

RADIO TEST REPORT

Test Report No. 15463357H-A

Customer	DENSO CORPORATION
Description of EUT	Millimeter Wave Radar Sensor
Model Number of EUT	DNMWR019EDR
FCC ID	HYQDNMWR019EDR
Test Regulation	FCC Part 95 Subpart M
Test Result	Complied
Issue Date	November 5, 2024
Remarks	-

Representative test engineer	Approved by
Y. Yamazaki	Ryata Yamanika
Yuichiro Yamazaki Engineer	Ryota Yamanaka Engineer
	ACCREDITED CERTIFICATE 5107.02
	is outside the accreditation scopes in UL Japan, Inc.
There is no testing item of "Non-accreditation".	

Report Cover Page - Form-ULID-003532 (DCS:13-EM-F0429) Issue# 23.0

Test Report No. 15463357H-A Page 2 of 53

ANNOUNCEMENT

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested. (Laboratory was not involved in sampling.)
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers Radio technical requirements.
 It does not cover administrative issues such as Manual or non-Radio test related Requirements.
 (if applicable)
- The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- The information provided by the customer for this report is identified in SECTION 1.
- The laboratory is not responsible for information provided by the customer which can impact the validity of the results.
- For test report(s) referred in this report, the latest version (including any revisions) is always referred.

REVISION HISTORY

Original Test Report No.: 15463357H-A

Revision	Test Report No.	Date	Page Revised Contents
- (Original)	15463357H-A	November 5, 2024	-

Test Report No. 15463357H-A Page 3 of 53

Reference: Abbreviations (Including words undescribed in this report)

A2LA	The American Association for Laboratory Accreditation	ICES	Interference-Causing Equipment Standard
AC	Alternating Current	IEC	International Electrotechnical Commission
AFH	Adaptive Frequency Hopping	IEEE	Institute of Electrical and Electronics Engineers
AM	Amplitude Modulation	IF	Intermediate Frequency
Amp, AMP	Amplifier	ILAC	International Laboratory Accreditation Conference
ANSI	American National Standards Institute	ISED	Innovation, Science and Economic Development Canada
Ant, ANT	Antenna	ISO	International Organization for Standardization
AP	Access Point	JAB	Japan Accreditation Board
ASK	Amplitude Shift Keying	LAN	Local Area Network
Atten., ATT	Attenuator	LIMS	Laboratory Information Management System
AV	Average	MCS	Modulation and Coding Scheme
BPSK	Binary Phase-Shift Keying	MRA	Mutual Recognition Arrangement
BR	Bluetooth Basic Rate	N/A	Not Applicable
BT	Bluetooth	NIST	National Institute of Standards and Technology
BT LE	Bluetooth Low Energy	NS	No signal detect.
BW	BandWidth	NSA	Normalized Site Attenuation
Cal Int	Calibration Interval	NVLAP	National Voluntary Laboratory Accreditation Program
CCK	Complementary Code Keying	OBW	Occupied Band Width
Ch., CH	Channel	OFDM	Orthogonal Frequency Division Multiplexing
CISPR	Comite International Special des Perturbations Radioelectriques	P/M	Power meter
CW	Continuous Wave	PCB	Printed Circuit Board
DBPSK	Differential BPSK	PER	Packet Error Rate
DC	Direct Current	PHY	Physical Layer
D-factor	Distance factor	PK	Peak
DFS	Dynamic Frequency Selection	PN	Pseudo random Noise
DQPSK	Differential QPSK	PRBS	Pseudo-Random Bit Sequence
DSSS	Direct Sequence Spread Spectrum	PSD	Power Spectral Density
EDR	Enhanced Data Rate	QAM	Quadrature Amplitude Modulation
EIRP, e.i.r.p.	Equivalent Isotropically Radiated Power	QP	Quasi-Peak
EMC	ElectroMagnetic Compatibility	QPSK	Quadri-Phase Shift Keying
EMI	ElectroMagnetic Interference	RBW	Resolution Band Width
EN	European Norm	RDS	Radio Data System
ERP, e.r.p.	Effective Radiated Power	RE	Radio Equipment
EU	European Union	RF	Radio Frequency
EUT	Equipment Under Test	RMS	Root Mean Square
Fac.	Factor	RSS	Radio Standards Specifications
FCC	Federal Communications Commission	Rx	Receiving
FHSS	Frequency Hopping Spread Spectrum	SA, S/A	Spectrum Analyzer
FM	Frequency Modulation	SG	Signal Generator
Freq.	Frequency	SVSWR	Site-Voltage Standing Wave Ratio
FSK	Frequency Shift Keying	TR	Test Receiver
GFSK	Gaussian Frequency-Shift Keying	Tx	Transmitting
GNSS	Global Navigation Satellite System	VBW	Video BandWidth
	,		
GPS	Global Positioning System	Vert.	Vertical

CONTENTS	PAGE
SECTION 1: Customer Information	5
SECTION 2: Equipment Under Test (EUT)	5
SECTION 3: Test specification, procedures & results	6
SECTION 4: Operation of EUT during testing	9
SECTION 5: Radiated Spurious Emission	
SECTION 6: Frequency Stability	17
APPENDIX 1: Test data	
Occupied bandwidth	18
Radiated Power	
Modulation characteristics	
Field strength of spurious radiation	
Frequency Stability	
APPENDIX 2: Test instruments	
APPENDIX 3: Photographs of test setup	48
Radiated Power	
Field strength of spurious radiation	
Worst Case Position	
Frequency Stability	

Test Report No. 15463357H-A Page 5 of 53

SECTION 1: Customer Information

Company Name	DENSO CORPORATION
Address	1-1, Showa-cho, Kariya-shi, Aichi-ken, 448-8661, Japan
Telephone Number	+81-566-56-0312
Contact Person	Hideshi Izuhara

The information provided by the customer is as follows;

- Customer, Description of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer Information
- SECTION 2: Equipment Under Test (EUT) other than the Receipt Date and Test Date
- SECTION 4: Operation of EUT during testing

SECTION 2: Equipment Under Test (EUT)

2.1 Identification of EUT

Description	Millimeter Wave Radar Sensor	
Model Number	DNMWR019EDR	
Serial Number	Refer to SECTION 4.2	
Condition	Pre-production	
	(Not for Sale: This sample is equivalent to production version.)	
Modification	No Modification by the test lab	
Receipt Date	September 25, 2024	
Test Date	September 26 to October 2, 2024	

2.2 Product Description

General Specification

Rating	DC 12 V (Car battery), DC 5.8 V to 16 V (Operating range)
Operating temperature	-40 deg. C to 85 deg. C

Radio Specification

Equipment Type	Transceiver
Frequency of Operation	76 GHz to 77 GHz
	(FCM 1: 76.3 GHz, 76.7 GHz / FCM 2: 76.5 GHz / Tx BIST: 76.5 GHz)
Bandwidth	FCM 1: 500 MHz (Max) / FCM 2: 980 MHz (Max) / Tx BIST: 300 MHz (Max)
Type of Modulation	Frequency Modulation (FCM: Fast Chirp Modulation)
Emission Classification	QXN
Antenna Gain	FCM 1: 16.11 dBi (typ) / FCM 2: 16.48 dBi (typ) / Tx BIST: 14.63 dBi (typ)
Steerable Antenna	Fixed beam
Usage location	Vehicle-mounted

Test Report No. 15463357H-A Page 6 of 53

SECTION 3: Test specification, procedures & results

Test Specification 3.1

Test	FCC Part 95 Subpart M
Specification	The latest version on the first day of the testing period
Title	FCC 47CFR Part95 – PERSONAL RADIO SERVICES
	Subpart M – The 76-81 GHz Band Radar Service

Procedures and results 3.2

Item	Test Procedure	Specification	Worst margin	Results	Remarks
Conducted emission	FCC: N/A	FCC: N/A	N/A	N/A	*1)
Occupied bandwidth	FCC: ANSI C63.26-2015 5.4 Occupied bandwidth	FCC: Section 2.1049	See data.	Complied	Radiated
Radiated Power Modulation characteristics	FCC: ANSI C63.26-2015 5.5 Radiated emissions testing ANSI C63.10-2013 6. Standard test methods 9. Procedures for testing millimeter-wave systems	FCC: Section 95.3367 Section 2.1046 Section 2.1047		Complied	Radiated
Field strength of spurious radiation	FCC: ANSI C63.26-2015 5.5 Radiated emissions testing	FCC: Section 95.3379 (a) Section 2.1053 Section 2.1057	20.9 dB 53.7 MHz, Vertical, QP	Complied	Radiated
Frequency stability	FCC: ANSI C63.26-2015 5.6 Frequency stability testing	FCC: Section 95.3379 (b) Section 2.1055	See data.	Complied	Radiated

Note: UL Japan, Inc.'s EMI Work Procedures: Work Instructions-ULID-003591 and Work Instructions-ULID-003593. In case any questions arise about test procedure, ANSI C63.10-2013, ANSI C63.26-2015 and KDB653005 are also referred.

<u>Supplied Voltage Information</u>
This EUT provides stable voltage constantly to RF Module regardless of input voltage.

Antenna Information

The antenna is not removable from the EUT.

3.3 Addition to standard

No addition, exclusion nor deviation has been made from the standard.

^{*1)} The test is not applicable since the EUT is not the device that is designed to be connected to the public utility (AC) power line.

Test Report No. 15463357H-A Page 7 of 53

3.4 Uncertainty

Measurement uncertainty is not taken into account when stating conformity with a specified requirement. Note: When margins obtained from test results are less than the measurement uncertainty, the test results may exceed the limit.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2.

Radiated emission

Measurement distance	Frequency range		Unit	Calculated Uncertainty (+/-)
3 m	9 kHz to 30 MHz	9 kHz to 30 MHz		3.3
10 m			dB	3.1
3 m	30 MHz to 200 MHz	Horizontal	dB	5.0
		Vertical	dB	5.0
	200 MHz to 1000 MHz	Horizontal	dB	5.2
		Vertical	dB	6.2
10 m	30 MHz to 200 MHz	Horizontal	dB	5.5
		Vertical	dB	5.4
	200 MHz to 1000 MHz	Horizontal	dB	5.5
		Vertical	dB	5.5
3 m	1 GHz to 6 GHz	1 GHz to 6 GHz		5.1
	6 GHz to 18 GHz		dB	5.4
1 m	10 GHz to 18 GHz		dB	5.4
	18 GHz to 26.5 GHz		dB	5.3
	26.5 GHz to 40 GHz	26.5 GHz to 40 GHz		4.8
0.5 m	26.5 GHz to 40 GHz	26.5 GHz to 40 GHz		5.0
>= 0.5 m	40 GHz to 50 GHz	40 GHz to 50 GHz		4.3
	50 GHz to 75 GHz		dB	5.9
	75 GHz to 110 GHz		dB	5.7
>= 3.8 cm	110 GHz to 170 GHz	<u>-</u>	dB	5.8*
>= 2.5 cm	170 GHz to 260 GHz		dB	5.2*

^{*}under consideration about Uncertainty for testing at 1 cm distance

Radiated emission (with Block downconverter)

Measurement distance	Frequency range	Uncertainty (+/-)
>= 0.5 m	75 GHz to 83 GHz	3.4 dB*

^{*} This value was used for 75 GHz - 83 GHz in this report.

Test Report No. 15463357H-A Page 8 of 53

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 Japan

Telephone: +81-596-24-8999

A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 884919

ISED Lab Company Number: 2973C / CAB identifier: JP0002

Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	Maximum measurement distance
No.1 semi-anechoic chamber	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.10 shielded room	3.8 x 2.8 x 2.8	3.8 x 2.8	-	-
No.11 measurement room	4.0 x 3.4 x 2.5	N/A	-	-
No.12 measurement room	2.6 x 3.4 x 2.5	N/A	-	-
Large Chamber	16.9 x 22.1 x 10.17	16.9 x 22.1	-	10 m
Small Chamber	5.3 x 6.69 x 3.59	5.3 x 6.69	-	-

3.6 Test data, Test instruments, and Test set up

Refer to APPENDIX.

Test Report No. 15463357H-A Page 9 of 53

SECTION 4: Operation of EUT during testing

4.1 Operating Mode(s)

Mode	Test Item
Transmitting mode (Tx)	- Occupied bandwidth
- Mode 1	- Radiated Power
 FCM 1 Low (76.3 GHz) 	
 FCM 1 High (76.7 GHz) 	
• FCM 2	
Transmitting mode (Tx)	- Modulation characteristics,
- Mode 1	
 FCM 1 Low (76.3 GHz) 	
• FCM 2	
Transmitting mode (Tx)	- Occupied bandwidth
- Mode 2	- Radiated Power
 FCM 1 Low (76.3 GHz) 	
 FCM 1 High (76.7 GHz) 	
• FCM 2	
Transmitting mode (Tx)	- Modulation characteristics
- Mode 2	
 FCM 1 Low (76.3 GHz) 	
• FCM 2	
Transmitting mode (Tx)*1), *2)	- Occupied bandwidth
Tx_BIST1	- Radiated Power
Tx_BIST2	- Modulation characteristics
 Tx_BIST3 	
Normal operating mode	- Field strength of spurious radiation
- Mode 1	- Frequency Stability
- Mode 2	NM4 FCM2 and Tv. DICT modulation name in account within an

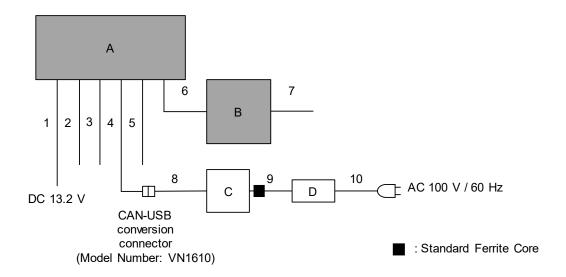
- In actual operation, there are FCM1, FCM2 and Tx_BIST modulation parts in sequence within one transmission burst.
- First, the EUT transmits FCM1 modulation. (FCM1 is switched the transmission frequency band for each period at random.)
- After that, FCM2 is transmitted immediately.
- After FCM2 transmission, Tx BIST is transmitted immediately. (Tx_BIST is repeated in the order to Tx_BIST 1, Tx_BIST 2, and Tx_BIST 3 at every cycle.)
- *1) Tx_BIST is common to Mode 1 and Mode 2.
- *2) Tx_BIST transmits simultaneously in the following combinations:
 - Tx BIST1: ch 1 & ch 2
 - Tx_BIST2: ch 2 & ch 3
 - Tx_BIST3: ch 3 & ch 4

*Power of the EUT was set by the software as follows; Power Setting: Mode 1: 29.34 dBm (EIRP)

Mode 2: 24.24 dBm (EIRP)

Software: DF1 mwr gen7 0078 t7864321 with insp

(Date: 2024.09.26, Storage location: EUT memory)


Any conditions under the normal use do not exceed the condition of setting.

In addition, end users cannot change the settings of the output power of the product.

^{*}This setting of software is the worst case.

Test Report No. 15463357H-A Page 10 of 53

4.2 Configuration and peripherals

- * Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.
- * The test voltage was referred to KDB653005 5.1(e) (FCC), and the test was performed with DC 13.2 V (1.1 times of nominal voltage DC 12 V).

Description of EUT and Support equipment

No.	Item	Model number	Serial number	Manufacturer	Remarks
Α	Millimeter Wave	DNMWR019EDR	CS_2.1W_4718	DENSO CORPORATION	EUT
	Radar Sensor				
В	AT-BOX	MR7-AT3	086	DENSO CORPORATION	EUT
С	Laptop PC	ThinkPad P17 Gen 2	PF3YX2ZK	LENOVO	-
D	AC Adapter	ADL170SLC2A	8SSA10R16885L1	LENOVO	-
			CZ98V062M		

List of cables used

No.	Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	DC Cable	5.10	Unshielded	Unshielded	-
2	Signal Cable	5.10	Unshielded	Unshielded	=
3	Signal Cable	5.10	Unshielded	Unshielded	-
4	CAN1 Cable	5.10	Unshielded	Unshielded	-
5	CAN2 Cable	5.10	Unshielded	Unshielded	-
6	USB Cable	0.95	Shielded	Shielded	-
7	USB Cable	0.95	Shielded	Shielded	-
8	USB Cable	1.00	Shielded	Shielded	-
9	DC Cable	1.80	Unshielded	Unshielded	-
10	AC Cable	0.90	Unshielded	Unshielded	-

Test Report No. 15463357H-A Page 11 of 53

SECTION 5: Radiated Spurious Emission

Test Procedure

[For below 30 MHz]

The EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane.

The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane.

The loop antenna was fixed height at 1.0 m.

The EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity.

The measurements were performed for vertical polarization (antenna angle: 0 deg., 45 deg., 90 deg.,

135 deg., and 180 deg.) and horizontal polarization.

*Refer to Figure 1 about Direction of the Loop Antenna.

[For above 30 MHz, up to 1 GHz]

The EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

The height of the measuring antenna varied between 1 m and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

[For above 1 GHz, up to 40 GHz]

The EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 1.5 m above the conducting ground plane.

The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane.

The height of the measuring antenna varied between 1 m and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

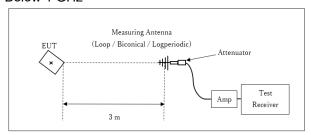
Test antenna was aimed at the EUT for receiving the maximum signal and always kept within the illumination area of the 3 dB beamwidth of the antenna.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer.

The test was made with the detector (RBW/VBW) in the following table.

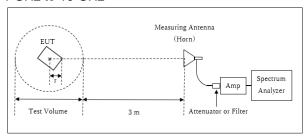
Test Antennas are used as below;


Frequency	Below 30 MHz	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Loop	Biconical	Logperiodic	Horn

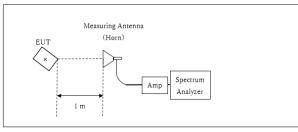
Frequency	9 kHz to 150 kHz	150 kHz to 30 MHz	30 MHz to 1 GHz	1 GHz to 40 GHz
Instrument	Test Receiver			Spectrum Analyzer
used				
Detector	CISPR QP,	CISPR QP, Average	CISPR QP	Average *1)
	Average			
IF Bandwidth	200 Hz	9 kHz	120 kHz	RBW: 1 MHz
				VBW: 3 MHz

^{*1)} A RMS average mode was applied according to KDB653005 4 (b) and 5.4 (f).

Test Report No. 15463357H-A Page 12 of 53


[Test setup] Below 1 GHz

Test Distance: 3 m


 \mathbf{x} : Center of turn table

1 GHz to 10 GHz

- r : Radius of an outer periphery of EUT
- ×: Center of turn table

10 GHz to 40 GHz

×: Center of turn table

Distance Factor: $20 \times \log (3.9 \text{ m}^*/3.0 \text{ m}) = 2.28 \text{ dB}$ * Test Distance: (3 + Test Volume /2) - r = 3.9 m

Test Volume: 2 m (Test Volume has been calibrated based on CISPR 16-1-4.) r = 0.1 m

Distance Factor: $20 \times \log (1.0 \text{ m}^* / 3.0 \text{ m}) = -9.5 \text{ dB}$

*Test Distance: 1 m

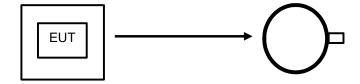
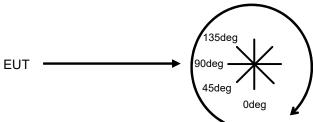

Test Report No. 15463357H-A Page 13 of 53

Figure 1: Direction of the Loop Antenna

Side View (Vertical)

.....


Top View (Horizontal)

Antenna was not rotated.

.....

Top View (Vertical)

Front side: 0 deg.

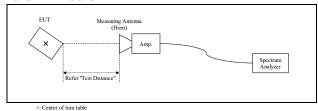
Forward direction: clockwise

Test Report No. 15463357H-A Page 14 of 53

[Above 40 GHz (Expext for fundamental measurement)]

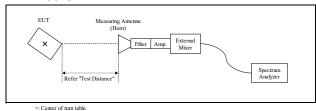
The test was performed based on "Procedures for testing millimeter-wave systems" of ANSI C63. 10-2013.

The EUT was placed on a urethane platform, raised 1.5 m above the conducting ground plane. The measurements were performed on handheld method.


Set spectrum analyzer RBW, VBW, span, etc., to the proper values. Note these values. Enable two traces—one set to "clear write," and the other set to "max hold." Begin hand-held measurements with the test antenna (horn) at a distance of 1 m from the EUT in a horizontally polarized position. Slowly adjust its position, entirely covering the plane 1 m from the EUT. Observation of the two active traces on the spectrum analyzer will allow refined horn positioning at the point(s) of maximum field intensity. Repeat with the horn in a vertically polarized position. If the emission cannot be detected at 1 m, reduce the RBW to increase system sensitivity. Note the value. If the emission still cannot be detected, move the horn closer to the EUT, noting the distance at which a measurement is made.

Note the maximum level indicated on the spectrum analyzer. Adjust this level, if necessary, by the antenna gain, filter loss, conversion loss of the external mixer and gain of LNA used, at the frequency under investigation. Calculate the field strength of the emission at the measurement distance from the Friis' transmission equation.

The final test was performed with a 1 MHz RMS detctor at the following distances;


[Test setup]

40 GHz to 50 GHz

*Test Distance: 1.0 m

Above 50 GHz

*Test Distance:

50 GHz to 75 GHz	0.75 m
75 GHz to 110 GHz	0.50 m
110 GHz to 231 GHz	0.01 m

The test results and limit are rounded off to one decimal place, so some differences might be observed.

The noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

Test Report No. 15463357H-A Page 15 of 53

[About fundamental measurement]

The test was performed based on "Procedures for testing millimeter-wave systems" of ANSI C63. 10-2013.

The EUT was placed on a urethane platform, raised 1.5 m above the conducting ground plane. The measurements were performed on handheld method.

The carrier levels were confirmed at maximum direction of transmission. The maximum direction was searched under carefully since beam-widths are extremely narrow.

The carrier levels were measured in the far field. The distance of the far field was calculated from follow equation.

$$r = \frac{2D^2}{\lambda}$$

where

r is the distance from the radiating element of the EUT to the edge of the far field, in m D is the largest dimension of both the radiating element and the test antenna (horn), in m (The antenna aperture size of test antenna was used for this caluculation.) Lambda is the wavelength of the emission under investigation [300/f (MHz)], in m

Frequency	Wavelength	Maximum Dimension			Far Field	Tested
		EUT	Test Antenna	Maximum	Boundary	Distance
	Lambda			D	r	
[GHz]	[mm]	[m]	[m]	[m]	[m]	[m]
77	3.9	0.017300	0.026162	0.026162	0.352	0.5

In order to maximize the carrier level, the EUT, which has a horizontally polarized antenna, and the polarization plane of the measurement antenna were aligned for the test.

The Peak Power results was applied to the desensitization correction factor by KDB653005 4 (c) and 5.4 (d).

The derivation of the FMCW Desensitization Factor is given in Keysight Application Note 5952 1039 Appendix B.

Desensitization factor was calculated from follow equation;

$$\alpha = \frac{1}{\sqrt[4]{1 + \left(\frac{2In(2)}{\pi}\right)^2 \left(\frac{Fs}{Ts B^2}\right)^2}}$$

and

FMCW Desensitization factor = $20 \text{ Log } (\alpha)$

Where

Fs is FMCW Sweep Width or Chirp Width, is used the actual measurement value.

*T*s is FMCW Sweep Time, is referred to the values in the specifications.

B is -3dB Bandwidth of Gaussian RBW Filter, is used the actual measurement value.

Test Report No. 15463357H-A Page 16 of 53

Mo	ode	Fs	Ts	В	α	FMCW
						Desensitization
						factor
		[MHz]	[us]	[MHz]		[dB]
	FCM 1 Low	449.6220	59.0	1.0	0.534	-5.45
Mode 1	FCM 1 High	456.3923	59.0	1.0	0.530	-5.51
	FCM 2	896.0070	38.0	1.0	0.309	-10.19
	FCM 1 Low	449.4240	59.0	1.0	0.534	-5.45
Mode 2	FCM 1 High	456.2534	59.0	1.0	0.530	-5.51
	FCM 2	896.2938	38.0	1.0	0.309	-10.19

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Measurement range : 9 kHz to 231 GHz

Test data : APPENDIX Test result : Pass

Test Report No. 15463357H-A Page 17 of 53

SECTION 6: Frequency Stability

Test Procedure

The block downconverter was placed in side of the temperature chamber's drain hole.

The power supply was set to nominal operating voltage (110 %), and the spectrum mask was measured at 20 deg. C. After that, EUT power supply was varied between 85 % and 115 % of nominal voltage and the frequency excursion of the EUT emission mask was recorded.

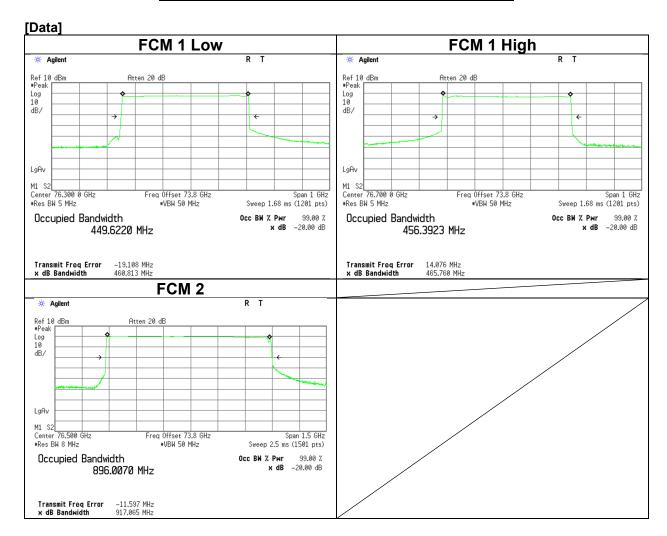
The EUT operating temperature was raised to 50 deg. C, and the frequency excursion of the EUT emission mask was recorded. Measurements were repeated at each 10 deg. C decrement down to -20 deg. C.

Both lower and upper frequencies of the -20 dB Bandwidth were recorded.

Test data : APPENDIX

Test result : Pass

Test Report No. 15463357H-A Page 18 of 53


APPENDIX 1: Test data

Occupied bandwidth

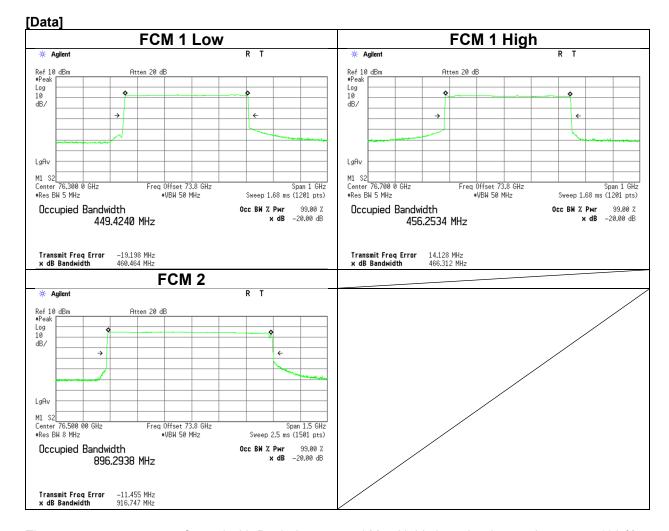
Test place Ise EMC Lab. Semi Anechoic Chamber No. 3

Date September 27, 2024
Temperature / Humidity 22 deg. C / 60 % RH
Engineer Yuichiro Yamazaki
Mode Tx (Mode 1)

Mode	Frequency	99 % Occupied
		bandwidth
	[GHz]	[MHz]
FCM 1 Low	76.3	449.6220
FCM 1 High	76.7	456.3923
FCM 2	76.5	896.0070

The measurement was performed with Peak detector and Max Hold since the duty cycle was not 100 %.

Test Report No. 15463357H-A Page 19 of 53


Occupied bandwidth

Test place Ise EMC Lab.

Semi Anechoic Chamber No. 3

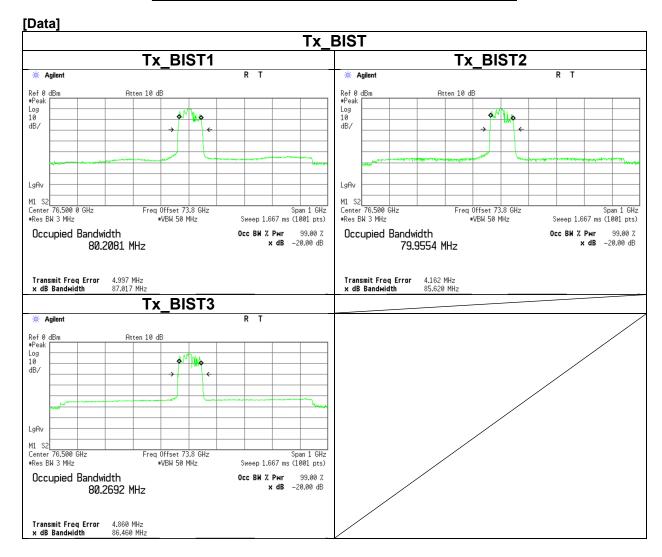
Date September 27, 2024
Temperature / Humidity 22 deg. C / 60 % RH
Engineer Yuichiro Yamazaki
Mode Tx (Mode 2)

Mode	Frequency	99 % Occupied
		bandwidth
	[GHz]	[MHz]
FCM 1 Low	76.3	449.4240
FCM 1 High	76.7	456.2534
FCM 2	76.5	896.2938

The measurement was performed with Peak detector and Max Hold since the duty cycle was not 100 %.

Test Report No. 15463357H-A Page 20 of 53

Occupied bandwidth


Test place Ise EMC Lab.
Semi Anechoic Chamber No.3 Semi Anechoic

Chamber

Date September 27, 2024
Temperature / Humidity 24 deg. C / 56 % RH
Engineer Yuichiro Yamazaki

Mode Tx_BIST

Mode	Frequency	99 % Occupied
		bandwidth
	[GHz]	[MHz]
Tx_BIST1	76.5	80.2081
Tx_BIST2	76.5	79.9554
Tx_BIST3	76.5	80.2692

The measurement was performed with Peak detector and Max Hold since the duty cycle was not 100 %.

Test Report No. 15463357H-A Page 21 of 53

Radiated Power

Test place Ise EMC Lab.

Semi Anechoic Chamber No. 3

Date September 27, 2024
Temperature / Humidity 22 deg. C / 60 % RH
Engineer Yuichiro Yamazaki
Mode Tx (Mode 1)

Mode	Power	Freq.	Measured	Rx	Down	IF	Tested	FSL	Duty	FMCW	EI	RP	Limit	Margin	Remarks
			Power	Ant.	Converter	Cable	Distance		Factor	desensitization					
				Gain	Gain	Loss				Factor					
		[GHz]	[dBm]	[dBi]	[dB]	[dB]	[m]	[dB]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[dB]	
FCM 1	Average	76.300	-11.02	23.05	15.04	1.66	0.5	64.07	4.98	-	21.60	144.54	50	28.40	
Low	Peak	76.249	-2.43	23.05	15.13	1.64	0.5	64.07	-	0.00	25.09	322.85	55	29.91	Marker 1 *1
	Peak	76.461	-3.41	23.05	14.99	1.69	0.5	64.09	-	0.00	24.33	271.02	55	30.67	Marker 2 *1
	Peak	76.505	-7.45	23.06	15.06	1.70	0.5	64.09	-	-5.45	25.67	368.98	55	29.33	Marker 3 *2
	Peak	76.058	-8.10	23.05	14.75	1.57	0.5	64.04	-	-5.45	25.17	328.85	55	29.83	Marker 4 *2
FCM 1	Average	76.700	-11.34	23.06	15.29	1.73	0.5	64.12	4.98	-	21.14	130.02	50	28.86	
High	Peak	76.749	-2.77	23.06	15.31	1.74	0.5	64.12	-	0.00	24.72	296.48	55	30.28	Marker 1 *1
	Peak	76.538	-3.55	23.06	15.12	1.70	0.5	64.10	-	0.00	24.07	255.27	55	30.93	Marker 2 *1
	Peak	76.489	-7.85	23.05	15.04	1.70	0.5	64.09	-	-5.51	25.36	343.56	55	29.64	Marker 3 *2
	Peak	76.941	-7.93	23.06	14.80	1.81	0.5	64.14	-	-5.51	25.67	368.98	55	29.33	Marker 4 *2
FCM 2	Average	76.500	-17.59	23.06	15.06	1.70	0.5	64.09	12.41	-	22.49	177.42	50	27.51	
	Peak	76.449	-1.67	23.05	14.97	1.69	0.5	64.09	-	0.00	26.09	406.44	55	28.91	Marker 1 *1
	Peak	76.917	-3.36	23.06	14.89	1.80	0.5	64.14	-	0.00	24.63	290.40	55	30.37	Marker 2 *1
	Peak	76.939	-14.26	23.06	14.81	1.81	0.5	64.14	-	-10.19	24.02	252.35	55	30.98	Marker 3 *2
	Peak	76.041	-10.41	23.05	14.70	1.57	0.5	64.04	-	-10.19	27.64	580.76	55	27.36	Marker 4 *2

Calculating formula:

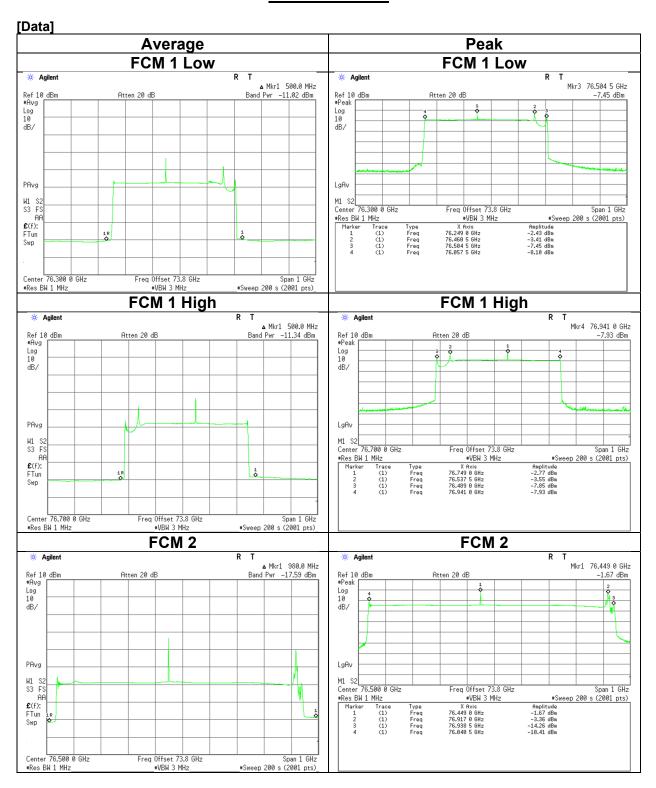
FSL (Free Space path Loss) = 10 * log10((4 * Pi * Tested Distance / Lambda) ^2)

Average EIRP = Measured Power - Rx Ant. Gain - Down Converter Gain + IF Cable Loss + FSL + Duty Factor

Peak EIRP = Measured Power - Rx Ant. Gain - Down Converter Gain + IF Cable Loss + FSL - FMCW desensitization factor

*2 For markers 3 and 4, a sensitivity correction coefficient was applied based on the transmission pattern (duty in the "Operational Description-Duty Cycle").

The test method referred to KDB653005 4 and 5.4.


The derivation of the Duty Factor is given in Duty data page.

The derivation of the FMCW Desensitization Factor is given in Keysight Application Note 5952 1039 Appendix B. (Refer Section 5)

^{*1} For markers 1 and 2, the sensitivity correction coefficient was not applied based on the transmission pattern (duty in the "Operational Description-Duty Cycle").

Test Report No. 15463357H-A Page 22 of 53

Radiated Power

Test Report No. 15463357H-A Page 23 of 53

Radiated Power

Test place Ise EMC Lab.

Semi Anechoic Chamber No. 3

Date September 27, 2024 22 deg. C / 60 % RH Temperature / Humidity Engineer Yuichiro Yamazaki Mode Tx (Mode 2)

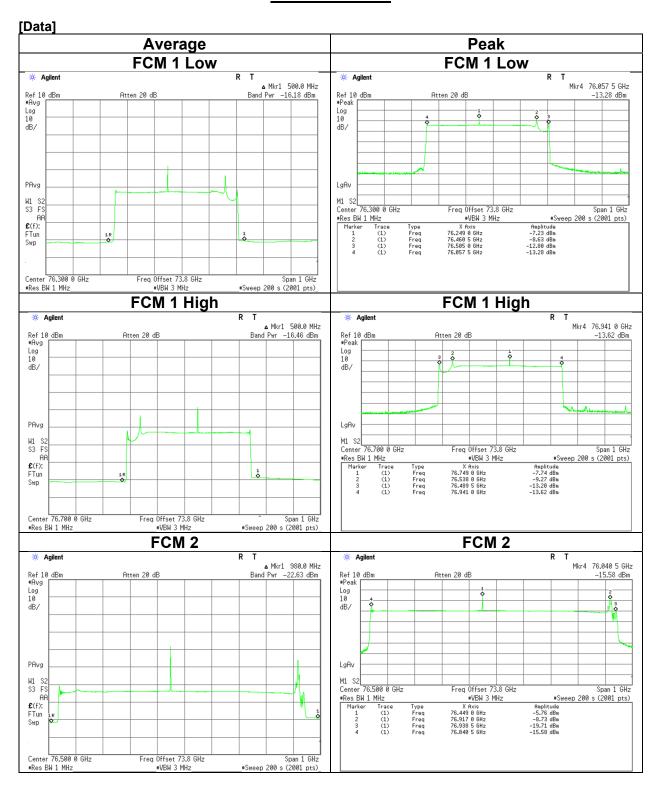
Mode	Power	Freq.	Measured	Rx	Down	IF	Tested	FSL	Duty	FMCW	EI	RP	Limit	Margin	Remarks
			Power	Ant.	Converter	Cable	Distance		Factor	desensitization					
				Gain	Gain	Loss				Factor					
		[GHz]	[dBm]	[dBi]	[dB]	[dB]	[m]	[dB]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[dB]	
FCM 1	Average	76.300	-16.18	23.05	15.04	1.66	0.5	64.07	4.97	-	16.43	43.95	50	33.57	
Low	Peak	76.249	-7.23	23.05	15.13	1.64	0.5	64.07	-	0.00	20.30	107.15	55	34.70	Marker 1 *1
	Peak	76.461	-8.63	23.05	14.99	1.69	0.5	64.09	-	0.00	19.11	81.47	55	35.89	Marker 2 *1
	Peak	76.505	-12.80	23.06	15.06	1.70	0.5	64.09	-	-5.45	20.32	107.65	55	34.68	Marker 3 *2
	Peak	76.058	-13.28	23.05	14.75	1.57	0.5	64.04	-	-5.45	19.99	99.77	55	35.01	Marker 4 *2
FCM 1	Average	76.700	-16.46	23.06	15.29	1.73	0.5	64.12	4.97	-	16.01	39.90	50	33.99	
High	Peak	76.749	-7.74	23.06	15.31	1.74	0.5	64.12	-	0.00	19.76	94.62	55	35.24	Marker 1 *1
	Peak	76.538	-9.27	23.06	15.12	1.70	0.5	64.10	-	0.00	18.35	68.39	55	36.65	Marker 2 *1
	Peak	76.490	-13.20	23.05	15.04	1.70	0.5	64.09	-	-5.51	20.01	100.23	55	34.99	Marker 3 *2
	Peak	76.941	-13.62	23.06	14.80	1.81	0.5	64.14	-	-5.51	19.99	99.77	55	35.01	Marker 4 *2
FCM 2	Average	76.500	-22.63	23.06	15.06	1.70	0.5	64.09	12.41	-	17.45	55.59	50	32.55	
	Peak	76.449	-5.76	23.05	14.97	1.69	0.5	64.09	-	0.00	22.00	158.49	55	33.00	Marker 1 *1
	Peak	76.917	-8.73	23.06	14.89	1.80	0.5	64.14	-	0.00	19.26	84.33	55	35.74	Marker 2 *1
	Peak	76.939	-19.71	23.06	14.81	1.81	0.5	64.14	-	-10.19	18.57	71.94	55	36.43	Marker 3 *2
	Peak	76.041	-15.58	23.05	14.70	1.57	0.5	64.04	-	-10.19	22.47	176.60	55	32.53	Marker 4 *2

Calculating formula:

FSL (Free Space path Loss) = 10 * log10((4 * Pi * Tested Distance / Lambda) ^2)

Average EIRP = Measured Power - Rx Ant. Gain - Down Converter Gain + IF Cable Loss + FSL + Duty Factor
Peak EIRP = Measured Power - Rx Ant. Gain - Down Converter Gain + IF Cable Loss + FSL - FMCW desensitization factor

*2 For markers 3 and 4, a sensitivity correction coefficient was applied based on the transmission pattern (duty in the "Operational Description-Duty Cycle").


The test method referred to KDB653005 4 and 5.4.

The derivation of the Duty Factor is given in Duty data page.

The derivation of the FMCW Desensitization Factor is given in Keysight Application Note 5952 1039 Appendix B. (Refer Section 5)

^{*1} For markers 1 and 2, the sensitivity correction coefficient was not applied based on the transmission pattern (duty in the "Operational Description-Duty Cycle").

Radiated Power

Test Report No. 15463357H-A Page 25 of 53

Radiated Power

Test place Ise EMC Lab.

Semi Anechoic Chamber No. 3

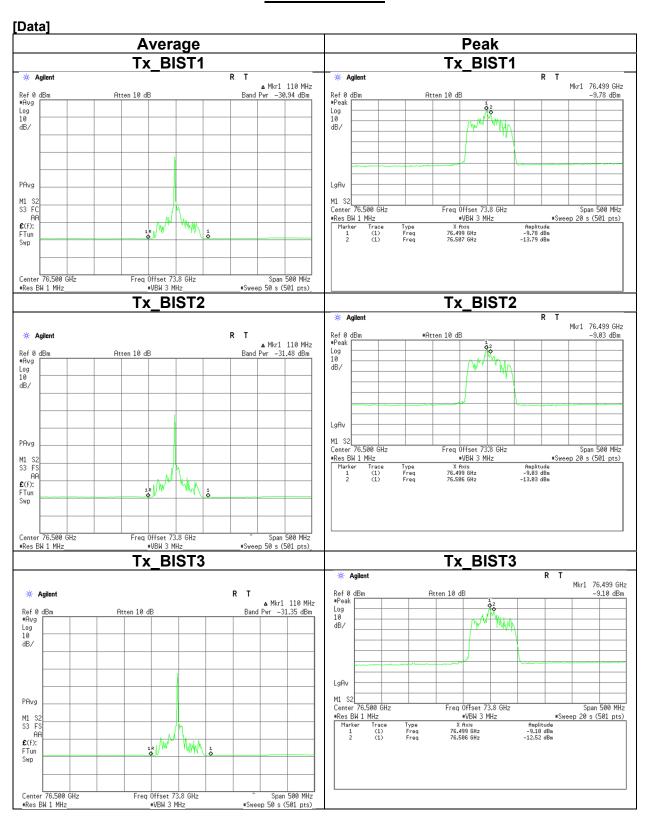
Date September 27, 2024 Temperature / Humidity 22 deg. C / 60 % RH Engineer Yuichiro Yamazaki

Mode Tx BIST

Mode	Power	Freq.	Measured	Rx	Down	IF	Tested	FSL	Duty	FMCW	EI	RP	Limit	Margin	Remarks
			Power	Ant.	Converter	Cable	Distance		Factor	desensitization					
				Gain	Gain	Loss				Factor					
		[GHz]	[dBm]	[dBi]	[dB]	[dB]	[m]	[dB]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[dB]	
Tx_BIST1	Average	76.500	-30.94	23.06	15.06	1.70	0.5	64.09	20.69	,	17.42	55.21	50	32.58	
	Peak	76.499	-9.78	23.06	15.05	1.70	0.5	64.09	-	-	17.90	61.66	55	37.10	Marker 1 *1
	Peak	76.507	-13.79	23.06	15.07	1.70	0.5	64.10	-	-	13.88	24.43	55	41.12	Marker 2 *1
Tx_BIST2	Average	76.500	-31.48	23.06	15.06	1.70	0.5	64.09	20.69	-	16.88	48.75	50	33.12	
	Peak	76.499	-9.03	23.06	15.05	1.70	0.5	64.09	-	-	18.65	73.28	55	36.35	Marker 1 *1
	Peak	76.506	-13.03	23.06	15.07	1.70	0.5	64.10	-	-	14.64	29.11	55	40.36	Marker 2 *1
Tx_BIST3	Average	76.500	-31.35	23.06	15.06	1.70	0.5	64.09	20.69	-	17.01	50.23	50	32.99	
	Peak	76.499	-9.10	23.06	15.05	1.70	0.5	64.09	-	-	18.58	72.11	55	36.42	Marker 1 *1
	Peak	76.506	-12.52	23.05	15.07	1.70	0.5	64.10	-	-	15.16	32.81	55	39.84	Marker 2 *1

Calculating formula:

FSL (Free Space path Loss) = 10 * log10((4 * Pi * Tested Distance / Lambda) ^2)


Average EIRP = Measured Power - Rx Ant. Gain - Down Converter Gain + IF Cable Loss + FSL + Duty Factor

Peak EIRP = Measured Power - Rx Ant. Gain - Down Converter Gain + IF Cable Loss + FSL - FMCW desensitization factor

The test method referred to KDB653005 4.

^{*1} For markers 1 and 2, the sensitivity correction coefficient was not applied based on the transmission pattern (duty in the "Operational Description-Duty Cycle").

Radiated Power

Test Report No. 15463357H-A Page 27 of 53

Modulation characteristics

Test place Ise EMC Lab.

Semi Anechoic Chamber No. 3

Date September 26, 2024
Temperature / Humidity 20 deg. C / 50 % RH
Engineer Yuichiro Yamazaki
Mode Tx (Mode 1) FCM 1 Low

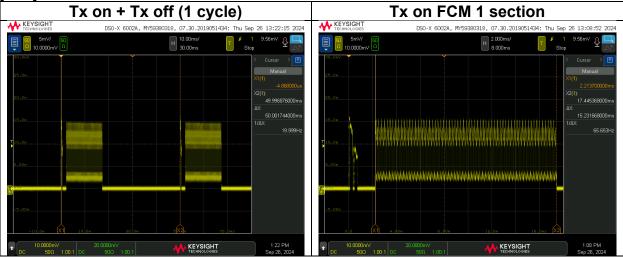
Measured

				Tx On time)				Tx On	Duty	Duty
		(CW section	1		FCM1	Total	+ Tx Off		Factor	
(1 of 6)	(2 of 6)	(3 of 6)	(4 of 6)	(5 of 6)	(Total)	section		time			
[us]	[us]	[us]	[us]	[us]	[us]	[us]	[ms]	[ms]	[ms]	[%]	[dB]
17.043	28.333	282.309	16.940	28.367	269.787	642.780	15.232	15.874	50.002	31.7	4.98

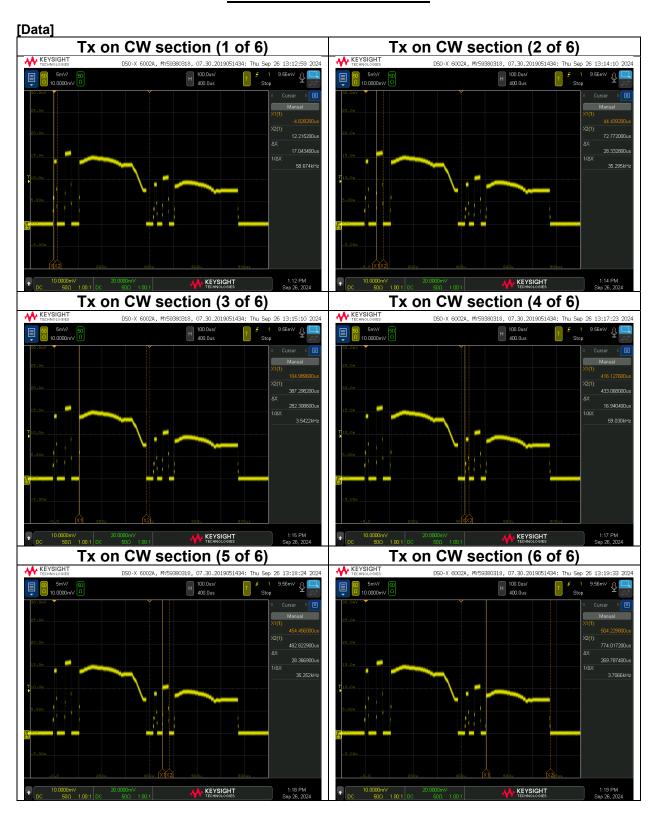
Calculating formula:

Tx On time CW section (Total) = Tx On time CW section (1 of 6) + Tx On time CW section (2 of 6) + Tx On time CW section (3 of 6)

+ Tx On time CW section (4 of 6) + Tx On time CW section (5 of 6) + Tx On time CW section (6 of 6)


Tx On time Total = Tx On time CW section (Total) + Tx On time FCM 1 section

Duty = (Tx On time Total / Tx On + Tx Off time) * 100


Duty factor = 10 * log (Tx On + Tx Off time / Tx On time Total)

Test results are rounded off and limit are rounded down, so some differences might be observed.

[Data]

Modulation characteristics

Test Report No. 15463357H-A Page 29 of 53

Modulation characteristics

Test place Ise EMC Lab.

Semi Anechoic Chamber No. 3

Date September 26, 2024
Temperature / Humidity 20 deg. C / 50 % RH
Engineer Yuichiro Yamazaki
Mode Tx (Mode 1) FCM 2

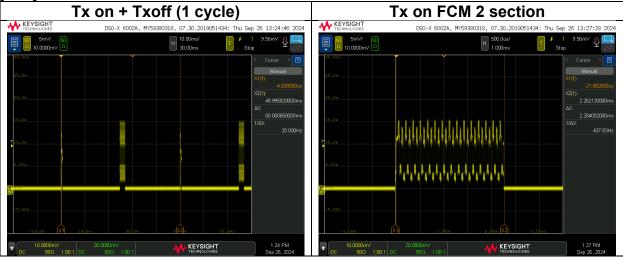
Measured

				Tx On time)				Tx On	Duty	Duty
		(CW section			FCM 2	Total	+ Tx Off		Factor	
(1 of 6)	(2 of 6)	(3 of 6)	(4 of 6)	(5 of 6)	(Total)	section		time			
[us]	[us]	[us]	[us]	[us]	[us]	[us]	[ms]	[ms]	[ms]	[%]	[dB]
17.088	28.480	229.959	17.060	28.458	263.789	584.834	2.284	2.869	50.001	5.7	12.41

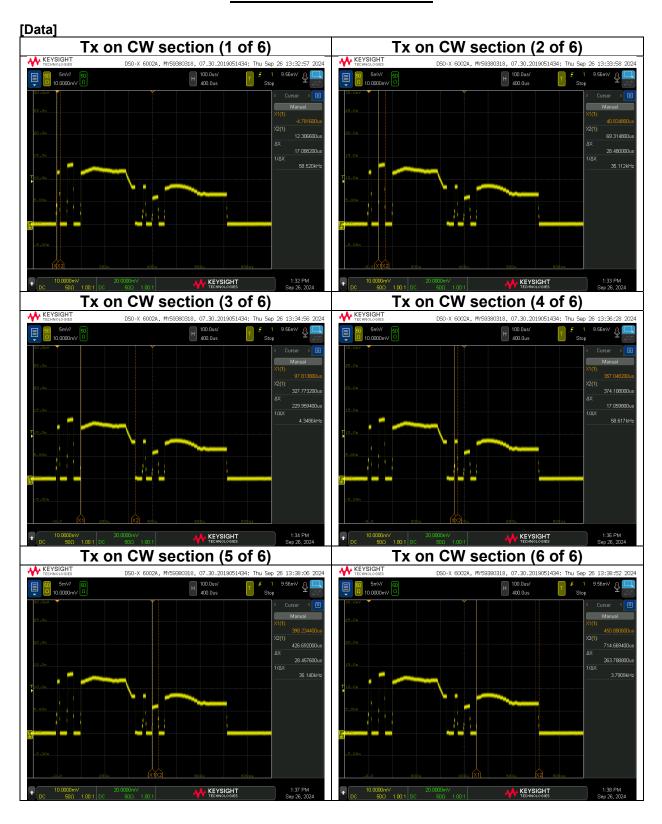
Calculating formula:

Tx On time CW section (Total) = Tx On time CW section (1 of 6) + Tx On time CW section (2 of 6) + Tx On time CW section (3 of 6)

+ Tx On time CW section (4 of 6) + Tx On time CW section (5 of 6) + Tx On time CW section (6 of 6)


Tx On time Total = Tx On time CW section (Total) + Tx On time FCM 2 section

Duty = (Tx On time Total / Tx On + Tx Off time) * 100


Duty factor = 10 * log (Tx On + Tx Off time / Tx On time Total)

Test results are rounded off and limit are rounded down, so some differences might be observed.

[Data]

Modulation characteristics

Test Report No. 15463357H-A Page 31 of 53

Modulation characteristics

Test place Ise EMC Lab.

Semi Anechoic Chamber No. 3

Date September 26, 2024
Temperature / Humidity 20 deg. C / 50 % RH
Engineer Yuichiro Yamazaki
Mode Tx (Mode 2) FCM 1 Low

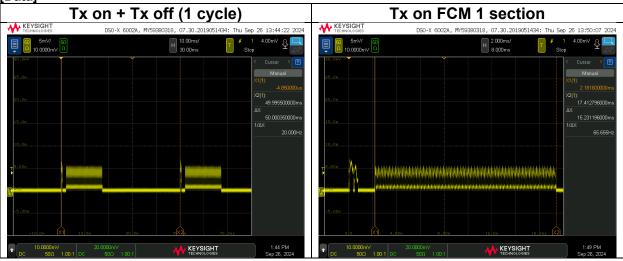
Measured

				Tx On time					Tx On	Duty	Duty
		(CW section			FCM 1	Total	+ Tx Off		Factor	
(1 of 6)	(2 of 6)	(3 of 6)	(4 of 6)	(5 of 6)	(Total)	section		time			
[us]	[us]	[us]	[us]	[us]	[us]	[us]	[ms]	[ms]	[ms]	[%]	[dB]
17.042	28.315	293.881	16.945	28.406	288.001	672.591	15.231	15.904	50.000	31.8	4.97

Calculating formula:

Tx On time CW section (Total) = Tx On time CW section (1 of 6) + Tx On time CW section (2 of 6) + Tx On time CW section (3 of 6)

+ Tx On time CW section (4 of 6) + Tx On time CW section (5 of 6) + Tx On time CW section (6 of 6)


Tx On time Total = Tx On time CW section (Total) + Tx On time FCM 1 section

Duty = (Tx On time Total / Tx On + Tx Off time) * 100

Duty factor = 10 * log (Tx On + Tx Off time / Tx On time Total)

Test results are rounded off and limit are rounded down, so some differences might be observed.

[Data]

Modulation characteristics

Test Report No. 15463357H-A Page 33 of 53

Modulation characteristics

Test place Ise EMC Lab.

Semi Anechoic Chamber No. 3

Date September 26, 2024
Temperature / Humidity 20 deg. C / 50 % RH
Engineer Yuichiro Yamazaki
Mode Tx (Mode 2) FCM 2

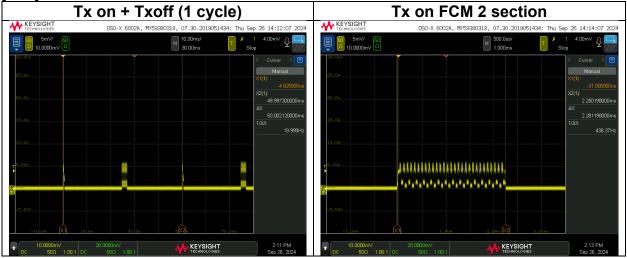
Measured

				Tx On time)				Tx On	Duty	Duty
			CW section			FCM 2	Total	+ Tx Off		Factor	
(1 of 6)	(2 of 6)	(3 of 6)	(4 of 6)	(5 of 6)	(Total)	section		time			
[us]	[us]	[us]	[us]	[us]	[us]	[us]	[ms]	[ms]	[ms]	[%]	[dB]
17.084	28.437	238.971	17.110	28.404	257.212	587.218	2.281	2.868	50.002	5.7	12.41

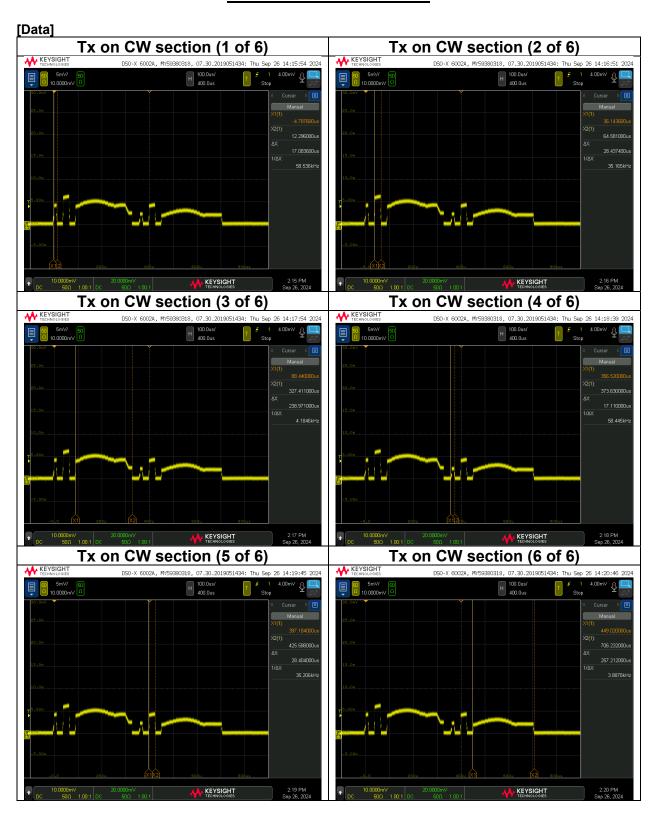
Calculating formula:

Tx On time CW section (Total) = Tx On time CW section (1 of 6) + Tx On time CW section (2 of 6) + Tx On time CW section (3 of 6)

+ Tx On time CW section (4 of 6) + Tx On time CW section (5 of 6) + Tx On time CW section (6 of 6)


Tx On time Total = Tx On time CW section (Total) + Tx On time FCM 2 section

Duty = (Tx On time Total / Tx On + Tx Off time) * 100


Duty factor = 10 * log (Tx On + Tx Off time / Tx On time Total)

Test results are rounded off and limit are rounded down, so some differences might be observed.

[Data]

Modulation characteristics

Test Report No. 15463357H-A Page 35 of 53

Modulation characteristics

Test place Ise EMC Lab. Semi Anechoic Chamber No. 3

Date

Temperature / Humidity Engineer Mode

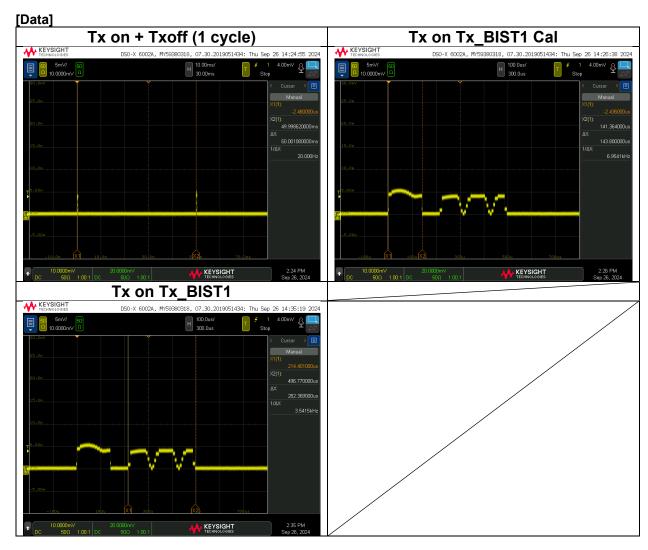
Yuichiro Yamazaki Tx BIST

September 26, 2024

20 deg. C / 50 % RH

Measured

	Tx On time		Tx On	Duty	Duty
Tx_BIST1	Tx_BIST1	Total	+ Tx Off		Factor
Cal			time		
[us]	[us]	[ms]	[ms]	[%]	[dB]
143.800	282.369	0.426	50.001	0.9	20.69


Calculating formula:

Tx On time Total = Tx On time Tx_BIST1 Cal + Tx On time Tx_BIST1

Duty = (Tx On time Total / Tx On + Tx Off time) * 100

Duty factor = 10 * log (Tx On + Tx Off time / Tx On time Total)

Test results are rounded off and limit are rounded down, so some differences might be observed.

^{*} Since all Tx_BIST transmission patterns are the same, the test was performed with Tx_BIST1 as a representative.

Test Report No. 15463357H-A Page 36 of 53

Field strength of spurious radiation (Below 40 GHz)

Ise EMC Lab. Test place

Semi Anechoic No.2 No.2 No.3 No.3 No.3

Chamber

September 30, 2024 Date September 30, 2024 September 30, 2024 October 1, 2024 October 2, 2024 Temperature /

Humidity

22 deg. C / 68 % RH 22 deg. C / 69 % RH 23 deg. C / 59 % RH 20 deg. C / 60 % RH 21 deg. C / 70 % RH

Engineer Nachi Konegawa

Yuichiro Yamazaki Yuichiro Yamazaki Nachi Konegawa Junki Nagatomi (26.5 GHz to 40 GHz) (10 GHz to 26.5 GHz) (1 GHz to 10 GHz) (30 MHz to (Below 30 MHz)

1000 MHz)

Mode Normal operating mode (Mode 1)

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP / PK)	(AV)	Factor	r in	, ID3	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP / PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	53.7	23.8	-	10.0	7.3	32.2	8.9	-	40.0	-	31.1	-	
Hori.	84.0	24.1	-	7.3	7.7	32.2	7.0	-	40.0	-	33.0	-	
Hori.	108.0	24.0	-	11.6	8.0	32.1	11.4	-	43.5	-	32.1	-	
Hori.	123.4	22.2	-	13.2	8.2	32.1	11.4	-	43.5	-	32.1	-	Floor noise
Hori.	349.9	21.7	-	15.2	10.0	32.0	14.9	-	46.0	-	31.1	-	Floor noise
Hori.	441.5	21.6	-	16.4	10.6	32.0	16.6	-	46.0	-	29.4	-	Floor noise
Vert.	53.7	34.0	-	10.0	7.3	32.2	19.1	-	40.0	-	20.9	-	
Vert.	84.0	31.5	-	7.3	7.7	32.2	14.4	-	40.0	-	25.6	-	
Vert.	108.0	30.8	-	11.6	8.0	32.1	18.2	-	43.5	-	25.3	-	
Vert.	123.4	28.5	-	13.2	8.2	32.1	17.7	-	43.5	-	25.8	-	
Vert.	349.9	21.7	-	15.2	10.0	32.0	14.9	-	46.0	-	31.1	-	Floor noise
Vert.	441.5	21.6	-	16.4	10.6	32.0	16.6	-	46.0	-	29.4	-	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

Distance factor: 1 GHz - 10 GHz 20log (3.9 m / 3.0 m) = 2.28 dB

10 GHz - 40 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB). *QP detector was used up to 1GHz.

Test Report No. 15463357H-A Page 37 of 53

Field strength of spurious radiation (Below 40 GHz) (Plot data, Worst case)

Test place Semi Anechoic Ise EMC Lab.

No.2

September 30, 2024 Temperature /

No.3

No.2

No.3

No.3

Chamber Date

22 deg. C / 68 % RH

September 30, 2024 September 30, 2024 21 deg. C / 70 % RH 22 deg. C / 69 % RH

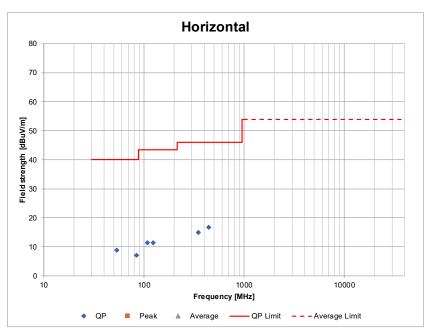
October 1, 2024 23 deg. C / 59 % RH

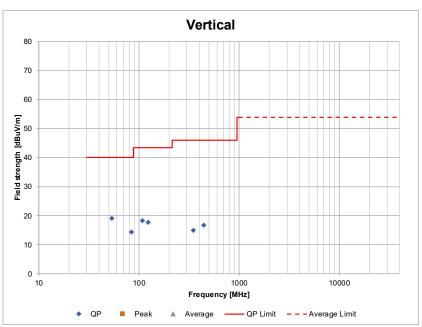
October 2, 2024 20 deg. C / 60 % RH

Humidity Engineer Nachi Konegawa

(26.5 GHz to 40 GHz)

Yuichiro Yamazaki Yuichiro Yamazaki (10 GHz to 26.5 GHz) (1 GHz to 10 GHz)


Nachi Konegawa (30 MHz to


1000 MHz)

Junki Nagatomi (Below 30 MHz)

Mode

Normal operating mode (Mode 1)

^{*}These plots data contains sufficient number to show the trend of characteristic features for EUT.

Test Report No. 15463357H-A Page 38 of 53

Field strength of spurious radiation (Above 40 GHz)

Test place Ise EMC Lab.

Semi Anechoic Chamber No. 3 No.3 No.2

Date

September 29, 2024 September 29, 2024 September 30, 2024 Temperature / Humidity 26 deg. C / 55 % RH 22 deg. C / 68 % RH 22 deg. C / 68 % RH Engineer Nachi Konegawa Yuichiro Yamazaki Nachi Konegawa (75 GHz to 83 GHz) (Below 83 GHz, Above 110 GHz) (83 GHz to 110 GHz)

Mode Normal operating mode (Mode 1)

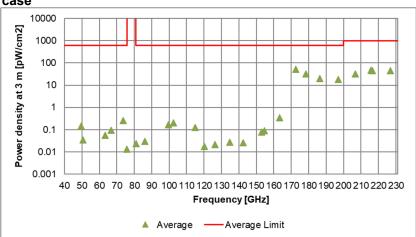
Frequency	Reading	Rx	Filter	LNA	Mixer	IF	IF	Meas.	FSL	EI	RP	Pow	er density a	t 3 m	Remarks
		Ant.	loss	gain	conversion	Amp.	Cable	range				Result	Limit	Margin	
		gain			loss	gain	loss	D							
[GHz]	[dBm]	[dBi]	[dB]	[dB]	[dB]	[dB]	[dB]	[m]	[dB]	[dBm]	[mW]	[pW/cm ²]	[pW/cm ²]	[dB]	
49.435	-58.91	22.37	0.00	31.62	0.00	0.00	8.80	1.00	66.32	-37.78	0.00017	0.15	600	36.09	NS
50.548	-75.35	22.84	0.31	26.05	47.76	32.00	0.15	0.75	64.02	-44.00	0.00004	0.04	600	42.32	NS
63.409	-75.22	23.96	0.37	24.24	47.02	32.00	0.15	0.75	65.99	-41.90	0.00006	0.06	600	40.21	NS
66.706	-75.09	24.17	0.38	23.18	47.87	32.00	0.15	0.75	66.43	-39.62	0.00011	0.10	600	37.93	NS
71.038	-76.11	24.40	0.51	20.73	49.21	32.00	0.15	0.75	66.97	-36.39	0.00023	0.20	600	34.71	NS
73.745	-76.14	24.46	0.86	21.02	49.86	32.00	0.15	0.75	67.30	-35.45	0.00029	0.25	600	33.77	NS
75.766	-75.62	23.02	0.00	0.00	-15.13	0.00	1.46	0.50	64.01	-48.30	0.00001	0.01	600	46.61	Average detected
81.011	-77.02	23.38	0.00	0.00	-12.67	0.00	2.83	0.50	64.59	-45.64	0.00003	0.02	600	43.96	NS
86.061	-56.87	23.73	1.05	30.17	0.00	0.00	0.00	0.50	65.12	-44.60	0.00003	0.03	600	42.92	NS
99.598	-46.68	24.46	0.41	32.79	0.00	0.00	0.00	0.50	66.39	-37.13	0.00019	0.17	600	35.45	NS
102.419	-47.73	24.55	0.34	31.10	0.00	0.00	0.00	0.50	66.63	-36.41	0.00023	0.20	600	34.73	NS
114.937	-89.44	22.46	0.00	17.51	57.39	0.00	0.00	0.01	33.65	-38.37	0.00015	0.13	600	36.69	NS
120.182	-89.77	22.65	0.00	18.98	50.37	0.00	0.00	0.01	34.04	-46.99	0.00002	0.02	600	45.31	NS
126.268	-90.44	22.84	0.00	21.08	53.66	0.00	0.00	0.01	34.47	-46.23	0.00002	0.02	600	44.55	NS
134.620	-91.02	23.07	0.00	19.22	53.08	0.00	0.00	0.01	35.02	-45.21	0.00003	0.03	600	43.52	NS
142.289	-91.64	23.23	0.00	19.02	53.10	0.00	0.00	0.01	35.51	-45.29	0.00003	0.03	600	43.60	NS
153.023	-91.43	23.35	0.00	17.64	55.82	0.00	0.00	0.01	36.14	-40.46	0.00009	0.08	600	38.78	NS
154.628	-91.77	23.37	0.00	17.33	56.29	0.00	0.00	0.01	36.23	-39.95	0.00010	0.09	600	38.27	NS
163.427	-92.11	23.40	0.00	14.76	59.49	0.00	0.00	0.01	36.71	-34.07	0.00039	0.35	600	32.39	NS
172.655	-89.83	22.46	0.00	0.00	62.76	0.00	0.00	0.01	37.19	-12.35	0.05823	51.49	600	10.66	NS
178.444	-90.28	22.60	0.00	0.00	61.12	0.00	0.00	0.01	37.47	-14.29	0.03725	32.93	600	12.61	NS
186.349	-90.19	22.77	0.00	0.00	58.66	0.00	0.00	0.01	37.85	-16.45	0.02265	20.03	600	14.76	NS
196.953	-91.02	22.97	0.00	0.00	58.85	0.00	0.00	0.01	38.33	-16.81	0.02085	18.44	600	15.13	NS
206.696	-91.09	23.12	0.00	0.00	61.13	0.00	0.00	0.01	38.75	-14.34	0.03685	32.58	1000	14.87	NS
215.714	-91.31	23.23	0.00	0.00	62.69	0.00	0.00	0.01	39.12	-12.73	0.05328	47.11	1000	13.27	NS
216.549	-91.61	23.24	0.00	0.00	62.70	0.00	0.00	0.01	39.15	-13.00	0.05014	44.33	1000	13.53	NS
226.797	-91.66	23.32	0.00	0.00	62.49	0.00	0.00	0.01	39.55	-12.94	0.05085	44.96	1000	13.47	NS

Calculation:

FSL (Free Space path Loss) = 10 * log ($(4 * Pi * D / \lambda)^2$)

EIRP = Reading - Rx Ant. gain + Filter loss - LNA gain + Mixer conversion loss - IF Amp. gain + IF Cable loss + FSL

These calculation results are same as results which were calculated with formulas described in the Section 9 of ANSI C63.10-2013.

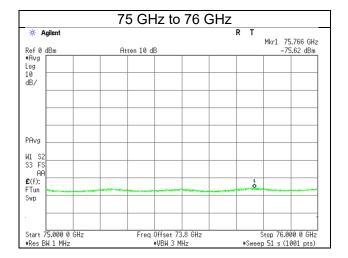

The equipment were not used for factor 0 dB of the data sheets.

The Mixer converion loss and IF Cable Loss are automatically corrected in the mixer, so the factor of data sheet were 0 dB.

The IF Cable loss is included in Mixer loss, so the factor of data sheet were 0 dB.

NS: No signal detected.

Plot data, Worst case



These plots data contains sufficient number to show the trend of characteristic features for EUT.

Test Report No. 15463357H-A Page 39 of 53

Field strength of spurious radiation (Above 40 GHz)

(Data only for detected frequency)

Test Report No. 15463357H-A Page 40 of 53

Field strength of spurious radiation (Below 40 GHz)

Ise EMC Lab. Test place

Semi Anechoic No.2 No.2 No.3 No.3 No.3

Chamber

September 30, 2024 Date September 30, 2024 September 30, 2024 October 1, 2024 October 2, 2024 Temperature / 22 deg. C / 68 % RH 22 deg. C / 69 % RH 23 deg. C / 59 % RH 20 deg. C / 60 % RH 21 deg. C / 70 % RH

Humidity

Yuichiro Yamazaki Engineer Nachi Konegawa Yuichiro Yamazaki Nachi Konegawa Junki Nagatomi

(26.5 GHz to 40 GHz) (10 GHz to 26.5 GHz) (1 GHz to 10 GHz) (30 MHz to 1000 (Below 30 MHz)

MHz)

Mode Normal operating mode (Mode 2)

Polarity	Frequency	Reading (QP / PK)	Reading (AV)	Ant. Factor	Loss	Gain	Result (QP / PK)	Result (AV)	Limit (QP / PK)	Limit (AV)	Margin (QP / PK)	Margin (AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	` [dB]	[dB]	
Hori.	53.8	23.6	-	9.9	7.3	32.2	8.7	-	40.0	-	31.3	-	
Hori.	84.0	24.2	-	7.3	7.7	32.2	7.1	-	40.0	-	32.9	-	
Hori.	108.0	23.8	-	11.6	8.0	32.1	11.2	-	43.5	-	32.3	-	
Hori.	123.4	22.2	-	13.2	8.2	32.1	11.4	-	43.5	-	32.1	-	Floor noise
Hori.	348.2	21.6	-	15.1	10.0	32.0	14.8	-	46.0	-	31.3	-	Floor noise
Hori.	459.2	21.5	-	16.8	10.7	32.0	17.0	-	46.0	-	29.0	-	Floor noise
Vert.	54.4	31.2	-	9.7	7.3	32.2	16.1	-	40.0	-	23.9	-	
Vert.	84.0	30.3	-	7.3	7.7	32.2	13.2	-	40.0	-	26.8	-	
Vert.	108.0	30.1	-	11.6	8.0	32.1	17.5	-	43.5	-	26.0	-	
Vert.	123.4	28.2	-	13.2	8.2	32.1	17.4	-	43.5	-	26.1	-	
Vert.	348.2	21.6	-	15.1	10.0	32.0	14.8	-	46.0	-	31.3	-	Floor noise
Vert.	459.2	21.5	-	16.8	10.7	32.0	17.0	-	46.0	-	29.0	-	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

Distance factor: 1 GHz - 10 GHz 20log (3.9 m / 3.0 m) = 2.28 dB

10 GHz - 40 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB). *QP detector was used up to 1GHz.

Test Report No. 15463357H-A Page 41 of 53

Field strength of spurious radiation (Below 40 GHz) (Plot data, Worst case)

Test place Semi Anechoic

Ise EMC Lab. No.2

No.3

No.3

No.3

Chamber Date

September 30, 2024

September 30, 2024 21 deg. C / 70 % RH

No.2

September 30, 2024 22 deg. C / 69 % RH

October 1, 2024 23 deg. C / 59 % RH

October 2, 2024 20 deg. C / 60 % RH

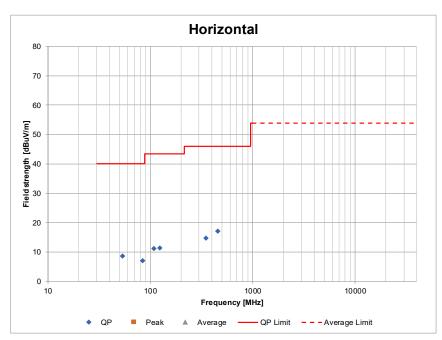
Temperature / Humidity

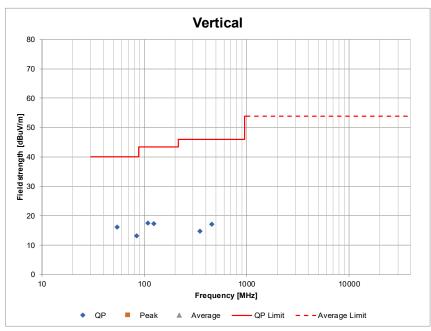
22 deg. C / 68 % RH

Nachi Konegawa

Junki Nagatomi

Engineer Nachi Konegawa (26.5 GHz to 40 GHz)


Yuichiro Yamazaki Yuichiro Yamazaki (10 GHz to 26.5 GHz) (1 GHz to 10 GHz)


(30 MHz to 1000 MHz)

(Below 30 MHz)

Mode

Normal operating mode (Mode 2)

^{*}These plots data contains sufficient number to show the trend of characteristic features for EUT.

Test Report No. 15463357H-A Page 42 of 53

Field strength of spurious radiation (Above 40 GHz)

Test place Semi Anechoic Chamber

Ise EMC Lab.

Date Temperature / Humidity No. 3 September 29, 2024 26 deg. C / 55 % RH No.3 No.2

September 29, 2024 22 deg. C / 68 % RH Yuichiro Yamazaki

September 30, 2024 22 deg. C / 68 % RH Nachi Konegawa

Engineer

Nachi Konegawa (75 GHz to 83 GHz)

(Below 83 GHz, Above 110 GHz)

(83 GHz to 110 GHz)

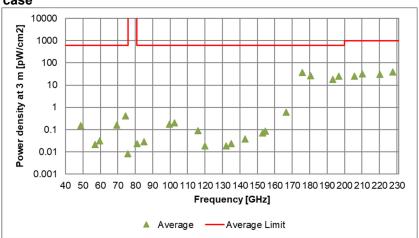
Mode Normal operating mode (Mode 2)

Frequency	Reading	Rx	Filter	LNA	Mixer	IF	IF	Meas.	FSL	EIRP Power density at 3 m		Remarks			
		Ant.	loss	gain	conversion	Amp.	Cable	range				Result	Limit	Margin	
		gain			loss	gain	loss	D							
[GHz]	[dBm]	[dBi]	[dB]	[dB]	[dB]	[dB]	[dB]	[m]	[dB]	[dBm]	[mW]	[pW/cm ²]	[pW/cm ²]	[dB]	
48.739	-58.33	22.18	0.00	31.97	0.00	0.00	8.70	1.00	66.20	-37.58	0.00017	0.15	600	35.90	NS
56.882	-75.34	23.47	0.33	26.22	45.37	32.00	0.15	0.75	65.04	-46.13	0.00002	0.02	600	44.45	NS
59.469	-75.27	23.70	0.31	25.32	45.96	32.00	0.15	0.75	65.43	-44.44	0.00004	0.03	600	42.76	NS
69.367	-75.59	24.32	0.48	21.40	48.59	32.00	0.15	0.75	66.77	-37.32	0.00019	0.16	600	35.64	NS
71.999	-76.14	24.33	0.74	20.74	48.99	32.00	0.15	0.75	67.09	-36.24	0.00024	0.21	600	34.56	NS
74.315	-74.49	24.48	1.01	20.95	50.18	32.00	0.15	0.75	67.36	-33.21	0.00048	0.42	600	31.53	NS
75.844	-77.80	23.03	0.00	0.00	-14.95	0.00	1.49	0.50	64.02	-50.27	0.00001	0.01	600	48.59	Average detected
81.008	-77.01	23.38	0.00	0.00	-12.67	0.00	2.83	0.50	64.59	-45.64	0.00003	0.02	600	43.96	NS
84.959	-57.03	23.70	2.03	31.11	0.00	0.00	0.00	0.50	65.01	-44.80	0.00003	0.03	600	43.12	NS
99.536	-46.51	24.45	0.41	32.84	0.00	0.00	0.00	0.50	66.38	-37.00	0.00020	0.18	600	35.32	NS
102.468	-47.69	24.56	0.34	31.06	0.00	0.00	0.00	0.50	66.63	-36.34	0.00023	0.21	600	34.65	NS
116.068	-89.40	22.50	0.00	17.35	55.62	0.00	0.00	0.01	33.74	-39.89	0.00010	0.09	600	38.21	NS
119.969	-89.80	22.64	0.00	18.88	50.48	0.00	0.00	0.01	34.02	-46.82	0.00002	0.02	600	45.13	NS
132.095	-90.42	23.00	0.00	19.27	50.99	0.00	0.00	0.01	34.86	-46.84	0.00002	0.02	600	45.15	NS
135.076	-91.09	23.08	0.00	19.31	52.61	0.00	0.00	0.01	35.05	-45.81	0.00003	0.02	600	44.13	NS
142.974	-91.01	23.24	0.00	18.96	54.07	0.00	0.00	0.01	35.55	-43.59	0.00004	0.04	600	41.91	NS
153.052	-91.87	23.35	0.00	17.63	55.85	0.00	0.00	0.01	36.14	-40.86	0.00008	0.07	600	39.17	NS
154.581	-92.06	23.37	0.00	17.32	56.33	0.00	0.00	0.01	36.22	-40.20	0.00010	0.08	600	38.51	NS
166.493	-92.15	23.41	0.00	13.32	60.38	0.00	0.00	0.01	36.87	-31.63	0.00069	0.61	600	29.94	NS
175.729	-89.81	22.53	0.00	0.00	61.28	0.00	0.00	0.01	37.34	-13.72	0.04249	37.57	600	12.03	NS
180.617	-89.99	22.65	0.00	0.00	59.84	0.00	0.00	0.01	37.58	-15.22	0.03003	26.55	600	13.54	NS
193.100	-90.39	22.90	0.00	0.00	58.18	0.00	0.00	0.01	38.16	-16.95	0.02019	17.85	600	15.27	NS
196.766	-90.32	22.96	0.00	0.00	59.47	0.00	0.00	0.01	38.32	-15.48	0.02829	25.01	600	13.80	NS
205.705	-91.19	23.11	0.00	0.00	60.14	0.00	0.00	0.01	38.71	-15.45	0.02851	25.21	1000	15.98	NS
210.252	-91.24	23.17	0.00	0.00	61.17	0.00	0.00	0.01	38.90	-14.35	0.03677	32.51	1000	14.88	NS
220.285	-91.66	23.27	0.00	0.00	61.09	0.00	0.00	0.01	39.30	-14.54	0.03519	31.12	1000	15.07	NS
227.646	-91.71	23.33	0.00	0.00	61.95	0.00	0.00	0.01	39.59	-13.50	0.04465	39.48	1000	14.04	NS

FSL (Free Space path Loss) = 10 * log ($(4 * Pi * D / \lambda)^2$)

EIRP = Reading - Rx Ant. gain + Filter loss - LNA gain + Mixer conversion loss - IF Amp. gain + IF Cable loss + FSL

These calculation results are same as results which were calculated with formulas described in the Section 9 of ANSI C63.10-2013.

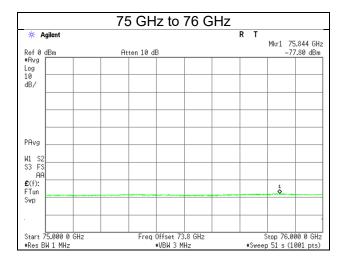

The equipment were not used for factor 0 dB of the data sheets.

The Mixer converion loss and IF Cable Loss are automatically corrected in the mixer, so the factor of data sheet

The IF Cable loss is included in Mixer loss, so the factor of data sheet were 0 dB.

NS: No signal detected.

Plot data, Worst case



^{*}These plots data contains sufficient number to show the trend of characteristic features for EUT.

Test Report No. 15463357H-A Page 43 of 53

Field strength of spurious radiation (Above 40 GHz)

(Data only for detected frequency)

Test Report No. 15463357H-A Page 44 of 53

Frequency Stability

Test place Ise EMC Lab.

Measurement Room No. 6

Date October 2, 2024
Temperature / Humidity 24 deg. C / 40 % RH
Engineer Yuichiro Yamazaki

Mode Normal operating mode (Mode1)

Test Condition		Measured -20	dBc Frequency	Remarks
Temperature	Power Supply	Lower Result	Upper Result	
[deg. C]	[V]	[GHz]	[GHz]	
50	13.2	76.032	76.949	
40	13.2	76.031	76.949	
30	13.2	76.032	76.949	
20	13.2	76.032	76.950	
20	10.2	76.032	76.949	85 % of the minimum operating voltage, DC 12 V * 0.85
20	13.8	76.032	76.950	115 % of the maximum operating voltage, DC 12 V * 1.15
10	13.2	76.032	76.950	
0	13.2	76.032	76.950	
-10	13.2	76.033	76.951	
-20	13.2	76.033	76.951	

Fundamental emissions were contained within the frequency band 76 GHz to 81 GHz during all conditions of operation.

Test Report No. 15463357H-A Page 45 of 53

Frequency Stability

Test place Ise EMC Lab.

Measurement Room No. 6

Date October 2, 2024
Temperature / Humidity 24 deg. C / 40 % RH
Engineer Yuichiro Yamazaki

Mode Normal operating mode (Mode2)

Test Condition		Measured -20	dBc Frequency	Remarks
Temperature	Power Supply	Lower Result	Upper Result	
[deg. C]	[V]	[GHz]	[GHz]	
50	13.2	76.032	76.949	
40	13.2	76.031	76.949	
30	13.2	76.031	76.949	
20	13.2	76.031	76.950	
20	10.2	76.032	76.950	85 % of the minimum operating voltage, DC 12 V * 0.85
20	13.8	76.032	76.950	115 % of the maximum operating voltage, DC 12 V * 1.15
10	13.2	76.032	76.950	
0	13.2	76.032	76.950	
-10	13.2	76.033	76.950	
-20	13.2	76.033	76.951	

Fundamental emissions were contained within the frequency band 76 GHz to 81 GHz during all conditions of operation.

Test Report No. 15463357H-A Page 46 of 53

APPENDIX 2: Test instruments

	equipme		Manufacturer	Madal	Camial	14	0-1
Test Item	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal
RE	141216	Coaxial cable	Fujikura/Suhner/TSJ	5D-2W/SFM14/ sucoform141-PE/ 421-010/ RFM-E321(SW)	-/00640	07/06/2024	12
RE	141267	Logperiodic Antenna (200-1000MHz)	Schwarzbeck Mess- Elektronik OHG	VUSLP9111B	9111B-192	09/18/2024	12
RE	141323	Coaxial cable	UL Japan	-	-	09/13/2024	12
RE	141328	Microwave Cable 1G-40GHz	Suhner	SUCOFLEX102	28636/2	04/01/2024	12
RE	141424	Biconical Antenna	Schwarzbeck Mess- Elektronik OHG	VHA9103+BBA9106	1915	03/15/2024	12
RE	141429	Temperature and Humidity Chamber	Espec	PL-2KP	14015723	08/23/2024	12
RE	141503	Horn Antenna 18-26.5GHz	EMCO	3160-09	1265	06/25/2024	12
RE	141507	Horn Antenna 1-18GHz	Schwarzbeck Mess- Elektronik OHG	BBHA9120D	258	11/20/2023	12
RE	141517	Horn Antenna 26.5-40GHz	ETS-Lindgren	3160-10	152399	11/20/2023	12
RE	141532	DIGITAL HITESTER	HIOKI E.E. CORPORATION	3805	051201197	01/31/2024	12
RE	141542	Digital Tester	Fluke Corporation	FLUKE 26-3	78030611	08/06/2024	12
RE	141558	Digital Tester(TRUE RMS MULTIMETER)	Fluke Corporation	115	17930030	05/17/2024	12
RE	141580	Microwave System Amplifier	Keysight Technologies Inc	83017A	MY39500779	03/08/2024	12
RE	141582	Pre Amplifier	SONOMA INSTRUMENT	310	260834	02/17/2024	12
RE	141583	Pre Amplifier	SONOMA INSTRUMENT	310	260833	04/04/2024	12
RE	141588	Pre Amplifier	L3 Narda-MITEQ	AMF-6F-2600400- 33-8P / AMF-4F- 2600400-33-8P	1871355 / 1871328	01/22/2024	12
RE	141805	Power Meter	Anritsu Corporation	ML2495A	6K00003338	08/22/2024	12
RE	141840	Power sensor	Anritsu Corporation	MA2411B	011737	08/22/2024	12
RE	141899	Spectrum Analyzer	Keysight Technologies Inc	E4448A	MY46180655	05/09/2024	12
RE	141949	Test Receiver	Rohde & Schwarz	ESCI	100767	06/05/2024	12
RE	141978	Spectrum Analyzer	Keysight Technologies Inc	E4448A	MY46180899	05/09/2024	12
RE	142004	AC2_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-06902	12/12/2023	24
RE	142006	AC2_Semi Anechoic Chamber(SVSWR)	TDK	Semi Anechoic Chamber 3m	DA-06902	04/17/2023	24
RE	142008	AC3_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	12/11/2023	24
RE	142013	AC3_Semi Anechoic Chamber(SVSWR)	TDK	Semi Anechoic Chamber 3m	DA-10005	04/12/2023	24
RE	142026	Diplexer	OML INC.	DPL26	-	-	-
RE	142032	Microwave Cable	Huber+Suhner	SUCOFLEX102	37511/2	-	-
RE	142036	Horn Antenna	Custom Microwave Inc.	HO6R	-	09/03/2024	12
RE RE	142039 142047	Horn Antenna Preselected Millimeter	Custom Microwave Inc. Keysight Technologies Inc	HO4R 11974V-E01	3001A00412	09/03/2024 04/04/2024	12 12
RE	142050	Mixer Block Downconverter	Keysight Technologies Inc	PS-X30-W10117A	13715	03/21/2024	12
RE	142053	Harmonic Mixer	OML INC.	M04HWD	Y100709-1	05/16/2024	12
RE	142055	Power Amplifier	SAGE Millimeter, Inc.	SBP-5037532015- 1515-N1	11599-01	03/15/2024	12
RE	142152	Loop Antenna	Rohde & Schwarz	HFH2-Z2	836553/009	10/17/2023	12
RE	142183	Measure	KOMELON	KMC-36	-	10/20/2023	12
RE	142225	Tape Measure	ASKUL	-	-	-	-
RE	142228	Measure, Tape, Steel	KOMELON	KMC-36	-	-	-
RE	142314	Attenuator	Pasternack Enterprises	PE7390-6	D/C 1504	06/06/2024	12
RE	142529	Detector	HEROTEK, INC.	DT1840P	484823	-	-
RE	154635	High Pass Filter 83 GHz - 110 GHz	Oshima Prototype Engineering Co.	A17-016	1	05/15/2024	12
RE	159670	Coaxial Cable	UL Japan	-	-	11/21/2023	12
RE	160324	Coaxial Cable	Huber+Suhner	SUCOFLEX 102A	MY009/2A	10/05/2023	12

Test Report No. 15463357H-A Page 47 of 53

Test equipment (2/2)

Test Item	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
RE	176027	D-Band Low Noise Amplifier	SAGE Millimeter, Inc.	SBL-1141741860- 0606-EI	15235-01	07/10/2024	12
RE	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
RE	180544	Horn Antenna	SAGE Millimeter, Inc.	SAZ-2410-10-S1	17343-01	06/03/2024	12
RE	180607	Power Amplifier	SAGE Millimeter, Inc.	SBP-7531142515- 1010-E1	17343-01	09/06/2024	12
RE	180634	Horn Antenna	SAGE Millimeter, Inc.	SAZ-2410-15-S1	17343-01	06/03/2024	12
RE	182484	Signal Analyzer	Keysight Technologies Inc	N9030B	MY57143159	05/09/2024	12
RE	201432	WR-15 Low Pass Filter	Oshima Prototype Engineering Co.	2020-0142-02	001	09/05/2024	12
RE	211944	Digital Storage Oscilloscope	Keysight Technologies Inc	DSOX6002A	MY59380318	12/16/2023	12
RE	238713	Double Ridge Horn Antenna	Schwarzbeck Mess- Elektronik OHG	BBHA 9120 C	688	09/02/2024	12
RE	244707	Thermo-Hygrometer	HIOKI E.E. CORPORATION	LR5001	231202102	01/25/2024	12
RE	244709	Thermo-Hygrometer	HIOKI E.E. CORPORATION	LR5001	231202103	01/25/2024	12
RE	244712	Thermo-Hygrometer	HIOKI E.E. CORPORATION	LR5001	231202106	01/25/2024	12
RE	246001	Microwave Cable	Huber+Suhner	SF103/11PC35/ 11PC35/1000mm / SF126E/5000mm	800673(1m) / 610204(5m)	03/06/2024	12
RE	246778	Microwave Cable	Huber+Suhner	SF126E/11PC35/ 11PC35/2000MM	SN 537000/126E	-	-
RE	248911	Microwave Cable	Huber+Suhner	SF126E/11PC35/ 11PC35/1000MM	537060/126E	05/29/2024	12
RE	252663	Microwave Cable	Huber+Suhner	SF126E/11PC35/ 11PC35/ 1000MM,5000MM	616276/126E / 616275/126E	09/10/2024	12

^{*}Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month. As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

The expiration*1) This test equipment was used for the tests before the expiration date of the calibration.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test Item: RE: Radiated Emission