

Test report No. : 13204004M-A-R1 Page : 1 of 29 **Issued date** FCC ID

: May 18, 2020 : HYQDNNS114

RADIO TEST REPORT

Test Report No.: 13204004M-A-R1

DENSO CORPORATION Applicant

Type of EUT **Cockpit Control Unit**

Model Number of EUT **DNNS114**

FCC ID **HYODNNS114**

Test regulation FCC Part 15 Subpart C: 2019

*WLAN part

Test Items Except Radiated Spurious Emission test :

Test Result Complied (Refer to SECTION 3.2)

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc. 1.
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards. 4.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by 5. any agency of the Federal Government.
- 6. This test report covers Radio technical requirements.
 - It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- 7. The all test items in this test report are conducted by UL Japan, Inc. Kashima EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL 8. Japan has been accredited.
- 9. The information provided from the customer for this report is identified in SECTION 1.
- 10. This report is a revised version of 13204004M-A. 13204004M-A is replaced with this report.

Date of test: March 13, 2020 Representative test engineer: Kazuhiro Ando Engineer Consumer Technology Division

Approved by:

Iomoyuki Yamashita Leader Consumer Technology Division

CERTIFICATE 1266.01

	The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in UL Japan.
\times	There is no testing item of "Non-accreditation".

UL Japan, Inc.

Kashima EMC Lab.

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

 Test report No.
 : 13204004M-A-R1

 Page
 : 2 of 29

 Issued date
 : May 18, 2020

 FCC ID
 : HYQDNNS114

REVISION HISTORY

Original Test Report No.: 13204004M-A

Revision	Test report No.	Date	Page	Contents
			revised	
- (Original)	13204004M-A	April 17, 2020	-	-
1	13204004M-A-R1	May 18, 2020	P.6	Modify The maximum clock frequencies
				used in the EUT from
				1.8 GHz to 40 MHz (Radio part).
1	13204004M-A-R1	May 18, 2020	P.7	Modify the reference test report number
				from 13274648H-A to 13274648H-A-R1
1	13204004M-A-R1	May 18, 2020	P.8	Delete the test item "Co-location & Co-
				operation" from the table in Section 3.3
1	13204004M-A-R1	May 18, 2020	P.10	Modify The WLAN Power Setting from
				11 dBm to 9 dBm.
1	13204004M-A-R1	May 18, 2020	P.10	Modify the Date of the software from
				March 8, 2020 to January 10, 2020
1	13204004M-A-R1	May 18, 2020	P.10	Add A' and A" in a figure. Also connect
				the antenna to the BT/WiFi cables.
1	13204004M-A-R1	May 18, 2020	P.11	Add A' and A" (the WiFi/ASSEMBLY
				Bluetooth antenna) in the table of
				"Description of EUT and Support
				equipment".

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

Test report No. : 13204004M-A-R1
Page : 3 of 29
Issued date : May 18, 2020
FCC ID : HYQDNNS114

Reference: Abbreviations (Including words undescribed in this report)

A2LA	The American Association for Laboratory Accreditation	MCS	Modulation and Coding Scheme
AC	Alternating Current	MRA	Mutual Recognition Arrangement
AFH	Adaptive Frequency Hopping	N/A	Not Applicable
AM	Amplitude Modulation	NIST	National Institute of Standards and Technology
Amp, AMP	Amplifier	NS	No signal detect.
ANSI	American National Standards Institute	NSA	Normalized Site Attenuation
Ant, ANT	Antenna	NVLAP	National Voluntary Laboratory Accreditation Program
AP	Access Point	OBW	Occupied Band Width
ASK	Amplitude Shift Keying	OFDM	Orthogonal Frequency Division Multiplexing
Atten., ATT	Attenuator	P/M	Power meter
AV	Average	PCB	Printed Circuit Board
BPSK	Binary Phase-Shift Keying	PER	Packet Error Rate
BR	Bluetooth Basic Rate	PHY	Physical Layer
BT	Bluetooth	PK	Peak
BT LE	Bluetooth Low Energy	PN	Pseudo random Noise
BW	BandWidth	PRBS	Pseudo-Random Bit Sequence
Cal Int	Calibration Interval	PSD	Power Spectral Density
CCK	Complementary Code Keying	QAM	Quadrature Amplitude Modulation
Ch., CH	Channel	QP	Quasi-Peak
CISPR	Comite International Special des Perturbations Radioelectriques	QPSK	Quadri-Phase Shift Keying
CW	Continuous Wave	RBW	Resolution Band Width
DBPSK	Differential BPSK	RDS	Radio Data System
DC	Direct Current	RE	Radio Equipment
D-factor	Distance factor	RF	Radio Frequency
DFS	Dynamic Frequency Selection	RMS	Root Mean Square
DQPSK	Differential QPSK	RSS	Radio Standards Specifications
DSSS	Direct Sequence Spread Spectrum	Rx	Receiving
EDR	Enhanced Data Rate	SA, S/A	Spectrum Analyzer
EIRP, e.i.r.p.	Equivalent Isotropically Radiated Power	SG	Signal Generator
EMC	ElectroMagnetic Compatibility	SVSWR	Site-Voltage Standing Wave Ratio
EMI	ElectroMagnetic Interference	TR	Test Receiver
EN	European Norm	Tx	Transmitting
ERP, e.r.p.	Effective Radiated Power	VBW	Video BandWidth
EU	European Union	Vert.	Vertical
EUT	Equipment Under Test	WLAN	Wireless LAN
Fac.	Factor		
FCC	Federal Communications Commission		
FHSS	Frequency Hopping Spread Spectrum		
FM	Frequency Modulation		
Freq.	Frequency		
FSK	Frequency Shift Keying		
GFSK	Gaussian Frequency-Shift Keying		
GNSS	Global Navigation Satellite System		
GPS	Global Positioning System		
Hori.	Horizontal		
ICES	Interference-Causing Equipment Standard		
IEC	International Electrotechnical Commission		
IEEE	Institute of Electrical and Electronics Engineers		
IF	Intermediate Frequency		
ILAC	International Laboratory Accreditation Conference		
ISED	Innovation, Science and Economic Development Canada		
ISO	International Organization for Standardization		
JAB	Japan Accreditation Board		
LAN	Local Area Network		

UL Japan, Inc. Kashima EMC Lab.

LIMS

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

Laboratory Information Management System

Test report No.

: 13204004M-A-R1 Page : 4 of 29 : May 18, 2020 : HYQDNNS114 **Issued date** FCC ID

CONTENTS	PAGE
SECTION 1: Customer information	5
SECTION 2: Equipment under test (EUT)	5
SECTION 3: Test specification, procedures & results	
SECTION 4: Operation of EUT during testing	
SECTION 5: Antenna Terminal Conducted Tests	
APPENDIX 1: Test data	
6 dB Bandwidth and 99 % Occupied Bandwidth	
Maximum Peak Output Power	
Average Output Power	21
Conducted Spurious Emission	24
Power Density	25
APPENDIX 2: Test instruments	28
APPENDIX 3: Photographs of test setup	
Antenna Terminal Conducted test	

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

Test report No. : 13204004M-A-R1
Page : 5 of 29
Issued date : May 18, 2020
FCC ID : HYQDNNS114

SECTION 1: Customer information

Company Name : DENSO CORPORATION

Address : 1-1 Showa-cho, Kariya-shi, Aichi ken, 448-8661 Japan

Telephone Number : +81-566-20-3304 Facsimile Number : +81-566-25-4920 Contact Person : Naoto Makino

The information provided from the customer is as follows;

- Applicant, Type of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer information
- SECTION 2: Equipment under test (EUT) other than Receipt Date
- SECTION 4: Operation of EUT during testing
- * The laboratory is exempted from liability of any test results affected from the above information in SECTION 2 and 4.

SECTION 2: Equipment under test (EUT)

2.1 Identification of EUT

Type : Cockpit Control Unit

Model Number : DNNS114

Serial Number : Refer to SECTION 4.2

Rating : DC 13.2 V
Receipt Date : January 8, 2020
Country of Mass-production : JAPAN

Condition : Production prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification : No Modification by the test lab.

2.2 Product Description

Model: DNNS114 (referred to as the EUT in this report) is a Cockpit Control Unit.

UL Japan, Inc. Kashima EMC Lab.

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

Test report No. : 13204004M-A-R1
Page : 6 of 29
Issued date : May 18, 2020
FCC ID : HYQDNNS114

General Specification

The maximum clock frequencies used in the EUT: 40 MHz (Radio part)

Radio Specification

*Wireless LAN and Bluetooth do not transmit simultaneously.

[WLAN (IEEE802.11b/g/n-20)]

[** Litt (ILLLOUZ:IID/S/II Z	()	
	IEEE802.11b	IEEE802.11g/n (20 M band)
Radio Type	Transceiver	
Frequency of operation	2412 MHz - 2462 MHz	
Type of modulation	DSSS	OFDM
	(CCK, DQPSK, DBPSK)	(64QAM, 16QAM, QPSK, BPSK)
Channel spacing	5 MHz	
Antenna type	ASSEMBLY WiFi Antenna	
Antenna Connector type	MHF PLUG	
Antenna Gain	-6.40 dBi (max)	

[Bluetooth (BDR / EDR function)]

Diuctooth (DDIC) EDIC lun	ction)
	Bluetooth Ver.4.2 with EDR function
Radio Type	Transceiver
Frequency of operation	2402 MHz - 2480 MHz
Type of modulation	FHSS (GFSK, π/4-DQPSK, 8-DPSK)
Channel spacing	1 MHz
Antenna type	ASSEMBLY BT Antenna
Antenna Connector type	MHF PLUG
Antenna Gain	-4.52 dBi (max)

[Broadcast]

	AM	FM	XM	RBDS
Radio Type	Receiver			
Frequency of operation	522 kHz –	87.5 MHz –	2333.465 MHz –	87.5 MHz –
	1629 kHz	108.0 MHz	2344.045 MHz	108.0 MHz
Antenna Connector type	GT13	GT13	GT13	GT13

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

^{*}This test report applies to Wireless LAN (2.4 GHz band).

Test report No. : 13204004M-A-R1
Page : 7 of 29
Issued date : May 18, 2020
FCC ID : HYQDNNS114

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification : FCC Part 15 Subpart C

FCC Part 15 final revised on July 19, 2019 and effective August 19, 2019 except 15.258

Title : FCC 47 CFR Part 15 Radio Frequency Device Subpart C Intentional Radiators

Section 15.207 Conducted limits

Section 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz,

and 5725-5850 MHz

3.2 Procedures and results

Item	Test Procedure	Specification	Worst margin	Results	Remarks
Conducted Emission	FCC: ANSI C63.10-2013 6. Standard test methods ISED: RSS-Gen 8.8	FCC: Section 15.207 ISED: RSS-Gen 8.8	-	N/A	*1)
6dB Bandwidth	FCC: KDB 558074 D01 15.247 Meas Guidance v05r02	FCC: Section 15.247(a)(2)		Complied a)	Conducted
	ISED: - FCC: KDB 558074 D01	ISED: RSS-247 5.2(a)			
Maximum Peak Output Power	15.247 Meas Guidance v05r02	FCC: Section 15.247(b)(3)	See data.	Complied b)	Conducted
	ISED: RSS-Gen 6.12	ISED: RSS-247 5.4(d)]		
Power Density	FCC: KDB 558074 D01 15.247 Meas Guidance v05r02	FCC: Section 15.247(e)		Complied c)	Conducted
		ISED: RSS-247 5.2(b)			
Spurious Emission Restricted Band Edges	ISED: - FCC: KDB 558074 D01 15.247 Meas Guidance v05r02	FCC: Section15.247(d)	3.4 dB		(below 30 MHz)
	ISED: RSS-Gen 6.13	ISED: RSS-247 5.5 RSS-Gen 8.9 RSS-Gen 8.10	2090.00 MHz, PK	d)	Radiated (above 30 MHz) *2)

Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.

- a) Refer to APPENDIX 1 (data of 6 dB Bandwidth and 99 % Occupied Bandwidth)
- b) Refer to APPENDIX 1 (data of Maximum Peak Output Power)
- c) Refer to APPENDIX 1 (data of Power Density)
- d) Refer to APPENDIX 1 (data of Conducted Spurious Emission)

Symbols:

Complied The data of this test item has enough margin, more than the measurement uncertainty.

Complied# The data of this test item meets the limits unless the measurement uncertainty is taken into consideration.

FCC Part 15.31 (e)

The EUT provides stable voltage constantly to the wireless transmitter regardless of input voltage.

Instead of a new battery, DC power supply was used for the test.

That does not affect the test result, therefore the EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the vehicle. Therefore, the equipment complies with the antenna requirement of Section 15.203.

UL Japan, Inc.

Kashima EMC Lab.

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

^{*} Also the EUT complies with FCC Part 15 Subpart B.

^{*1)} The test is not applicable since the EUT is not the device that is designed to be connected to the public utility (AC) power line.

^{*2)} Radiated test was selected over 30 MHz based on section 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 8.5 and 8.6, and refer to the test report 13274648H-A-R1.

^{*} In case any questions arise about test procedure, ANSI C63.10: 2013 is also referred.

Test report No. : 13204004M-A-R1
Page : 8 of 29
Issued date : May 18, 2020
FCC ID : HYQDNNS114

3.3 Addition to standard

Item	Test Procedure	Specification	Worst margin	Results	Remarks	
99% Occupied	ISED: RSS-Gen 6.7	ISED: -	N/A	-	Conducted	
Bandwidth				a)		
a) Refer to APPENDIX 1 (data of 6 dB Bandwidth and 99 % Occupied Bandwidth)						

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

There is no applicable rule of uncertainty in this applied standard. Therefore, the results are derived depending on whether laboratory uncertainty is applied.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k=2.

Conducted emission

Frequency range	Required Uncertainty (+/-)	Uncertainty (+/-)
0.15 MHz to 30 MHz	3.4 dB	3.3 dB

Radiated emission

Measurement distance	Frequency range	Required Uncertainty (+/-)	Uncertainty (+/-)
3 m	9 kHz to 30 MHz	Not Defined	2.9 dB
	30 MHz to 200 MHz	6.3 dB	6.1 dB
	200 MHz to 1000 MHz	0.3 dB	6.2 dB
	1 GHz to 6 GHz	5.2 dB	5.0 dB
	6 GHz to 18 GHz	5.5 dB	5.4 dB
	18 GHz to 40 GHz	Not Defined	5.5 dB
1 m	1 GHz to 18 GHz	Not Defined	5.4 dB
	18 GHz to 40 GHz	Not Defined	5.6 dB

Antenna Terminal test

Test Item	Required Uncertainty (+/-)	Uncertainty (+/-)
6 dB Bandwidth / 99 % Occupied Bandwidth	Not Defined	1.6 %
Maximum Output Power	0.75 dB	0.73 dB
Burst Rate	Not Defined	0.256 %
Power Density	4 dB	2.2 dB
Conducted Spurious Emission (9 kHz to 30 MHz)	4 dB	2.2 dB

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

Test report No. : 13204004M-A-R1
Page : 9 of 29
Issued date : May 18, 2020
FCC ID : HYQDNNS114

3.5 Test Location

UL Japan, Inc. Kashima EMC Lab.

1614 Mushihata, Katori-shi, Chiba-ken, 289-0341 JAPAN Telephone: +81 478 88 6500, Facsimile: +81 478 82 3373

A2LA Certificate Number: 1266.01/FCC Test Firm Registration Number: 910230 / ISED Lab Company Number: 4659A

Test site	Width x Depth x	Size of reference ground	Maximum	
	Height (m)	plane (m) / horizontal	measurement	
		conducting plane	distance	
No.1 Open site	6.0 x 5.5 x 2.5	20 x 40	10 m	
No.5 Open site	8.6 x 7.1 x 2.4	18 x 23	10 m	
No.1 Shielded room	5.4 x 4.5 x 2.3	-	-	
No.5 Shielded Room	4.2 x 3.1 x 2.5	-	-	
No.9 Shielded Room	6.1 x 3.6 x 2.8	-	-	
No.6 Semi-anechoic Chamber	8.5 x 5.5 x 5.2	-	3 m	
No.10 Semi-anechoic Chamber	18.4 x 9.9 x 7.7	-	10 m	
No.11 Semi-anechoic Chamber	9.0 x 6.5 x 5.2	-	3 m	
No.1 Measurement room	5.0 x 3.7 x 2.6	-	-	
No.2 Measurement room	4.3 x 4.4 x 2.7	-	-	
No.3 Measurement room	4.5 x 5.3 x 2.7	-	-	

3.6 Test data, Test instruments, and Test set up

Refer to APPENDIX.

UL Japan, Inc. Kashima EMC Lab.

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

Test report No. : 13204004M-A-R1
Page : 10 of 29
Issued date : May 18, 2020
FCC ID : HYQDNNS114

SECTION 4: Operation of EUT during testing

4.1 **Operating Mode(s)**

Test operating mode was determined as follows according to "Section 1 of 6 802.11 a/b/g/n testing - Managing Complex Regulatory Approvals - " of TCB Council Workshop October 2009

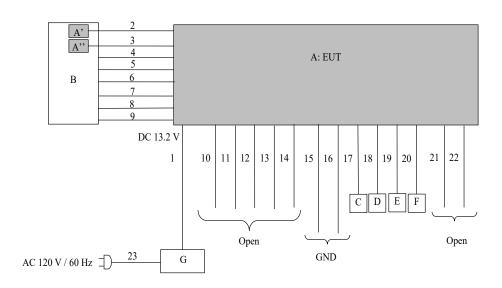
Mode	Remarks*
IEEE 802.11b (11b)	5.5 Mbps, PN9
IEEE 802.11g (11g)	9 Mbps, PN9
IEEE 802.11n SISO 20 MHz BW (11n-20)	MCS 4, PN9

^{*}The worst condition was determined based on the test result of Maximum Peak Output Power (Mid Channel)

Power settings : 9 dBm

Software : MSoC Ver : F41CMM006-007

(Date: January 10, 2020, Storage: EUT Memory)


Any conditions under the normal use do not exceed the condition of setting.

In addition, end users cannot change the settings of the output power of the product.

*The details of Operating mode(s)

Test Item	Operating Mode	Tested frequency
Spurious Emission (Conducted)	11n-20 Tx	2462 MHz
6dB Bandwidth	11b Tx	2412 MHz
Maximum Peak Output Power	11g Tx	2437 MHz
Power Density	11n-20 Tx	2462 MHz
99% Occupied Bandwidth		

4.2 Configuration and peripherals

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

UL Japan, Inc. Kashima EMC Lab.

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

^{*}Power of the EUT was set by the software as follows;

^{*}This setting of software is the worst case.

Test report No. : 13204004M-A-R1
Page : 11 of 29
Issued date : May 18, 2020
FCC ID : HYQDNNS114

Description of EUT and Support equipment

No.	Item	Model number	Serial number	Manufacturer	Remarks
A	Cockpit Control Unit	DNNS114	4687263540001933	DENSO CORPORATION	EUT
			5909016010000000		
A'	WiFi Antenna	2314128-2	*1)	TE Connectivity Ltd.	EUT
A''	ASSEMBLY	2462810-0140	*1)	TE Connectivity Ltd.	EUT
	Bluetooth Antenna				
В	Center Information	DNNS105	1911290020	DENSO CORPORATION	-
	Display				
С	8 Ω Speaker	K50	17	VISATON	-
D	8 Ω Speaker	K50	18	VISATON	-
Е	8 Ω Speaker	K50	19	VISATON	-
F	8 Ω Speaker	K50	20	VISATON	-
G	DC Power Supply	GSV3000	1708192900	DIAMOND ANTENNA	-

^{*1)} The number is under the control of the equipment B.

List of cables used

No.	cables used Name	Length (m)	Shie	-ld	Remarks
110.	Tunic	Length (m)	Cable	Connector	Kemarks
1	DC Cable	1.7	Unshielded	Unshielded	-
2	WiFi Cable	0.2	Shielded	Shielded	-
3	BT Cable	0.2	Shielded	Shielded	-
4	DC + Signal Cable	0.2	Unshielded	Unshielded	-
5	LVDS Cable	0.2	Shielded	Shielded	-
6	FG Cable	0.1	Unshielded	Unshielded	-
7	FG Cable	0.1	Unshielded	Unshielded	-
8	FG Cable	0.1	Unshielded	Unshielded	-
9	FG Cable	0.1	Unshielded	Unshielded	-
10	AM/FM Cable	2.0	Shielded	Shielded	-
11	USB Cable	0.9	Shielded	Shielded	-
12	XM Cable	1.6	Unshielded	Unshielded	-
13	Mic Cable	1.6	Shielded	Shielded	-
14	AUX Box Cable	1.0	Shielded	Shielded	-
15	GND Cable	1.6	Unshielded	Unshielded	-
16	GND Cable	1.6	Unshielded	Unshielded	-
17	Speaker Cable	1.9	Unshielded	Unshielded	-
18	Speaker Cable	1.9	Unshielded	Unshielded	-
19	Speaker Cable	1.9	Unshielded	Unshielded	-
20	Speaker Cable	1.9	Unshielded	Unshielded	-
21	Meter Cable	3.0	Shielded	Shielded	-
22	Meter Cable	1.6	Unshielded	Unshielded	-
23	AC Cable	1.7	Unshielded	Unshielded	-

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

Test report No. : 13204004M-A-R1
Page : 12 of 29
Issued date : May 18, 2020
FCC ID : HYQDNNS114

SECTION 5: Antenna Teminal Conducted Tests

Test Procedure

The tests were made with below setting connected to the antenna port.

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument used
				time			
6dB Bandwidth	50 MHz	100 kHz	300 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99% Occupied Bandwidth *1)	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak	Max Hold	Spectrum Analyzer
	emission skirts	OI OB W	01 KB W		D 1/		D 14
Maximum Peak Output Power	-	-	-	Auto	Peak/ Average *2)	-	Power Meter (Sensor: 160 MHz BW)
Peak Power Density	1.5 times the	3 kHz	9.1 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
	6dB Bandwidth						*3)
Conducted Spurious	9kHz to 150kHz	200 Hz	620 Hz	Auto	Peak	Max Hold	Spectrum Analyzer
Emission *4), *5)	150kHz to 30MHz	10 kHz	30 kHz				

^{*1)} Peak hold was applied as Worst-case measurement.

The test results and limit are rounded off to two decimals place, so some differences might be observed. The equipment and cables were not used for factor 0 dB of the data sheets.

Test data : APPENDIX
Test result : Pass

UL Japan, Inc. Kashima EMC Lab.

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

^{*2)} Reference data

^{*3)} Section 11.10.2 Method PKPSD (peak PSD) of "ANSI C63.10-2013".

^{*4)} In the frequency range below 30MHz, RBW was narrowed to separate the noise contents.

Then, wide-band noise near the limit was checked separately, however the noise was low enough as shown in the chart.

 $^{(9 \}text{ kHz} - 150 \text{ kHz}: \text{RBW} = 200 \text{ Hz}, 150 \text{ kHz} - 30 \text{ MHz}: \text{RBW} = 10 \text{ kHz}).$

^{*5)} The limits in CFR 47, Part 15, Subpart C, paragraph 15.209(a), are identical to those in RSS-Gen section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377 Ohmes. For example, the measurement at frequency 9 kHz resulted in a level of 45.5 dBuV/m, which is equivalent to 45.5 – 51.5 = -6.0 dBuA/m, which has the same margin, 3 dB, to the corresponding RSS-Gen Table 6 limit as it has to 15.209(a) limit.

Test report No. : 13204004M-A-R1
Page : 13 of 29
Issued date : May 18, 2020
FCC ID : HYQDNNS114

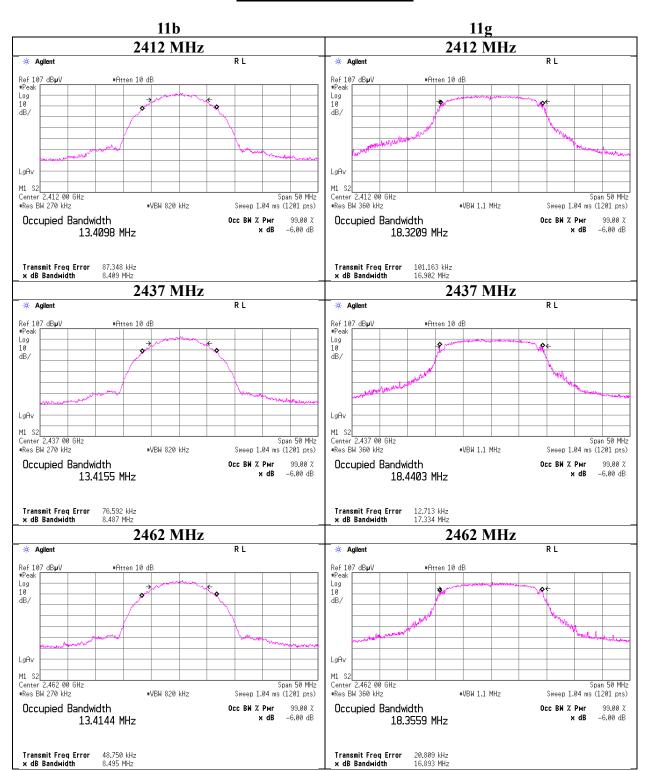
APPENDIX 1: Test data

6 dB Bandwidth and 99 % Occupied Bandwidth

Report No. 13204004M-A-R1

Test place Kashima EMC Lab. No.2 Measurement Room

Date March 13, 2020
Temperature / Humidity 21 deg. C / 47 % RH
Engineer Kazuhiro Ando

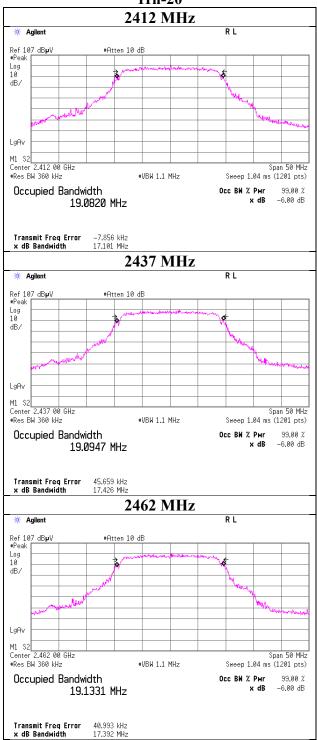

Mode Tx

Mode	Frequency	99% Occupied	6dB Bandwidth	Limit for
		Bandwidth		6dB Bandwidth
	[MHz]	[kHz]	[MHz]	[MHz]
11b	2412	13409.8	9.082	> 0.5000
	2437	13415.5	9.088	> 0.5000
	2462	13414.5	9.088	> 0.5000
11g	2412	18320.9	15.179	> 0.5000
	2437	18440.3	15.179	> 0.5000
	2462	18355.9	15.179	> 0.5000
11n-20	2412	19082.0	16.960	> 0.5000
	2437	19094.7	16.904	> 0.5000
	2462	19133.1	16.970	> 0.5000

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

Test report No. : 13204004M-A-R1
Page : 14 of 29
Issued date : May 18, 2020
FCC ID : HYQDNNS114

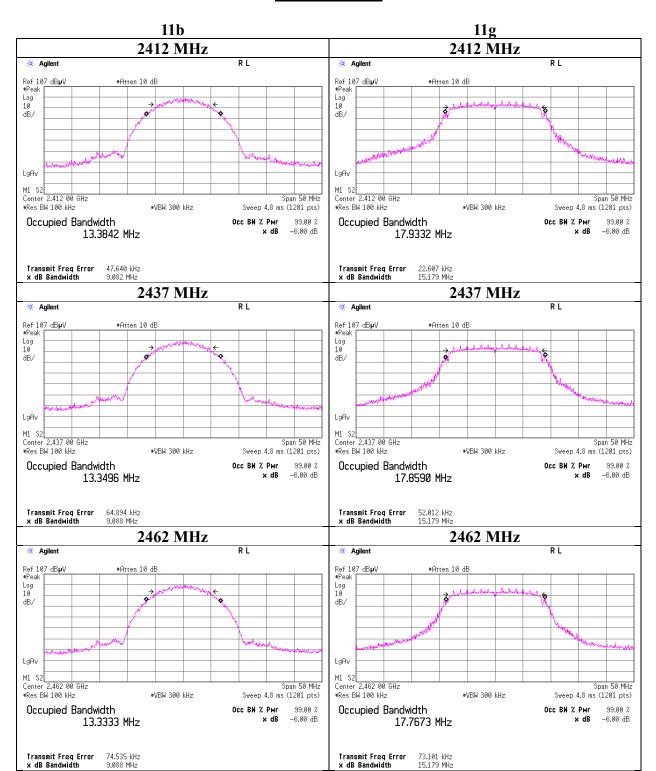
99%Occupied Bandwidth



1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

Test report No. : 13204004M-A-R1
Page : 15 of 29
Issued date : May 18, 2020
FCC ID : HYQDNNS114

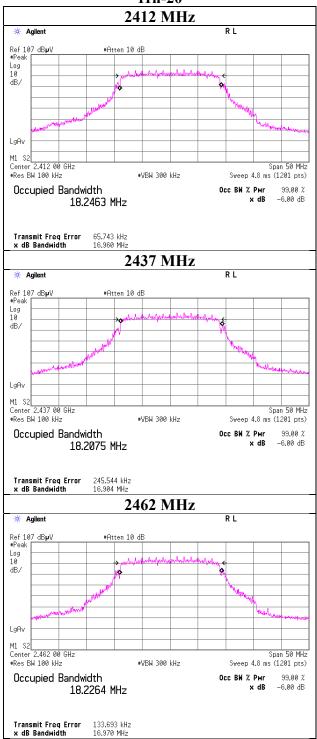
99% Occupied Bandwidth



1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

Test report No. : 13204004M-A-R1
Page : 16 of 29
Issued date : May 18, 2020
FCC ID : HYQDNNS114

6dB Bandwidth



1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

Test report No. : 13204004M-A-R1
Page : 17 of 29
Issued date : May 18, 2020
FCC ID : HYQDNNS114

6dB Bandwidth

11n-20

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

Test report No. : 13204004M-A-R1 Page : 18 of 29 **Issued date** : May 18, 2020 : HYQDNNS114 FCC ID

Maximum Peak Output Power

13204004M-A-R1 Report No.

Test place Kashima EMC Lab. No.2 Measurement Room

March 13, 2020 Date Temperature / Humidity 21 deg. C / 47 % RH Engineer Kazuhiro Ando Mode Tx 11b

					Conducted Power					e.i.r.p. for RSS-247						
Freq.	Reading	Cable	Atten.	Res	Result		Limit		Antenna	Result		Result		Limit		Margin
		Loss	Loss						Gain							
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]		
2412	0.02	1.11	10.04	11.17	13.09	30.00	1000	18.83	-6.40	4.77	3.00	36.02	4000	31.25		
2437	0.52	1.02	10.04	11.58	14.38	30.00	1000	18.42	-6.40	5.18	3.29	36.02	4000	30.84		
2462	0.28	1.07	10.04	11.39	13.77	30.00	1000	18.61	-6.40	4.99	3.15	36.02	4000	31.03		

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

e.i.r.p. Result = Conducted Power Result + Antenna Gain
*The equipment and cables were not used for factor 0 dB of the data sheets.

Rate	Reading	Remark
[Mbps]	[dBm]	
1	0.46	
2	0.50	
5.5	0.52	*
11	0.45	

^{*:} Worst Rate

All comparison were carried out on same frequency and measurement factors.

UL Japan, Inc. Kashima EMC Lab.

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

Test report No. : 13204004M-A-R1
Page : 19 of 29
Issued date : May 18, 2020
FCC ID : HYQDNNS114

Maximum Peak Output Power

Report No. 13204004M-A-R1

Test place Kashima EMC Lab. No.2 Measurement Room

Date March 13, 2020
Temperature / Humidity 21 deg. C / 47 % RH
Engineer Kazuhiro Ando
Mode Tx 11g

			Conducted Power					e.i.r.p. for RSS-247						
Freq.	Reading	Cable	Atten.	Result		Liı	Limit		Antenna	Result		Limit		Margin
		Loss	Loss						Gain					
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]
2412	5.99	1.11	10.04	17.14	51.75	30.00	1000	12.86	-6.40	10.74	11.85	36.02	4000	25.28
2437	6.14	1.02	10.04	17.20	52.46	30.00	1000	12.80	-6.40	10.80	12.02	36.02	4000	25.22
2462	6.24	1.07	10.04	17.35	54.30	30.00	1000	12.65	-6.40	10.95	12.44	36.02	4000	25.07

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

e.i.r.p. Result = Conducted Power Result + Antenna Gain

^{*}The equipment and cables were not used for factor 0 dB of the data sheets.

Rate	Reading	Remark
[Mbps]	[dBm]	
6	6.11	
9	6.14	*
12	6.02	
18	5.71	
24	5.68	
36	5.92	
48	6.12	
54	5.99	

^{*:} Worst Rate

All comparison were carried out on same frequency and measurement factors.

UL Japan, Inc. Kashima EMC Lab.

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

 Test report No.
 : 13204004M-A-R1

 Page
 : 20 of 29

 Issued date
 : May 18, 2020

 FCC ID
 : HYQDNNS114

Maximum Peak Output Power

Report No. 13204004M-A-R1

Test place Kashima EMC Lab. No.2 Measurement Room

Date March 13, 2020
Temperature / Humidity 21 deg. C / 47 % RH
Engineer Kazuhiro Ando
Mode Tx 11n-20

					Conducted Power					e.i.r.p. for RSS-247						
Freq.	Reading	Cable	Atten.	Result		Limit		Margin	Antenna	Result		Limit		Margin		
		Loss	Loss						Gain							
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]		
2412	5.74	1.11	10.04	16.89	48.85	30.00	1000	13.11	-6.40	10.49	11.19	36.02	4000	25.53		
2437	6.27	1.02	10.04	17.33	54.05	30.00	1000	12.67	-6.40	10.93	12.38	36.02	4000	25.09		
2462	6.31	1.07	10.04	17.42	55.18	30.00	1000	12.58	-6.40	11.02	12.64	36.02	4000	25.00		

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

e.i.r.p. Result = Conducted Power Result + Antenna Gain

^{*}The equipment and cables were not used for factor 0 dB of the data sheets.

MCS	Reading	Remark
Number		
	[dBm]	
0	6.22	
1	6.16	
2	5.84	
3	6.20	
4	6.27	*
5	6.14	
6	5.71	
7	6.09	

^{*:} Worst Rate

All comparison were carried out on same frequency and measurement factors.

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

Test report No. : 13204004M-A-R1
Page : 21 of 29
Issued date : May 18, 2020
FCC ID : HYQDNNS114

Average Output Power (Reference data for RF Exposure)

Report No. 13204004M-A-R1

Test place Kashima EMC Lab. No.2 Measurement Room

Date March 13, 2020
Temperature / Humidity 21 deg. C / 47 % RH
Engineer Kazuhiro Ando

Mode Tx

11b **1 Mbps**

Freq.	Reading	Cable	Atten.	Result		Duty	Re	esult
		Loss	Loss	(Time average)		factor	(Burst pov	ver average)
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]
2412	-2.46	1.11	10.04	8.69	7.39	0.13	8.82	7.62
2437	-2.21	1.02	10.04	8.85	7.67	0.13	8.98	7.90
2462	-2.34	1.07	10.04	8.77	7.53	0.13	8.90	7.76

11g **6 Mbps**

	0 1.12 ps							
Freq.	Reading	Cable	Atten.	Result		Duty	Ro	esult
		Loss	Loss	(Time average)		factor	(Burst pov	ver average)
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]
2412	-3.63	1.11	10.04	7.52	5.65	0.81	8.33	6.81
2437	-3.43	1.02	10.04	7.63	5.79	0.81	8.44	6.98
2462	-3.25	1.07	10.04	7.86	6.11	0.81	8.67	7.36

11n-20 MCS 0

Freq.	Reading	Cable	Atten.	Result		Duty	Re	esult
		Loss	Loss	(Time average)		factor	(Burst pov	ver average)
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]
2412	-3.62	1.11	10.04	7.53	5.66	0.78	8.31	6.77
2437	-3.42	1.02	10.04	7.64	5.81	0.78	8.42	6.95
2462	-3.31	1.07	10.04	7.80	6.02	0.78	8.58	7.21

Sample Calculation:

Result (Time average) = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss Result (Burst power average) = Time average + Duty factor

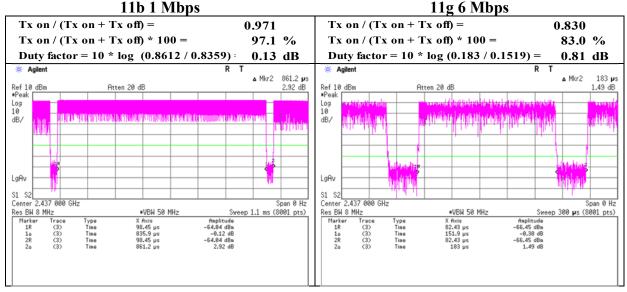
The average output power was measured with the lowest order modulation and lowest data rate configuration in each IEEE 802.11 mode based on KDB 248227 D01.

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

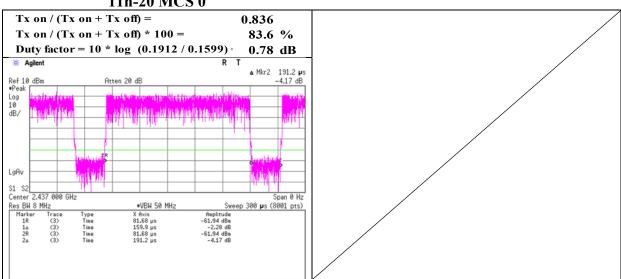
^{*}The equipment and cables were not used for factor 0 dB of the data sheets.

: 13204004M-A-R1 Test report No. Page : 22 of 29 **Issued date** : May 18, 2020 FCC ID : HYQDNNS114

Burst rate confirmation (for average output power)


Report No. 13204004M-A-R1

Test place Kashima EMC Lab. No.2 Measurement Room


March 13, 2020 Date Temperature / Humidity 21 deg. C / 47 % RH Engineer Kazuhiro Ando

Mode Tx

Lowest Rate

11n-20 MCS 0

^{*} Since the burst rate is not different between the channels, the data has been obtained on the representative channel.

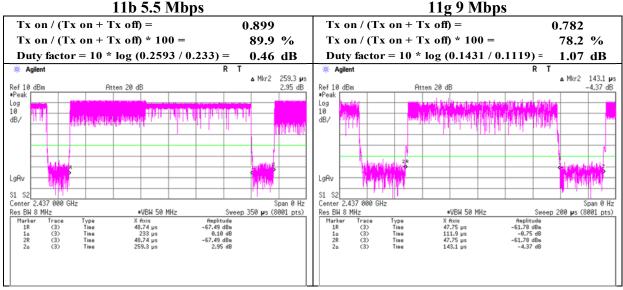
UL Japan, Inc. Kashima EMC Lab.

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

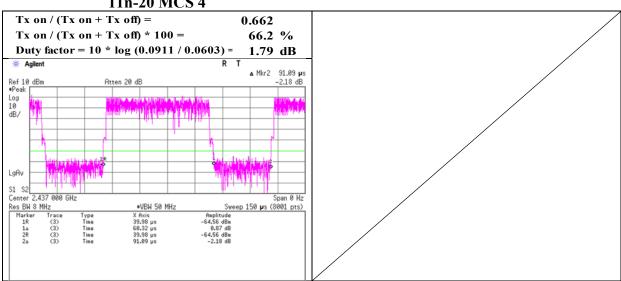
: 13204004M-A-R1 Test report No. Page : 23 of 29 **Issued date** : May 18, 2020 FCC ID : HYQDNNS114

Burst rate confirmation (for radiated spurious emission)

Report No. 13204004M-A-R1


Test place Kashima EMC Lab. No.2 Measurement Room

March 13, 2020 Date Temperature / Humidity 21 deg. C / 47 % RH Engineer Kazuhiro Ando


Mode Tx

Worst Rate

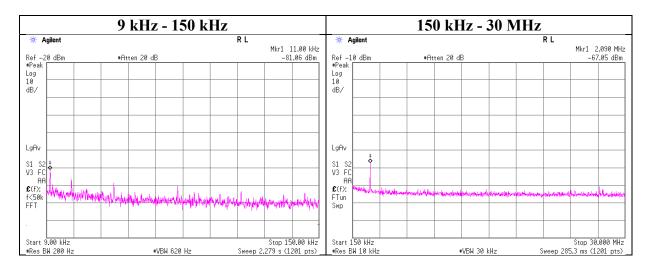
11b 5.5 Mbps

11n-20 MCS 4

^{*} Since the burst rate is not different between the channels, the data has been obtained on the representative channel.

UL Japan, Inc. Kashima EMC Lab.

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan


Test report No. : 13204004M-A-R1
Page : 24 of 29
Issued date : May 18, 2020
FCC ID : HYQDNNS114

Conducted Spurious Emission

Report No. 13204004M-A-R1

Test place Kashima EMC Lab. No.2 Measurement Room

Date March 13, 2020
Temperature / Humidity 21 deg. C / 47 % RH
Engineer Kazuhiro Ando
Mode Tx 11n-20 2462 MHz

Frequency	Reading	Cable	Attenuator	Antenna	N	EIRP	Distance	Ground	Е	Limit	Margin	Remark
		Loss	Loss	Gain*	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
11.00	-81.1	0.01	9.9	2.0	1	-69.1	300	6.0	-7.9	46.7	54.6	
2090.00	-67.1	0.02	9.9	2.0	1	-55.1	30	6.0	26.2	29.5	3.4	

 $E \left[dBuV/m \right] = EIRP \left[dBm \right] - 20 \log \left(Distance \left[m \right] \right) + Ground \ bounce \left[dB \right] + 104.8 \left[dBuV/m \right]$

EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N)

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

N: Number of output

^{*2.0} dBi was applied to the test result based on ANSI C63.10 since antenna gain was less than 2.0 dBi.

 Test report No.
 : 13204004M-A-R1

 Page
 : 25 of 29

 Issued date
 : May 18, 2020

 FCC ID
 : HYQDNNS114

Power Density

Report No. 13204004M-A-R1

Test place Kashima EMC Lab. No.2 Measurement Room

Date March 13, 2020
Temperature / Humidity 21 deg. C / 47 % RH
Engineer Kazuhiro Ando

Mode Tx

11b

110						
Freq.	Reading	Cable	Atten.	Result	Limit	Margin
		Loss	Loss			
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[dBm]	[dB]
2412	-20.94	1.11	10.04	-9.79	8.00	17.79
2437	-20.26	1.02	10.04	-9.21	8.00	17.21
2462	-19.77	1.07	10.04	-8.66	8.00	16.66

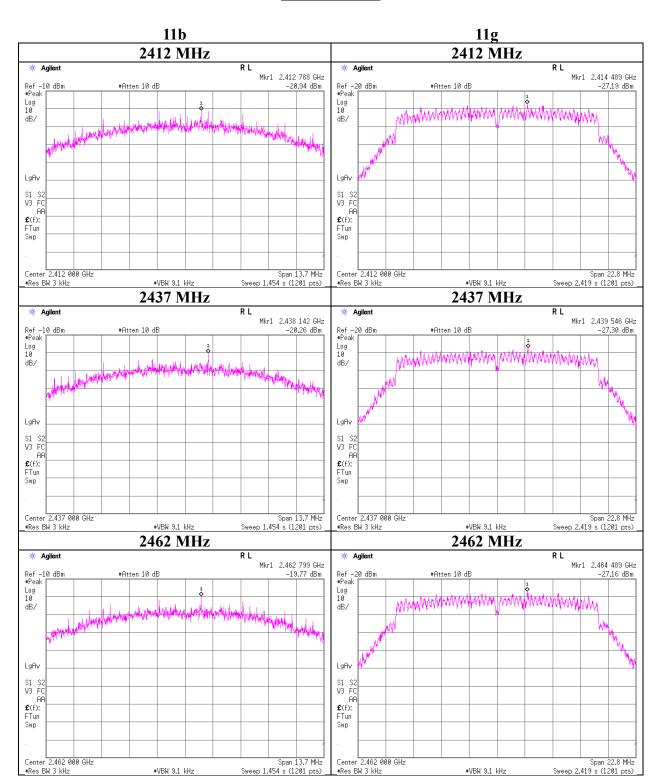
11g

115						
Freq.	Reading	Cable	Atten.	Result	Limit	Margin
		Loss	Loss			
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[dBm]	[dB]
2412	-27.19	1.11	10.04	-16.04	8.00	24.04
2437	-27.30	1.02	10.04	-16.24	8.00	24.24
2462	-27.16	1.07	10.04	-16.05	8.00	24.05

11n-20

Freq.	Reading	Cable	Atten.	Result	Limit	Margin
		Loss	Loss			
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[dBm]	[dB]
2412	-26.01	1.11	10.04	-14.86	8.00	22.86
2437	-25.64	1.02	10.04	-14.58	8.00	22.58
2462	-25.42	1.07	10.04	-14.31	8.00	22.31

Sample Calculation:

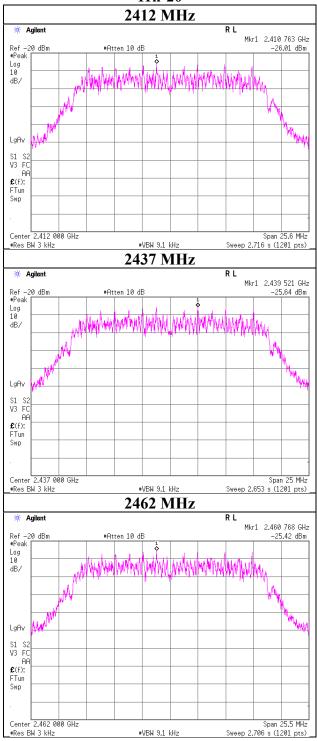

 $Result = Reading + Cable\ Loss\ (including\ the\ cable(s)\ customer\ supplied) + Attenuator\ Loss$

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

^{*}The equipment and cables were not used for factor 0 dB of the data sheets.

Test report No. : 13204004M-A-R1
Page : 26 of 29
Issued date : May 18, 2020
FCC ID : HYQDNNS114

Power Density



1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

Test report No. : 13204004M-A-R1
Page : 27 of 29
Issued date : May 18, 2020
FCC ID : HYQDNNS114

Power Density

11n-20

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

Test report No. : 13204004M-A-R1
Page : 28 of 29
Issued date : May 18, 2020
FCC ID : HYQDNNS114

APPENDIX 2: Test instruments

Test equipment

Test Item	Local ID	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
AT	CSA-07	143643	Spectrum Analyzer	Keysight Technologies Inc	E4448A	MY52490024	2019/06/01	12
AT	CAT10-17	143023	10dB Fixed Atten.	Weinschel - API	54A-10	56251	2019/05/23	12
				Technologies Corp				
AT	CCC-W01	143109	Micro Wave Cable	Suhner	SUCOFLEX102	MY3662/2	2019/05/23	12
AT	CPM-16	143588	Peak Power Analyzer	Keysight Technologies Inc	8990B	MY51000276	2019/06/21	12
AT	CPSO-24	143606	Power Sensor	Keysight Technologies Inc	N1923A	MY54070024	2019/06/21	12
AT	CTS-18	144220	Digital Multimeter	Fluke Corporation	87-3	85220051	-	-
AT	COS-02	143534	Temperature &	A&D	AD-5681	6878345	2019/07/24	12
			Humidity Indicator					

^{*}Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item: AT: Antenna Terminal Conducted test

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan