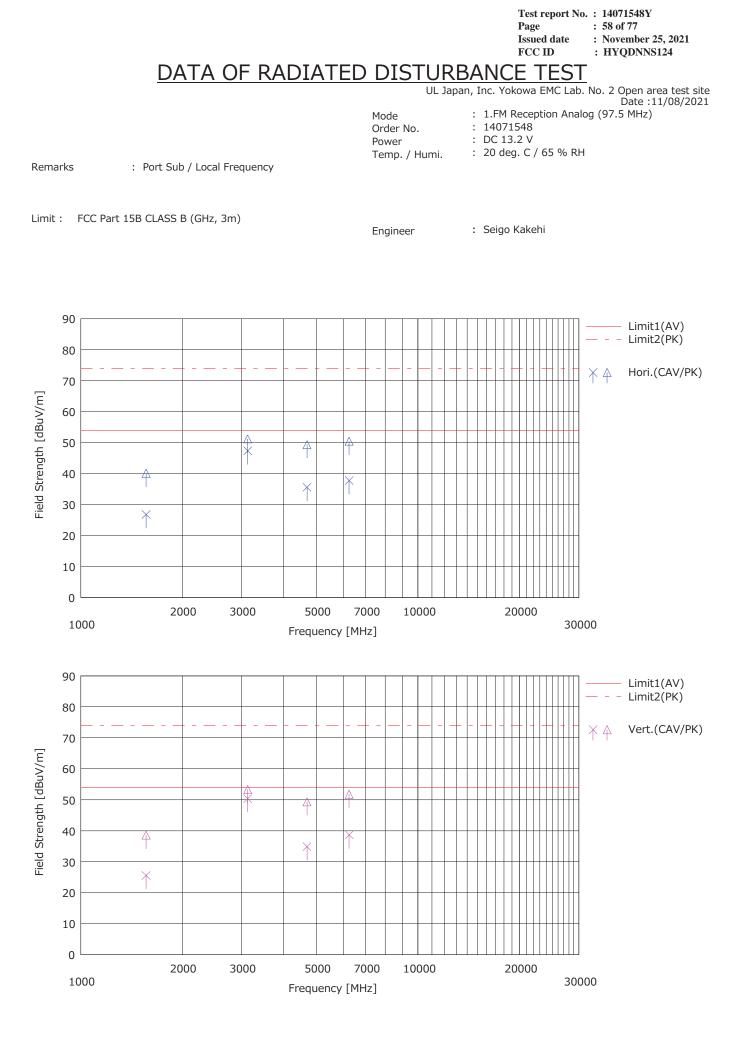
DATA OF RADIATED DISTURBANCE TEST

UL Japan, Inc. Yokowa EMC Lab. No. 2 Open area test site Date :11/08/2021

:	1
:	1
:	Ľ
:	2
	:

1.FM Reception Analog (87 MHz) 14071548 DC 13.2 V 20 deg. C / 65 % RH

Remarks : Port Sub / Local Frequency


Limit : FCC Part 15B CLASS B (GHz, 3m)

Engineer

: Seigo Kakehi

<< AV/PK DATA >>

			ding					Re	sult	Li	mit	Mar	rgin			
No.	Freq.	(AV)	(PK)	AntFac	Loss	Gain	D.Fac	(AV)	(PK)	(AV)	(PK)	(AV)	(PK)	Pola.	Ant.	Comment
	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]		[dB]	[dB]	[H/V]	Type	
1	1744.512	33.10	49.00	25.10	3.89	39.37	1.21	23.93	39.83	53.90	73.90	29.97	34.07	Vert.	HA	
2		34.90	49.10	25.10	3.89	39.37	1.21	25.73	39.93	53.90		28.17	33.97	Hori.	HA	
3		54.90	57.70	28.75	5.67	39.22	1.21	51.31	54.11	53.90		2.59	19.79	Hori.	HA	
4		56.40	58.50	28.75	5.67	39.22	1.21	52.81	54.91	53.90		1.09	18.99		HA	
5		35.40	48.60	31.60	7.11	39.18	1.21	36.14	49.34	53.90		17.76	24.56	Vert.	HA	
6		33.90		31.60	7.11	39.18	1.21	34.64	50.04	53.90			23.86		HA	
7		35.10	47.40	35.82	8.27	39.43	1.21	40.97	53.27	53.90			20.63	Hori.	HA	
8	6978.048	35.00	48.10	35.82	8.27	39.43	1.21	40.87	53.97	53.90	73.90	13.03	19.93	Vert.	HA	
1																
1																
1																
1																
1																
-																

 Test report No.
 : 14071548Y

 Page
 : 59 of 77

 Issued date
 : November 25, 2021

 FCC ID
 : HYQDNNS124

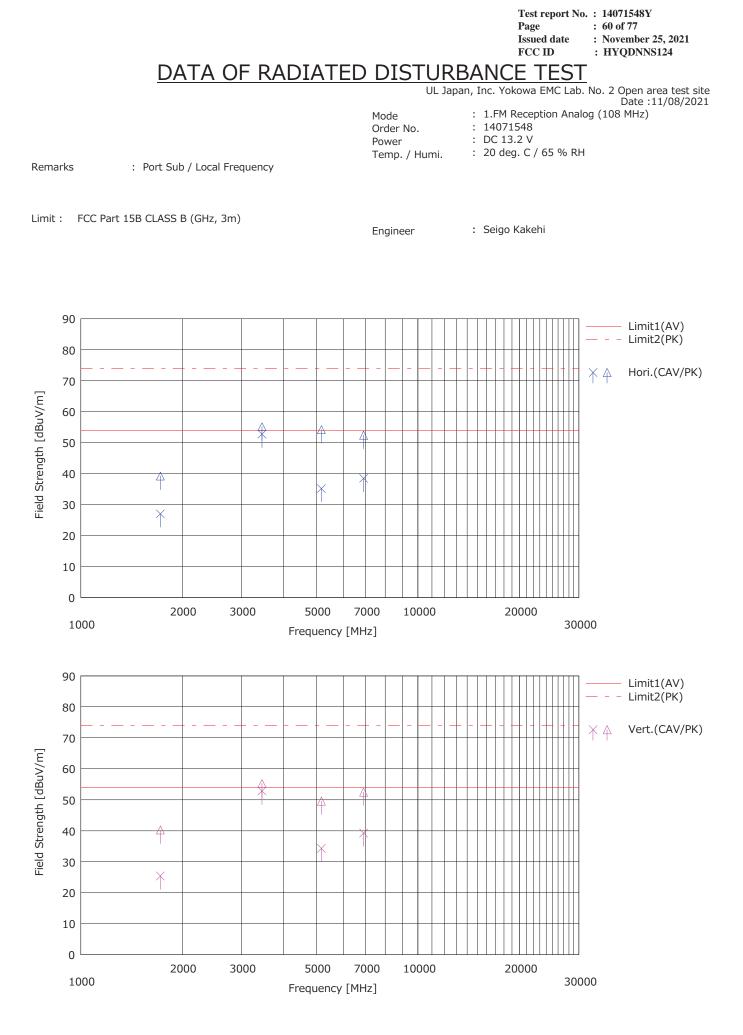
DATA OF RADIATED DISTURBANCE TEST

UL Japan, Inc. Yokowa EMC Lab. No. 2 Open area test site Date :11/08/2021

Mode	:	1.FM
Order No.	:	1407
Power	:	DC 13
Temp. / Humi.	:	20 de

1.FM Reception Analog (97.5 MHz) 14071548 DC 13.2 V 20 deg. C / 65 % RH

Remarks : Port Sub / Local Frequency


Limit : FCC Part 15B CLASS B (GHz, 3m)

Engineer

: Seigo Kakehi

<< CAV/PK DATA >>

	_	Rea	ding					Res	sult	Li	mit	Ма	rgin			1
No.	Freq.	(CAV)	(PK)	AntFac	Loss	Gain	D.Fac	(C AV)	(PK)	(AV)	(PK)	(AV)	(PK)	Pola.	Ant. Type	Comment
	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]		[dB]	[dB]	[H/V]		
1	1563.609	36.30	49.60	25.23	3.66	39.64	1.21	26.76	40.06	53.90	73.90	27.14	33.84	Hori.	HA	
2	1563.609	35.10	48.10	25.23	3.66	39.64	1.21	25.56	38.56	53.90	73.90	28.34	35.34	Vert.	HA	
3	3127.217	54.40	57.30		5.36	39.33	1.21	50.36	53.26	53.90	73.90	3.54	20.64	Vert.	HA	
4	3127.217	51.40	55.20	28.72	5.36	39.33	1.21	47.36	51.16	53.90	73.90	6.54	22.74	Hori.	HA	
5	4690.826	35.90	49.70		6.67	39.13	1.21	35.54	49.34	53.90	73.90	18.36	24.56		HA	
6 7	4690.826	35.20	49.70		6.67	39.13	1.21	34.84	49.34	53.90	73.90	19.06	24.56		HA	
8	6254.434 6254.434	35.50 34.60	48.60 47.30		7.87 7.87	39.29 39.29	1.21 1.21	38.63 37.73	51.73 50.43	53.90 53.90	73.90 73.90	15.27 16.17	22.17 23.47		HA HA	
0	0204.434	54.00	47.30	33.34	/.0/	39.29	1.21	37.73	00.45	03.90	/ 3.90	10.17	20.47	HUI I.	ПА	

Test report No.: 14071548YPage: 61 of 77Issued date: November 25, 2021FCC ID: HYQDNNS124

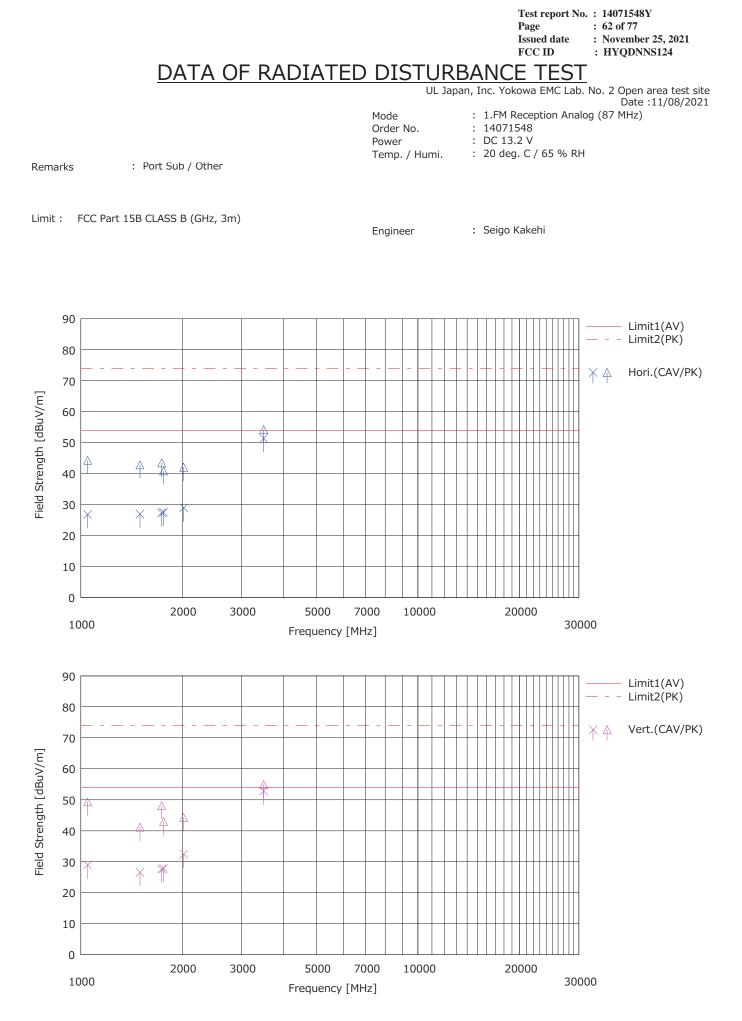
DATA OF RADIATED DISTURBANCE TEST

UL Japan, Inc. Yokowa EMC Lab. No. 2 Open area test site Date :11/08/2021

:	1.FI
:	140
:	DC
:	20 0
	: :

1.FM Reception Analog (108 MHz) 14071548 DC 13.2 V 20 deg. C / 65 % RH

Remarks : Port Sub / Local Frequency


Limit : FCC Part 15B CLASS B (GHz, 3m)

Engineer

: Seigo Kakehi

<< CAV/PK DATA >>

			ding					Re	sult	Li	mit	Ма	rgin			1
No.	Freq.	(CAV)	(PK)	AntFac	Loss	Gain	D.Fac	(C AV)	(PK)	(AV)	(PK)	(AV)	<pre><pk></pk></pre>	Pola.	Ant.	Comment
	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	[H/V]	Type	
1	1724.499	36.00	48.20	25.32	3.86	39.40	1.21	26.99	39.19	53.90	73.90	26.91	34.71	Hori.	HA	
2		34.40	49.20	25.32	3.86	39.40	1.21	25.39	40.19	53.90	73.90	28.51	33.71	Vert.	HA	
3	3448.974	56.90	59.30	28.31	5.63	39.24	1.21	52.81	55.21	53.90	73.90	1.09	18.69	Vert.	HA	
4		56.80	59.20		5.63	39.24	1.21	52.71	55.11	53.90	73.90	1.19	18.79	Hori.	HA	
5		34.20	53.20		7.06	39.17	1.21	35.17	54.17	53.90	73.90	18.73	19.73	Hori.	HA	
6		33.30	48.60			39.17	1.21	34.27	49.57	53.90	73.90	19.63	24.33		HA	
7		33.90	47.10		8.23	39.41	1.21	39.24	52.44	53.90	73.90	14.66	21.46		HA	
8	6897.994	33.10	47.00	35.31	8.23	39.41	1.21	38.44	52.34	53.90	73.90	15.46	21.56	Hori.	HA	
L																1

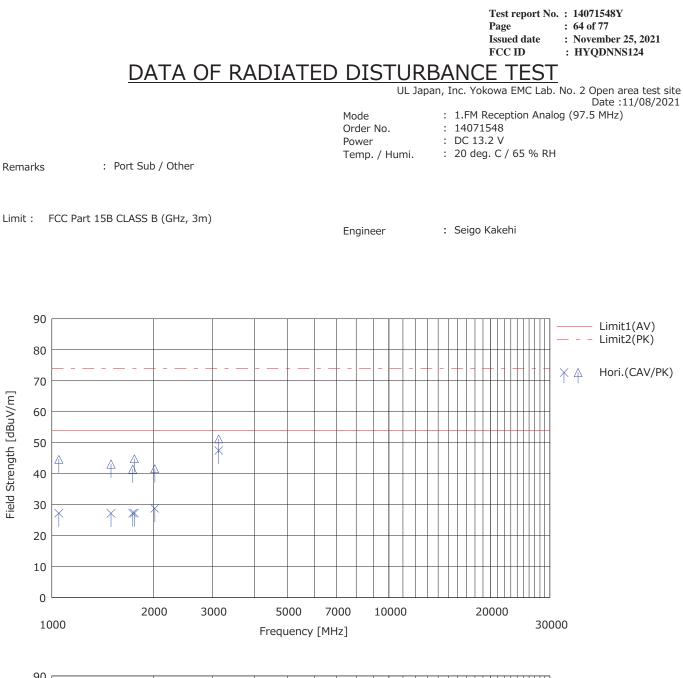
Test report No.: 14071548YPage: 63 of 77Issued date: November 25, 2021FCC ID: HYQDNNS124

DATA OF RADIATED DISTURBANCE TEST

UL Japan, Inc. Yokowa EMC Lab. No. 2 Open area test site Date :11/08/2021

Mode	:	1.FM R
Order No.	:	14071
Power	:	DC 13.
Temp. / Humi.	:	20 deg

1.FM Reception Analog (87 MHz)
14071548
DC 13.2 V
20 deg. C / 65 % RH


Remarks : Port Sub / Other

Limit : FCC Part 15B CLASS B (GHz, 3m)

Engineer

<<	CAV/PK	DATA	>>

	0,,	Rea	dina					Po	sult	Li	mit	Ma	rgin			
	Freq.			Ant.Fac	Loss	Gain	D.Fac						ů.	Pola.	Ant.	
No.	5141 J	(CAV)	(PK)	5 ID ()	(ID]	(ID]	(ID)	(CAV)	(PK)	(AV)	(PK)	(AV)	(PK)	51100	Type	Comment
	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	[H/V]		
1	1048.437	39.80	60.20	25.29	3.01	40.40	1.21	28.91	49.31	53.90	73.90	24.99	24.59	Vert.	HA	
2	1048.437	37.70	55.10	25.29	3.01	40.40	1.21	26.81	44.21	53.90	73.90	27.09	29.69	Hori.	HA	
3	1498.246	36.60	51.20	24.88	3.57	39.73	1.21	26.53	41.13	53.90	73.90	27.37	32.77	Vert.	HA	
4	1498.246	37.00	52.90	24.88	3.57	39.73	1.21	26.93	42.83	53.90	73.90	26.97	31.07	Hori.	HA	
5	1740.017	36.70	57.20	25.15	3.89	39.37	1.21	27.58		53.90	73.90	26.32	25.82	Vert.	НА	
6	1740.017	36.40	52.60	25.15	3.89	39.37	1.21	27.28	43.48	53.90	73.90	26.62	30.42		HA	
7	1762.803	36.60	50.00	25.09	3.91	39.34	1.21	27.47	40.87	53.90	73.90	26.43	33.03		HA	
8										53.90						
	1762.803	36.90	52.00	25.09	3.91	39.34	1.21	27.77	42.87		73.90	26.13	31.03		HA	
9	2020.223	35.80	48.90	26.68	4.23	39.00	1.21	28.92	42.02	53.90	73.90	24.98	31.88		HA	
10	2020.223	39.30	51.10	26.68	4.23	39.00	1.21	32.42		53.90		21.48	29.68		HA	
11	3489.022	54.90	57.70	28.75	5.67	39.22	1.21	51.31	54.11	53.90	73.90	2.59	19.79	Hori.	HA	
12	3489.022	56.40	58.50	28.75	5.67	39.22	1.21	52.81	54.91	53.90	73.90	1.09	18.99	Vert.	HA	

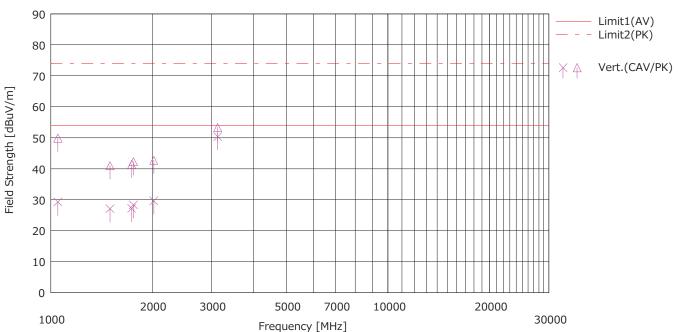


CHART:WITH FACTOR ANT TYPE: -30MHz:LOOP, 30-199.99MHz:BICONICAL, 200MHz-1000MHz:LOGPERIODIC, 1000MHz-:HORN CALCULATION:RESULT = READING + ANT.Fac. + LOSS(CABLE)+S.Fac.(DISTANCE Fac.) - GAIN(AMP). Actual distance: 3.45 m.

Test report No.: 14071548YPage: 65 of 77Issued date: November 25, 2021FCC ID: HYQDNNS124

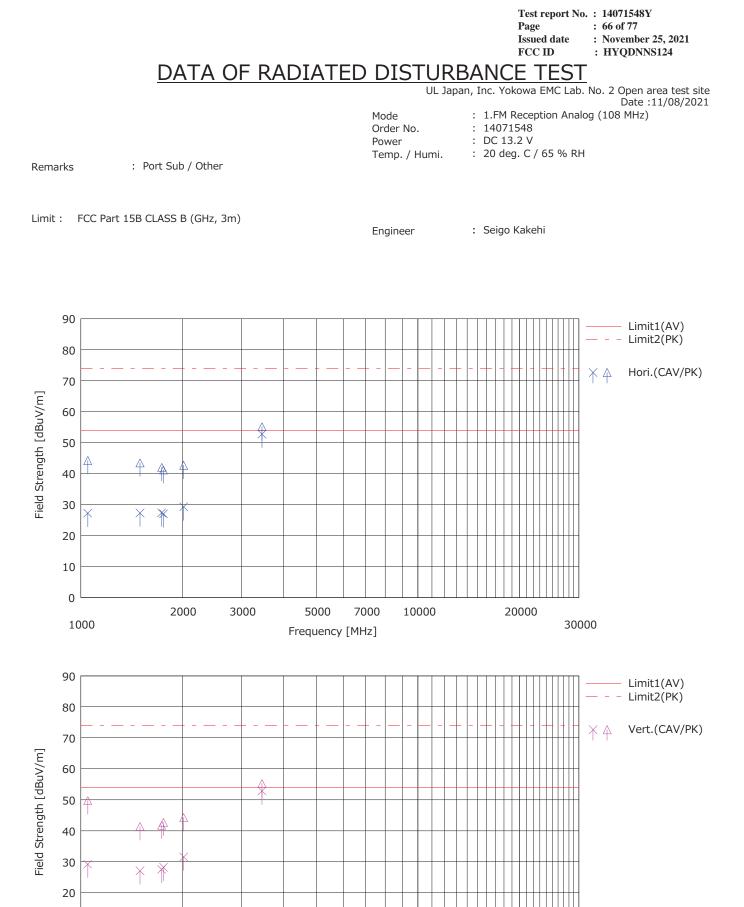
DATA OF RADIATED DISTURBANCE TEST

UL Japan, Inc. Yokowa EMC Lab. No. 2 Open area test site Date :11/08/2021

Mode	:	1.FM Re
Order No.	:	140715
Power	:	DC 13.2
Temp. / Humi.	:	20 deg.

1.FM Reception Analog (97.5 MHz) 14071548 DC 13.2 V 20 deg. C / 65 % RH

Remarks : Port Sub / Other


Limit : FCC Part 15B CLASS B (GHz, 3m)

Engineer

: Seigo Kakehi

<< CAV/PK DATA >>

		Rea	ding	4.15		0.1		Re	sult	Lii	nit	Mar	gin	. ·		
No.	Freq.	(CAV)	(PK)	AntFac	Loss	Gain	D.Fac	(C AV)	(PK)	(AV)	(PK)	(AV)	(PK)	Pola.	Ant.	Comment
	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	[H/V]	Type	
1	1050.407	40.10	60.70	25.35	3.01	40.40	1.21	29.27	49.87	53.90	73.90	24.63	24.03	Vert.	HA	
2	1050.407	38.00	55.40	25.35	3.01	40.40	1.21	27.17	44.57	53.90	73.90	26.73	29.33	Hori.	HA	
3	1500.165	37.10	51.00	24.89	3.59	39.73	1.21	27.06	40.96	53.90	73.90	26.84	32.94	Vert.	HA	
4		37.20	53.10	24.89	3.59	39.73	1.21	27.16	43.06	53.90	73.90	26.74	30.84	Hori.	HA	
5	1738.772	36.30	50.50	25.16	3.89	39.38	1.21	27.18	41.38	53.90	73.90	26.72	32.52	Vert.	HA	
6	1738.772	36.30	50.50	25.16	3.89	39.38	1.21	27.18	41.38	53.90	73.90	26.72	32.52	Hori.	HA	
7		37.50	51.40	25.08	3.91	39.35	1.21	28.35	42.25	53.90	73.90	25.55	31.65	Vert.	HA	
8		36.40	53.90	25.08	3.91	39.35	1.21	27.25	44.75	53.90	73.90	26.65	29.15		HA	
9			49.60	26.67	4.23	39.00	1.21	29.61	42.71	53.90	73.90	24.29	31.19		HA	
10		35.60	48.40	26.67	4.23	39.00	1.21	28.71	41.51	53.90	73.90	25.19	32.39		HA	
11	3127.217	54.40	57.30	28.72	5.36	39.33	1.21	50.36	53.26	53.90	73.90		20.64	Vert.	HA	
12	3127.217	51.50	55.20	28.72	5.36	39.33	1.21	47.46	51.16	53.90	73.90	6.44	22.74	Hori.	HA	

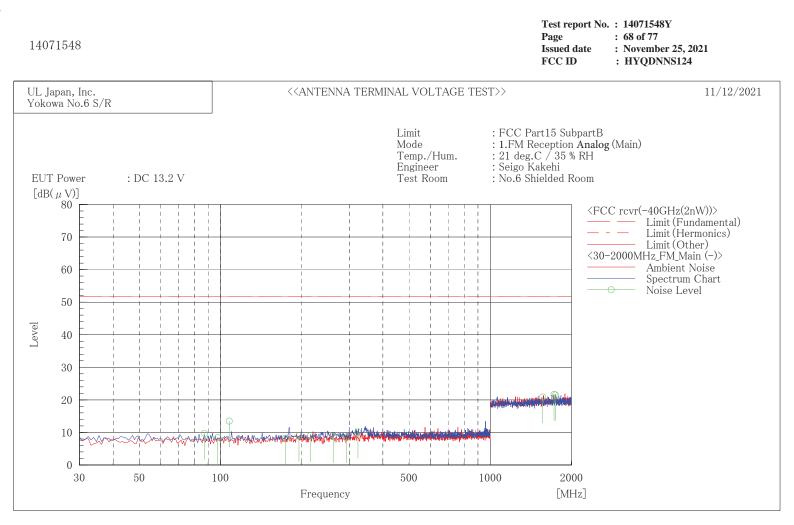
Frequency [MHz]

Test report No.: 14071548YPage: 67 of 77Issued date: November 25, 2021FCC ID: HYQDNNS124

DATA OF RADIATED DISTURBANCE TEST

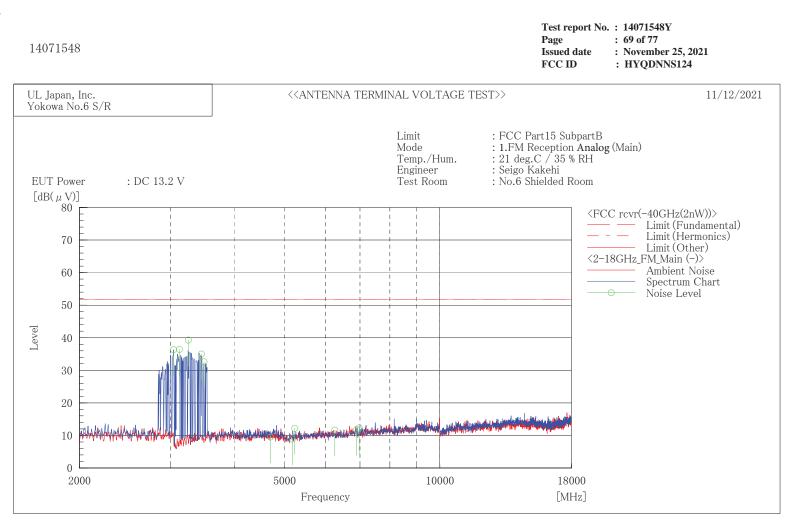
UL Japan, Inc. Yokowa EMC Lab. No. 2 Open area test site Date :11/08/2021

Mode : 1.FM Reception Analog (1	108 MHz)
Order No. : 14071548	
Power : DC 13.2 V	
Temp. / Humi. : 20 deg. C / 65 % RH	


Remarks : Port Sub / Other

Limit : FCC Part 15B CLASS B (GHz, 3m)

Engineer


<< CAV/PK DATA >>

		Rea	dina					Re	sult	Lir	mit	Ma	rgin			1
No.	Freq.	(CAV)	(PK)	AntFac	Loss	Gain	D.Fac	(C AV)	(PK)	(AV)	(PK)	(AV)	(PK)	Pola.	Ant.	Comment
110.	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	[H/V]	Type	Communit
1	1049.702	40.00	60.50	25.35	3.01	40.40	1.21	29.17	49.67	53.90	73.90	24.73	24.23	Vert.	HA	
2	1049.702	38.00	55.00	25.35	3.01	40.40	1.21	27.17	44.17	53.90	73.90	26.73	29.73	Hori.	HA	
3	1499.573	37.30	53.50	24.89	3.57	39.73	1.21	27.24	43.44	53.90	73.90	26.66	30.46	Hori.	HA	
4	1499.677	37.10	51.40	24.89	3.57	39.73	1.21	27.24	41.34	53.90	73.90		32.56		HA	
5																
	1739.852	36.60	50.90	25.15	3.89	39.38	1.21	27.47	41.77	53.90	73.90	26.43	32.13		HA	
6	1739.852	36.40	51.10	25.15		39.38	1.21	27.27	41.97	53.90	73.90		31.93		HA	
7	1761.329	36.10	50.30	25.09	3.91	39.34	1.21	26.97	41.17	53.90	73.90	26.93	32.73		HA	
8	1761.329	37.30	51.80	25.09	3.91	39.34	1.21	28.17	42.67	53.90	73.90		31.23		HA	
9	2020.562	36.10	49.50	26.68	4.23	39.00	1.21	29.22	42.62	53.90	73.90		31.28		HA	
10	2020.562	38.40	51.10	26.68	4.23	39.00	1.21	31.52	44.22	53.90	73.90		29.68		HA	
11	3448.974	56.90	59.30	28.31	5.63	39.24	1.21	52.81	55.21	53.90	73.90	1.09	18.69	Vert.	HA	
12	3448.974	56.80	59.20	28.31	5.63	39.24	1.21	52.71	55.11	53.90	73.90	1.19	18.79	Hori.	HA	

Spectrum Selection (Peak Value)

Ch. [MHz]	No.	Frequency [MHz]	Reading $[dB(\mu V)]$	c.f [dB]	Result [dB(µV)]	Limit [dB(µV)]	Margin [dB]
87.0	1	87.226	29.1	-19.4	9.7	51.7	42.0
97.5 108.0	2 3	97.726 107.781	$27.8 \\ 32.9$	-19.4 -19.4	8.4 13.5	51.7 51.7	43.3 38.2
87.0	4	107.781 174.451	27.1	-18.9	8.2	51.7 51.7	43. 5
97.5	5	195.451	27.8	-18.8	9.0	51.7	42.7
108.0	6	215.562	27.7	-18.7	9.0	51.7	42.7
87.0	7	261.677	27.2	-18.5	8.7	51.7	43.0
97.5	8	293.177	27.0	-18.4	8.6	51.7	43.1
108.0	9	323.344	28.4	-18.3	10.1	51.7	41.6
97.5	10	1563.609	46.7	-25.8	20.9	51.7	30.8
108.0	11	1724.499	47.1	-25.4	21.7	51.7	30.0
87.0	12	1744.512	46.9	-25.4	21.5	51.7	30.3

Spectrum Selection (Peak Value)

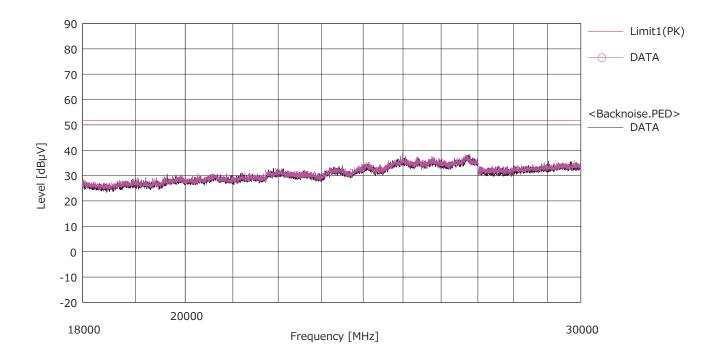
Ch. [MHz]	No.	Frequency [MHz]	Reading [dB(µV)]	c.f [dB]	Result [dB(µV)]	Limit [dB(µV)]	Margin [dB]
95.4	1	3046.067	69.8	-33.5	36.3	51.7	15.4
97.5	2	3127.217	69.9	-33.5	36.4	51.7	15.3
101.4	3	3252.067	72.7	-33.4	39.3	51.7	12.4
108.0	4	3448.997	68.1	-33.1	35.0	51.7	16.7
87.0	5	3489.024	65.7	-33.1	32.6	51.7	19.1
97.5	6	4690.826	41.8	-32.3	9.5	51.7	42.2
108.0	7	5173.496	41.2	-32.3	8.9	51.7	42.8
87.0	8	5233.536	44.5	-32.3	12.2	51.7	39.5
97.5	9	6254.434	43.8	-32.2	11.6	51.7	40.2
108.0	10	6897.994	44.0	-32.2	11.8	51.7	39.9
87.0	11	6978.048	44.5	-32.2	12.3	51.7	39.4

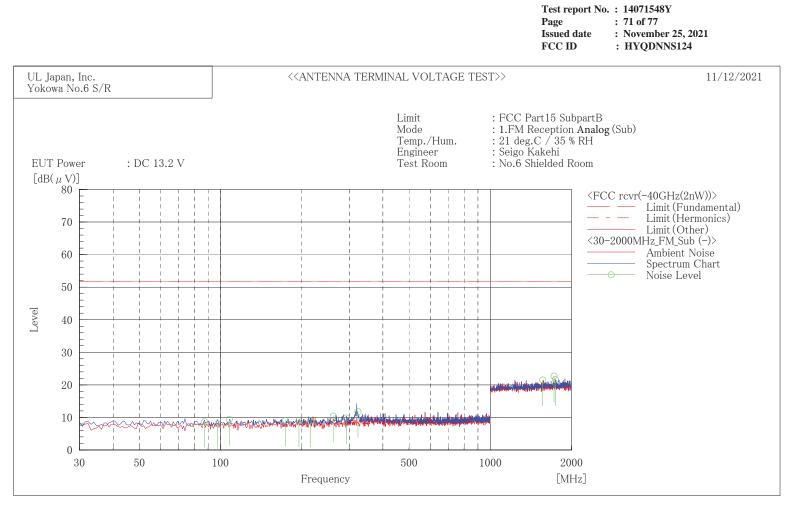
 Test report No.
 : 14071548Y

 Page
 : 70 of 77

 Issued date
 : November 25, 2021

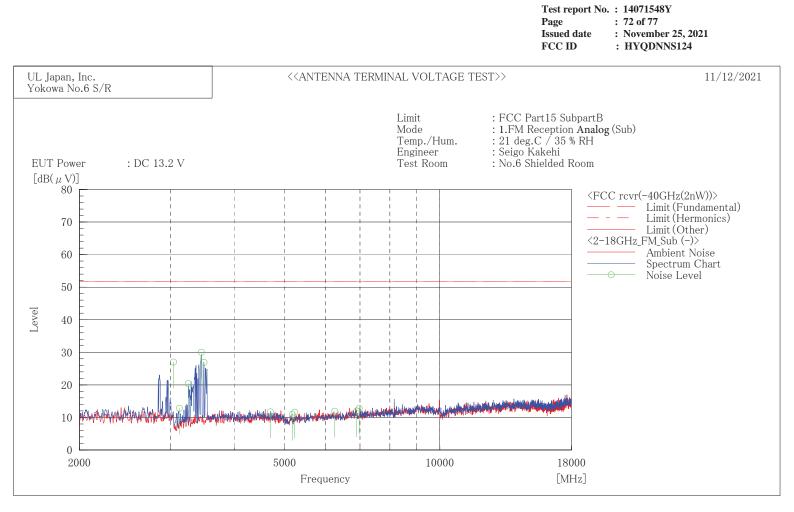
 FCC ID
 : HYQDNNS124


ANTENNA TERMINAL VOLTAGE TEST


UL Japan, Inc. Yokowa EMC Lab. No. 6 Shielded room Date : 2021/11/12

	Da
Mode	: 1.FM Reception Analog (Main)
Order No.	: 14071548
Power	: DC 13.2 V
Temp. / Humi.	: 20 deg. C / 65 % RH

Remarks : -


Limit : FCC Part15 SubpartB

Spectrum Selection (Peak Value)

Ch. [MHz]	No.	Frequency [MHz]	Reading [dB(μV)]	c.f [dB]	Result [dB(µV)]	Limit [dB(µV)]	Margin [dB]
87.0	$\frac{1}{2}$	87.226 97.726	28.1 27.4	-19.4 -19.4	8.7 8.0	51.7 51.7	$43.0 \\ 43.7$
97.5 108.0	2 3	107.781	27.4 28.8	-19.4	8.0 9.4	51.7 51.7	43.7
87.0	4	174.451	28.0	-18.9	9.1	51.7	42.6
97.5	5	195.451	27.8	-18.8	9.0	51.7	42.7
108.0	6	215.562	27.7	-18.7	9.0	51.7	42.7
87.0	7	261.677	28.9	-18.5	10.4	51.7	41.3
97.5	8	293.177	28.2	-18.4	9.8	51.7	41.9
108.0	9	323.344	30.1	-18.3	11.8	51.7	39.9
97.5	10	1563.609	47.3	-25.8	21.5	51.7	30.2
108.0	11	1724.499	48.1	-25.4	22.7	51.7	29.0
87.0	12	1744.512	47.0	-25.4	21.6	51.7	30.1

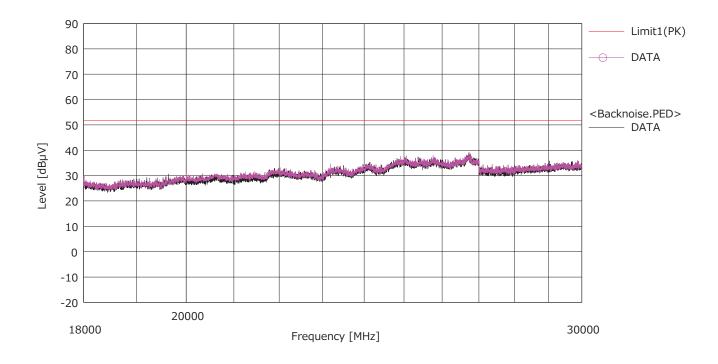
Spectrum Selection (Peak Value)

Ch.	No.	Frequency [MHz]	Reading [dB(µV)]	c.f [dB]	Result [dB(µV)]	Limit [dB(µV)]	Margin [dB]
95.4	1	3046.067	60.5	-33.5	27.0	51.7	24.7
97.5	2	3127.217	46.3	-33.5	12.8	51.7	38.9
101.4	3	3252.067	53.8	-33.4	20.4	51.7	31.3
108.0	4	3448.997	63.1	-33.1	30.0	51.7	21.7
87.0	5	3489.024	60.0	-33.1	26.9	51.7	24.8
97.5	6	4690.826	44.0	-32.3	11.7	51.7	40.0
108.0	7	5173.496	43.2	-32.3	10.9	51.7	40.9
87.0	8	5233.536	43.9	-32.3	11.6	51.7	40.1
97.5	9	6254.434	44.1	-32.2	11.9	51.7	39.8
108.0	10	6897.994	44.2	-32.2	12.0	51.7	39.7
87.0	11	6978.048	45.0	-32.2	12.8	51.7	38.9

 Test report No.
 : 14071548Y

 Page
 : 73 of 77

 Issued date
 : November 25, 2021


 FCC ID
 : HYQDNNS124

ANTENNA TERMINAL VOLTAGE TEST

	UL Japan, Inc. Yokowa EMC Lab. No. 6 Shielded room
	Date : 2021/11/12
Mode	: 1.FM Reception Analog (Sub)
Order No.	: 14071548
Power	: DC 13.2 V
Temp. / Humi.	: 20 deg. C / 65 % RH

Remarks : -

Limit : FCC Part15 SubpartB

 Test report No. : 14071548Y

 Page
 : 74 of 77

 Issued date
 : November 25, 2021

 FCC ID
 : HYQDNNS124

APPENDIX 3

Test Instruments

*Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month. As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item

- **RE : Radiated disturbance**
- AT : Antenna terminal conducted disturbance

Test report No.	:	14071548Y
Page	:	75 of 77
Issued date	:	November 25, 2021
FCC ID	:	HYQDNNS124

Test Item	Local ID	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
AT	OS-35	197080	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	510Q05R-5	2021/03/22	12
AT	DM-06	146650	Tester	SANWA	PC500	7019239	2021/06/02	12
AT	YJM-17	147545	Measure	Baumer	-	-	-	-
AT	APMAT07	146634	Matching Pad	TME	ZT-130	500101	2021/07/02	12
AT	ATS-02	160511	75Ω Cable	ULJapan	-	-	2020/11/16	12
AT	YATCC- C01	198948	Coaxial cable	Huber+Suhner	Sucoflex 104	805849/4	2021/05/18	12
AT	YATCC- C02	198943	Coaxial cable	Huber+Suhner	Sucoflex 104	805251/4	2021/05/18	12
AT	KAF-03	151789	Pre Amplifier	Hewlett Packard	8447D	2944A09947	2021/03/30	12
AT	COTS-YW- AT	146723	Software for Antenna Terminal Voltage	Toyo Corporation	-	-	-	-
AT	SA-15	146760	Spectrum Analyzer	EMC Instruments Corporation	E4440A	MY46187096	2021/09/13	12
AT	AF-04	146600	Pre Amplifier	Hewlett Packard	8449B	3008A01207	2021/07/01	12
RE AT	MSA-03	141884	Spectrum Analyzer	Keysight Technologies Inc	E4448A	MY44020357	2021/03/10	12
RE AT	MCC-55	141326	Microwave Cable	Suhner	SUCOFLEX101	2874(1m) / 2877(5m)	2021/03/02	12
RE AT	MPA-03	141577	Microwave System Power Amplifier	Keysight Technologies Inc	83050A	MY39500610	2021/10/28	12
RE	MHA-03	141504	Horn Antenna 26.5- 40GHz	ЕМСО	3160-10	1150	2021/09/03	12

Test report No.	:	14071548Y
Page	:	76 of 77
Issued date	:	November 25, 2021
FCC ID	:	HYQDNNS124

Test Item	Local ID	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
RE	BM-1A01	146833	Barometer	Sunoh	SBR121	002347	2021/09/09	36
RE	AF-03	146611	Pre Amplifier	Anritsu Corporation	MH648A	M97457	2021/07/08	12
RE	AT-02	146625	Attenuator	Anritsu Corporation	MP721A	6200239014	2021/07/07	12
RE	AT-40	146572	Attenuator	Anritsu Corporation	MP721B	6201150481	2021/07/07	12
RE	CC-2ORC	146806	Yokowa No.2 open coaxial(0.1- 1000MHz)	UL Japan	CC-21,CC-22,CC- 24,CC-25,CC-27,SW- 21,SW-22	YO0201	2021/09/09	12
RE	YOATS- 02(NSA)	146944	Open area test site	JSE	3m、10m	2	2021/09/22	12
RE	BA-14	159920	Biconical Antenna	Schwarzbeck Mess- Elektronik OHG	VHBB 9124 + BBA 9106	9124-1022	2021/03/15	12
RE	LA-15	146964	Logperiodic Antenna	Schwarzbeck Mess- Elektronik OHG	VUSLP9111B	185	2021/03/15	12
RE	TR-12	146893	EMI Test Receiver	Rohde & Schwarz	ESU 26	100413	2021/09/10	12
RE AT	COTS-YW- EMI-TSJ	146923	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
RE	DM-02	146648	Tester	SANWA	PC500	7019227	2021/06/02	12
RE	YJM-21	176229	Measure	Shinwa Sokutei	80814	-	-	-
RE	SC-02	147517	Search Coil	UL Japan	-	-	-	-
RE	OS-36	197155	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	510Q05R-6	2021/03/22	12
RE	AF-06	146601	Pre Amplifier	Keysight Technologies Inc	HP8449B	3008A01672	2020/11/16	12

Test report No.	:	14071548Y
Page	:	77 of 77
Issued date	:	November 25, 2021
FCC ID	:	HYQDNNS124

Test Item	Local ID	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
RE	HA-07	146712	Broad-Band Horn Antenna	Schwarzbeck Mess- Elektronik OHG	BBHA 9120 D	9120D-684	2021/05/14	12
RE	YOATS- 02(SVSWR)	146820	Open area test site	JSE	3m,10m	2	2021/02/04	12
RE	YCC-C01	199203	Microwave Cable	Huber+Suhner	Sucoflex 126EA	802271/126EA	2021/05/18	12
RE	YCC-C02	199204	Microwave Cable	Huber+Suhner	Sucoflex 126EA	802274/126EA	2021/05/18	12
RE	YAJ-01	147319		Intelligent System Engineering Co., Ltd	Antenna Tilt Jig	T-0004	-	-